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ABSTRACT

We consider the decentralized minimization of a separable objective
∑n

i=1 fi(xi),
where the variables are coupled through an affine constraint

∑n
i=1 (Aixi − bi) = 0.

We assume that the functions fi, matrices Ai, and vectors bi are stored locally by
the nodes of a computational network, and that the functions fi are smooth and
strongly convex.
This problem has significant applications in resource allocation and systems control
and can also arise in distributed machine learning. We propose lower complexity
bounds for decentralized optimization problems with coupled constraints and a
first-order algorithm achieving the lower bounds. To the best of our knowledge,
our method is also the first linearly convergent first-order decentralized algorithm
for problems with general affine coupled constraints.

1 INTRODUCTION

We consider the decentralized optimization problem with coupled constraints

min
x1∈Rd1 ,...,xn∈Rdn

n∑
i=1

fi(xi) s.t.
n∑

i=1

(Aixi − bi) = 0, (1)

where for i ∈ {1, . . . , n} functions fi(xi) : Rdi → R are continuously differentiable, Ai ∈ Rm×di

and bi ∈ Rm are constraint matrices and vectors respectively.

We are interested in solving problem (1) in a decentralized distributed setting. That is, we assume
the existence of a communication network G = (V, E), where V = {1, . . . , n} is the set of compute
nodes, and E ⊂ V × V is the set of communication links in the network. Each compute node i ∈ V
locally stores the objective function fi(xi), the constraint matrix Ai and the vector bi. Compute node
i ∈ V can send information (e.g., vectors, scalars, etc.) to compute node j ∈ V if and only if there is
an edge (i, j) ∈ E in the communication network.

Coupled constraints arise in various application scenarios, where sharing resources or information
takes place. Often, due to the distributed nature of such problems, decentralization is desired for
communication and/or privacy related reasons. Let us briefly describe several practical cases of
optimization problems with coupled constraints.

• Optimal exchange. Also known as the resource allocation problem Boyd et al. (2011); Nedić et al.
(2018), it writes as

min
x1,...,xn∈Rd

n∑
i=1

fi(xi) s.t.
n∑

i=1

xi = b,

where xi ∈ Rd represents the quantities of commodities exchanged among the agents of the system,
and b ∈ Rd represents the shared budget or demand for each commodity. This problem is essential in
economics Arrow and Debreu (1954), and systems control Dominguez-Garcia et al. (2012).

• Problems on graphs. In various applications, distributed systems are formed on the basis of
physical networks. This is the case for electrical microgrids, telecommunication networks and drone
swarms. Distributed optimization on graphs applies to such systems and encompasses, to name a
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few, optimal power flow Wang et al. (2016) and power system state estimation Zhang et al. (2024)
problems.

As an example, consider an electric power network. Let xi ∈ R2 denote the voltage phase angle and
the magnitude at i-th electric node, and let s be the vector of (active and reactive) power flows for
each pair of adjacent electric nodes. Highly accurate linearization approaches Yang et al. (2016);
Van den Bergh et al. (2014) allow to formulate the necessary relation between voltages and power
flows as a linear system of equations

∑n
i=1 Aixi = s. An important property of the matrices Ai

is that their compatibility with the physical network (but not necessary with the communication
network). This means that for each row of the matrix (A1, . . . ,An), there is a node k such that Ai

can have nonzero elements in this row only if nodes i and k are connected in the physical network, or
k = i.

• Consensus optimization. Related to the previous example is the consensus optimization Boyd
et al. (2011)

min
x1,...,xn∈Rd

n∑
i=1

fi(xi) s.t. x1 = x2 = . . . = xn.

It is widely used in horizontal federated learning Kairouz et al. (2021), as well as in the more general
context of decentralized optimization of finite-sum objectives Gorbunov et al. (2022); Scaman et al.
(2017).

To handle the consensus constraint, decentralized algorithms either reformulate it as
∑n

i=1 Wixi = 0,
where Wi is the i-th vertical block of a gossip matrix (an example of which is the communication
graph’s Laplacian), or utilize the closely related mixing matrix approach Gorbunov et al. (2022).
Mixing and gossip matrices are used because they are communication-friendly: calculating the sum∑n

i=1 Wixi only requires each compute node to communicate once with each of its adjacent nodes.
Clearly, consensus optimization with gossip matrix reformulation can be reduced to (1) by setting
Ai = Wi. However, the principial difference between this example and (1), is that (1) does not
assume Ai to be communication-friendly.

• Vertical federated learning (VFL). In the case of VFL, the data is partitioned by features, differing
from the usual (horizontal) federated learning, where the data is partitioned by samples Yang et al.
(2019); Boyd et al. (2011). Let F be the matrix of features, split vertically between compute nodes
into submatrices Fi, so that each node possesses its own subset of features for all data samples. Let
l ∈ Rm denote the vector of labels, and let xi ∈ Rdi be the vector of model parameters owned by the
i-th node. VFL problem formulates as

min
z∈Rm

x1∈Rd1 ,...,xn∈Rdn

ℓ(z, l) +

n∑
i=1

ri(xi) s.t.
n∑

i=1

Fixi = z, (2)

where ℓ is a loss function, and ri are regularizers. The constraints in (2) are coupled constraints, and
the objective is separable; therefore, it is a special case of (1). We return to the VFL example in
Section 6.

Paper organization. In Section 2 we present a literature review. Subsequently, in Section 3 we
introduce the assumptions and problem parameters. Section 4 describes the key ideas of algorithm
development and Section 5 presents the convergence rate of the method and the lower complexity
bounds. Finally, in Section 6, we provide numerical simulations.

2 RELATED WORK AND OUR CONTRIBUTION

Decentralized optimization algorithms were initially proposed for consensus optimization Nedić and
Ozdaglar (2009), based on earlier research in distributed optimization Tsitsiklis (1984); Bertsekas
and Tsitsiklis (1989) and algorithms for decentralized averaging (consensus or gossip algorithms)
Boyd et al. (2006); Olshevsky and Tsitsiklis (2009), which assumed the existence of a communica-
tion network, as does the present paper. The optimal complexity for consensus optimization was
first achieved with a dual accelerated gradient descent in Scaman et al. (2017), where the method
required computing gradients of Fenchel conjugates of fi(x). The corresponding complexity lower
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bounds were also established in the same paper. This result was later generalized to primal algo-
rithms (which use gradients of the functions fi(x) themselves) Kovalev et al. (2020), time-varying
communication graphs Li and Lin (2021); Kovalev et al. (2021) and methods that use stochastic
gradients Dvinskikh and Gasnikov (2021). Today there also exist algorithms with communication
compression Beznosikov et al. (2023), asynchronous algorithms Koloskova (2024), algorithms for
saddle-point formulations Rogozin et al. (2021) and gradient-free oracles Beznosikov et al. (2020),
making decentralized consensus optimization a quite well-developed field Nedić (2020); Gorbunov
et al. (2022), benefiting systems control Ram et al. (2009) and machine learning Lian et al. (2017).

Beginning with the addition of local constraints to consensus optimization Nedic et al. (2010); Zhu
and Martinez (2011), constrained decentralized optimization has been established as a research
direction. A zoo of distributed problems with constraints was investigated in Necoara et al. (2011);
Necoara and Nedelcu (2014; 2015).

Primarily motivated by the demand from the power systems community, various decentralized
algorithms for coupled constraints have been proposed. Generally designed for versatile engineering
applications, many of these algorithms assume restricted function domains Wang and Hu (2022);
Liang et al. (2019); Nedić et al. (2018); Gong and Zhang (2023); Zhang et al. (2021); Wu et al.
(2022), nonlinear inequality constraints Liang et al. (2019); Gong and Zhang (2023); Wu et al. (2022),
time-varying graphs Zhang et al. (2021); Nedić et al. (2018) or utilize specific problem structure Wang
and Hu (2022).

Table 1: Comparison of algorithms for decentralized optimiza-
tion with coupled constraints

Reference Oracle Rate
Doan and Olshevsky (2017) † First-order Linear
Falsone et al. (2020) Prox Sub-linear
Wu et al. (2022) Prox Sub-linear
Chang (2016) Prox Sub-linear
Li et al. (2018) † Prox Linear
Gong and Zhang (2023) Inexact prox Linear
Nedić et al. (2018) † First-order Accelerated
This work First-order Optimal
† Applicable only for resource allocation problem

Works of Doan and Olshevsky
(2017); Li et al. (2018); Nedić
et al. (2018) focus on the resource
allocation problem. For undi-
rected time-varying graphs Doan
and Olshevsky (2017) proposes
a first-order algorithm with
O(

κfn
2

B ln 1
ε ) complexity bound,

where B is the time required
for the time-varying graph to
reach connectivity. Li et al.
(2018) applies a combination of
gradient tracking and push-sum
approaches from Nedic et al.
(2017) to obtain linear convergence on directed time-varying graphs in the restricted domain case, i.e.,
xi ∈ Ωi, where Ωi is a nonempty closed convex set. Nedić et al. (2018) achieve accelerated linear
convergence via a proximal point method in the restricted domain case. When Ωi = Rd, they also
show that Nesterov’s accelerated gradient descent can be applied to achieve optimal O(

√
κf ln

1
ε )

complexity. In Gong and Zhang (2023) an inexact proximal-point method is proposed to solve
problems with coupled affine equality and convex inequality constraints. Linear convergence is
proved when the inequalities are absent, and Ωi are convex polyhedrons. The papers Wu et al. (2022),
Chang (2016), Falsone et al. (2020) present algorithms with sub-linear convergence.

As summarized in Table 1, no accelerated linearly convergent algorithms for general affine-equality
coupled constraints were present in the literature prior to our work. Also, most of the algorithms
require proximal oracle, which allows to handle more general problem formulations, but has higher
computational burden than the first-order oracle. We propose a new first-order decentralized algorithm
with optimal (accelerated) linear convergence rate. We prove its optimality by providing lower
bounds for the number of objective’s gradient computations, matrix multiplications and decentralized
communications, which match complexity bounds for our algorithm.

3 MATHEMATICAL SETTING AND ASSUMPTIONS

Let us begin by introducing the notation. The largest and smallest nonzero eigenvalues (or singular
values) of a matrix C are denoted by λmax(C) (or σmax(C)) and λmin+(C) (or σmin+(C)),
respectively. For vectors xi ∈ Rdi we introduce a column-stacked vector x = col(x1, . . . , xm) =
(x⊤

1 . . . x⊤
m)⊤ ∈ Rd. We denote the identity matrix by Im ∈ Rm×m. The symbol ⊗ denotes the

Kronecker product of matrices. By Lm we denote the so-called consensus space, which is given

3
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as Lm = {(y1, . . . , yn) ∈ (Rm)n : y1, . . . , yn ∈ Rm and y1 = · · · = yn}, and L⊥
m denotes the

orthogonal complement to Lm, which is given as

L⊥
m = {(y1, . . . , yn) ∈ (Rm)n : y1, . . . , yn ∈ Rm and y1 + · · ·+ yn = 0}. (3)

Assumption 1. Continuously differentiable functions fi(x) : Rdi → R, i ∈ {1, . . . , n} are Lf -
smooth and µf -strongly convex, where Lf ≥ µf > 0. That is, for all x1, x2 ∈ Rdi and i ∈
{1, . . . , n}, the following inequalities hold:

µf

2
∥x2 − x1∥2 ≤ fi(x2)− fi(x1)− ⟨∇fi(x1), x2 − x1⟩ ≤

Lf

2
∥x2 − x1∥2.

By κf we denote the condition number κf = Lf/µf .

Assumption 2. There exists x∗ = (x∗
1, . . . , x

∗
n), x

∗
i ∈ Rdi such that

∑n
i=1(Aix

∗
i − bi) = 0. There

exist constants LA ≥ µA > 0, such that the constraint matrices A1, . . . ,An satisfy the following
inequalities:

σ2
max(A) = max

i∈{1,...,n}
σ2
max(Ai) ≤ LA, µA ≤ λmin+ (S) , (4)

where the matrix S ∈ Rm×m is defined as S = 1
n

∑n
i=1 AiA

⊤
i . We also define the condition number

of the matrix A as κA = LA/µA.

For any matrix M other than A we denote by LM and µM some upper and lower bound on its
maximal and minimal positive squared singular values respectively:

λmax(M
⊤M) = σ2

max(M) ≤ LM, µM ≤ σ2
min+(M) = λmin+(M⊤M). (5)

We also assume the existence of a so-called gossip matrix W ∈ Rn×n associated with the communi-
cation network G, which satisfies the following assumption.
Assumption 3. The gossip matrix W is a n× n symmetric positive semidefinite matrix such that:

1. Wij ̸= 0 if and only if (i, j) ∈ E or i = j.
2. Wy = 0 if and only if y ∈ L1, i.e. y1 = . . . = yn.
3. There exist constants LW ≥ µW > 0 such that µW ≤ λ2

min+(W ) and λ2
max(W ) ≤ LW.

We will use a dimension-lifted analogue of the gossip matrix defined as W = W ⊗ Im. From
the properties of the Kronecker product of matrices it follows that λ2

min+(W) = λ2
min+(W ) and

λ2
max(W) = λ2

max(W ). By κW we denote the condition number

κW =

√
LW

µW
≥ λmax(W)

λmin+(W)
. (6)

Moreover, the kernel and range spaces of W and W are given by

kerW = L1, rangeW = L⊥
1 , kerW = Lm, rangeW = L⊥

m. (7)

4 DERIVATION OF THE ALGORITHM

4.1 STRONGLY CONVEX COMMUNICATION-FRIENDLY REFORMULATION

Let W′ be any positive semidefinite matrix such that

rangeW′ = (kerW′)⊥ = L⊥
m, (8)

and multiplication of a vector y = (y1, . . . , yn) ∈ (Rm)n by W′ can be performed efficiently in the
decentralized manner if its i-th block component yi is stored at i-th node of the computation network.
Similarly to eq. (6), we define

κW′ =

√
LW′

µW′
≥ λmax(W

′)

λmin+(W′)
. (9)

Due to the definition of W and eq. (7), the simplest choice for W′ might be to set W′ = W. Later
we will specify another way to choose W′ for optimal algorithmic performance.

4
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Problem (1) can be reformulated as follows:

min
x∈Rd,y∈(Rm)n

G(x, y) s.t. Ax+ γW′y = b, (10)

where the function G(x, y) : Rd × (Rm)n → R is defined as

G(x, y) = F (x) +
r

2
∥Ax+ γW′y − b∥2, (11)

the function F (x) : Rd → R is defined as F (x) =
∑n

i=1 fi(xi), where x = (x1, . . . , xn), xi ∈ Rdi ,
the matrix A ∈ Rmn×d is the block-diagonal matrix A = diag (A1, . . . ,An), the vector b is the
column-stacked vector b = col (b1, . . . , bn) ∈ Rmn, and r, γ > 0 are scalar constants that will be
determined later.

From the definitions of A, b and L⊥
m (eq. (3)) it is clear that

∑n
i=1(Aixi − bi) = 0 if and only if

Ax− b ∈ L⊥
m. Since rangeW′ = L⊥

m, the constraint in problem (10) is equivalent to the coupled
constraint in (1). For all x, y satisfying the constraint, the augmented objective function G(x, y) is
equal to the original objective function F (x). Therefore, problem (10) is equivalent to problem (1).

The following Lemma 1 shows that the function G(x, y) is strongly convex and smooth.
Lemma 1. Let r and γ be defined as follows:

r =
µf

2LA
, γ2 =

µA + LA

µW′
. (12)

Then, the strong convexity and smoothness constants of G(x, y) on Rd × L⊥
m are given by

µG = µf min

{
1

2
,
µA + LA

4LA

}
, LG = max

{
Lf + µf , µf

µA + LA

LA

LW′

µW′

}
. (13)

Let the matrix B ∈ Rmn×(d+mn) be defined as B = [A γW′]. The following Lemma 2 connects
the spectral properties of B, A and W′.
Lemma 2. The following bounds on the singular values of B hold:

σ2
min+(B) ≥ µB =

µA

2
, σ2

max(B) ≤ LB = LA + (LA + µA)
LW′

µW′
, (14)

and
σ2
max(B)

σ2
min+(B)

≤ LB

µB
= κB = 2

(
κA +

LW′

µW′
(1 + κA)

)
. (15)

Proofs of Lemma 1 and Lemma 2 are provided in Appendix A.

4.2 CHEBYSHEV ACCELERATION

Chebyshev acceleration allows us to decouple the number of computations of the objective’s gradient
∇F (x) from the properties of the communication network and the constraint matrix — specifically,
from the condition numbers κW and κA. The Chebyshev trick enables to replace the matrix with a
matrix polynomial with a better condition number.

Consider some affine relation Mu = d and let PM be a polynomial such that PM(λ) = 0 ⇔ λ = 0
for any eigenvalue λ of M⊤M. Note that here we interchangeably use P as a polynomial of a matrix
and a polynomial of a scalar. We denote any feasible point for the constraint Mu = d as u0. Then,

Mu = d ⇔ M(u− u0) = 0
(a)⇔ M⊤M(u− u0) = 0

(b)⇔ PM(M⊤M)(u− u0) = 0
(c)⇔
√
PM(M⊤M)(u− u0) = 0

where (a) and (c) is due to kerM⊤M = kerM; (b) is due to kerPM(M⊤M) = kerM⊤M by the
assumption about PM(λ).

Following Salim et al. (2022a) and Scaman et al. (2017), we use the translated and scaled Chebyshev
polynomials, because they are the best at compressing the spectrum Auzinger and Melenk (2011).

5
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Lemma 3 (Salim et al. (2022a), Section 6.3.2). Consider a matrix M. Let ℓ =
⌈√

LM

µM

⌉
≥⌈√

λmax(M⊤M)
λmin+ (M⊤M)

⌉
. Define PM(t) = 1 − Tℓ((LM+µM−2t)/(LM−µM))

Tℓ((LM+µM)/(LM−µM)) , where Tℓ is the Chebyshev

polynomial of the first kind of degree n defined by Tℓ(t) =
1
2

((
t+

√
t2 − 1

)ℓ
+
(
t−

√
t2 − 1

)ℓ)
.

Then, PM(0) = 0, and

λmax

(
PM(M⊤M)

)
≤ max

t∈[µM,LM]
PM(t) ≤ 19

15
, (16)

λmin+

(
PM(M⊤M)

)
≥ min

t∈[µM,LM]
PM(t) ≥ 11

15
. (17)

Results of this section are summarized in the following Lemma 4.

Lemma 4. Define
W′ = P√

W(W) (18)

and

K =
√
PB(B⊤B). (19)

Let G(u) = G(x, y), U = Rd × L⊥
m and b′ =

√
PB(B⊤B)u0. Then, problem

min
u∈U

G(u) s.t. Ku = b′ (20)

is an equivalent preconditioned reformulation of problem (10), and, in turn, of problem (1).

4.3 BASE ALGORITHM

Algorithm 1 APAPC
1: Parameters: u0 ∈ U η, θ, α > 0, τ ∈ (0, 1)
2: Set u0

f = u0, z0 = 0 ∈ U
3: for k = 0, 1, 2, . . . do
4: uk

g := τuk + (1− τ)uk
f

5: uk+ 1
2 := (1 + ηα)−1(uk − η(∇G(uk

g)− αuk
g + zk))

6: zk+1 := zk + θK⊤(Kuk+ 1
2 − b′)

7: uk+1 := (1 + ηα)−1(uk − η(∇G(uk
g)− αuk

g + zk+1))

8: uk+1
f := uk

g + 2τ
2−τ (u

k+1 − uk)
9: end for

Our base algorithm, Algorithm 1,
is the Proximal Alternating
Predictor-Corrector (PAPC) with
Nesterov’s acceleration, called
Accelerated PAPC (APAPC).
It was proposed in Salim et al.
(2022a) to obtain an optimal
algorithm for optimization
problems formulated as (20).
See Kovalev et al. (2020); Salim
et al. (2022b) for the review of
related algorithms and history of
their development.

APAPC algorithm formulates as Algorithm 1, and its convergence properties are given in Proposi-
tion 1.

Proposition 1 (Salim et al. (2022a), Proposition 1). Assume that the matrix K in (20) satisfies
µK > 0 and b′ ∈ rangeK, and denote κK = LK

µK
. Also assume that the function G is LG-

smooth and µG-strongly convex. Set the parameter values of Algorithm 1 as τ = min
{
1, 1

2

√
κK

κG

}
,

η = 1
4τLG

, θ = 1
ηLK

and α = µG. Denote by u∗ the solution of problem (20) and by z∗ the solution
of its dual problem satisfying z∗ ∈ rangeK. Then the iterates uk, zk of Algorithm 1 satisfy

1

η

∥∥uk − u⋆
∥∥2 + ηα

θ(1 + ηα)

∥∥(K⊤)†zk − z⋆
∥∥2 (21)

+
2(1− τ)

τ
DG(u

k
f , u

⋆) ≤
(
1 +

1

4
min

{
1√

κGκK
,
1

κK

})−k

C,

where C := 1
η

∥∥u0 − u⋆
∥∥2 + 1

θ∥z0 − z⋆∥2 + 2(1−τ)
τ DG(u

0
f , u

⋆), and DG denotes the Bregman
divergence of G, defined by DG(u

′, u) = G(u′)−G(u)− ⟨∇G(u), u′ − u⟩.

6
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Algorithm 3 mulW′(y): Multiplication by W′

1: Parameters: y
2: ρ :=

(√
LW −√

µW

)2
/16

3: ν :=
(√

LW +
√
µW

)
/2

4: δ0 := −ν/2, n := ⌈√κW⌉
5: p0 := −Wy/ν, y1 := y + p0

6: for i = 1, . . . , n− 1 do
7: βi−1 := ρ/δi−1

8: δi := −(ν + βi−1)
9: pi :=

(
Wyi + βi−1pi−1

)
/δi

10: yi+1 := yi + pi

11: end for
12: Output: y − yn

Algorithm 4 grad_G(u): Computation of
∇G(u)

1: Parameters: u = (x, y)
2: z := r (Ax+ γ ·mulW′(y)− b)

3: Output:
(
∇F (x) +A⊤z
γ ·mulW′(z)

)

Algorithm 5 K_Chebyshev(u): Computation
of K⊤(Ku− b′)

1: Parameters: u = (x, y)

2: ρ := (LB − µB)
2
/16

3: ν := (LB + µB) /2
4: δ0 := −ν/2, n := ⌈√κB⌉
5: q0 := Ax+ γ ·mulW′(y)− b

6: p0 := −1

ν

(
A⊤q0

γ ·mulW′(q0)

)
7: u1 := u+ p0

8: for i = 1, . . . , n− 1 do
9: βi−1 := ρ/δi−1

10: δi := −(ν + βi−1)
11: (xi, yi) = ui

12: qi := Axi + γ ·mulW′(yi)− b

13: pi :=
1

δi

(
A⊤qi

γ ·mulW′(qi)

)
+

βi−1pi−1/δi

14: ui+1 := ui + pi

15: end for
16: Output: u− un

5 MAIN RESULTS

5.1 ALGORITHM

Algorithm 2 Main algorithm
1: Parameters: x0 ∈ Rd η, θ, α > 0, τ ∈ (0, 1)
2: Set y0 := 0 ∈ (Rm)n, u0 := (x0, y0),
3: u0

f := u0, z0 := 0 ∈ Rd × (Rm)n

4: for k = 0, 1, 2, . . . do
5: uk

g := τuk + (1− τ)uk
f

6: gk := grad_G(uk
g)− αuk

g

7: uk+ 1
2 := (1 + ηα)−1(uk − η(gk + zk))

8: zk+1 := zk + θ ·K_Chebyshev(uk+ 1
2 )

9: uk+1 := (1 + ηα)−1(uk − η(gk + zk+1))

10: uk+1
f := uk

g + 2τ
2−τ (u

k+1 − uk)
11: end for

As stated in Lemma 4, problem (20)
is equivalent to problem (1). Due
to Lemma 1, its objective is strongly con-
vex, allowing us to apply Algorithm 1 to
it. Using Lemma 3, we obtain that the con-
dition numbers of W′ and K are bounded
as O(1), but a single multiplication by W′

and K,K⊤ translates to O(
√
κW) multi-

plications by W and O(
√
κB) multiplica-

tions by B,B⊤ respectively.

We implement multiplications by W′ and
K,K⊤ through numerically stable Cheby-
shev iteration procedures given in Algo-
rithms 3 and 5, which only use decentral-
ized communications and multiplications
by A,A⊤. Lemmas 1 to 3 allow us to express the complexity of Algorithm 1 in terms of the parame-
ters of the initial problem given in Assumptions 1 to 3. All this leads us to the following Theorem 1,
a detailed proof of which is provided in Appendix A.3, as well as the derivation of Algorithms 3
and 5 and values of the parameters of Algorithm 2.

Theorem 1. Set the parameter values of Algorithm 2 as τ = min
{
1, 1

2

√
19

44max{1+κf ,6}

}
,

η = 1
4τ max{Lf+µf ,6µf} , θ = 15

19η and α =
µf

4 . Denote by x∗ the solution of problem (1).
Then, for every ε > 0, Algorithm 2 finds xk for which ∥xk − x∗∥2 ≤ ε using O(

√
κf log(1/ε))

objective’s gradient computations, O(
√
κf

√
κA log(1/ε)) multiplications by A and A⊤, and

O(
√
κf

√
κA

√
κW log(1/ε)) communication rounds (multiplications by W).

7
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5.2 LOWER BOUNDS

Let us formulate the lower complexity bounds for decentralized optimization with affine constraints.
To do that, we formalize the class of the algorithms of interest. In the literature, approaches with
continuous time Scaman et al. (2017) and discrete time Kovalev et al. (2021) are used. We use the
latter discrete time formalization. We assume that the method works in synchronized rounds of three
types: local objective’s gradient computations, local matrix multiplications and communications. At
each time step, algorithm chooses one of the three step types.

Since the devices may have different dimensions di of locally held vectors xi, they cannot commu-
nicate these vectors directly. Instead, the nodes exchange quantities Aixi ∈ Rm. For this reason,
we introduce two types of memory Mi(k) and Hi(k) for node i at step k. Set Mi(k) stands for the
local memory that the node does not share and Hi(k) denotes the memory that the node exchanges
with neighbors. The interaction between Mi(k) and Hi(k) is performed via multiplications by Ai

and A⊤
i .

Below we describe how the sets Mi(k),Hi(k) are updated.

1. Algorithm performs local gradient comutation round at step k. Gradient updates only operate in
Mi(k) and do not affect Hi(k). For all i ∈ V we have

Mi(k + 1) = Span {x,∇fi(x),∇f∗
i (x) : x ∈ Mi(k)} , Hi(k + 1) = Hi(k),

where f∗
i is the Fenchel conjugate of fi.

2. Algorithm performs local matrix multiplication round at step k. Sets Hi(k) and Mi(k) make
mutual updates via multiplication by Ai and A⊤

i . For all i ∈ V we have

Mi(k + 1) = Span
{
A⊤

i bi, A
⊤
i y : y ∈ Hi(k)

}
, Hi(k + 1) = Span {bi,Aix : x ∈ Mi(k)} .

3. Algorithm performs a communication round at step k. The non-shared local memory Mi(k) stays
unchanged, while the shared memory Hi(k + 1) is updated via interaction with neighbors. For all
i ∈ V we have

Mi(k + 1) = Mi(k), Hi(k + 1) = Span {Hj(k) : (i, j) ∈ E} .

Under given memory and computation model, we formulate the lower complexity bounds.
Theorem 2. For any Lf > µf > 0, κA, κW > 0 there exist Lf -smooth µf -strongly convex functions
{fi}ni=1, matrices Ai such that κA = LA/µA (where LA, µA are defined in (4)), and a communi-
cation graph G with a corresponding gossip matrix W such that κW = λmax(W)/λ+

min(W), for
which any first-order decentralized algorithm on problem (1) to reach accuracy ε requires at least

Nf = Ω

(√
κf log

(
1

ε

))
gradient computations,

NA = Ω

(
√
κf

√
κA log

(
1

ε

))
multiplications by A and A⊤,

NW = Ω

(
√
κf

√
κA

√
κW log

(
1

ε

))
communication rounds (multiplications by W).

A proof of Theorem 2 is provided in Appendix B.

6 EXPERIMENTS

The experiments were run on CPU Intel(R) Core(TM) i9-7980XE, with 62.5 GB RAM.

• Synthetic linear regression. In this section we perform numerical experiments on a synthetic
linear regression problem with ℓ2-regularization:

min
x1,...,xn∈Rdi

n∑
i=1

(
1

2
∥Cixi − di∥22 +

θ

2
∥xi∥22

)
s.t.

n∑
i=1

(Aixi − bi) = 0, (22)

8
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where we randomly generate matrices Ci ∈ Rdi×di , Ai ∈ Rm×di and vectors di ∈ Rdi , bi ∈ Rm

from the standard normal distribution. Local variables xi ∈ Rdi have the same dimension di, equal
for all devices. Regularization parameter θ is 10−3. In the Fig. 1 we demonstrate the performance of
the our method on the problem, that has the following parameters: κf = 3140, κA = 27, κW = 89.
There we use Erdős–Rényi graph topology with n = 20 nodes. Local variables dimension is di = 3
and number of linear constraints is m = 10. We compare performance of Algorithm 2 with Tracking-
ADMM algorithm Falsone et al. (2020) and DPMM algorithm Gong and Zhang (2023). Note that
Tracking-ADMM and DPMM are proximal algorithms that solve a subproblem at each iteration. The
choice of objective function in our simulations (linear regression) makes the corresponding proximal
operator effectively computable via Conjugate Gradient algorithm Nesterov (2004) that uses gradient
computations. Therefore, we measure the computational complexity of these methods in the number
of gradient computations, not the number of proximal operator computations.

0.0 0.2 0.4 0.6 0.8 1.0
Gradient calls ×104

10−21

10−17

10−13

10−9

10−5

10−1

103

Tracking-ADMM

DPMM

Main algorithm

0 1 2 3 4

Mult. by A and AT ×105

10−21

10−17

10−13

10−9

10−5

10−1

103

Tracking-ADMM

DPMM

Main algorithm

0 1 2 3 4
Communications ×105

10−21

10−17

10−13

10−9

10−5

10−1

103

Tracking-ADMM

DPMM

Main algorithm

‖x
k
−
x
∗ ‖

2 2

Figure 1: Synthetic, Erdős–Rényi graph, n = 20, di = 3, m = 10

• VFL linear regression on real data. Now we return to the problem, that we have announced in the
introduction section. We apply VFL in the linear regression problem: ℓ is a typical mean squared loss
function, that is ℓ(z, l) = 1

2∥z − l∥22, and ri are ℓ2-regularizers, i.e. ri(xi) = λ∥xi∥22. To adapt this
from (2) to (1), we redefine x1 :=

(
x1

z

)
and x2 := x2, . . . , xn := xn. Thus, we can derive constraints

matrices as in the (1):

A1 = (F1 −I) , A1x1 = F1w1 − z, (23)

Ai = Fi, i = 2, . . . , n,

n∑
i=1

Aixi =

n∑
i=1

Fiwi − z. (24)

For numerical simulation, we use mushrooms dataset from LibSVM library Chang and Lin (2011).
We split m = 100 samples subset vertically between n = 7 devices. Regularization parameter
λ = 10−2. The results are in the Fig. 2.

0.0 0.2 0.4 0.6 0.8 1.0
Gradient calls ×103

10−18

10−14

10−10

10−6

10−2

102

Tracking-ADMM

DPMM

Main algorithm

0.0 0.5 1.0

Mult. by A and AT ×105

10−18

10−14

10−10

10−6
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Tracking-ADMM

DPMM

Main algorithm

0.0 0.2 0.4 0.6 0.8 1.0
Communications ×105

10−18

10−14

10−10

10−6

10−2

102

Tracking-ADMM

DPMM

Main algorithm

‖x
k
−
x
∗ ‖

2 2

Figure 2: VFL, Erdős–Rényi graph, n = 7, m = 100

Our algorithm exhibits the best convergence rates, as evidenced by the steepest slopes. The slopes vary
for gradient calls, matrix multiplications, and communications. This is due to the fact that Algorithm 2
involves many communications per iteration, in contrast to DPMM and Tracking-ADMM, which
make numerous gradient calls per iteration.
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APPENDIX / SUPPLEMENTAL MATERIAL

A MISSING PROOFS FROM SECTION 4

A.1 PROOF OF LEMMA 1

Proof. Let DG(x
′, y′;x, y) denote the Bregman divergence of G:

DG(x
′, y′;x, y) = G(x′, y′)−G(x, y)− ⟨∇xG(x, y), x′ − x⟩ − ⟨∇yG(x, y), y′ − y⟩. (25)

The value of µG can be obtained as follows:

DG(x
′, y′;x, y) = DF (x

′;x) +
r

2
∥A(x′ − x) + γW′(y′ − y)∥2

(a)

≥ µf

2
∥x′ − x∥2 + r

2
∥A(x′ − x) + γW′(y′ − y)∥2

=
µf

2
∥x′ − x∥2 + r

2
∥A(x′ − x)∥2 + r⟨A(x′ − x), γW′(y′ − y)⟩

+
r

2
∥γW′(y′ − y)∥2

(b)

≥ µf

2
∥x′ − x∥2 + r

4
∥γW′(y′ − y)∥2 − r

2
∥A(x′ − x)∥2

(c)

≥ µf

2
∥x′ − x∥2 + rγ2µW′

4
∥y′ − y∥2 − rLA

2
∥x′ − x∥2

(d)
=

µf

4
∥x′ − x∥2 + µfγ

2µW′

8LA
∥y′ − y∥2,

(e)

≥ µf

2
min

{
1

2
,
µA + LA

4LA

}∥∥∥∥(x′ − x
y′ − y

)∥∥∥∥2 ,
where (a) is due to Assumption 1; (b) is due to Young’s inequality; (c) is due to Assumption 2,
y′ − y ∈ L⊥

m, eq. (8) and eq. (5); (d) and (e) is due to eq. (12).

The value of LG can be obtained as follows:

DG(x
′, y′;x, y) = DF (x

′;x) +
r

2
∥A(x′ − x) + γW′(y′ − y)∥2

(a)

≤ Lf

2
∥x′ − x∥2 + r

2
∥A(x′ − x) + γW′(y′ − y)∥2

(b)

≤ Lf

2
∥x′ − x∥2 + r∥γW′(y′ − y)∥2 + r∥A(x′ − x)∥2

(c)

≤ Lf

2
∥x′ − x∥2 + rγ2LW′∥y′ − y∥2 + rLA∥x′ − x∥2

(d)
=

Lf + µf

2
∥x′ − x∥2 + µfγ

2LW′

2LA
∥y′ − y∥2,

(e)

≤ 1

2
max

{
Lf + µf , µf

µA + LA

LA

LW′

µW′

}∥∥∥∥(x′ − x
y′ − y

)∥∥∥∥2 ,
where (a) is due to Assumption 1; (b) is due to Young’s inequality; (c) is due to Assumption 2 and
eq. (5); (d) and (e) is due to eq. (12).

A.2 PROOF OF LEMMA 2

Proof. To obtain the formula for LB, consider an arbitrary z ∈ (Rm)n:

∥B⊤z∥2 = ∥A⊤z∥2 + ∥γW′z∥2
(a)

≤ (LA + γ2LW′)∥z∥2

(b)
=

(
LA + (LA + µA)

LW′

µW′

)
∥z∥2,
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where (a) is due to Assumption 2 and eq. (5); (b) is due to eq. (12).

To derive the formula for µB, first of all, note that by eq. (8)

(kerB⊤)⊥ = rangeB = rangeA+ rangeW′ = rangeA+ L⊥
m. (26)

Let z ∈ (kerB⊤)⊥ = u+ v, where u = (u1, . . . , un), v = (v0, . . . , v0) ∈ (Rm)n such that u ∈ L⊥
m

and v ∈ Lm.

We can show that v0 ∈ rangeS. In order to do that, let us show that ⟨v0, w0⟩ = 0 for all w0 ∈ kerS.
Let w = (w0, . . . , w0) ∈ Lm. The fact that w0 ∈ kerS and w ∈ Lm implies w ∈ kerAA⊤ =
kerA⊤. Hence, it is easy to show that w ∈ kerB⊤ = (rangeB)⊥. Then, we obtain

n⟨v0, w0⟩
(a)
= ⟨v, w⟩ (b)

= ⟨u+ v, w⟩ = ⟨z, w⟩ (c)
= 0,

where (a) follows from the definition of v and w; (b) follows from the fact that u ∈ L⊥
m and

w ∈ Lm; (c) follows from the fact that z ∈ rangeB and w ∈ (rangeB)⊥. Hence, v0 ∈ rangeS.

Further, we get

∥B⊤z∥2 (a)
= ∥A⊤(u+ v)∥2 + ∥γW′(u+ v)∥2
(b)
= ∥A⊤(u+ v)∥2 + ∥γW′u∥2
(c)

≥ ∥A⊤(u+ v)∥2 + γ2µW′∥u∥2

= ∥A⊤u∥2 + ∥A⊤v∥2 + 2⟨A⊤u,A⊤v⟩+ γ2µW′∥u∥2
(d)

≥ −∥A⊤u∥2 + 1

2
∥A⊤v∥2 + γ2µW′∥u∥2

(e)
= −∥A⊤u∥2 + 1

2
⟨v0, nSv0⟩+ γ2µW′∥u∥2

(f)

≥ −LA∥u∥2 + nµA

2
∥v0∥2 + γ2µW′∥u∥2

= −LA∥u∥2 + µA

2
∥v∥2 + γ2µW′∥u∥2

(g)
=

µA

2
∥v∥2 + µA∥u∥2

(h)

≥ µA

2
∥z∥2,

where (a) and (h) is due to the definitions of u and v; (b) is due to the fact that v ∈ Lm; (c) is
due to eq. (5) and eq. (8); (d) uses Young’s inequality; (e) is due to the definitions of v and S, and

∥A⊤v∥2 =

∥∥∥∥∥∥∥
A⊤

1 v0
...

A⊤
n v0


∥∥∥∥∥∥∥
2

=
∑n

i=1 ∥A⊤
i v0∥2 = ⟨v0,

∑n
i=1 AiA

⊤
i v0⟩ = ⟨v0, nSv0⟩; (f) is due to

Assumption 2 and the definition of v; (g) is due to eq. (12).

A.3 PROOF OF THEOREM 1

Lemma 5 (Salim et al. (2022a), Section 6.3.2). Let M be a matrix with µM > 0, r ∈ rangeM and
Mv0 = r. Then PM(M⊤M)(v− v0) = v−Chebyshev(v,M, r), where Chebyshev is defined
as Algorithm 6.
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Algorithm 6 Chebyshev(v,M, r): Chebyshev iteration (Gutknecht and Röllin (2002), Algorithm
4)

1: Parameters: v,M, r.

2: n :=
⌈√

LM

µM

⌉
3: ρ :=

(
LM − µM

)2
/16, ν := (LM + µM)/2

4: δ0 := −ν/2
5: p0 := −M⊤(Mv − r)/ν
6: v1 := v + p0

7: for i = 1, . . . , n− 1 do
8: βi−1 := ρ/δi−1

9: δi := −(ν + βi−1)
10: pi :=

(
M⊤(Mvi − r) + βi−1pi−1

)
/δi

11: vi+1 := vi + pi

12: end for
13: Output: vn

Proof of Theorem 1

Proof. Applying Lemma 3 to W and B⊤B, we derive that, due to eq. (18), it holds

λ2
max(W

′) ≤ LW′ = (19/15)2, λ2
min+(W′) ≥ µW′ = (11/15)2, (27)

and by eq. (6) the polynomial PW has a degree of ⌈√κW⌉. Similarly, due to eq. (19), it holds

σ2
max(K) = λmax(K

⊤K) ≤ LK = 19/15, σ2
min+(K) = λmin+(K⊤K) ≥ µK = 11/15, (28)

and since κB = LB

µB
, the polynomial PB has a degree of ⌈√κB⌉.

We implement computation of the term K⊤(Ku− b′) in line 6 of Algorithm 1 via Algorithm 5 by
Lemma 5:

K⊤(Ku− b′) = K⊤K(u− u0) = PB(B
⊤B)(u− u0)

= u−Chebyshev(u,B,b) = K_Chebyshev(u).

Similarly, utilizing Lemma 5, we get

W′y = P√
W(W)y = P√

W(
√
W

⊤√
W)(y− 0) = y−Chebyshev(y,

√
W, 0) = mulW′(y),

(29)
where mulW′ is defined as Algorithm 3.

Therefore, Algorithm 2 is equivalent to Algorithm 1.

From eqs. (13) and (27), µA+LA

LA
≤ 2 and (19/11)2 ≤ 3, we get

LG = max

{
Lf + µf , µf

µA + LA

LA

LW′

µW′

}
≤ µf max {1 + κf , 6} , (30)

µG = µf min

{
1

2
,
µA + LA

4LA

}
≥ µf

4
, (31)

κG =
LG

µG
≤ 4max {1 + κf , 6} . (32)

From eqs. (15) and (27) we get

κB =
LB

µB
≤ 2

(
κA + (19/11)2(1 + κA)

)
≤ 8κA + 6. (33)

From eq. (28) we obtain

κK =
LK

µK
= 19/11, (34)
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and substituting eqs. (32) and (33) to Proposition 1, we obtain as its direct corollary that k =
O(

√
κf log(1/ε)). Each iteration of Algorithm 2 require O(1) computations of ∇F , O(

√
κB) =

O(
√
κA) multiplications by A,A⊤ and O(

√
κA

√
κW) multiplications by W, which gives us the

statement of Theorem 1. The values of the parameters τ, η, θ, α in Theorem 1 are derived from
Proposition 1 as follows. We have τ = min

{
1, 1

2

√
κK

κG

}
= min

{
1, 1

2

√
19

44max{1+κf ,6}

}
due to

eqs. (32) and (34); η = 1
4τLG

= 1
4τ max{Lf+µf ,6µf} due to eq. (30); θ = 15

19η due to eq. (28) and
α = µG =

µf

4 due to eq. (31).

B PROOF OF THEOREM 2

B.1 DUAL PROBLEM

Let us construct the lower bound for the problem dual to the initial one. Consider primal problem
with zero r.h.s. in constraints.

min
x1,...,xn∈Rd

n∑
i=1

fi(xi)

s.t.
n∑

i=1

Aixi = 0

The dual problem has the form

min
x1,...,xn∈Rd

max
w

[
n∑

i=1

fi(xi)− ⟨z,Aixi⟩
]
= max

w

[
− max

x1,...,xn∈Rd

n∑
i=1

〈
A⊤

i z, xi

〉
− fi(xi)

]

= −min
w

n∑
i=1

f∗
i (A

⊤
i z).

Introducing local copies of w at each node, we get

min
z1,...,zn

n∑
i=1

gi(zi) :=

n∑
i=1

f∗
i (A

⊤
i zi) (35)

s.t. Wz = 0 (36)

B.2 EXAMPLE GRAPH

We follow the principle of lower bounds construction introduced in Kovalev et al. (2021) and take the
example graph from Scaman et al. (2017). Let the functions be held by the nodes be organized into a
path graph with n vertices, where n is divisible by 3. The nodes of graph G = (V, E) are divided
into three groups V1 = {1, . . . , n/3} ,V2 = {n/3 + 1, . . . , 2n/3} ,V3 = {2n/3 + 1, . . . , n} of n/3
vertices each.

Now we recall the construction from Scaman et al. (2017). Let γn =
1−cos( π

3n )
1+cos( π

3n )
. Since γn

n→∞→ 0,

there exists n ≥ 1 such that γn ≥ 1
χ > γn+1. Introduce edge weights wi,i+1 = 1− aI {i = 1}, take

the corresponding weighed Laplacian Wa and denote its condition number χ. If a = 1, the network
is disconnected and therefore χ(Wa) = ∞. If a = 0, we have χ(Wa) = 1/γn. By continuity of
Laplacian spectra we obtain that for some a ∈ [0, 1) it holds χ(Wa) = χ. Note that

γn =
1− cos π

3n

1 + cos π
3n

≤ π2

9n2
⇒ χ ≥ 9n2

π2
≥ n2. (37)

B.3 EXAMPLE FUNCTIONS

We let e1 = (1 0 . . . 0)⊤ denote the first coordinate vector and define functions

fi(p, t) =
µf

2

∥∥∥∥∥p−
√

L̂A

2µf
e1

∥∥∥∥∥
2

+
Lf

2
∥t∥2.
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Correspondingly,

f∗
i (u, v) =

1

2µf
∥u∥2 + 1

2Lf
∥v∥2 −

√
L̂A

µf
u1.

To define matrices Ai, we first introduce

E1 =


1 0 0 0 0 . . .
0 1 −1 0 0 . . .
0 0 0 0 0 . . .
0 0 0 1 −1 . . .
...

...
...

...
...

. . .

 , E2 =


1 −1 0 0 0 . . .
0 0 0 0 0 . . .
0 0 1 −1 0 . . .
0 0 0 0 0 . . .
...

...
...

...
...

. . .

 .

Let L̂A = 1
2LA − 3

4µA, µ̂A = 3
2µA and introduce

Ai =


[
√
L̂AE⊤

1

√
µ̂AI], i ∈ V1

[ 0 0 ], i ∈ V2

[
√
L̂AE⊤

2

√
µ̂AI], i ∈ V3

Let us make sure that the choice of Ai guarantees constants LA, µA from (4).

max
i

λmax(AiA
⊤
i ) = λmax

(
L̂AE⊤

1 E1 + µ̂AI
)
= 2L̂A + µ̂A = LA,

λ+
min

(
1

n

n∑
i=1

AiA
⊤
i

)
= λ+

min

(
1

3
(L̂AE⊤

1 E1 + µ̂AI) +
1

3
(L̂AE⊤

2 E2 + µ̂AI)

)
=

2

3
µ̂A = µA.

Let M̃ =

(
1 −1

−1 1

)
and

M1 = E⊤
1 E1 =


1 0 0 . . .

0 M̃ 0 . . .

0 0 M̃ . . .
...

...
...

. . .

 , M2 = E⊤
2 E2 =


M̃ 0 0 . . .

0 M̃ 0 . . .

0 0 M̃ . . .
...

...
...

. . .


The dual functions take the form

gi(z) = f∗
i (A

⊤
i z) =


1

2µf
∥
√

L̂AE1z∥2 + 1
2Lf

∥√µ̂Az∥2 − L̂A

2µf
z1, i ∈ V1

0, i ∈ V2

1
2µf

∥
√

L̂AE2z∥2 + 1
2Lf

∥√µ̂Az∥2 − L̂A

2µf
z1, i ∈ V3

=


1
2z

⊤
(

L̂A

µf
M1 +

µ̂A

Lf
I
)
z − L̂A

2µf
z1, i ∈ V1

0, i ∈ V2

1
2z

⊤
(

L̂A

µf
M2 +

µ̂A

Lf
I
)
z − L̂A

2µf
z1, i ∈ V3

(38)

Therefore, we have
n∑

i=1

gi(z) =
n

3

[
L̂A

2µf
z⊤(M1 +M2)z +

µ̂A

Lf
z⊤z − L̂A

µf
z1

]

=
n

3

L̂A

µf

[
1

2
z⊤Mz − z1 +

µ̂Aµf

L̂ALf

z⊤z

]
,

where

M = M1 +M2 =


2 −1 0 0 0 . . .

−1 2 −1 0 0 . . .
0 −1 2 −1 0 . . .
...

...
...

...
...

. . .

 .

Now we formulate the lower complexity bounds for
∑n

i=1 gi(z), where gi(z) are defined in (38).
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B.4 DERIVING THE LOWER BOUND

Let us introduce the local memory Zi(k) which is updated as follows.
1. If the algorithm performs a local gradient computation, then

Zi(k + 1) = Span {x,∇fi(x),∇f∗
i (x) : x ∈ Zi(k)} .

2. If the algorithm performs a communication rounds, then

Zi(k + 1) = Span {x : x ∈ Zj(k), (i, j) ∈ E} .

Lemma 6. Function
∑n

i=1 gi(z) attains its minimum at z∗ =
{
ρk
}∞
k=1

, where

ρ =

√
2
3
LALf

µAµf
+ 1− 1√

2
3
LALf

µAµf
+ 1 + 1

.

Proof. In the lower bound example in (Lemma 1 in Appendix C) Kovalev et al. (2021) it was shown
that function

h(z) =
1

2
z⊤Mz +

3µ

L− µ
∥z∥2 − z1

attains its minimum at z∗k = ρk, where

ρ =

√
2L
3µ + 1

3 − 1√
2L
3µ + 1

3 + 1

Let us deduce the expression for L, µ in terms of LA, Lf , µA, µf . We enforce h(z) =
∑n

i=1 gi(z)
and get

3µ

L− µ
=

µAµf

LALf
⇒ L

µ
= 1 +

LALf

µAµf
.

Therefore, for ρ we obtain

ρ =

√
2
3
LALf

µAµf
+ 1− 1√

2
3
LALf

µAµf
+ 1 + 1

.

Let us first show the lower bound on the number of communications.
Lemma 7. Let si(k) denote the maximum index of a nonzero component of vector held by i-th node
at step k, i.e.

si(k) =

{
0, Zi(k) ⊆ {0}
min {s ∈ {1, 2, . . .} : Zi(k) ⊆ Span {e1, . . . , es}} , else.

Let kq denote the the number of algorithm step by which exactly q communication steps have been
performed, where q ≥ 0. For any k ∈ {1, . . . , kq} we have

max
i

si(k) ≤ 2 +

⌊
q

n
3 + 1

⌋
(39)

Proof. Note that from the structure of gi(z), if the method performs a computation step, then

si(k + 1) ≤ si(k) +


1− (si(k) mod 2), i ∈ V1

0, i ∈ V2

(si(k) mod 2), i ∈ V3
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Due to the structure of network, if the method makes a communication round, it follows

si(k + 1) ≤


max (si−1(k), si(k), si+1(k)) , i ∈ {2, . . . , n− 1}
max (s1(k), s2(k)) , i = 1

max (sn−1(k), sn(k)) , i = n

(40)

We will prove that
1. For q = 2ℓ(n/3 + 1), ℓ ∈ {0, 1, . . .} we have

si(kq) ≤


1 + 2ℓ, i ∈ V1

1 + 2ℓ, i ∈ V2

2 + 2ℓ, i ∈ V3

(41)

2. For q = (2ℓ+ 1)(n/3 + 1), ℓ ∈ {0, 1, . . .} we have

si(kq) ≤


2 + (2ℓ+ 1), i ∈ V1

1 + (2ℓ+ 1), i ∈ V2

1 + (2ℓ+ 1), i ∈ V3

(42)

The proof follows by induction.

Induction basis. Let q = 0. From definitions of gi(z) it follows that

si(k0) ≤


1, i ∈ V1

0, i ∈ V2

2, i ∈ V3

Therefore, for q = 0 our statement holds.

Induction step for q = (2ℓ+ 1)(n/3 + 1). Consider q− = q − n/3 = 2ℓ(n/3 + 1). From (41) we
have that for the spread of nonzero components from V3 to V1 it requires n/3 communication rounds
to reach node n/3 + 1. After one more communication round, the information reaches node n/3.

Induction step for q = (2ℓ + 1)(n/3 + 1). The proof follows by the same argument as for
q = (2ℓ+ 1)(n/3 + 1).

We just proved the statement of lemma, i.e. relation (39), for q divisible by (n/3 + 1). Between such
checkpoints, the information (i.e. the number of nonzero components) traverses nodes of V2 and
therefore maxi si(k) stays unchanged. Thus the statement of the lemma is proven.

Now we estimate the distance to optimum.

∥zi(k)− z∗∥22 ≥
∞∑

ℓ=si(k)+1

(zi(k)− z∗)2 =

∞∑
ℓ=si(k)+1

ρ2ℓ =
ρ2si(k)+2

1− ρ2
=

ρ6+2⌊ q
n/3+1⌋

1− ρ2

(a)

≥ ρ6+
2q

2n/3

1− ρ2
=

ρ6

1− ρ2
· ρ 3q

n
(b)
=

ρ6

1− ρ2
· ρ

3q√
χ ,

where (a) holds since n/3 ≥ 1; (b) holds due to (37).

Following Kovalev et al. (2021), we obtain that

ρ ≥ max

(
0, 1−

√
6µAµf

LALf

)
.

Therefore,

∥zi(k)− z∗∥22 ≥ ρ6

1− ρ2

(
max

(
0, 1−

√
6µAµf

LALf

)) 3q√
χ

.
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It follows that the number of communications is lower bounded as

NW ≥ Ω

(
√
χ

√
LALf

µAµf
log

(
1

ε

))
and the number of oracle calls of gi(z) at each node (that is, the number of local matrix multiplications
by Ai) is lower bounded as

NA ≥ Ω

(√
LALf

µAµf
log

(
1

ε

))
.

B.5 LOWER BOUND ON THE NUMBER OF GRADIENT COMPUTATIONS

To get the lower bound on local gradient calls, let us consider a problem

min
x1,...xn∈Rd

n∑
i=1

fi(xi) +

n∑
i=1

vi(ui)

s.t.
n∑

i=1

Aixi = 0

where all vi(u) are the same and vi(ui) = g(u) =
∑n

j=1 gj(u) and gj(u) are defined in (38). All
vi(u) are the same and are defined as

vi(ui) =
1

2
u⊤
i Mui +

µf

Lf
u⊤u− u1.

Since there is no communication constraint on ui, each node runs optimization process individually.
Following the same arguments as for function g(z), we get the lower bound on the number of oracle
calls

Nf ≥ Ω

(√
Lf

µf
log

(
1

ε

))
.
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