
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DECENTRALIZED OPTIMIZATION WITH COUPLED CON-
STRAINTS

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the decentralized minimization of a separable objective
∑n

i=1 fi(xi),
where the variables are coupled through an affine constraint

∑n
i=1 (Aixi − bi) = 0.

We assume that the functions fi, matrices Ai, and vectors bi are stored locally by
the nodes of a computational network, and that the functions fi are smooth and
strongly convex.
This problem has significant applications in resource allocation and systems control
and can also arise in distributed machine learning. We propose lower complexity
bounds for decentralized optimization problems with coupled constraints and a
first-order algorithm achieving the lower bounds. To the best of our knowledge,
our method is also the first linearly convergent first-order decentralized algorithm
for problems with general affine coupled constraints.

1 INTRODUCTION

We consider the decentralized optimization problem with coupled constraints

min
x1∈Rd1 ,...,xn∈Rdn

n∑
i=1

fi(xi) s.t.
n∑

i=1

(Aixi − bi) = 0, (1)

where for i ∈ {1, . . . , n} functions fi(xi) : Rdi → R are continuously differentiable, Ai ∈ Rm×di

and bi ∈ Rm are constraint matrices and vectors respectively.

We are interested in solving problem (1) in a decentralized distributed setting. That is, we assume
the existence of a communication network G = (V, E), where V = {1, . . . , n} is the set of compute
nodes, and E ⊂ V × V is the set of communication links in the network. Each compute node i ∈ V
locally stores the objective function fi(xi), the constraint matrix Ai and the vector bi. Compute node
i ∈ V can send information (e.g., vectors, scalars, etc.) to compute node j ∈ V if and only if there is
an edge (i, j) ∈ E in the communication network.

Coupled constraints arise in various application scenarios, where sharing resources or information
takes place. Often, due to the distributed nature of such problems, decentralization is desired for
communication and/or privacy related reasons. Let us briefly describe several practical cases of
optimization problems with coupled constraints.

• Optimal exchange. Also known as the resource allocation problem Boyd et al. (2011); Nedić et al.
(2018), it writes as

min
x1,...,xn∈Rd

n∑
i=1

fi(xi) s.t.
n∑

i=1

xi = b,

where xi ∈ Rd represents the quantities of commodities exchanged among the agents of the system,
and b ∈ Rd represents the shared budget or demand for each commodity. This problem is essential in
economics Arrow and Debreu (1954), and systems control Dominguez-Garcia et al. (2012).

• Problems on graphs. In various applications, distributed systems are formed on the basis of
physical networks. This is the case for electrical microgrids, telecommunication networks and drone
swarms. Distributed optimization on graphs applies to such systems and encompasses, to name a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

few, optimal power flow Wang et al. (2016) and power system state estimation Zhang et al. (2024)
problems.

As an example, consider an electric power network. Let xi ∈ R2 denote the voltage phase angle and
the magnitude at i-th electric node, and let s be the vector of (active and reactive) power flows for
each pair of adjacent electric nodes. Highly accurate linearization approaches Yang et al. (2016);
Van den Bergh et al. (2014) allow to formulate the necessary relation between voltages and power
flows as a linear system of equations

∑n
i=1 Aixi = s. An important property of the matrices Ai

is that their compatibility with the physical network (but not necessary with the communication
network). This means that for each row of the matrix (A1, . . . ,An), there is a node k such that Ai

can have nonzero elements in this row only if nodes i and k are connected in the physical network, or
k = i.

• Consensus optimization. Related to the previous example is the consensus optimization Boyd
et al. (2011)

min
x1,...,xn∈Rd

n∑
i=1

fi(xi) s.t. x1 = x2 = . . . = xn.

It is widely used in horizontal federated learning Kairouz et al. (2021), as well as in the more general
context of decentralized optimization of finite-sum objectives Gorbunov et al. (2022); Scaman et al.
(2017).

To handle the consensus constraint, decentralized algorithms either reformulate it as
∑n

i=1 Wixi = 0,
where Wi is the i-th vertical block of a gossip matrix (an example of which is the communication
graph’s Laplacian), or utilize the closely related mixing matrix approach Gorbunov et al. (2022).
Mixing and gossip matrices are used because they are communication-friendly: calculating the sum∑n

i=1 Wixi only requires each compute node to communicate once with each of its adjacent nodes.
Clearly, consensus optimization with gossip matrix reformulation can be reduced to (1) by setting
Ai = Wi. However, the principial difference between this example and (1), is that (1) does not
assume Ai to be communication-friendly.

• Vertical federated learning (VFL). In the case of VFL, the data is partitioned by features, differing
from the usual (horizontal) federated learning, where the data is partitioned by samples Yang et al.
(2019); Boyd et al. (2011). Let F be the matrix of features, split vertically between compute nodes
into submatrices Fi, so that each node possesses its own subset of features for all data samples. Let
l ∈ Rm denote the vector of labels, and let xi ∈ Rdi be the vector of model parameters owned by the
i-th node. VFL problem formulates as

min
z∈Rm

x1∈Rd1 ,...,xn∈Rdn

ℓ(z, l) +

n∑
i=1

ri(xi) s.t.
n∑

i=1

Fixi = z, (2)

where ℓ is a loss function, and ri are regularizers. The constraints in (2) are coupled constraints, and
the objective is separable; therefore, it is a special case of (1). We return to the VFL example in
Section 6.

Paper organization. In Section 2 we present a literature review. Subsequently, in Section 3 we
introduce the assumptions and problem parameters. Section 4 describes the key ideas of algorithm
development and Section 5 presents the convergence rate of the method and the lower complexity
bounds. Finally, in Section 6, we provide numerical simulations.

2 RELATED WORK AND OUR CONTRIBUTION

Decentralized optimization algorithms were initially proposed for consensus optimization Nedić and
Ozdaglar (2009), based on earlier research in distributed optimization Tsitsiklis (1984); Bertsekas
and Tsitsiklis (1989) and algorithms for decentralized averaging (consensus or gossip algorithms)
Boyd et al. (2006); Olshevsky and Tsitsiklis (2009), which assumed the existence of a communica-
tion network, as does the present paper. The optimal complexity for consensus optimization was
first achieved with a dual accelerated gradient descent in Scaman et al. (2017), where the method
required computing gradients of Fenchel conjugates of fi(x). The corresponding complexity lower

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

bounds were also established in the same paper. This result was later generalized to primal algo-
rithms (which use gradients of the functions fi(x) themselves) Kovalev et al. (2020), time-varying
communication graphs Li and Lin (2021); Kovalev et al. (2021) and methods that use stochastic
gradients Dvinskikh and Gasnikov (2021). Today there also exist algorithms with communication
compression Beznosikov et al. (2023), asynchronous algorithms Koloskova (2024), algorithms for
saddle-point formulations Rogozin et al. (2021) and gradient-free oracles Beznosikov et al. (2020),
making decentralized consensus optimization a quite well-developed field Nedić (2020); Gorbunov
et al. (2022), benefiting systems control Ram et al. (2009) and machine learning Lian et al. (2017).

Beginning with the addition of local constraints to consensus optimization Nedic et al. (2010); Zhu
and Martinez (2011), constrained decentralized optimization has been established as a research
direction. A zoo of distributed problems with constraints was investigated in Necoara et al. (2011);
Necoara and Nedelcu (2014; 2015).

Primarily motivated by the demand from the power systems community, various decentralized
algorithms for coupled constraints have been proposed. Generally designed for versatile engineering
applications, many of these algorithms assume restricted function domains Wang and Hu (2022);
Liang et al. (2019); Nedić et al. (2018); Gong and Zhang (2023); Zhang et al. (2021); Wu et al.
(2022), nonlinear inequality constraints Liang et al. (2019); Gong and Zhang (2023); Wu et al. (2022),
time-varying graphs Zhang et al. (2021); Nedić et al. (2018) or utilize specific problem structure Wang
and Hu (2022).

Table 1: Comparison of algorithms for decentralized optimiza-
tion with coupled constraints

Reference Oracle Rate
Doan and Olshevsky (2017) † First-order Linear
Falsone et al. (2020) Prox Sub-linear
Wu et al. (2022) Prox Sub-linear
Chang (2016) Prox Sub-linear
Li et al. (2018) † Prox Linear
Gong and Zhang (2023) Inexact prox Linear
Nedić et al. (2018) † First-order Accelerated
This work First-order Optimal
† Applicable only for resource allocation problem

Works of Doan and Olshevsky
(2017); Li et al. (2018); Nedić
et al. (2018) focus on the resource
allocation problem. For undi-
rected time-varying graphs Doan
and Olshevsky (2017) proposes
a first-order algorithm with
O(

κfn
2

B ln 1
ε) complexity bound,

where B is the time required
for the time-varying graph to
reach connectivity. Li et al.
(2018) applies a combination of
gradient tracking and push-sum
approaches from Nedic et al.
(2017) to obtain linear convergence on directed time-varying graphs in the restricted domain case, i.e.,
xi ∈ Ωi, where Ωi is a nonempty closed convex set. Nedić et al. (2018) achieve accelerated linear
convergence via a proximal point method in the restricted domain case. When Ωi = Rd, they also
show that Nesterov’s accelerated gradient descent can be applied to achieve optimal O(

√
κf ln

1
ε)

complexity. In Gong and Zhang (2023) an inexact proximal-point method is proposed to solve
problems with coupled affine equality and convex inequality constraints. Linear convergence is
proved when the inequalities are absent, and Ωi are convex polyhedrons. The papers Wu et al. (2022),
Chang (2016), Falsone et al. (2020) present algorithms with sub-linear convergence.

As summarized in Table 1, no accelerated linearly convergent algorithms for general affine-equality
coupled constraints were present in the literature prior to our work. Also, most of the algorithms
require proximal oracle, which allows to handle more general problem formulations, but has higher
computational burden than the first-order oracle. We propose a new first-order decentralized algorithm
with optimal (accelerated) linear convergence rate. We prove its optimality by providing lower
bounds for the number of objective’s gradient computations, matrix multiplications and decentralized
communications, which match complexity bounds for our algorithm.

3 MATHEMATICAL SETTING AND ASSUMPTIONS

Let us begin by introducing the notation. The largest and smallest nonzero eigenvalues (or singular
values) of a matrix C are denoted by λmax(C) (or σmax(C)) and λmin+(C) (or σmin+(C)),
respectively. For vectors xi ∈ Rdi we introduce a column-stacked vector x = col(x1, . . . , xm) =
(x⊤

1 . . . x⊤
m)⊤ ∈ Rd. We denote the identity matrix by Im ∈ Rm×m. The symbol ⊗ denotes the

Kronecker product of matrices. By Lm we denote the so-called consensus space, which is given

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

as Lm = {(y1, . . . , yn) ∈ (Rm)n : y1, . . . , yn ∈ Rm and y1 = · · · = yn}, and L⊥
m denotes the

orthogonal complement to Lm, which is given as

L⊥
m = {(y1, . . . , yn) ∈ (Rm)n : y1, . . . , yn ∈ Rm and y1 + · · ·+ yn = 0}. (3)

Assumption 1. Continuously differentiable functions fi(x) : Rdi → R, i ∈ {1, . . . , n} are Lf -
smooth and µf -strongly convex, where Lf ≥ µf > 0. That is, for all x1, x2 ∈ Rdi and i ∈
{1, . . . , n}, the following inequalities hold:

µf

2
∥x2 − x1∥2 ≤ fi(x2)− fi(x1)− ⟨∇fi(x1), x2 − x1⟩ ≤

Lf

2
∥x2 − x1∥2.

By κf we denote the condition number κf = Lf/µf .

Assumption 2. There exists x∗ = (x∗
1, . . . , x

∗
n), x

∗
i ∈ Rdi such that

∑n
i=1(Aix

∗
i − bi) = 0. There

exist constants LA ≥ µA > 0, such that the constraint matrices A1, . . . ,An satisfy the following
inequalities:

σ2
max(A) = max

i∈{1,...,n}
σ2
max(Ai) ≤ LA, µA ≤ λmin+ (S) , (4)

where the matrix S ∈ Rm×m is defined as S = 1
n

∑n
i=1 AiA

⊤
i . We also define the condition number

of the matrix A as κA = LA/µA.

For any matrix M other than A we denote by LM and µM some upper and lower bound on its
maximal and minimal positive squared singular values respectively:

λmax(M
⊤M) = σ2

max(M) ≤ LM, µM ≤ σ2
min+(M) = λmin+(M⊤M). (5)

We also assume the existence of a so-called gossip matrix W ∈ Rn×n associated with the communi-
cation network G, which satisfies the following assumption.
Assumption 3. The gossip matrix W is a n× n symmetric positive semidefinite matrix such that:

1. Wij ̸= 0 if and only if (i, j) ∈ E or i = j.
2. Wy = 0 if and only if y ∈ L1, i.e. y1 = . . . = yn.
3. There exist constants LW ≥ µW > 0 such that µW ≤ λ2

min+(W) and λ2
max(W) ≤ LW.

We will use a dimension-lifted analogue of the gossip matrix defined as W = W ⊗ Im. From
the properties of the Kronecker product of matrices it follows that λ2

min+(W) = λ2
min+(W) and

λ2
max(W) = λ2

max(W). By κW we denote the condition number

κW =

√
LW

µW
≥ λmax(W)

λmin+(W)
. (6)

Moreover, the kernel and range spaces of W and W are given by

kerW = L1, rangeW = L⊥
1 , kerW = Lm, rangeW = L⊥

m. (7)

4 DERIVATION OF THE ALGORITHM

4.1 STRONGLY CONVEX COMMUNICATION-FRIENDLY REFORMULATION

Let W′ be any positive semidefinite matrix such that

rangeW′ = (kerW′)⊥ = L⊥
m, (8)

and multiplication of a vector y = (y1, . . . , yn) ∈ (Rm)n by W′ can be performed efficiently in the
decentralized manner if its i-th block component yi is stored at i-th node of the computation network.
Similarly to eq. (6), we define

κW′ =

√
LW′

µW′
≥ λmax(W

′)

λmin+(W′)
. (9)

Due to the definition of W and eq. (7), the simplest choice for W′ might be to set W′ = W. Later
we will specify another way to choose W′ for optimal algorithmic performance.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Problem (1) can be reformulated as follows:

min
x∈Rd,y∈(Rm)n

G(x, y) s.t. Ax+ γW′y = b, (10)

where the function G(x, y) : Rd × (Rm)n → R is defined as

G(x, y) = F (x) +
r

2
∥Ax+ γW′y − b∥2, (11)

the function F (x) : Rd → R is defined as F (x) =
∑n

i=1 fi(xi), where x = (x1, . . . , xn), xi ∈ Rdi ,
the matrix A ∈ Rmn×d is the block-diagonal matrix A = diag (A1, . . . ,An), the vector b is the
column-stacked vector b = col (b1, . . . , bn) ∈ Rmn, and r, γ > 0 are scalar constants that will be
determined later.

From the definitions of A, b and L⊥
m (eq. (3)) it is clear that

∑n
i=1(Aixi − bi) = 0 if and only if

Ax− b ∈ L⊥
m. Since rangeW′ = L⊥

m, the constraint in problem (10) is equivalent to the coupled
constraint in (1). For all x, y satisfying the constraint, the augmented objective function G(x, y) is
equal to the original objective function F (x). Therefore, problem (10) is equivalent to problem (1).

The following Lemma 1 shows that the function G(x, y) is strongly convex and smooth.
Lemma 1. Let r and γ be defined as follows:

r =
µf

2LA
, γ2 =

µA + LA

µW′
. (12)

Then, the strong convexity and smoothness constants of G(x, y) on Rd × L⊥
m are given by

µG = µf min

{
1

2
,
µA + LA

4LA

}
, LG = max

{
Lf + µf , µf

µA + LA

LA

LW′

µW′

}
. (13)

Let the matrix B ∈ Rmn×(d+mn) be defined as B = [A γW′]. The following Lemma 2 connects
the spectral properties of B, A and W′.
Lemma 2. The following bounds on the singular values of B hold:

σ2
min+(B) ≥ µB =

µA

2
, σ2

max(B) ≤ LB = LA + (LA + µA)
LW′

µW′
, (14)

and
σ2
max(B)

σ2
min+(B)

≤ LB

µB
= κB = 2

(
κA +

LW′

µW′
(1 + κA)

)
. (15)

Proofs of Lemma 1 and Lemma 2 are provided in Appendix A.

4.2 CHEBYSHEV ACCELERATION

Chebyshev acceleration allows us to decouple the number of computations of the objective’s gradient
∇F (x) from the properties of the communication network and the constraint matrix — specifically,
from the condition numbers κW and κA. The Chebyshev trick enables to replace the matrix with a
matrix polynomial with a better condition number.

Consider some affine relation Mu = d and let PM be a polynomial such that PM(λ) = 0 ⇔ λ = 0
for any eigenvalue λ of M⊤M. Note that here we interchangeably use P as a polynomial of a matrix
and a polynomial of a scalar. We denote any feasible point for the constraint Mu = d as u0. Then,

Mu = d ⇔ M(u− u0) = 0
(a)⇔ M⊤M(u− u0) = 0

(b)⇔ PM(M⊤M)(u− u0) = 0
(c)⇔
√
PM(M⊤M)(u− u0) = 0

where (a) and (c) is due to kerM⊤M = kerM; (b) is due to kerPM(M⊤M) = kerM⊤M by the
assumption about PM(λ).

Following Salim et al. (2022a) and Scaman et al. (2017), we use the translated and scaled Chebyshev
polynomials, because they are the best at compressing the spectrum Auzinger and Melenk (2011).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Lemma 3 (Salim et al. (2022a), Section 6.3.2). Consider a matrix M. Let ℓ =
⌈√

LM

µM

⌉
≥⌈√

λmax(M⊤M)
λmin+ (M⊤M)

⌉
. Define PM(t) = 1 − Tℓ((LM+µM−2t)/(LM−µM))

Tℓ((LM+µM)/(LM−µM)) , where Tℓ is the Chebyshev

polynomial of the first kind of degree n defined by Tℓ(t) =
1
2

((
t+

√
t2 − 1

)ℓ
+
(
t−

√
t2 − 1

)ℓ)
.

Then, PM(0) = 0, and

λmax

(
PM(M⊤M)

)
≤ max

t∈[µM,LM]
PM(t) ≤ 19

15
, (16)

λmin+

(
PM(M⊤M)

)
≥ min

t∈[µM,LM]
PM(t) ≥ 11

15
. (17)

Results of this section are summarized in the following Lemma 4.

Lemma 4. Define
W′ = P√

W(W) (18)

and

K =
√
PB(B⊤B). (19)

Let G(u) = G(x, y), U = Rd × L⊥
m and b′ =

√
PB(B⊤B)u0. Then, problem

min
u∈U

G(u) s.t. Ku = b′ (20)

is an equivalent preconditioned reformulation of problem (10), and, in turn, of problem (1).

4.3 BASE ALGORITHM

Algorithm 1 APAPC
1: Parameters: u0 ∈ U η, θ, α > 0, τ ∈ (0, 1)
2: Set u0

f = u0, z0 = 0 ∈ U
3: for k = 0, 1, 2, . . . do
4: uk

g := τuk + (1− τ)uk
f

5: uk+ 1
2 := (1 + ηα)−1(uk − η(∇G(uk

g)− αuk
g + zk))

6: zk+1 := zk + θK⊤(Kuk+ 1
2 − b′)

7: uk+1 := (1 + ηα)−1(uk − η(∇G(uk
g)− αuk

g + zk+1))

8: uk+1
f := uk

g + 2τ
2−τ (u

k+1 − uk)
9: end for

Our base algorithm, Algorithm 1,
is the Proximal Alternating
Predictor-Corrector (PAPC) with
Nesterov’s acceleration, called
Accelerated PAPC (APAPC).
It was proposed in Salim et al.
(2022a) to obtain an optimal
algorithm for optimization
problems formulated as (20).
See Kovalev et al. (2020); Salim
et al. (2022b) for the review of
related algorithms and history of
their development.

APAPC algorithm formulates as Algorithm 1, and its convergence properties are given in Proposi-
tion 1.

Proposition 1 (Salim et al. (2022a), Proposition 1). Assume that the matrix K in (20) satisfies
µK > 0 and b′ ∈ rangeK, and denote κK = LK

µK
. Also assume that the function G is LG-

smooth and µG-strongly convex. Set the parameter values of Algorithm 1 as τ = min
{
1, 1

2

√
κK

κG

}
,

η = 1
4τLG

, θ = 1
ηLK

and α = µG. Denote by u∗ the solution of problem (20) and by z∗ the solution
of its dual problem satisfying z∗ ∈ rangeK. Then the iterates uk, zk of Algorithm 1 satisfy

1

η

∥∥uk − u⋆
∥∥2 + ηα

θ(1 + ηα)

∥∥(K⊤)†zk − z⋆
∥∥2 (21)

+
2(1− τ)

τ
DG(u

k
f , u

⋆) ≤
(
1 +

1

4
min

{
1√

κGκK
,
1

κK

})−k

C,

where C := 1
η

∥∥u0 − u⋆
∥∥2 + 1

θ∥z0 − z⋆∥2 + 2(1−τ)
τ DG(u

0
f , u

⋆), and DG denotes the Bregman
divergence of G, defined by DG(u

′, u) = G(u′)−G(u)− ⟨∇G(u), u′ − u⟩.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 3 mulW′(y): Multiplication by W′

1: Parameters: y
2: ρ :=

(√
LW −√

µW

)2
/16

3: ν :=
(√

LW +
√
µW

)
/2

4: δ0 := −ν/2, n := ⌈√κW⌉
5: p0 := −Wy/ν, y1 := y + p0

6: for i = 1, . . . , n− 1 do
7: βi−1 := ρ/δi−1

8: δi := −(ν + βi−1)
9: pi :=

(
Wyi + βi−1pi−1

)
/δi

10: yi+1 := yi + pi

11: end for
12: Output: y − yn

Algorithm 4 grad_G(u): Computation of
∇G(u)

1: Parameters: u = (x, y)
2: z := r (Ax+ γ ·mulW′(y)− b)

3: Output:
(
∇F (x) +A⊤z
γ ·mulW′(z)

)

Algorithm 5 K_Chebyshev(u): Computation
of K⊤(Ku− b′)

1: Parameters: u = (x, y)

2: ρ := (LB − µB)
2
/16

3: ν := (LB + µB) /2
4: δ0 := −ν/2, n := ⌈√κB⌉
5: q0 := Ax+ γ ·mulW′(y)− b

6: p0 := −1

ν

(
A⊤q0

γ ·mulW′(q0)

)
7: u1 := u+ p0

8: for i = 1, . . . , n− 1 do
9: βi−1 := ρ/δi−1

10: δi := −(ν + βi−1)
11: (xi, yi) = ui

12: qi := Axi + γ ·mulW′(yi)− b

13: pi :=
1

δi

(
A⊤qi

γ ·mulW′(qi)

)
+

βi−1pi−1/δi

14: ui+1 := ui + pi

15: end for
16: Output: u− un

5 MAIN RESULTS

5.1 ALGORITHM

Algorithm 2 Main algorithm
1: Parameters: x0 ∈ Rd η, θ, α > 0, τ ∈ (0, 1)
2: Set y0 := 0 ∈ (Rm)n, u0 := (x0, y0),
3: u0

f := u0, z0 := 0 ∈ Rd × (Rm)n

4: for k = 0, 1, 2, . . . do
5: uk

g := τuk + (1− τ)uk
f

6: gk := grad_G(uk
g)− αuk

g

7: uk+ 1
2 := (1 + ηα)−1(uk − η(gk + zk))

8: zk+1 := zk + θ ·K_Chebyshev(uk+ 1
2)

9: uk+1 := (1 + ηα)−1(uk − η(gk + zk+1))

10: uk+1
f := uk

g + 2τ
2−τ (u

k+1 − uk)
11: end for

As stated in Lemma 4, problem (20)
is equivalent to problem (1). Due
to Lemma 1, its objective is strongly con-
vex, allowing us to apply Algorithm 1 to
it. Using Lemma 3, we obtain that the con-
dition numbers of W′ and K are bounded
as O(1), but a single multiplication by W′

and K,K⊤ translates to O(
√
κW) multi-

plications by W and O(
√
κB) multiplica-

tions by B,B⊤ respectively.

We implement multiplications by W′ and
K,K⊤ through numerically stable Cheby-
shev iteration procedures given in Algo-
rithms 3 and 5, which only use decentral-
ized communications and multiplications
by A,A⊤. Lemmas 1 to 3 allow us to express the complexity of Algorithm 1 in terms of the parame-
ters of the initial problem given in Assumptions 1 to 3. All this leads us to the following Theorem 1,
a detailed proof of which is provided in Appendix A.3, as well as the derivation of Algorithms 3
and 5 and values of the parameters of Algorithm 2.

Theorem 1. Set the parameter values of Algorithm 2 as τ = min
{
1, 1

2

√
19

44max{1+κf ,6}

}
,

η = 1
4τ max{Lf+µf ,6µf} , θ = 15

19η and α =
µf

4 . Denote by x∗ the solution of problem (1).
Then, for every ε > 0, Algorithm 2 finds xk for which ∥xk − x∗∥2 ≤ ε using O(

√
κf log(1/ε))

objective’s gradient computations, O(
√
κf

√
κA log(1/ε)) multiplications by A and A⊤, and

O(
√
κf

√
κA

√
κW log(1/ε)) communication rounds (multiplications by W).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.2 LOWER BOUNDS

Let us formulate the lower complexity bounds for decentralized optimization with affine constraints.
To do that, we formalize the class of the algorithms of interest. In the literature, approaches with
continuous time Scaman et al. (2017) and discrete time Kovalev et al. (2021) are used. We use the
latter discrete time formalization. We assume that the method works in synchronized rounds of three
types: local objective’s gradient computations, local matrix multiplications and communications. At
each time step, algorithm chooses one of the three step types.

Since the devices may have different dimensions di of locally held vectors xi, they cannot commu-
nicate these vectors directly. Instead, the nodes exchange quantities Aixi ∈ Rm. For this reason,
we introduce two types of memory Mi(k) and Hi(k) for node i at step k. Set Mi(k) stands for the
local memory that the node does not share and Hi(k) denotes the memory that the node exchanges
with neighbors. The interaction between Mi(k) and Hi(k) is performed via multiplications by Ai

and A⊤
i .

Below we describe how the sets Mi(k),Hi(k) are updated.

1. Algorithm performs local gradient comutation round at step k. Gradient updates only operate in
Mi(k) and do not affect Hi(k). For all i ∈ V we have

Mi(k + 1) = Span {x,∇fi(x),∇f∗
i (x) : x ∈ Mi(k)} , Hi(k + 1) = Hi(k),

where f∗
i is the Fenchel conjugate of fi.

2. Algorithm performs local matrix multiplication round at step k. Sets Hi(k) and Mi(k) make
mutual updates via multiplication by Ai and A⊤

i . For all i ∈ V we have

Mi(k + 1) = Span
{
A⊤

i bi, A
⊤
i y : y ∈ Hi(k)

}
, Hi(k + 1) = Span {bi,Aix : x ∈ Mi(k)} .

3. Algorithm performs a communication round at step k. The non-shared local memory Mi(k) stays
unchanged, while the shared memory Hi(k + 1) is updated via interaction with neighbors. For all
i ∈ V we have

Mi(k + 1) = Mi(k), Hi(k + 1) = Span {Hj(k) : (i, j) ∈ E} .

Under given memory and computation model, we formulate the lower complexity bounds.
Theorem 2. For any Lf > µf > 0, κA, κW > 0 there exist Lf -smooth µf -strongly convex functions
{fi}ni=1, matrices Ai such that κA = LA/µA (where LA, µA are defined in (4)), and a communi-
cation graph G with a corresponding gossip matrix W such that κW = λmax(W)/λ+

min(W), for
which any first-order decentralized algorithm on problem (1) to reach accuracy ε requires at least

Nf = Ω

(√
κf log

(
1

ε

))
gradient computations,

NA = Ω

(
√
κf

√
κA log

(
1

ε

))
multiplications by A and A⊤,

NW = Ω

(
√
κf

√
κA

√
κW log

(
1

ε

))
communication rounds (multiplications by W).

A proof of Theorem 2 is provided in Appendix B.

6 EXPERIMENTS

The experiments were run on CPU Intel(R) Core(TM) i9-7980XE, with 62.5 GB RAM.

• Synthetic linear regression. In this section we perform numerical experiments on a synthetic
linear regression problem with ℓ2-regularization:

min
x1,...,xn∈Rdi

n∑
i=1

(
1

2
∥Cixi − di∥22 +

θ

2
∥xi∥22

)
s.t.

n∑
i=1

(Aixi − bi) = 0, (22)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

where we randomly generate matrices Ci ∈ Rdi×di , Ai ∈ Rm×di and vectors di ∈ Rdi , bi ∈ Rm

from the standard normal distribution. Local variables xi ∈ Rdi have the same dimension di, equal
for all devices. Regularization parameter θ is 10−3. In the Fig. 1 we demonstrate the performance of
the our method on the problem, that has the following parameters: κf = 3140, κA = 27, κW = 89.
There we use Erdős–Rényi graph topology with n = 20 nodes. Local variables dimension is di = 3
and number of linear constraints is m = 10. We compare performance of Algorithm 2 with Tracking-
ADMM algorithm Falsone et al. (2020) and DPMM algorithm Gong and Zhang (2023). Note that
Tracking-ADMM and DPMM are proximal algorithms that solve a subproblem at each iteration. The
choice of objective function in our simulations (linear regression) makes the corresponding proximal
operator effectively computable via Conjugate Gradient algorithm Nesterov (2004) that uses gradient
computations. Therefore, we measure the computational complexity of these methods in the number
of gradient computations, not the number of proximal operator computations.

0.0 0.2 0.4 0.6 0.8 1.0
Gradient calls ×104

10−21

10−17

10−13

10−9

10−5

10−1

103

Tracking-ADMM

DPMM

Main algorithm

0 1 2 3 4

Mult. by A and AT ×105

10−21

10−17

10−13

10−9

10−5

10−1

103

Tracking-ADMM

DPMM

Main algorithm

0 1 2 3 4
Communications ×105

10−21

10−17

10−13

10−9

10−5

10−1

103

Tracking-ADMM

DPMM

Main algorithm

‖x
k
−
x
∗ ‖

2 2

Figure 1: Synthetic, Erdős–Rényi graph, n = 20, di = 3, m = 10

• VFL linear regression on real data. Now we return to the problem, that we have announced in the
introduction section. We apply VFL in the linear regression problem: ℓ is a typical mean squared loss
function, that is ℓ(z, l) = 1

2∥z − l∥22, and ri are ℓ2-regularizers, i.e. ri(xi) = λ∥xi∥22. To adapt this
from (2) to (1), we redefine x1 :=

(
x1

z

)
and x2 := x2, . . . , xn := xn. Thus, we can derive constraints

matrices as in the (1):

A1 = (F1 −I) , A1x1 = F1w1 − z, (23)

Ai = Fi, i = 2, . . . , n,

n∑
i=1

Aixi =

n∑
i=1

Fiwi − z. (24)

For numerical simulation, we use mushrooms dataset from LibSVM library Chang and Lin (2011).
We split m = 100 samples subset vertically between n = 7 devices. Regularization parameter
λ = 10−2. The results are in the Fig. 2.

0.0 0.2 0.4 0.6 0.8 1.0
Gradient calls ×103

10−18

10−14

10−10

10−6

10−2

102

Tracking-ADMM

DPMM

Main algorithm

0.0 0.5 1.0

Mult. by A and AT ×105

10−18

10−14

10−10

10−6

10−2

102

Tracking-ADMM

DPMM

Main algorithm

0.0 0.2 0.4 0.6 0.8 1.0
Communications ×105

10−18

10−14

10−10

10−6

10−2

102

Tracking-ADMM

DPMM

Main algorithm

‖x
k
−
x
∗ ‖

2 2

Figure 2: VFL, Erdős–Rényi graph, n = 7, m = 100

Our algorithm exhibits the best convergence rates, as evidenced by the steepest slopes. The slopes vary
for gradient calls, matrix multiplications, and communications. This is due to the fact that Algorithm 2
involves many communications per iteration, in contrast to DPMM and Tracking-ADMM, which
make numerous gradient calls per iteration.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found. Trends Mach.
Learn., 3(1):1–122, January 2011. ISSN 1935-8237. doi:10.1561/2200000016. URL http:
//dx.doi.org/10.1561/2200000016.

Angelia Nedić, Alex Olshevsky, and Wei Shi. Improved convergence rates for distributed resource
allocation. In 2018 IEEE Conference on Decision and Control (CDC), pages 172–177. IEEE,
2018.

Kenneth J Arrow and Gerard Debreu. Existence of an equilibrium for a competitive economy.
Econometrica: Journal of the Econometric Society, pages 265–290, 1954.

Alejandro D Dominguez-Garcia, Stanton T Cady, and Christoforos N Hadjicostis. Decentralized
optimal dispatch of distributed energy resources. In 2012 IEEE 51st IEEE conference on decision
and control (CDC), pages 3688–3693. IEEE, 2012.

Yamin Wang, Lei Wu, and Shouxiang Wang. A fully-decentralized consensus-based admm approach
for dc-opf with demand response. IEEE Transactions on Smart Grid, 8(6):2637–2647, 2016.

Haixiang Zhang, Ying Chen, and Javad Lavaei. Geometric analysis of matrix sensing over graphs.
Advances in Neural Information Processing Systems, 36, 2024.

Jingwei Yang, Ning Zhang, Chongqing Kang, and Qing Xia. A state-independent linear power flow
model with accurate estimation of voltage magnitude. IEEE Transactions on Power Systems, 32
(5):3607–3617, 2016.

Kenneth Van den Bergh, Erik Delarue, and William D’haeseleer. Dc power flow in unit commitment
models. no. May, 2014.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and trends® in machine learning,
14(1–2):1–210, 2021.

Eduard Gorbunov, Alexander Rogozin, Aleksandr Beznosikov, Darina Dvinskikh, and Alexander
Gasnikov. Recent theoretical advances in decentralized distributed convex optimization. In
High-Dimensional Optimization and Probability, pages 253–325. Springer, 2022.

Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Optimal
algorithms for smooth and strongly convex distributed optimization in networks. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70, pages 3027–3036. JMLR. org,
2017.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept and
applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19, 2019.

Angelia Nedić and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimization.
IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

John Nikolas Tsitsiklis. Problems in decentralized decision making and computation. Technical
report, Massachusetts Inst of Tech Cambridge Lab for Information and Decision Systems, 1984.

Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed computation: numerical methods,
volume 23. Prentice hall Englewood Cliffs, NJ, 1989.

Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip algorithms.
IEEE transactions on information theory, 52(6):2508–2530, 2006.

Alex Olshevsky and John N Tsitsiklis. Convergence speed in distributed consensus and averaging.
SIAM Journal on Control and Optimization, 48(1):33–55, 2009.

Huan Li and Zhouchen Lin. Accelerated gradient tracking over time-varying graphs for decentralized
optimization. arXiv preprint arXiv:2104.02596, 2021.

10

https://doi.org/10.1561/2200000016
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1561/2200000016

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Dmitry Kovalev, Elnur Gasanov, Alexander Gasnikov, and Peter Richtarik. Lower bounds and optimal
algorithms for smooth and strongly convex decentralized optimization over time-varying networks.
Advances in Neural Information Processing Systems, 34, 2021.

Darina Dvinskikh and Alexander Gasnikov. Decentralized and parallel primal and dual accelerated
methods for stochastic convex programming problems. Journal of Inverse and Ill-posed Problems,
29(3):385–405, 2021.

Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compression
for distributed learning. Journal of Machine Learning Research, 24(276):1–50, 2023.

Anastasiia Koloskova. Optimization algorithms for decentralized, distributed and collaborative
machine learning. Technical report, EPFL, 2024.

Alexander Rogozin, Alexander Beznosikov, Darina Dvinskikh, Dmitry Kovalev, Pavel Dvurechensky,
and Alexander Gasnikov. Decentralized distributed optimization for saddle point problems. arXiv
preprint arXiv:2102.07758, 2021.

Aleksandr Beznosikov, Eduard Gorbunov, and Alexander Gasnikov. Derivative-free method
for composite optimization with applications to decentralized distributed optimization. IFAC-
PapersOnLine, 53(2):4038–4043, 2020.

Angelia Nedić. Distributed gradient methods for convex machine learning problems in networks:
Distributed optimization. IEEE Signal Processing Magazine, 37(3):92–101, 2020.

Sundhar Srinivasan Ram, Venugopal V Veeravalli, and Angelia Nedic. Distributed non-autonomous
power control through distributed convex optimization. In IEEE INFOCOM 2009, pages 3001–
3005. IEEE, 2009.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. In Advances in Neural Information Processing Systems, pages 5330–5340, 2017.

Angelia Nedic, Asuman Ozdaglar, and Pablo A Parrilo. Constrained consensus and optimization in
multi-agent networks. IEEE Transactions on Automatic Control, 55(4):922–938, 2010.

Minghui Zhu and Sonia Martinez. On distributed convex optimization under inequality and equality
constraints. IEEE Transactions on Automatic Control, 57(1):151–164, 2011.

Ion Necoara, Valentin Nedelcu, and Ioan Dumitrache. Parallel and distributed optimization methods
for estimation and control in networks. Journal of Process Control, 21(5):756–766, 2011.

Ion Necoara and Valentin Nedelcu. Distributed dual gradient methods and error bound conditions.
arXiv preprint arXiv:1401.4398, 2014.

Ion Necoara and Valentin Nedelcu. On linear convergence of a distributed dual gradient algorithm
for linearly constrained separable convex problems. Automatica, 55:209–216, 2015.

Jianzheng Wang and Guoqiang Hu. Distributed optimization with coupling constraints in multi-cluster
networks based on dual proximal gradient method. arXiv preprint arXiv:2203.00956, 2022.

Shu Liang, George Yin, et al. Distributed smooth convex optimization with coupled constraints.
IEEE Transactions on Automatic Control, 65(1):347–353, 2019.

Kai Gong and Liwei Zhang. Decentralized proximal method of multipliers for convex optimization
with coupled constraints. arXiv preprint arXiv:2310.15596, 2023.

Bingru Zhang, Chuanye Gu, and Jueyou Li. Distributed convex optimization with coupling constraints
over time-varying directed graphs. Journal of Industrial and Management Optimization, 17(4):
2119–2138, 2021.

Xuyang Wu, He Wang, and Jie Lu. Distributed optimization with coupling constraints. IEEE
Transactions on Automatic Control, 68(3):1847–1854, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Thinh T Doan and Alex Olshevsky. Distributed resource allocation on dynamic networks in quadratic
time. Systems & Control Letters, 99:57–63, 2017.

Alessandro Falsone, Ivano Notarnicola, Giuseppe Notarstefano, and Maria Prandini. Tracking-admm
for distributed constraint-coupled optimization. Automatica, 117:108962, 2020.

Tsung-Hui Chang. A proximal dual consensus admm method for multi-agent constrained optimization.
IEEE Transactions on Signal Processing, 64(14):3719–3734, 2016.

Huaqing Li, Qingguo Lü, Xiaofeng Liao, and Tingwen Huang. Accelerated convergence algorithm for
distributed constrained optimization under time-varying general directed graphs. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 50(7):2612–2622, 2018.

Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for distributed
optimization over time-varying graphs. SIAM Journal on Optimization, 27(4):2597–2633, 2017.

Adil Salim, Laurent Condat, Dmitry Kovalev, and Peter Richtárik. An optimal algorithm for strongly
convex minimization under affine constraints. In International conference on artificial intelligence
and statistics, pages 4482–4498. PMLR, 2022a.

Winfried Auzinger and J Melenk. Iterative solution of large linear systems. Lecture notes, TU Wien,
2011.

Dmitry Kovalev, Adil Salim, and Peter Richtárik. Optimal and practical algorithms for smooth and
strongly convex decentralized optimization. Advances in Neural Information Processing Systems,
33, 2020.

Adil Salim, Laurent Condat, Konstantin Mishchenko, and Peter Richtárik. Dualize, split, randomize:
Toward fast nonsmooth optimization algorithms. Journal of Optimization Theory and Applications,
195(1):102–130, 2022b.

Yurii Nesterov. Introductory Lectures on Convex Optimization: a basic course. Kluwer Academic
Publishers, Massachusetts, 2004.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. ACM Trans.
Intell. Syst. Technol., 2(3), may 2011. ISSN 2157-6904. doi:10.1145/1961189.1961199. URL
https://doi.org/10.1145/1961189.1961199.

Martin H Gutknecht and Stefan Röllin. The chebyshev iteration revisited. Parallel Computing, 28(2):
263–283, 2002.

12

https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX / SUPPLEMENTAL MATERIAL

A MISSING PROOFS FROM SECTION 4

A.1 PROOF OF LEMMA 1

Proof. Let DG(x
′, y′;x, y) denote the Bregman divergence of G:

DG(x
′, y′;x, y) = G(x′, y′)−G(x, y)− ⟨∇xG(x, y), x′ − x⟩ − ⟨∇yG(x, y), y′ − y⟩. (25)

The value of µG can be obtained as follows:

DG(x
′, y′;x, y) = DF (x

′;x) +
r

2
∥A(x′ − x) + γW′(y′ − y)∥2

(a)

≥ µf

2
∥x′ − x∥2 + r

2
∥A(x′ − x) + γW′(y′ − y)∥2

=
µf

2
∥x′ − x∥2 + r

2
∥A(x′ − x)∥2 + r⟨A(x′ − x), γW′(y′ − y)⟩

+
r

2
∥γW′(y′ − y)∥2

(b)

≥ µf

2
∥x′ − x∥2 + r

4
∥γW′(y′ − y)∥2 − r

2
∥A(x′ − x)∥2

(c)

≥ µf

2
∥x′ − x∥2 + rγ2µW′

4
∥y′ − y∥2 − rLA

2
∥x′ − x∥2

(d)
=

µf

4
∥x′ − x∥2 + µfγ

2µW′

8LA
∥y′ − y∥2,

(e)

≥ µf

2
min

{
1

2
,
µA + LA

4LA

}∥∥∥∥(x′ − x
y′ − y

)∥∥∥∥2 ,
where (a) is due to Assumption 1; (b) is due to Young’s inequality; (c) is due to Assumption 2,
y′ − y ∈ L⊥

m, eq. (8) and eq. (5); (d) and (e) is due to eq. (12).

The value of LG can be obtained as follows:

DG(x
′, y′;x, y) = DF (x

′;x) +
r

2
∥A(x′ − x) + γW′(y′ − y)∥2

(a)

≤ Lf

2
∥x′ − x∥2 + r

2
∥A(x′ − x) + γW′(y′ − y)∥2

(b)

≤ Lf

2
∥x′ − x∥2 + r∥γW′(y′ − y)∥2 + r∥A(x′ − x)∥2

(c)

≤ Lf

2
∥x′ − x∥2 + rγ2LW′∥y′ − y∥2 + rLA∥x′ − x∥2

(d)
=

Lf + µf

2
∥x′ − x∥2 + µfγ

2LW′

2LA
∥y′ − y∥2,

(e)

≤ 1

2
max

{
Lf + µf , µf

µA + LA

LA

LW′

µW′

}∥∥∥∥(x′ − x
y′ − y

)∥∥∥∥2 ,
where (a) is due to Assumption 1; (b) is due to Young’s inequality; (c) is due to Assumption 2 and
eq. (5); (d) and (e) is due to eq. (12).

A.2 PROOF OF LEMMA 2

Proof. To obtain the formula for LB, consider an arbitrary z ∈ (Rm)n:

∥B⊤z∥2 = ∥A⊤z∥2 + ∥γW′z∥2
(a)

≤ (LA + γ2LW′)∥z∥2

(b)
=

(
LA + (LA + µA)

LW′

µW′

)
∥z∥2,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

where (a) is due to Assumption 2 and eq. (5); (b) is due to eq. (12).

To derive the formula for µB, first of all, note that by eq. (8)

(kerB⊤)⊥ = rangeB = rangeA+ rangeW′ = rangeA+ L⊥
m. (26)

Let z ∈ (kerB⊤)⊥ = u+ v, where u = (u1, . . . , un), v = (v0, . . . , v0) ∈ (Rm)n such that u ∈ L⊥
m

and v ∈ Lm.

We can show that v0 ∈ rangeS. In order to do that, let us show that ⟨v0, w0⟩ = 0 for all w0 ∈ kerS.
Let w = (w0, . . . , w0) ∈ Lm. The fact that w0 ∈ kerS and w ∈ Lm implies w ∈ kerAA⊤ =
kerA⊤. Hence, it is easy to show that w ∈ kerB⊤ = (rangeB)⊥. Then, we obtain

n⟨v0, w0⟩
(a)
= ⟨v, w⟩ (b)

= ⟨u+ v, w⟩ = ⟨z, w⟩ (c)
= 0,

where (a) follows from the definition of v and w; (b) follows from the fact that u ∈ L⊥
m and

w ∈ Lm; (c) follows from the fact that z ∈ rangeB and w ∈ (rangeB)⊥. Hence, v0 ∈ rangeS.

Further, we get

∥B⊤z∥2 (a)
= ∥A⊤(u+ v)∥2 + ∥γW′(u+ v)∥2
(b)
= ∥A⊤(u+ v)∥2 + ∥γW′u∥2
(c)

≥ ∥A⊤(u+ v)∥2 + γ2µW′∥u∥2

= ∥A⊤u∥2 + ∥A⊤v∥2 + 2⟨A⊤u,A⊤v⟩+ γ2µW′∥u∥2
(d)

≥ −∥A⊤u∥2 + 1

2
∥A⊤v∥2 + γ2µW′∥u∥2

(e)
= −∥A⊤u∥2 + 1

2
⟨v0, nSv0⟩+ γ2µW′∥u∥2

(f)

≥ −LA∥u∥2 + nµA

2
∥v0∥2 + γ2µW′∥u∥2

= −LA∥u∥2 + µA

2
∥v∥2 + γ2µW′∥u∥2

(g)
=

µA

2
∥v∥2 + µA∥u∥2

(h)

≥ µA

2
∥z∥2,

where (a) and (h) is due to the definitions of u and v; (b) is due to the fact that v ∈ Lm; (c) is
due to eq. (5) and eq. (8); (d) uses Young’s inequality; (e) is due to the definitions of v and S, and

∥A⊤v∥2 =

∥∥∥∥∥∥∥
A⊤

1 v0
...

A⊤
n v0


∥∥∥∥∥∥∥
2

=
∑n

i=1 ∥A⊤
i v0∥2 = ⟨v0,

∑n
i=1 AiA

⊤
i v0⟩ = ⟨v0, nSv0⟩; (f) is due to

Assumption 2 and the definition of v; (g) is due to eq. (12).

A.3 PROOF OF THEOREM 1

Lemma 5 (Salim et al. (2022a), Section 6.3.2). Let M be a matrix with µM > 0, r ∈ rangeM and
Mv0 = r. Then PM(M⊤M)(v− v0) = v−Chebyshev(v,M, r), where Chebyshev is defined
as Algorithm 6.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 6 Chebyshev(v,M, r): Chebyshev iteration (Gutknecht and Röllin (2002), Algorithm
4)

1: Parameters: v,M, r.

2: n :=
⌈√

LM

µM

⌉
3: ρ :=

(
LM − µM

)2
/16, ν := (LM + µM)/2

4: δ0 := −ν/2
5: p0 := −M⊤(Mv − r)/ν
6: v1 := v + p0

7: for i = 1, . . . , n− 1 do
8: βi−1 := ρ/δi−1

9: δi := −(ν + βi−1)
10: pi :=

(
M⊤(Mvi − r) + βi−1pi−1

)
/δi

11: vi+1 := vi + pi

12: end for
13: Output: vn

Proof of Theorem 1

Proof. Applying Lemma 3 to W and B⊤B, we derive that, due to eq. (18), it holds

λ2
max(W

′) ≤ LW′ = (19/15)2, λ2
min+(W′) ≥ µW′ = (11/15)2, (27)

and by eq. (6) the polynomial PW has a degree of ⌈√κW⌉. Similarly, due to eq. (19), it holds

σ2
max(K) = λmax(K

⊤K) ≤ LK = 19/15, σ2
min+(K) = λmin+(K⊤K) ≥ µK = 11/15, (28)

and since κB = LB

µB
, the polynomial PB has a degree of ⌈√κB⌉.

We implement computation of the term K⊤(Ku− b′) in line 6 of Algorithm 1 via Algorithm 5 by
Lemma 5:

K⊤(Ku− b′) = K⊤K(u− u0) = PB(B
⊤B)(u− u0)

= u−Chebyshev(u,B,b) = K_Chebyshev(u).

Similarly, utilizing Lemma 5, we get

W′y = P√
W(W)y = P√

W(
√
W

⊤√
W)(y− 0) = y−Chebyshev(y,

√
W, 0) = mulW′(y),

(29)
where mulW′ is defined as Algorithm 3.

Therefore, Algorithm 2 is equivalent to Algorithm 1.

From eqs. (13) and (27), µA+LA

LA
≤ 2 and (19/11)2 ≤ 3, we get

LG = max

{
Lf + µf , µf

µA + LA

LA

LW′

µW′

}
≤ µf max {1 + κf , 6} , (30)

µG = µf min

{
1

2
,
µA + LA

4LA

}
≥ µf

4
, (31)

κG =
LG

µG
≤ 4max {1 + κf , 6} . (32)

From eqs. (15) and (27) we get

κB =
LB

µB
≤ 2

(
κA + (19/11)2(1 + κA)

)
≤ 8κA + 6. (33)

From eq. (28) we obtain

κK =
LK

µK
= 19/11, (34)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

and substituting eqs. (32) and (33) to Proposition 1, we obtain as its direct corollary that k =
O(

√
κf log(1/ε)). Each iteration of Algorithm 2 require O(1) computations of ∇F , O(

√
κB) =

O(
√
κA) multiplications by A,A⊤ and O(

√
κA

√
κW) multiplications by W, which gives us the

statement of Theorem 1. The values of the parameters τ, η, θ, α in Theorem 1 are derived from
Proposition 1 as follows. We have τ = min

{
1, 1

2

√
κK

κG

}
= min

{
1, 1

2

√
19

44max{1+κf ,6}

}
due to

eqs. (32) and (34); η = 1
4τLG

= 1
4τ max{Lf+µf ,6µf} due to eq. (30); θ = 15

19η due to eq. (28) and
α = µG =

µf

4 due to eq. (31).

B PROOF OF THEOREM 2

B.1 DUAL PROBLEM

Let us construct the lower bound for the problem dual to the initial one. Consider primal problem
with zero r.h.s. in constraints.

min
x1,...,xn∈Rd

n∑
i=1

fi(xi)

s.t.
n∑

i=1

Aixi = 0

The dual problem has the form

min
x1,...,xn∈Rd

max
w

[
n∑

i=1

fi(xi)− ⟨z,Aixi⟩
]
= max

w

[
− max

x1,...,xn∈Rd

n∑
i=1

〈
A⊤

i z, xi

〉
− fi(xi)

]

= −min
w

n∑
i=1

f∗
i (A

⊤
i z).

Introducing local copies of w at each node, we get

min
z1,...,zn

n∑
i=1

gi(zi) :=

n∑
i=1

f∗
i (A

⊤
i zi) (35)

s.t. Wz = 0 (36)

B.2 EXAMPLE GRAPH

We follow the principle of lower bounds construction introduced in Kovalev et al. (2021) and take the
example graph from Scaman et al. (2017). Let the functions be held by the nodes be organized into a
path graph with n vertices, where n is divisible by 3. The nodes of graph G = (V, E) are divided
into three groups V1 = {1, . . . , n/3} ,V2 = {n/3 + 1, . . . , 2n/3} ,V3 = {2n/3 + 1, . . . , n} of n/3
vertices each.

Now we recall the construction from Scaman et al. (2017). Let γn =
1−cos(π

3n)
1+cos(π

3n)
. Since γn

n→∞→ 0,

there exists n ≥ 1 such that γn ≥ 1
χ > γn+1. Introduce edge weights wi,i+1 = 1− aI {i = 1}, take

the corresponding weighed Laplacian Wa and denote its condition number χ. If a = 1, the network
is disconnected and therefore χ(Wa) = ∞. If a = 0, we have χ(Wa) = 1/γn. By continuity of
Laplacian spectra we obtain that for some a ∈ [0, 1) it holds χ(Wa) = χ. Note that

γn =
1− cos π

3n

1 + cos π
3n

≤ π2

9n2
⇒ χ ≥ 9n2

π2
≥ n2. (37)

B.3 EXAMPLE FUNCTIONS

We let e1 = (1 0 . . . 0)⊤ denote the first coordinate vector and define functions

fi(p, t) =
µf

2

∥∥∥∥∥p−
√

L̂A

2µf
e1

∥∥∥∥∥
2

+
Lf

2
∥t∥2.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Correspondingly,

f∗
i (u, v) =

1

2µf
∥u∥2 + 1

2Lf
∥v∥2 −

√
L̂A

µf
u1.

To define matrices Ai, we first introduce

E1 =


1 0 0 0 0 . . .
0 1 −1 0 0 . . .
0 0 0 0 0 . . .
0 0 0 1 −1 . . .
...

...
...

...
...

. . .

 , E2 =


1 −1 0 0 0 . . .
0 0 0 0 0 . . .
0 0 1 −1 0 . . .
0 0 0 0 0 . . .
...

...
...

...
...

. . .

 .

Let L̂A = 1
2LA − 3

4µA, µ̂A = 3
2µA and introduce

Ai =


[
√
L̂AE⊤

1

√
µ̂AI], i ∈ V1

[0 0], i ∈ V2

[
√
L̂AE⊤

2

√
µ̂AI], i ∈ V3

Let us make sure that the choice of Ai guarantees constants LA, µA from (4).

max
i

λmax(AiA
⊤
i) = λmax

(
L̂AE⊤

1 E1 + µ̂AI
)
= 2L̂A + µ̂A = LA,

λ+
min

(
1

n

n∑
i=1

AiA
⊤
i

)
= λ+

min

(
1

3
(L̂AE⊤

1 E1 + µ̂AI) +
1

3
(L̂AE⊤

2 E2 + µ̂AI)

)
=

2

3
µ̂A = µA.

Let M̃ =

(
1 −1

−1 1

)
and

M1 = E⊤
1 E1 =


1 0 0 . . .

0 M̃ 0 . . .

0 0 M̃ . . .
...

...
...

. . .

 , M2 = E⊤
2 E2 =


M̃ 0 0 . . .

0 M̃ 0 . . .

0 0 M̃ . . .
...

...
...

. . .


The dual functions take the form

gi(z) = f∗
i (A

⊤
i z) =


1

2µf
∥
√

L̂AE1z∥2 + 1
2Lf

∥√µ̂Az∥2 − L̂A

2µf
z1, i ∈ V1

0, i ∈ V2

1
2µf

∥
√

L̂AE2z∥2 + 1
2Lf

∥√µ̂Az∥2 − L̂A

2µf
z1, i ∈ V3

=


1
2z

⊤
(

L̂A

µf
M1 +

µ̂A

Lf
I
)
z − L̂A

2µf
z1, i ∈ V1

0, i ∈ V2

1
2z

⊤
(

L̂A

µf
M2 +

µ̂A

Lf
I
)
z − L̂A

2µf
z1, i ∈ V3

(38)

Therefore, we have
n∑

i=1

gi(z) =
n

3

[
L̂A

2µf
z⊤(M1 +M2)z +

µ̂A

Lf
z⊤z − L̂A

µf
z1

]

=
n

3

L̂A

µf

[
1

2
z⊤Mz − z1 +

µ̂Aµf

L̂ALf

z⊤z

]
,

where

M = M1 +M2 =


2 −1 0 0 0 . . .

−1 2 −1 0 0 . . .
0 −1 2 −1 0 . . .
...

...
...

...
...

. . .

 .

Now we formulate the lower complexity bounds for
∑n

i=1 gi(z), where gi(z) are defined in (38).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B.4 DERIVING THE LOWER BOUND

Let us introduce the local memory Zi(k) which is updated as follows.
1. If the algorithm performs a local gradient computation, then

Zi(k + 1) = Span {x,∇fi(x),∇f∗
i (x) : x ∈ Zi(k)} .

2. If the algorithm performs a communication rounds, then

Zi(k + 1) = Span {x : x ∈ Zj(k), (i, j) ∈ E} .

Lemma 6. Function
∑n

i=1 gi(z) attains its minimum at z∗ =
{
ρk
}∞
k=1

, where

ρ =

√
2
3
LALf

µAµf
+ 1− 1√

2
3
LALf

µAµf
+ 1 + 1

.

Proof. In the lower bound example in (Lemma 1 in Appendix C) Kovalev et al. (2021) it was shown
that function

h(z) =
1

2
z⊤Mz +

3µ

L− µ
∥z∥2 − z1

attains its minimum at z∗k = ρk, where

ρ =

√
2L
3µ + 1

3 − 1√
2L
3µ + 1

3 + 1

Let us deduce the expression for L, µ in terms of LA, Lf , µA, µf . We enforce h(z) =
∑n

i=1 gi(z)
and get

3µ

L− µ
=

µAµf

LALf
⇒ L

µ
= 1 +

LALf

µAµf
.

Therefore, for ρ we obtain

ρ =

√
2
3
LALf

µAµf
+ 1− 1√

2
3
LALf

µAµf
+ 1 + 1

.

Let us first show the lower bound on the number of communications.
Lemma 7. Let si(k) denote the maximum index of a nonzero component of vector held by i-th node
at step k, i.e.

si(k) =

{
0, Zi(k) ⊆ {0}
min {s ∈ {1, 2, . . .} : Zi(k) ⊆ Span {e1, . . . , es}} , else.

Let kq denote the the number of algorithm step by which exactly q communication steps have been
performed, where q ≥ 0. For any k ∈ {1, . . . , kq} we have

max
i

si(k) ≤ 2 +

⌊
q

n
3 + 1

⌋
(39)

Proof. Note that from the structure of gi(z), if the method performs a computation step, then

si(k + 1) ≤ si(k) +


1− (si(k) mod 2), i ∈ V1

0, i ∈ V2

(si(k) mod 2), i ∈ V3

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Due to the structure of network, if the method makes a communication round, it follows

si(k + 1) ≤


max (si−1(k), si(k), si+1(k)) , i ∈ {2, . . . , n− 1}
max (s1(k), s2(k)) , i = 1

max (sn−1(k), sn(k)) , i = n

(40)

We will prove that
1. For q = 2ℓ(n/3 + 1), ℓ ∈ {0, 1, . . .} we have

si(kq) ≤


1 + 2ℓ, i ∈ V1

1 + 2ℓ, i ∈ V2

2 + 2ℓ, i ∈ V3

(41)

2. For q = (2ℓ+ 1)(n/3 + 1), ℓ ∈ {0, 1, . . .} we have

si(kq) ≤


2 + (2ℓ+ 1), i ∈ V1

1 + (2ℓ+ 1), i ∈ V2

1 + (2ℓ+ 1), i ∈ V3

(42)

The proof follows by induction.

Induction basis. Let q = 0. From definitions of gi(z) it follows that

si(k0) ≤


1, i ∈ V1

0, i ∈ V2

2, i ∈ V3

Therefore, for q = 0 our statement holds.

Induction step for q = (2ℓ+ 1)(n/3 + 1). Consider q− = q − n/3 = 2ℓ(n/3 + 1). From (41) we
have that for the spread of nonzero components from V3 to V1 it requires n/3 communication rounds
to reach node n/3 + 1. After one more communication round, the information reaches node n/3.

Induction step for q = (2ℓ + 1)(n/3 + 1). The proof follows by the same argument as for
q = (2ℓ+ 1)(n/3 + 1).

We just proved the statement of lemma, i.e. relation (39), for q divisible by (n/3 + 1). Between such
checkpoints, the information (i.e. the number of nonzero components) traverses nodes of V2 and
therefore maxi si(k) stays unchanged. Thus the statement of the lemma is proven.

Now we estimate the distance to optimum.

∥zi(k)− z∗∥22 ≥
∞∑

ℓ=si(k)+1

(zi(k)− z∗)2 =

∞∑
ℓ=si(k)+1

ρ2ℓ =
ρ2si(k)+2

1− ρ2
=

ρ6+2⌊ q
n/3+1⌋

1− ρ2

(a)

≥ ρ6+
2q

2n/3

1− ρ2
=

ρ6

1− ρ2
· ρ 3q

n
(b)
=

ρ6

1− ρ2
· ρ

3q√
χ ,

where (a) holds since n/3 ≥ 1; (b) holds due to (37).

Following Kovalev et al. (2021), we obtain that

ρ ≥ max

(
0, 1−

√
6µAµf

LALf

)
.

Therefore,

∥zi(k)− z∗∥22 ≥ ρ6

1− ρ2

(
max

(
0, 1−

√
6µAµf

LALf

)) 3q√
χ

.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

It follows that the number of communications is lower bounded as

NW ≥ Ω

(
√
χ

√
LALf

µAµf
log

(
1

ε

))
and the number of oracle calls of gi(z) at each node (that is, the number of local matrix multiplications
by Ai) is lower bounded as

NA ≥ Ω

(√
LALf

µAµf
log

(
1

ε

))
.

B.5 LOWER BOUND ON THE NUMBER OF GRADIENT COMPUTATIONS

To get the lower bound on local gradient calls, let us consider a problem

min
x1,...xn∈Rd

n∑
i=1

fi(xi) +

n∑
i=1

vi(ui)

s.t.
n∑

i=1

Aixi = 0

where all vi(u) are the same and vi(ui) = g(u) =
∑n

j=1 gj(u) and gj(u) are defined in (38). All
vi(u) are the same and are defined as

vi(ui) =
1

2
u⊤
i Mui +

µf

Lf
u⊤u− u1.

Since there is no communication constraint on ui, each node runs optimization process individually.
Following the same arguments as for function g(z), we get the lower bound on the number of oracle
calls

Nf ≥ Ω

(√
Lf

µf
log

(
1

ε

))
.

20

	Introduction
	Related work and our contribution
	Mathematical setting and assumptions
	Derivation of the algorithm
	Strongly convex communication-friendly reformulation
	Chebyshev acceleration
	Base algorithm

	Main results
	Algorithm
	Lower bounds

	Experiments
	Missing proofs from Section 4
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1

	Proof of Theorem 2
	Dual problem
	Example graph
	Example functions
	Deriving the lower bound
	Lower bound on the number of gradient computations

