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ABSTRACT

Ensuring the quality of large-scale datasets is a prerequisite for reliable machine
learning, yet current verification pipelines are static, domain-specific, and heav-
ily reliant on human experts. We introduce SpeechQC-Agent, the first natural
language-driven agentic framework for dataset quality control that generalizes
across modalities, vendors, and languages. A central planner LLM decomposes
user queries into directed acyclic graph (DAG) workflows executed by modular
sub-agents that combine reusable tools with LLM-synthesized functions, enabling
flexible and scalable verification. Unlike rule-based scripts, this design supports
parallelism, dependency management, and adaptive extension to novel schemas.
To benchmark verification systems, we release SpeechQC-Dataset, a multilin-
gual speech corpus with controlled perturbations spanning audio, transcripts, and
metadata, allowing systematic evaluation of 24 verification tasks. Experiments
show that SpeechQC-Agent achieves 80-90% of expert-level accuracy while op-
erating at less than 20% of the cost and time, and generalizes from synthetic per-
turbations to real vendor-supplied corpora. Comparative analysis across multiple
planner LLMs highlights trade-offs between fidelity (GPT-4.1-mini), efficiency
(LLaMA-3.3-70B), and reasoning strength (DeepSeek-R1). Beyond speech, our
approach establishes a general paradigm for LLM-driven workflow generation in
dataset quality assurance, with implications for the curation of multimodal and
multilingual resources on scale.

1 INTRODUCTION

India is the epicenter of linguistic diversity (Graziosi, 2017), and the Census of India(India, 2001)
reported 30 languages spoken by more than a million native speakers. However, despite this di-
versity, even widely spoken languages such as Hindi (Javed et al., 2024a) remain under-resourced
in the context of publicly available speech-text datasets. Building speech technologies such as Au-
tomatic Speech Recognition (ASR) (Kumar et al., 2022b), Text-to-Speech (TTS) (Tankala et al.,
2024), Speech Translation (ST) (Gupta et al., 2025), etc., for these languages is critically dependent
on the availability of large-scale, high-quality, and diverse speech datasets (Javed et al., 2023). How-
ever, curating such datasets is a slow, labor-intensive process fraught with several challenges. For
example, manual verification for 1,000 hours of conversational speech may require 3-4 annotators
working full-time for 6 months, making scalability prohibitive (Kumar et al., 2022a).

Speech dataset construction typically involves collaboration with multiple vendors, each following
different conventions for audio encoding (e.g., sampling rate, file format, channel configuration),
transcript formatting (e.g., CSV vs. JSON, sentence vs. file-level alignment), and metadata or-
ganization (e.g., speaker demographics or dialect tags) (Javed et al., 2024b). This heterogeneity
makes it difficult to design unified processing pipelines. Beyond formatting inconsistencies, dataset
quality requires extensive manual validation: transcripts must be checked for accuracy, audio must
be screened for corruption or poor recording conditions, and speaker demographics must be mon-
itored to maintain linguistic and social diversity. In practice, such validation is either performed
through random sampling (He et al., 2024), which is fast but risks overlooking systemic errors, or
by exhaustive verification (Jiang et al., 2024), which ensures quality but is prohibitively slow. These
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Check the audio files of the speech dataset on sample rate, audio file corruption and domain with audio_dir: "xyz/test/"

Planning Steps:
1. Check if the sample rate is 16 KHz or 8 KHz.
2. Check if the audio files are corrupt or not.
3. Create the transcript of the audio files.
4. Based on the created transcript, predict the domain of the audio file.

Figure 1: Our system leverages structured prior knowledge and parallel planning capabilities to
generate efficient, self-managing task workflows for speech dataset verification.

challenges make high-quality corpus creation both time-intensive and resource-demanding (Kumar
et al., 2025), underscoring the need for scalable, automated verification frameworks.

Several initiatives have sought to address the scarcity of high-quality, standardized, and scalable
speech datasets for Indian languages. Projects such as AI4Bharat (Javed et al., 2024b), IITB (Adiga
et al., 2021) and the Vaani (Team, 2025) collaboration represent important steps toward resource cre-
ation, but they remain constrained by human-in-the-loop verification pipelines. Recruiting and train-
ing large annotator teams is logistically complex and financially burdensome, and manual checks
do not scale reliably as dataset size or vendor diversity increases. Similarly, the Spring Lab (Sarkar
et al., 2025) random-sampling approach has been shown to overlook recurring systematic error types
in speech datasets, reducing their reliability for downstream applications. As a result, no existing
solution provides a scalable and automated framework that simultaneously ensures efficiency and
high quality in the verification of multilingual speech dataset.

In parallel, recent advances in Large Language Models (LLMs) as agents (Guo et al., 2024) have
demonstrated competitive performance in tool use (Li et al., 2023), planning (), and decision-making
(Yao et al., 2023) tasks. Although these advances have transformed many areas, their potential in
speech dataset quality control, a relatively niche domain, remains largely untapped. The scarcity
of specialized models and benchmarks in this area is due to two key limitations: (i) the absence
of comprehensive, high-quality datasets that capture diverse real-world error conditions, and (ii)
the heterogeneity of speech-text data formats across languages and vendors. Moreover, prior agen-
tic systems designed for text-based data processing face well-documented challenges: inconsistent
environment configurations (Hu et al., 2024b), difficulty adapting to novel schemas (Tang et al.,
2023), hallucinating actions (Zhong et al., 2024b), unnecessary repetition of steps (Zhang et al.,
2024a), and weak contextual grounding (Song et al., 2023). These problems are magnified in mul-
timodal speech settings, where alignment between audio, transcripts, and metadata is critical and
difficult to verify.

In this paper, we introduce SpeechQC-Agent, a natural language-driven multi-agent framework
for automating the quality control and verification of large-scale speech datasets. Unlike prior
approaches that rely on fixed scripts or manual annotator checks, SpeechQC-Agent leverages a
centralized LLM to interpret user instructions and orchestrate specialized sub-agents for format
normalization, transcript validation, audio quality checks, and metadata verification. By allowing
users to issue natural language prompts (for example, “Check the audio files for sample rate, cor-
ruption, and domain”), the system dynamically constructs task-specific workflows, reducing human
dependency and enabling scalable dataset processing (Figure 1). Beyond synthetic perturbations,
we validate SpeechQC-Agent on vendor-supplied corpora, showing that the framework generalizes
to real-world noise and annotation inconsistencies.

This paper makes the following key contributions:
1. Natural Language-Driven Workflow Generation: We present the first system to automatically
generate speech dataset verification workflows directly from natural language prompts, reducing the
dependency on rigid rules or manual scripting.
2. Modular Multi-Agent Execution Framework: We propose a graph-based framework that de-
composes verification into modular sub-agents, enabling both task-level parallelism and structured
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dependency management.
3. Tool Synthesis and Reuse: We demonstrate how LLM-synthesized tools can be combined with
robust pre-defined components (e.g., VAD, domain identification, CTC scoring), supporting both
adaptability and efficiency.
4. First Application to SpeechQC-Dataset: We release SpeechQC-Dataset, a synthetic yet realis-
tic multilingual benchmark, and show that SpeechQC-Agent is the first end-to-end system capable
of applying agentic workflow generation to real-world speech-text data quality control across het-
erogeneous vendor formats1.

2 RELATED WORK

Recent advances in large language models (LLMs) have enabled agent-based frameworks for auto-
mated task orchestration and tool-driven reasoning (Liu et al., 2023; 2024; Zhong et al., 2024a; Zhu
et al., 2024; Sun et al., 2024; Xie et al., 2024). Our work intersects with three lines of research:
(i) LLM-powered multi-agent collaboration, (ii) workflow generation and evaluation, and (iii) mod-
ular agent design. However, none directly address the verification of large-scale speech datasets,
particularly in low-resource multilingual settings.

MacNet (Qian et al., 2024) introduces a DAG topology for reasoning among thousands of agents,
while EvoMAC (Hu et al., 2024c) proposes a self-evolving collaboration framework for software de-
velopment. These emphasize scaling collaboration, whereas our system focuses on task-specialized
decomposition and coordination for audio-text validation.

AFlow (Zhang et al., 2024b) formalizes workflows as DAGs of LLM-invoking nodes, and Worf-
Bench/WorfEval (Qiao et al., 2024) evaluates planning quality through subsequence and subgraph
metrics. We adapt such methods to speech by grounding workflows in dataset curation and evalu-
ating with domain-specific metrics such as word error rate (WER), character error rate (CER), and
alignment accuracy.

AgentPrune (Zhang et al., 2024a) reduces communication redundancy, and T3-Agent (Gao et al.,
2024b) improves multi-modal tool usage (Gao et al., 2024a). AutoAgent (Tang et al., 2025),
AgentSquare (Shang et al., 2024), and automated design frameworks (Hu et al., 2024b) simplify
agent creation. In contrast, our system emphasizes robust reusable tools for speech data (e.g., VAD,
IndicLID (Madhani et al., 2023), CTC validators), integrated into an end-to-end verification pipeline
that handles heterogeneous formats, multilingual scripts, and demographic balance.

Unlike NVIDIA Speech Explore2, which is limited to transcript verification with 8 tasks,
SpeechQC-Agent supports 24 overall verification tasks, 13 dedicated to transcripts, while also ex-
tending to audio and metadata level checks. It is the first agentic system applied to real-world speech
corpus curation, combining workflow-graph metrics with speech-specific quality indicators.

3 DATA CREATION PIPELINE

We develop SpeechQC-Dataset, a synthetic speech-text benchmark designed to capture realistic
quality control (QC) challenges. Unlike prior synthetic pipelines that primarily generate clean train-
ing data, the SpeechQC-Dataset is explicitly QC-aware: it integrates controlled noise, multilingual
translation, and LLM-as-a-Judge validation to simulate diverse error conditions. This makes it the
first dataset design to evaluate verification agents.

The general workflow for creating synthetic data is illustrated in Figure 2. The pipeline proceeds in
five stages:

1. Prompt-Driven Dialogue Generation: A carefully crafted natural language prompt encodes
the intention of the task, speaker roles, and domain constraints. An LLM-based dialogue planner
(Deng et al., 2023; Yi et al., 2024) expands this into multi-turn conversations, guided by long-
form examples for discourse coherence. A controller agent may invoke LLM-as-a-Judge (Gu et al.,
2024b) to enforce factuality and conversational realism.

1Code and Dataset Availability: https://anonymous.4open.science/r/SpeechQC-Agent-B971/
2https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/

tools/speech_data_explorer.html
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Figure 2: The five-stage data creation pipeline used for SpeechQC-Dataset: (1) prompt-driven dia-
logue planning, (2) cross-lingual translation, (3) metadata extraction and probabilistic perturbation,
(4) speaker attribution & TTS synthesis, and (5) post-validation with structured export. LLM-as-a-
Judge checkpoints (dashed) provide filtering and consistency checks at key stages.

2. Cross-Lingual Translation: The generated dialogues are translated into low-resource languages
using multilingual LLMs (Joshi et al., 2024) or specialized translation modules, enabling coverage
across Indic and other under-resourced settings.

3. Metadata Extraction and Perturbation: Conversations are automatically annotated with
speaker turns, utterance boundaries, and intent labels. A probabilistic perturbation module intro-
duces structured noise, such as tag insertions (<noise>, <html>), token swaps, or injection of
rare vocabulary, under a tunable threshold parameter α. This simulates systematic QC-relevant er-
rors that are absent in previous corpora.

4. Speaker Attribution and TTS Synthesis: Synthetic speaker IDs condition TTS models to
produce speech audio with varied voices, accents, prosody, and gender. This ensures demographic
and acoustic diversity while maintaining alignment with transcripts.

5. Post-Validation and Structured Export: Both transcripts and audio undergo selective cor-
ruption (e.g., clipping, token drops) to mimic real-world ASR artifacts. The final outputs, text,
metadata, and audio, are exported in standardized .json or .xml formats. In multiple stages,
LLM-as-a-Judge (Gu et al., 2024a) is invoked to detect hallucinations or inconsistencies, filtering
low-quality samples.

The resulting dataset provides fine-grained control over linguistic, acoustic, and structural proper-
ties, yielding a benchmark that is both scalable and realistic for evaluating multi-agent QC systems.3

3.1 DATA QUALITY VERIFICATION

To systematically evaluate dataset quality, we design the SpeechQC-Dataset to include controlled
errors injected through rule-based perturbations and LLM-as-a-Judge validation (Gu et al., 2024a).
This allows us to benchmark verification methods against realistic error distributions.

The verification process is implemented as a two-stage suite that mirrors the multi-agent architecture
of SpeechQC-Agent: (i) QC1 for audio and metadata validation, and (ii) QC2 for transcript and
content validation. This modular separation enables parallelization while covering complementary
error types. For further details, see Appendix E.

Checklist Overview: Table 1 summarizes all the QC1 and QC2 checks. Together, they capture a
broad spectrum of quality dimensions, from file integrity and speaker uniqueness to transcription
reliability, script consistency, and domain balance. Unlike prior ad hoc QC efforts, this structured
design provides the first unified, evaluation-aware benchmark for speech dataset verification.

4 METHODOLOGY

In this section, we describe our proposed SpeechQC-Agent, a natural language-driven, LLM-
coordinated multi-agent framework designed specifically for speech dataset quality verification. The
framework takes as input a batch of speech data (waveforms, transcripts, metadata) and a natural-

3For further details, please refer to Appendix D.
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QC1: Audio & Metadata Verification (11 tasks)
ASR Transcription Speaker count & duration Audio length Silence calculation (VAD)
Upsampling check Speaker identity (new vs.

old)
Audio corruption check Audio format / extension

check
Sample rate check Speaker duration stats Language ID (ASR + IndicLID)

QC2: Transcript & Content Verification (13 tasks)
Transcript quality Grapheme / character stats Vocabulary stats Language verification
English word counter CTC score Domain classification Transcript-audio alignment
Transcript normalization
(tags removal)

Transcript coherence
(LLM-as-a-Judge)

Transliteration (Ro-
man→Native)

Utterance duplicate check /
WER computation

Table 1: Overview of the 24 verification tasks implemented in SpeechQC-Agent, grouped into QC1
(audio/metadata) and QC2 (transcript/content).
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C

Figure 3: Architecture of the SpeechQC-Agent system. Given a natural language task description
(A), a central planner LLM interprets the input and generates an ordered action list (C), which
is validated (D) and mapped to a node list (E). Dependencies among nodes are resolved into a
nested structure (F) and used to generate a topologically sorted workflow graph (G). Each node is
executed (H) using dynamically synthesized (I) or pre-defined tools (J). Execution is monitored for
completeness, and outputs (L) are aggregated into a structured Data Verification Dashboard (M) for
final review.

language verification request. It then (i) decomposes the request into atomic checks, (ii) builds an
executable directed acyclic graph (DAG) of those checks, (iii) instantiates or retrieves the required
tools, and (iv) executes the graph while monitoring progress. Each stage in SpeechQC-Agent is
powered by a specialized agent with its own planning, execution, or verification role, and these
agents are coordinated by a central LLM planner (Wei et al., 2025). Figure 3 illustrates the pipeline,
which consists of the following stages:

4.1 TASK PARSING AND ACTION GENERATION

The SpeechQC-Agent: central planning agent (A-B) is the primary interface for interacting with the
user. It receives tasks from the user, comprehends the tasks in natural language tasks description
q, a central planning agent leverages an LLM to interpret and decompose it into a structured action
list A = {ai}ni=1, where each action ai denotes a specific atomic quality check. Each action corre-
sponds to a specific atomic quality check, such as CheckSampleRate , DetectAudioCorruption , or

5
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ValidateTranscript etc. The PlannerLLM is a constrained sequence-to-sequence model that maps
natural language queries to validated action lists.

A← PlannerLLMθ(q)

This planning process uses a combination of lexical mapping (e.g., “VAD”→ SilenceCheck ) and
semantic prompting of an LLM to infer implied actions. Moreover, a lightweight rule-based LLM
verifier ensures the consistency of A with known hard constraints. For instance, if q mentions silence
or VAD, the agent appends asilence to A if missing by the central planning agent.

4.2 NODE GENERATION AND DEPENDENCY GRAPH CONSTRUCTION

We define an agentic workflow as a series of LLM invokes in which the action list is further trans-
formed into executable nodes V = {v1, v2, . . . , vn}. Each node vi represents a specific discrete
verification subtask performed by an LLM. The dependencies between nodes are explicitly captured
to construct a Directed Acyclic Graph (DAG) that is a pair G = (V,E), where:

• V is a finite set of vertices,

• E ⊆ V × V is a set of directed edges,

such that there does not exist any sequence of distinct vertices v1, v2, . . . , vk ∈ V with k ≥ 2
satisfying (v1, v2) ∈ E, (v2, v3) ∈ E, . . . , (vk−1, vk) ∈ E, and (vk, v1) ∈ E where edges E
represent dependencies between subtasks, which also govern the execution sequence.

Although graph structures can represent workflow relationships W , they require complex extensions
beyond basic DAGs to naturally express parallel execution and conditional logic (Hu et al., 2024a).
Neural networks enable adaptive transitions but lack precise control over workflow execution (Liu
et al., 2023). In contrast, code representation inherently supports all the above relationships through
standard programming constructs. Therefore, we adopt the code (Zhuge et al., 2024) as our primary
edge structure to maximize expressivity. Then, the nodes are first linearly sequenced using topologi-
cal sorting, where a linear ordering of the vertices is established such that each vertex appears before
all vertices to which it has outgoing edges, followed by the establishment of parallel or sequential
execution relationships:

C(V )⇒ TopologicalSort⇒ G

4.3 TOOL SYNTHESIS AND RETRIEVAL

Each verification node vi is associated with an executable tool Ti. Tools are selected or synthesized
via: 1) Dynamic LLM-based tool synthesis Tgen: The agent prompts an LLM to generate the tools
and callable functions. The tools are generated on demand for new or customized tasks. and 2)
Predefined tool repository Tlib: A curated set of robust tools pre-generated using GPT-4o for stable
performance when synthesis fails or confidence is low. The overall tool set is represented as:

T = Tgen ∪ Tlib

The tool selection may be revised if the tool fails validation checks or runtime execution.

4.4 WORKFLOW EXECUTION AND MONITORING

We execute the workflow graph G following the topological order with dependency-aware paral-
lelism. A monitoring agent uses a separate LLM to track the execution status of each node, ensuring
completeness and robustness. Let yi be the output of node vi. If yi = ∅ or an exception is detected,
the execution checker retries Ti up to r times. This guarantees completeness:

∀vi ∈ V, ∃ŷi ̸= ∅ ∨ fail(vi)

Nodes that fail to execute are automatically retried or escalated for manual inspection4.

4See Appendix K for all the prompts.
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4.5 OUTPUT AGGREGATION AND DASHBOARD GENERATION

Upon completion, outputs from all executed nodes are aggregated into structured reports and visual
dashboards. These dashboards enable users to interactively inspect and review quality metrics, error
distributions, and execution logs for transparency and auditability. This enables both human analysts
and downstream systems to filter or prioritize batches for the data verification task.

4.6 MODULARITY AND EXTENSIBILITY

SpeechQC-Agent is modular by design, with each stage (action parsing, node building, tool genera-
tion, execution) being LLM-agent pluggable. New tasks can be added by either extending the action
ontology or defining a new node schema, supplying new tool definitions, or enabling auto-synthesis.
This architecture generalizes across vendor schemas, speech domains, and languages without man-
ual scripting, making it especially suited for multi-source, low-resource datasets. It also ensures
adaptability and scalability to diverse speech dataset curation challenges.

5 EXPERIMENTS

5.1 DATASET CONSTRUCTION

To rigorously evaluate SpeechQC-Agent, we introduce the SpeechQC-Dataset, a synthetic yet QC-
aware benchmark specifically designed for multilingual low-resource settings, with a focus on Indic
languages, starting with Hindi language. Unlike prior synthetic corpora that emphasize clean train-
ing data, the SpeechQC-Dataset explicitly incorporates controlled variability and error patterns to
stress-test verification systems.

The dataset is generated through a multi-step LLM+TTS pipeline (Section 3). Three strong LLMs:
LLaMA-3.3-70B, GPT-4o/4o-mini, and DeepSeek-R1-distill, produce English multi-turn dialogues
across 11 domains and 55 scenarios, ensuring conversational and stylistic diversity. The dialogues
are translated into Hindi (Devanagari script) using multilingual LLMs, normalized, and converted
into audio with a speaker-conditioned TTS model, yielding natural variation in voice, accent, and
prosody.

Each sample is annotated with metadata fields including verbatim text, audio duration, scenario,
domain, speaker ID, native language, gender, and age group. Speaker IDs and demographics are
adapted from the LAHAJA dataset (Javed et al., 2024a), ensuring realistic population balance. Im-
portantly, original Lahaja transcripts/audio are replaced with synthetic content, preserving demo-
graphics while avoiding data leakage. For further details, see Appendix C.

5.2 QUALITY VERIFICATION FRAMEWORK

We benchmark SpeechQC-Agent on a two-stage verification suite aligned with its modular architec-
ture: QC1: Audio & Metadata Verification - Includes language ID, file format integrity, sample
rate, silence/noise, upsampling artifacts, speaker reuse detection, and speaker-hour balance. QC2:
Transcript & Content Verification - Includes forced alignment, CTC loss (wav2vec2.0), ensemble
WER/CER scoring, LLM-as-a-Judge fluency scoring, domain classification, transliteration consis-
tency, grapheme distribution, vocabulary rarity and duplication detection.

Table 1 enumerates all 24 checked implementations. To control difficulty, the dataset is partitioned
into subfolders: QC1/2-1 (single transformation), QC1/2-2 (randomly paired transformations), and
QC1/2-3 (three or more transformations). This design allows for controlled evaluation verification
under increasing error complexity.

5.3 BASELINES AND LLM VARIANTS

We evaluated SpeechQC-Agent with five planner LLMs: GPT-4o, GPT-4.1, DeepSeek-R1-distill,
LLaMA-3.3-70B, and LLaMA-3.1-8B.
1. Execution Accuracy: proportion of verification actions producing correct results given ground-
truth annotations.

7
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2. Hallucination Rate: fraction of actions not present in the requested query but introduced by the
planner.
3. Runtime: average end-to-end wall-clock time per verification batch.
4. Cost Efficiency: normalized token cost per 1K tokens (see Appendix B.1).

We compare against one non-agentic and two agentic baselines: (i) a Human Annotation baseline,
simulated through 5 annotators performing random 10% sampling. These establish lower/upper
bounds for scalability and quality. (ii) a Single-Agent parses the user query, creates an action plan,
and directly executes all verification tasks sequentially without explicit decomposition or depen-
dency modeling, and (iii) a Multi-Agent handle subtasks in parallel, but without a central LLM
planner or dependency graph, leading to limited coordination and potential ordering errors across
tasks.

Our evaluation addresses three questions:
(1) Can the SpeechQC-Agent generalize verification workflows across languages and vendor for-
mats?
(2) Which planner LLM offers the best trade-off between accuracy, hallucination, and cost?
(3) How does agentic verification compare against static pipelines and human-in-the-loop sampling?

Model File-Format Corrupt Sample-Rate Domain
gpt-4o-mini 100 100 100 28.17
gpt-4.1-mini 100 100 100 60.32
deepseek-r1 0 100 0 81.30
llama-3.1-8b 0 100 0 21.48
llama-3.3-70b 100 100 100 75.40

Table 2: QC1 evaluation across four subtasks. Detect file format error, corrupt file error, sample rate
error, and domain identification error. Reported values correspond to accuracy.

LLM Variant Roman Script Mean WER # HTML Tags # EN Tokens
gpt-4.1-mini 99.64 0.094 99.96 100
gpt-4o-mini 66.40 1.151 98.33 68.17
deepseek-r1 85.2 0.334 0 0
llama-3.1-8b 0 0 0 91.34
llama-3.3-70b 99.46 0.120 100 78.70

Table 3: QC2 evaluation across four subtasks. Lower WER, Roman script, HTML Tags, and English
Tokens, the accuracy calculated based on detection.

Model Accuracy (%) Time (sec)
gpt-4o-mini 75 354.207
gpt-4.1-mini 75 136.545
llama-3.3-70b 62.5 64.056
llama-3.1-8b 25 80.326
deepseek-r1 25 72.693

Table 4: LLM performance on QC1 instructions. Each model was evaluated using 3 audio samples
each from QC1-1, QC1-2, and QC1-3. The number of missed tasks and total execution time (in
seconds) are reported.

6 RESULTS AND DISCUSSION

Tables 2 and 3 show that SpeechQC-Agent consistently performs verification tasks across heteroge-
neous data sources. In QC1 (audio and metadata), all strong planner LLMs achieve near-perfect
detection of file-format errors, corruption, and sample rate anomalies, confirming robustness to
vendor-side audio inconsistencies. In QC2 (transcripts and content), clearer differences emerge:
GPT-4.1-mini and LLaMA-3.3-70B both surpass 99% accuracy in Roman script and HTML tag de-
tection with low WER scores, while smaller models degrade substantially. Importantly, SpeechQC-
Agent transfers effectively from Hindi Devanagari-script benchmarks to additional Indic languages

8
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Model Accuracy Hallucinated Tasks Time (sec)
gpt-4o-mini 100 0 347.397
gpt-4.1-mini 100 0 298.261
deepseek-r1 12.5 2 65.314
llama-3.1-8b 33 0 60.542
llama-3.3-70b 72 0 37.380

Table 5: Evaluation of LLMs on QC2 instructions. Each model was prompted to execute 8 quality
verification tasks (language check, WER/CTC computation, normalization, etc.) for 3 audio sam-
ples. Models were evaluated based on task completion accuracy and hallucination rate.

in our extended in-house corpus, suggesting that its workflow abstraction generalizes beyond the
synthetic dataset. Together, these results validate our claim that SpeechQC-Agent can handle both
cross-lingual variability and vendor-specific data formats.

Tables 4 and 5 compare planner LLMs on execution accuracy, hallucination rate, and runtime. GPT-
4.1-mini achieves the strongest transcript-level fidelity (99.64% in Roman script, 0.094 mean WER)
with zero hallucinated steps, albeit at a moderate runtime cost (136-298s per batch). LLaMA-3.3-
70B offers the best trade-off between efficiency and accuracy, completing QC pipelines in under 40s
with only minor accuracy degradation. By contrast, smaller models such as GPT-4o-mini struggle
with high hallucination rates, while DeepSeek-R1, although less reliable for QC pipelines, proves
highly effective for reasoning-oriented tasks such as domain classification. Overall, the results reveal
a flexible deployment spectrum: high-stakes verification may prioritize GPT-4.1-mini for maximal
fidelity, LLaMA-3.3-70B enables cost- and time-efficient batch verification, and DeepSeek-R1 sup-
ports logical checks like domain identification. We also used SpeechQC-Agent to check large-scale
real vendor corpora and to determine the domain of the IndicVoice (Javed et al., 2024b) dataset (see
Appendix H.1 and H.2).

The results collectively underscore three findings. First, the QC-aware dataset design, incorporating
controlled variability and perturbations, enables robust generalization across languages and vendor
formats. Second, modular multi-agent orchestration ensures that planner LLMs can be swapped to
balance accuracy and efficiency, with GPT-4.1-mini excelling in reliability and LLaMA-3.3-70B in
speed. Finally, SpeechQC-Agent achieves 80-90% of expert-level verification accuracy while re-
ducing runtime and cost to less than 20% expert annotation (see Appendix H.3). Taken together,
these findings validate SpeechQC-Agent as the first scalable end-to-end framework for the verifica-
tion of the quality of the speech dataset in low-resource multilingual settings5. We include a detailed
case study in the Appendix F to demonstrate the generalizability of SpeechQC-Agent to real-world
scenarios.

7 CONCLUSION

We introduced SpeechQC-Agent, the first natural language-driven multi-agent framework for scal-
able speech dataset quality verification. Unlike static rule-based pipelines or human-in-the-loop
sampling, our approach leverages a central planner LLM to decompose user queries into DAG-based
workflows that seamlessly integrate reusable and LLM-synthesized tools. Our evaluations show that
LLaMA-3.3-70B and DeepSeek-R1 together provide an effective balance, handling large-scale ver-
ification and logical tasks such as domain classification while maintaining cost and time efficiency
without sacrificing accuracy. Alongside the release of SpeechQC-Dataset, a realistic multilingual
benchmark, we demonstrate that SpeechQC-Agent achieves 80-90% of expert-level verification ac-
curacy in less than 20% of cost and time, offering a flexible and practical solution for large-scale
speech corpus curation.
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A APPENDIX

In the Appendix, we provide:

1. Section B: Compute Infrastructure
2. Section C: Dataset Composition
3. Section D: SpeechQC-Dataset
4. Section E: Data Quality Verification Framework
5. Section F: Case Study Example
6. Section G: Tasks Information
7. Section H: Further Analysis
8. Section I: Future Directions
9. Section J: Limitations

10. Section K: Prompts

B COMPUTE INFRASTRUCTURE

Compute details: For all our pre-training and fine-tuning experiments, we used two NVIDIA A100-
SXM4-80GB GPUs. Each training requires 4-48 hours.
Software and Packages details: We implement all our models in PyTorch6.

B.1 INFERENCE COST

Table 6 compares the inference costs across LLMs, showing that open-source models like LLaMA-
3.3-70B and LLaMA-3.1-8B are substantially cheaper than GPT variants, making them attractive
for large-scale deployment.

Model Cost
gpt-4o-mini $0.06
gpt-4.1-mini $0.08
llama-3.3-70b < $0.03
llama-3.1-8b $0.02
deepseek-r1 $0.05

Table 6: Inference cost (USD / 1K tokens) per 1,000 tokens for different LLMs.

C DATASET COMPOSITION

To evaluate the robustness of our audio and transcript quality control mechanisms, we constructed a
synthetic dataset with intentional flaws from the LAHAJA dataset and custom-generated data. The
dataset comprises four subsets to test specific quality control aspects across diverse error profiles
and sources.

- Vendor A (Audio-Specific): Applied QC1 transformations (e.g., File Format Conversion, Corrupt
File Simulation, Sample Rate Reduction) to 3,000 LAHAJA entries (1,000 individual, 1,000 paired,
1,000 multiple QC1).
- Vendor B (Transcript Quality): Applied QC2 transformations (e.g., Audio-Transcript Misalign-
ment, Script Inconsistency, Transcript De-normalization) to 3,000 LAHAJA entries (1,000 individ-
ual, 1,000 paired, 1,000 multiple QC2).
- Vendor C (Mixed Flaws): Applied both QC1 and QC2 transformations to 100 random LAHAJA
entries for combined audio-transcript testing.
- Vendor D (Synthetic Data): Generated an independent dataset using LLMs and TTS models for
synthetic audio and transcripts with controlled quality parameters.

6https://pytorch.org/
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C.1 ADDITIONAL DATA INFORMATION

Figure 4: Distribution of speakers in the SpeechQC-Dataset by native language accent (left) and
age group (right). The dataset exhibits broad linguistic diversity, with representation from 19 native
languages, and covers a wide range of age groups, ensuring demographic balance for robust speech
technology evaluation.

It includes 15.51 hours of Hindi speech data from 110 unique speakers, with a balanced gender
split of 54 female and 56 male. Speakers cover age groups of 18-30, 30-45, 45-60, and 60+, and
represent 19 native languages, led by Telugu, Malayalam, Bengali, Hindi, and others (Fig 4). The
data set spans 11 domains, such as agriculture and science and technology, in 55 conversational
settings (Table 7). Its strength lies in its extensive demographic and linguistic diversity, paired with
broad domain coverage, making it a vital tool for inclusive speech technologies.

D SPEECHQC-DATASET

Prompt Conversation

Conv. Details

Final json/xml 
Files

random() 
> 𝛂 ?

Speaker Detailsswap.

Yes No

Translation

S1: 

S2: 

S1: 

Speakers

TTS Model

Transcript

Audios

Syn. Data
Corrupt.

Both Audio or Transcript

108 9

6

42 3

57

13

11

1

+

+

A

B+A B

fun1() 
+

fun2()

LLM-as-a-Judge

Figure 5: SpeechQC-Dataset generation pipeline. Each numbered step corresponds to an LLM or
tool-based operation within the multi-LLM workflow.
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Domain Setting LLM Used
Indian Agri. Village farm on crops GPT Models

Agri fair innovations GPT Models
Rural sustainable workshop Llama Model
Farmers’ crop tips Llama Model
School farm trip DeepSeek

Indian Law Mock court basics GPT Models
Library governance talk GPT Models
Civic rights discussion Llama Model
Town hall governance Llama Model
Constitution lecture DeepSeek

Indian Finance Budgeting workshop GPT Models
Digital banking expo GPT Models
Savings community chat Llama Model
Loan process at bank Llama Model
Banks’ role in class DeepSeek

Indian Sports Sports event at park GPT Models
Movie event planning GPT Models
Fitness benefits in gym Llama Model
Dance prep in area Llama Model
Cinema fan club DeepSeek

Indian Military Fitness drills camp GPT Models
Military history talk GPT Models
Veterans’ community event Llama Model
Defence awareness seminar Llama Model
Armed forces career fair DeepSeek

Indian Politics Democracy school talk GPT Models
Political history session GPT Models
Civic duties debate Llama Model
Voting cultural event Llama Model
Civic podcast DeepSeek

Indian Edu. Rural learning school GPT Models
Student science fair GPT Models
Exam study group Llama Model
Parent-teacher engagement Llama Model
University education day DeepSeek

Indian Science Tech innovation exhibit GPT Models
Basic coding workshop GPT Models
Tech future school club Llama Model
Eco-tech startup hub Llama Model
Digital tools outreach DeepSeek

Indian Rural Dev. Infrastructure village meet GPT Models
Sanitation campaign GPT Models
Amenities workshop Llama Model
Renewable energy event Llama Model
Model village project DeepSeek

Indian Business Entrepreneurship fair GPT Models
Small business seminar GPT Models
Trade at marketplace Llama Model
Supply-demand class Llama Model
Financial planning DeepSeek

Indian Art Art evolution exhibit GPT Models
Cultural fair performance GPT Models
Modern art club Llama Model
Architecture history Llama Model
Heritage preservation DeepSeek

Table 7: Domains and Settings with LLM Attribution
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We develop SpeechQC-Dataset, a synthetic dataset generation framework powered by multi-LLMs.
As illustrated in Figure 5, the pipeline simulates realistic conversational interactions, diverse speaker
characteristics, and common ASR artifacts, producing structured audio-text pairs annotated with
rich metadata. Unlike prior synthetic pipelines focused on text-only generation, SpeechQC-Dataset
integrates dialogue planning, cross-lingual translation, perturbation, and TTS-driven synthesis into
a unified workflow tailored for speech quality verification.

1. Prompt Initialization: The pipeline begins with a carefully designed prompt (Figure 5, Step 1)
encoding task-specific intent, speaker roles, or domain constraints. This is passed to an LLM agent
that orchestrates conversation planning.

2. Conversation Generation: An LLM agent (Step 3) generates multi-turn dialogue from the
prompt, simulating realistic human interactions. Long-form in-context examples improve coherence
and pragmatic diversity. A controller agent (Step 2) may invoke an LLM-as-a-Judge to monitor
factuality and conversational realism.

3. Translation: Conversations are translated into one or more low-resource languages using mul-
tilingual LLMs or specialized modules (Step 5), ensuring coverage and supporting cross-lingual
generalization.

4. Metadata Extraction: A parsing module extracts fine-grained metadata, including turn segmen-
tation, utterance boundaries, intent types, and context tags (Steps 6-7).

5. Probabilistic Perturbation: Controlled variability is introduced through randomized operations
such as tag insertion (e.g., <noise>, <html>), token swaps, or word-level noise (Step 8). The
perturbation is applied according to a threshold parameter α which simulates the variation of the
structured data.

6. Speaker Attribution: Synthetic speaker IDs are assigned to utterances (Step 9) to simulate
multi-speaker settings. These annotations condition downstream TTS synthesis, enabling diversity
in voice, accent, prosody, and gender.

7. TTS-driven Audio Synthesis: A TTS model synthesizes audio from transcripts and speaker
metadata (Step 13). Speaker-conditioned synthesis ensures demographic and prosodic diversity.

8. Optional corruption: To mimic real-world ASR challenges, both audio and transcripts may be
selectively corrupted (e.g., dropped tokens, clipping). These corrupted variants support robustness
evaluation (left branch of “Syn. Data”).

9. Structured Conversion: The final outputs, including transcripts, metadata, and audio files, are
exported in standardized formats (.json, .xml) for compatibility with the downstream QC tasks
(Step B).

10. Post-Processing and Validation: Custom functions (e.g., fun1(), fun2(), Step 11) per-
form final consistency checks and metadata linking. An LLM-as-a-Judge (Gu et al., 2024a) may be
invoked at multiple stages (Steps 2, 4, 6, 10) to detect missing information or hallucinations.

Overall, this pipeline provides fine-grained control over dataset characteristics while leveraging
LLM-based creativity, yielding a benchmark tailored for evaluating and training multi-agent speech
verification systems.

E DATA QUALITY VERIFICATION FRAMEWORK

Figure 6 illustrates the two-stage data quality verification framework implemented in SpeechQC-
Agent. QC1: Audio and Metadata Verification. As shown in the left panel of Figure 6, QC1
begins by applying a multilingual language identification model to determine the spoken language
directly from the audio (Step 1). Subsequent checks validate the audio format, sampling rate, silence
duration, frequency upsampling artifacts, and number of channels (Step 2). To handle speaker-
related verification, we use speaker embedding-based clustering to identify unique speakers (Step
4) and validate whether speakers are reused across batches by comparing against known public and
private datasets (Step 3). Additional statistics, such as the number of speakers (Step 5) and total
speaking time per speaker (Step 6), are computed to assess speaker diversity and duration balance.
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Figure 6: Overview of the SpeechQC-Agent quality control framework. QC1 (left) verifies audio
and metadata through checks such as language ID, format integrity, silence detection, and speaker
diversity. QC2 (right) validates transcripts using alignment, CTC loss, WER/CER ensembles, LLM-
based fluency scoring, domain classification, and duplication detection. Together, these two stages
provide comprehensive coverage of audio- and text-level dataset quality.

QC2: Transcript and Content Verification. The right panel of Figure 6 depicts QC2, which starts
by aligning the transcript with the corresponding audio using a timestamp-agnostic model (Step
1). Transcript quality is scored using three different metrics: (i) Connectionist Temporal Classi-
fication (CTC) loss from a pretrained wav2vec2.0 model, (ii) Mixture-of-Experts (MoE) relative
WER/CER scores from multiple ASR models, and (iii) LLM-as-a-Judge scores evaluating fluency
and coherence (Step 2). Domain labels (Step 3) are inferred to ensure topic coverage and diversity.
Further checks analyze the distribution of graphemes (Characters) and vocabulary rarity (Step 4),
using an internal vocabulary list (Step 5). Finally, content duplication is measured using n-gram and
embedding-based overlap with both intra-dataset and public corpus references (Step 6).

F CASE STUDY EXAMPLE

To illustrate the functionality of SpeechQC-Agent, we present a concrete example (Figure 7). The
user submits the following natural language query:

“Check the audio files of the speech dataset on sample rate, audio file corruption,
and domain with audio dir: xyz/test/.”

The Orchestrator Agent parses this query and decomposes it into four atomic verification tasks: (1)
validate the audio sampling rate, (2) detect corrupted files, (3) generate transcripts, and (4) infer
domain labels from transcripts.

A Prompt Checker ensures the task list is complete and consistent (e.g., enforcing that transcript
generation precedes domain inference). It re-verifies selected tasks and iteratively patches missing
ones (up to three iterations) before graph build. The validated list is then compiled into a directed
acyclic graph (DAG), where dependencies are explicitly encoded. Topological sorting guarantees
that independent checks (e.g., sample rate and corruption detection) run in parallel, while dependent
tasks follow sequential order. The Constrained topological scheduling and node-level validators are
used in the pipeline to prevent hallucination (Task Selection / Topological Sorting / Prompt Checker
prompts in Appx. K) .

Each DAG node is mapped to an execution agent:
- Predefined Agent Nodes (e.g., sample rate agent) handle standard checks such as verifying
whether each file is at 16 kHz or 8 kHz.
- Python REPL Tool is invoked for low-level operations such as scanning directories or reading
audio headers.
- Predefined Tools (e.g., silence detectors, WER scorers) are reused for stability.
Intermediate outputs are stored in a shared State Dictionary, ensuring later tasks (e.g., domain
inference) can access transcripts generated earlier.

The final results are compiled into structured CSV files. For example, the sample-rate check pro-
duces a file with entries of the form:
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Figure 7: Illustrative example of SpeechQC-Agent executing a user query. The user requests checks
on sample rate, file corruption, and domain inference for an input directory. The Orchestrator
Agent decomposes the query into atomic tasks, validates them, and constructs a DAG workflow
via topological sorting. Each node is executed within the Execution Block using either predefined
agent nodes, dynamic Python REPL tools, or reusable predefined modules. Intermediate results are
stored in a shared state dictionary and aggregated into structured outputs (e.g., CSV reports). This
case study highlights the system’s ability to translate natural language instructions into end-to-end,
dependency-aware verification pipelines.

FilePath | Samp R
-----------------|--------
xyz/test/a1.wav | 16000
xyz/test/a2.wav | Invalid

This case study highlights how SpeechQC-Agent automatically translates a single user query into
a multi-step verification workflow as shown in Figure 8. The system dynamically integrates LLM-
synthesized tools with reusable predefined modules, respects dependencies through DAG orchestra-
tion, and outputs human-interpretable reports. This functionality demonstrates the practicality and
flexibility of our agentic design for large-scale speech dataset verification.

G TASKS INFORMATION

SpeechQC-Agent implements a comprehensive suite of verification modules that span both audio
(QC1) and transcript/content (QC2) modalities, enabling fine-grained inspection of speech datasets
(Table 8).

Together, QC1 and QC2 provide 24 modular checks covering file integrity, speaker diversity, lin-
guistic correctness, and content variety. This dual-stage design enables SpeechQC-Agent to detect
both low-level anomalies (e.g., corrupted audio, missing metadata) and high-level linguistic errors
(e.g., script inconsistency, domain imbalance), making it suitable for benchmarking multilingual,
low-resource speech datasets.
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Figure 8: Complete audio processing summary for directory xyz/test/ including speaker diarization
metrics, Voice Activity Detection (VAD) silence analysis, and comprehensive quality control vali-
dation

QC
Level Check Name Description

QC1 Language Identification (Audio) Uses multilingual models to detect the spoken language, independent of metadata.
QC1 File Format Validates that the audio file conforms to required encoding standards (e.g., WAV).
QC1 Corrupt File Detection Detects corrupted or zero-length audio files.
QC1 Sample Rate Check Verifies if the sample rate is 16 kHz and above.
QC1 Silence Duration Calculates the total silence duration per audio file.
QC1 Upsampling Detection Identifies audio upsampled from low fidelity (e.g., 8 kHz to 16 kHz).
QC1 Number of Speakers Estimates the number of unique speakers in the batch.
QC1 Per-Speaker Duration Measures cumulative speaking time per speaker to ensure speaker diversity.
QC1 Speaker Validity Checks if a speaker is repeated across batches (e.g., same vendor, same voice reused).
QC2 Audio-Transcript Alignment Aligns transcript with audio, regardless of format or file structure.
QC2 Timestamp-Based Segmentation Segments long audio using provided transcription time-stamps for utterance-level alignment.
QC2 Script Consistency Ensures transcript uses the correct native script, avoiding Romanized text unless intentional.
QC2 Code-Mixing Detection Identifies code-mixed utterances (e.g., English-Hindi), which may require for diverse dataset.
QC2 MOE Score (Mixture of Expert) Calculates WER and CER using multiple ASR models to quantify transcription quality.
QC2 CTC Score Computes the Connectionist Temporal Classification (CTC) loss using the wav2vec model.
QC2 LLM Score Evaluates transcript coherence and fluency using LLM-as-a-Judge.
QC2 Transcript Normalization Removes HTML tags, other tags, or other extraneous tokens from the transcript.
QC2 Transliteration Consistency Checks Roman-to-native script transliteration for consistent representation.
QC2 Grapheme Analyze the distribution of different characters.
QC2 Vocabulary Coverage Analyzes the distribution of rare words.
QC2 Domain Classification Assigns each sample to domain labels (e.g., agriculture, etc) to ensure topic diversity.
QC2 Content Repetition Check Flags duplicated or reused content within or across datasets, including public corpora overlaps.

Table 8: Overview of Data Quality Control (QC) Modules used by the SpeechQC-Agent for analyz-
ing SpeechQC-Dataset and other speech datasets.

H FURTHER ANALYSIS

Table 9 shows that while GPT-4.1-mini and LLaMA-3.3-70B maintain high accuracy across QC2
tasks, LLaMA-3.1-8B performs poorly, with accuracies dropping below 30% and frequent task
failures. This weakness stems from two factors: (i) its smaller scale limits compositional reasoning
over multi-step workflows, and (ii) unlike larger models, it has been trained on comparatively less
(or no) Indic language data, making it ill-suited for tasks involving script consistency, transliteration,
and code-mixing checks. As a result, the model struggles to interpret instructions and generate valid
verification outputs, highlighting the importance of both model capacity and linguistic coverage for
robust dataset quality control.

Table 10 presents a comparative analysis of LLM performance in QC1 tasks involving audio and
metadata verification. Among all evaluated models, GPT-4o-mini exhibited the most reliable be-
havior, successfully completing all five tasks, including file format validation, corruption detection,
sample rate checking, speaker duration estimation and speaker validity matching. GPT-4.1-mini
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Model Task Accuracy Hallucination
GPT-4o-mini QC2-1 92.34 0

QC2-2 91.49 0
QC2-3 47.99 0

gpt-4.1-mini QC2-1 100 57.21
QC2-2 100 10.89
QC2-3 98.07 6.35

llama-3.1-8b QC2-1 27.64 10.57
QC2-2 18.02 0
QC2-3 0 0

llama-3.3-70b QC2-1 100 0
QC2-2 95.74 0
QC2-3 91.58 0

Table 9: Evaluation of different LLMs on quality control tasks (QC2-1 to QC2-3) measuring Accu-
racy and Hallucination rate in percent.

LLMs File Corrupt Sample Speaker Valid
Format File Rate (Duration) Speaker

llama-3.1-8b NP NP NP NP (2/3) NP
llama-3.3-70b C C C C C
deepseek-r1 NP NP NP C NP
gpt-4.1-mini C C C C Failed
gpt-4o-mini C C C C C

Table 10: Performance of LLMs on QC1 verification tasks. Each model is evaluated on its ability to
execute file format validation, corruption detection, sample rate checks, speaker duration analysis,
and valid speaker matching. Remarks provide qualitative insights into model behavior during task
execution. (NP - Not Performing, C - Completed)

also performed well in most categories but failed to correctly handle valid speaker identification.
In contrast, LLaMA-3.3-70b completed all core tasks, but introduced unnecessary operations, in-
dicating weaker task-grounding. In particular, LLaMA-3.1-8b, while the fastest model, failed to
perform most tasks and struggled with topological reasoning and task mapping. DeepSeek-R1
demonstrated partial success in speaker tasks, but did not engage with other checks and required
more iterations. These results highlight the trade-offs between speed, instruction-following capabil-
ity, and task reliability across model families, reinforcing the need for instruction-based evaluation
in speech data quality workflows.

Protocol Block Metric In Sheet? Missing Evidence / Action
QC1 - Audio & Metadata
File format & corruption Accuracy 2 Log SoX/ffprobe checks per file
Silence hours Precision/Recall 2 Duration histograms with silence detector
Upsampling (8→16 kHz) Binary accuracy 2 FFT-based up-sampling flag per file
Language ID (MMS) Accuracy 2 MMS predictions + meta-tags
Speaker hours / diversity Completeness, SDI 2 Diarisation output, per-ID hours
Speaker reuse detection Match-rate 2 Embedding match vs. public pools
QC2 - Transcript & Content
Audio-text alignment WER, CER 1 CER still missing
Segmentation by timestamps Seg. accuracy 2 Gold vs. predicted boundaries
Script validity Script-match % 3 Need total-token denominator
CTC quality score Avg. CTC 1 -
LLM-as-Judge rating 1-5 score, 2 Per-utt. ratings + agreement
Normalization noise HTML-error rate 1 Tag counts → rate per K tokens
Transliteration match Accuracy 2 IndicTrans vs. transcript tokens
Vocab / grapheme diversity Diversity score 2 Entropy or TTR statistics
Domain verification Domain-match 3 Need gold domain labels
Duplication detection Dup. score 3 Embedding-similarity counts

Table 11: Coverage of the full QC-metric suite. 1 = logged, 2 = partially logged, 3 = not present.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 11 reveals substantial metric-coverage gaps: none of the QC-1 audio-metadata checks (for-
mat integrity, silence detection, up-sampling, language ID, speaker diversity or reuse) are logged,
and several critical QC-2 dimensions, segmentation accuracy, CER, LLM-as-a-judge agreement,
transliteration accuracy, vocabulary diversity, domain match, and duplication detection, remain un-
populated or only partially captured. Closing these gaps will require integrating raw SoX/ffprobe di-
agnostics, diarisation statistics, IndicTrans comparisons, lexical-entropy measures and embedding-
based duplication scores, enabling a truly end-to-end, metrics-complete evaluation pipeline for fu-
ture batches.

H.1 SPEECHQC-AGENT ON REAL-WORLD VENDOR DATASETS

We deployed SpeechQC-Agent on a 12,000-hour multi-vendor speech corpus spanning Hindi, As-
samese, Marathi, and other 5 Indic languages. The system automatically flagged large-scale quality
issues, including 800 hours of Hindi audio with substandard sampling rates, 100 hours of Assamese
and 200 hours of Marathi with Roman-script transcripts, 200 hours of silence-only audio, 200 hours
of proxy (synthetic) speakers, 100 hours of misaligned audio-transcript pairs, and 500 hours of du-
plicated content across vendors. It also identified 987 corrupted audio files, while validating the
majority of data as clean (Table 12). The hours flagged under each type of error were requested
again from the vendors as replacement datasets.

Crucially, SpeechQC-Agent did not only surface errors, but also highlighted vendors consistently
delivering high-quality corpora, enabling more informed procurement decisions and vendor ac-
countability. Table 13 presents aggregate results: across the 6,000 hours, the system flagged 1,950
hours (32.5%) as problematic and validated 4,050 hours (67.5%) as reliable. The remaining datasets
are currently under validation. These results illustrate that SpeechQC-Agent can perform system-
atic, large-scale dataset audits, offering both coverage and cost-efficiency beyond static pipelines or
manual sampling.

Error Type Hours / Files Affected Vendor Batches
Low sample rate (Hindi) 800 hrs Hindi vendor (B1)
Mis-scripted transcripts (Assamese, Marathi) 100 hrs Assamese + 200 hrs Marathi Assamese (B1), Marathi (B2)
Silence-only audio 200 hrs Multi-vendor (12k hrs total)
Proxy speakers 200 hrs Proxy vendor batch
Misaligned audio-transcript pairs 100 hrs Vendor B2
Duplicate audio-transcript (cross-vendor) 500 hrs Across vendors/languages
Corrupted audio files 987 files Batch B1 (Hindi)

Table 12: Summary of errors flagged by SpeechQC-Agent on real vendor datasets.

Category Hours Percentage
Flagged problematic data 1,950 32.5%
Validated clean data 4,050 67.5%
Total 6,000 100%

Table 13: Aggregate audit of multi-vendor corpora (12,000 hours) using SpeechQC-Agent.

H.2 PERFORMANCE OF LLMS ON INDICVOICE DATASET

Model Zero-Shot 7-Shot
gpt-4o-mini 0.314 0.254
gpt-4.1-mini 0.360 0.340
deepseek-r1 0.456 0.386
llama-3.1-8b 0.180 0.110
llama-3.3-70b 0.338 0.352

Table 14: Performance of different models on the IndicVoice validation subset (500 utterances)
across zero-shot and 7-shot settings.

Table 14 presents the domain classification performance of different LLMs in zero-shot and few-
shot (7-shot) settings on the IndicVoice validation subset (Javed et al., 2024b) of 500 utterances.
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DeepSeek-R1 achieves the highest accuracy across all conditions, with 45.6 in domain generaliza-
tion, 0.456 in zero-shot classification, and 0.386 in few-shot classification. Its superior performance
can be attributed to its reasoning-centric design, which enables it to capture contextual cues more
effectively and make consistent domain assignments. In contrast, smaller models such as LLaMA-
3.1-8B-Instant demonstrate weaker adaptability to domain variability. These results highlight the
importance of reasoning-oriented LLMs in improving domain classification robustness for multi-
domain Indic speech datasets. Furthermore, the relatively low WER observed in this setting can
be explained by the nature of the utterances. For example, when a speaker refers to a “vessel,” the
utterance could plausibly belong to either the Daily Life Conversation domain (household usage) or
the Product Review domain (product evaluation). Since both interpretations are semantically close
and share overlapping vocabulary, therefore, it is difficult to identify the domain correctly.

H.3 AGENTIC VS. STATIC AND HUMAN-IN-THE-LOOP PIPELINES
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Figure 9: Comparison of verification accuracy (blue bars) and runtime (red line) across different
system configurations. Static pipelines such as single-agent execution and no-central-LLM baselines
achieve low accuracy despite faster execution. Full SpeechQC-Agent setups (with LLaMA-70B or
GPT-4o as planner) substantially improve accuracy while keeping runtime manageable. Human-in-
the-loop verification attains perfect accuracy but at the cost of prohibitively long runtimes.

Figure 9 contrasts SpeechQC-Agent with static pipelines and human verification. Static baselines
(single-agent execution) achieve low accuracy (≤ 0.4) despite fast runtime, underscoring their in-
ability to capture interdependent checks. In contrast, the full SpeechQC-Agent (with centralized
LLM planning) attains accuracies above 0.8, approaching human-level reliability, while maintain-
ing runtimes an order of magnitude lower than manual verification. The Human Verifier in this study
is a speech technology expert, highly skilled in applying multiple techniques to assess the quality of
speech datasets, and thus represents the gold standard (∼1.0 accuracy). However, such expert veri-
fication is prohibitively expensive (more than 2500s per batch). SpeechQC-Agent therefore bridges
the gap, providing 80-90% of expert-level verification accuracy at less than 20% of the time cost.

I FUTURE DIRECTIONS

While SpeechQC-Agent demonstrates strong performance in synthetic and vendor datasets, sev-
eral avenues remain open to advancing both scope and methodology. First, we aim to develop
SpeechQC-Agent+, a dynamic extension capable of synthesizing new QC tasks on the fly from
quires from natural language, enabling adaptation to emerging dataset standards and modalities.
Second, to address current gaps such as dialect imbalance detection and speaker bias auditing, we
plan to integrate clustering-based dialect tagging, metadata-speech alignment, and distributional
fairness checks. Third, scaling to 100k hour corpora requires distributed execution and schedul-
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ing optimizations; we will explore hybrid orchestration strategies combining LLM planners with
lightweight rule-based controllers to reduce cost and latency. Fourth, we envision extending the
framework beyond speech to multimodal data curation, including OCR datasets, vision-language
corpora, and conversational agents, positioning dataset verification as a unified agentic AI problem.
Finally, incorporating formal guarantees on workflow soundness and hallucination containment,
e.g., using schema validation, consistency checks, and LLM-as-judge ensembles, offers a path to-
ward provably reliable agentic QC systems.

J LIMITATIONS

Although SpeechQC-Agent represents a first step toward scalable quality verification of multilingual
speech datasets, it has several limitations. First, the performance of the system strongly depends on
PlannerLLM. Smaller models (e.g., LLaMA-3.1-8B) underperform due to limited exposure to Indic
languages, and even stronger models (e.g., GPT-4.1-mini) sometimes hallucinate additional steps,
creating reliability challenges. Second, the current evaluation focuses on the verification of audio-
transcript; extensions to multimodal data (e.g. speech-translation or dialogue corpora) remain
unexplored. Third, the system cannot yet detect dialect/accent imbalance or socio-linguistic biases
in large corpora. Finally, runtime remains non-trivial for large corpora, and while significantly
faster than human annotation, scaling to hundreds of thousands of hours will require additional
optimization and distributed execution strategies.

Despite these limitations, SpeechQC-Agent establishes a foundation for future research in dynamic,
LLM-driven quality control of speech and multimodal datasets.

K PROMPTS
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Task Selection Prompt

Prompt:
You are given the following functions:
1. ASR Transcription
2. Number of Speakers calculation and duration per speaker
3. Quality of Transcript
4. Graphene or character calculation
5. Vocab calculation
6. Language identification
7. Audio length calculation
8. Silence calculation (using VAD)
9. Sample rate check
10. CTC score calculation
11. Upsampling Check
12. Check if speakers are new or old
13. Check the domain of the speech dataset
14. Map transcriptions to audio files using forced alignment
15. Language identification using ASR transcriptions and IndicLID
16. Normalization by removing HTML and other tags from transcriptions in JSON or XML
files
17. Evaluate transcript coherence and fluency using LLM-as-a-Judge and score out of 10
18. Transliteration - Convert Roman script words to Native script using Transliteration for a
specified file and language

Based on the prompt, reply with task numbers that have to be done without any explanation
or reasoning.

Input:
Prompt: {user prompt}

Output Format:
Example: 1,3,5
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Topological Sorting Prompt

Prompt:
You are given the following functions:
1. ASR Transcription using audio files
2. Number of Speakers calculation and duration per speaker using audio files
3. Quality of Transcript using transcriptions
4. Graphene or character calculation using transcriptions
5. Vocab calculation using transcriptions
6. Language identification using transcriptions
7. Audio length calculation using audio files
8. Silence calculation (using VAD) using audio files
9. Sample rate check using audio files
10. CTC score calculation using audio files and transcriptions
11. Upsampling Check using audio files
12. Check if speakers are new or old using the results from number of speakers calculation
13. Check the domain of the speech dataset using transcriptions from ASR
14. Map transcriptions to audio files using forced alignment, using ground truth transcrip-
tions
15. Language identification using ASR transcriptions and IndicLID, using transcriptions
from ASR
16. Normalization by removing HTML and other tags from transcriptions in JSON or XML
files
17. Evaluate transcript coherence and fluency using LLM-as-a-Judge and score out of 10,
using transcriptions from ASR
18. Transliteration - Convert Roman script words to Native script using Transliteration,
using a specified file and language code from the prompt

We have to do tasks: {resp 1}.

Make a Topological sorting for what is the best way to proceed with these tasks, sequentially
and concurrently.

Guidelines:
- We can do tasks concurrently if they are independent of each other.
- Task 12 depends on task 2.
- Task 13 depends on task 1.
- Task 14 depends on the ground truth conversion process.
- Task 15 depends on task 1.
- Task 17 depends on task 1.
- Task 18 is independent.

Output Format:
Example: [[1,3], [5], [8]] (this means do 1 and 3 concurrently, then do 5, and finally do 8)

Finally, give me the topological sorting for the tasks: {resp 1} without any explanation or
reasoning.
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Input Source Determination Prompt

Prompt:
Determine the source of the following inputs for task {task id}:
{json.dumps(required inputs, indent=2)}

Parameters:
Possible sources:
- User prompt: {state.get(’user prompt’, ”)}
- Previous task outputs in CombinedStateDict: {json.dumps(k: v for k, v in state.items()
if k not in [’folder path’, ’user prompt’, ’execution log’, ’task inputs’, ’topological sort’],
indent=2)}
- Default: folder path={state.get(’folder path’, ”)}

Output Format:
Return a JSON object mapping each input to its source value or an error message if not
found.

Corruption Check Prompt

Prompt:
You are given a folder with audios at this path: {state[’folder path’]}.

Write a Python script to:
- Attempt to open and read each audio file.
- If a file fails to load or raises an error, mark it as corrupted and capture the error message.

Save a CSV listing all files and their status (”Corrupt” or ”Valid”) as audio validity.csv in
the same directory.

Finally, Respond with ”Success” if all files are valid, otherwise ”Invalid”.

Audio Extension and Format Check Prompt

Prompt:
You are given a folder with audios at this path: {state[’folder path’]}.

Write a Python script to:
1. Confirm that each file except {file path} has a valid audio extension (only .wav or .mp3).
Ignore files with extensions: .csv, .xml, and .json (do not process, validate or flag them).
2. For audio files, also check if they are in WAV format by attempting to read them using a
library like wave or librosa.
3. Create a CSV with columns: Filename, Valid Extension, Is WAV Format, Status
4. Status should be ”Pass” only if both extension is valid and format is WAV.
5. Save the CSV as audio format check.csv in the same directory.

Respond with ”Success” if all files pass, otherwise ”Invalid”.
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Sample Rate Check Prompt

Prompt:
You are given a folder with audio files at this path: {state[’folder path’]}.

Write a Python script to:
1. Check each audio file’s sample rate
2. Create a CSV with columns: Filename, Sample Rate, Status
3. Store ”Pass” in Status if sample rate is 16000 Hz, otherwise ”Fail”
4. Save the CSV as sample rate check.csv in the same directory

Use libraries like librosa, soundfile, or wave to check the sample rate.

Ground Truth File Conversion Prompt

Prompt:
You are given a file of ground truths of audios {state[’folder path’]} at {file path}.

1. Get the structure of the txt, csv, json, xml file.
2. Identify the element/column that contains the filename and transcriptions (ground truth).
If there is no such column, return ”Invalid”.
3. Convert the file to CSV with added columns of Filename and Transcription.
4. Save the updated CSV with the new column to the same directory as
new transcriptions.csv.

Finally, Respond with ”Success” if all steps are done, otherwise ”Invalid”.

Conversation Generation Prompt

Prompt:
You are a conversation generator tasked with creating realistic dialogue between exactly two
speakers in English.
Topic: {topic}
Setting: {setting}
Speakers: {speaker1} and {speaker2}

Requirements:
- The conversation must be rich in content related to the specified topic and reflect the given
setting.
- Generate a long conversation with approximately 100 dialogue exchanges.
- Format the output strictly as:
{speaker1}: sentence1
{speaker2}: sentence2
{speaker1}: sentence3
...and so on.
- Do not include any explanations, actions, or additional text outside the conversation
format.
- Ensure the conversation flows naturally and is meaningful with detailed exchanges relevant
to the setting and topic.

Output:
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Translation Prompt

Prompt:
Translate the following sentence into {language}while maintaining realism and natural flow.
Guidelines:
- The conversation should primarily be in {language}, but preserve certain English words
commonly used by {language} speakers.
- Enclose all preserved English words within ¡eng¿...¡/eng¿ tags.
- Randomly and sparsely insert conversational effect tags such as [babble], [bg-speech],
[laugh], [music], [no-speech], [noise], [overlap], or [silence].
- Use ¡initial¿...¡/initial¿ tags for any initials or abbreviations.
- Avoid overusing English words and tags; include them only when contextually appropriate.
- Output only the translated sentence without any explanation.

Input:
Sentence: {content}

Output Format:
Translation: [Translated sentence will be provided here in the specified format with appro-
priate tags.]

Conversation Metadata Prompt

Prompt:
Generate conversation metadata based on the provided conversation content.
Input:
Conversation: {translated content}

Output Format:
Generate conversation metadata in the following JSON format:
{”domain”:”¡domain¿”,”topic”:”¡topic¿”,”language”:”{language}”,”conversation name”:”{conv id}-
GPT”}

Instructions:
- Determine the ”domain” and ”topic” based on the conversation content.
- Set ”language” to the predominant language of the conversation.
- Use the provided ”conversation name” as is.
- Provide only the raw JSON string without any explanation or formatting wrappers.
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Speaker Details Prompt

Prompt:
Generate speaker information for two speakers based on the provided conversation content.
Input:
Conversation: {translated content}

Output Format:
Generate speaker information for {speaker1} and {speaker2} in the following JSON format:
{
”{speaker1}”: {
”speakers”: [
{
”gender”: ”¡male or female¿”,
”speakerId”: ”¡alphanumeric ID¿”,
”recorderId”: ”¡alphanumeric ID¿”,
”nativity”: ”{language}”,
”ageRange”: ”¡age range like 25-34¿”
}
]
},
”{speaker2}”: {
”speakers”: [
{
”gender”: ”¡male or female¿”,
”speakerId”: ”¡alphanumeric ID¿”,
”recorderId”: ”¡alphanumeric ID¿”,
”nativity”: ”{language}”,
”ageRange”: ”¡age range like 35-44¿”
}
]
}
}

Instructions:
- Follow the exact JSON structure shown above with all opening and closing braces properly
matched.
- Randomly assign values for ”gender” (choose either ”male” or ”female”).
- For ”speakerId”, use a format like ”S-XXXXX” where X is a digit.
- For ”recorderId”, use a format like ”RXXX” where X is a digit.
- Set ”nativity” to exactly ”{language}” as provided.
- For ”ageRange”, use one of these formats: ”18-24”, ”25-34”, ”35-44”, ”45-54”, ”55-64”,
”65+”.
- Ensure the JSON is properly formatted and valid - all quotes, commas, and braces must be
correctly placed.
- Provide only the raw JSON string without any explanation, markdown formatting, or code
blocks.
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Transcription Function Prompt

Prompt:
Transcribe audio files from a specified folder and return the transcription output in CSV
format. This task assumes that all audio files are in Hindi.
Input:
- A folder path containing audio files.
- The folder must exist and be a valid directory.
- All audio files should be in Hindi.

Output Format:
A dictionary with the following structure:
{
”A” [where A is node in the node graph]: ”¡CSV transcription result or error message¿”,
”audio dir”: ”¡Path to the input folder¿”
}

Instructions:
- Validate that the provided folder path exists and is a directory.
- If invalid, return the error message: "A": "Error: Invalid audio
directory".
- If valid, perform transcription of all audio files in the folder.
- Use the transcribe folder to csv() function for transcription.
- Assume the source language is ”Hindi”.
- Log the transcription process using appropriate logging levels (info and error).
- Return the transcription results in the key ”A” along with the input directory.

Silence Detection Prompt

Prompt:
Perform silence detection on all audio files within a specified directory and return the result.
Input:
- A directory path containing audio files to be processed.
- The folder must exist and be a valid directory.

Output Format:
A dictionary with the following structure:
{
”D”: ”¡Silence detection result or error message¿”
}

Instructions:
- Check if the provided audio directory exists and is valid.
- If the directory is invalid or not found, return the error message: "D": "Error:
Invalid audio directory".
- If valid, apply silence detection to all audio files in the directory using the
process folder vad() function.
- Log the beginning of the detection process with an info-level message.
- Return the result under the key ”D”.
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Vocabulary Extraction Prompt

Prompt:
Extract unique words (vocabulary) from the transcriptions in a CSV file and save them into
a new column. Output the updated CSV with the extracted vocabulary.
Input:
- A directory containing a CSV file, typically named indicconf hypothesis.csv.
- The CSV must have a column named Transcription or Ground Truth (case-
insensitive).

Output Format:
A dictionary in the following format:
{
”vocab output”: ”¡Path to vocab list.csv or error message¿”
}

Instructions:
- Locate the CSV file using the key "A" in state, or fallback to
audio dir/indicconf hypothesis.csv.
- If the file doesn’t exist, return: "vocab output": "Error: CSV file
<path> not found".
- Within the CSV, identify the transcription column by searching for ’Transcription’ or
’Ground Truth’ (case-insensitive).
- For each row, extract a list of **unique words** from the transcription.
- Store the list in a new column named vocab list.
- Save the updated CSV as vocab list.csv in the same directory.
- Return "vocab output": "CSV saved at: <path>" if successful.
- If the agent fails to complete the task or the file is not created, return an appropriate error
message.
- Handle and log all exceptions clearly.
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Character Extraction Prompt

Prompt:
Extract unique characters from each transcription in a CSV file and save them into a new
column. Output the updated CSV with the extracted characters.
Input:
- A directory containing a CSV file, typically named indicconf hypothesis.csv.
- The CSV must have a column named Transcription or Ground Truth (case-
insensitive).

Output Format:
A dictionary in the following format:
{
”character output”: ”¡Path to character list.csv or error message¿”
}

Instructions:
- Locate the CSV file using the key "A" in state, or fallback to
audio dir/indicconf hypothesis.csv.
- If the file doesn’t exist, return: "character output": "Error: CSV file
<path> not found".
- Identify the transcription column by searching for ’Transcription’ or ’Ground Truth’
(case-insensitive).
- For each row, extract a list of **unique characters** from the transcription.
- Store the list in a new column named character list.
- Save the updated CSV as character list.csv in the same directory.
- If the script completes successfully and the file is created, return:
"character output": "CSV saved at: <path>".
- If the agent fails or the output file is not found, return an appropriate error message.
- Log any exceptions during processing clearly and accurately.
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Audio Length Calculation Prompt

Prompt:
Calculate the duration of each audio file in a given folder and save the results in a CSV file.
Input:
- A valid directory path containing audio files.

Output Format:
A dictionary in the format:
{
”audio length output”: ”¡Result of operation or error message¿”
}

Instructions:
- Check if the audio dir exists and is a directory. If invalid, return:
"audio length output": "Error: Invalid audio directory".
- Write a Python script that performs the following tasks:
1. Iterate over all audio files in the directory.
2. Calculate the duration of each audio file in seconds.
3. Store the filename and corresponding duration in a CSV with columns: Filename,
Audio length.
4. Save the resulting CSV as audio length.csv in the same folder.
- Execute the script using the [python repl] tool.
- Return the script’s output message under the key "audio length output".
- In case of failure or exceptions, return an appropriate error message.
- Log errors clearly to aid debugging.
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Devanagari Script Verification Prompt

Prompt:
Verify whether each transcription in a CSV file is written in the Devanagari script using
Unicode checks.
Input:
- Path to a CSV file (e.g., indicconf hypothesis.csv) with a column containing
ground truth text.

Output Format:
A dictionary in the format:
{
”language verification output”: ”¡Result of operation or error message¿”
}

Instructions:
- Load the CSV file and identify the transcription column (case-insensitive: ’Ground Truth’,
’Transcription’, etc.).
- For each row:
1. Remove whitespace and punctuation from the transcription.
2. Check if all remaining characters fall within the Unicode range U+0900-U+097F
(Devanagari script).
3. If they do, set Is Devanagari to True; otherwise False.
4. If the transcription is empty or only punctuation, set Is Devanagari to False.
- Add a new column Is Devanagari to the CSV.
- Save the output file as language verification.csv in the same directory.
- Ensure the final CSV includes: Filename, Transcription, Is Devanagari.
- Use the [python repl] tool to execute the script.
- On success, return "Success"; else provide an error message.
- Handle edge cases and log any errors encountered.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

CTC Score Computation Prompt

Prompt:
Compute Connectionist Temporal Classification (CTC) alignment scores from audio-
transcription pairs and classify alignment quality.
Input:
- A directory containing audio files (audio dir)
- A CSV file (e.g., indicconf hypothesis.csv) with aligned transcripts, identified
via key ’A’

Output Format:
A dictionary in the format:
{
”ctc score output”: ”¡CSV output path or error message¿”
}

Instructions:
• Load the CSV and audio directory.
• For each audio file, compute alignment scores using the transcriptions in the CSV.
• Use process audio directory() to return segment-wise alignment with

scores and timestamps.
• Aggregate results by:

– Grouping by filename.
– Combining the segment labels into a full transcript

(Aligned Transcript).
– Taking the average CTC score as CTC Score.
– Serializing segment-level details (label, start, end, score) into JSON under
Aligned Segments.

• Classify the score using:
– Good if score > 0.7
– Medium if score > 0.5
– Poor otherwise

• Save the final CSV with columns: Filename, Aligned Segments,
Aligned Transcript, CTC Score, CTC Status.

• Output the result to ctc scores.csv in the same directory as the input CSV.
• Log and report errors appropriately.
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Valid Speaker Verification Prompt

Prompt:
Analyze speaker presence across files to determine whether a speaker is ”New” or ”Old”
based on repetition across files.
Input:
- A directory containing a CSV named num speakers.csv with columns:

• File Name

• Number of Speakers

• Speaker Durations - JSON object mapping speaker IDs to durations
Output Format:
A dictionary:
{
”valid speaker output”: ”¡CSV output path or error message¿”
}
Instructions:

1. Load num speakers.csv.
2. Build a dictionary to track how many files each speaker appears in.
3. For each row:

• Skip if Number of Speakers == ”Error”.
• If only one speaker and SPEAKER 00 is reused across files, mark as Old.
• If multiple speakers and any speaker is reused across files, mark as Old.
• Otherwise, mark the speaker as New.

4. For each row, populate:
• Filename
• Speaker Status (New or Old)
• Common File (the current file name if status is Old, else empty)

5. Save the result to valid speaker.csv in the same directory.
6. Respond with ”Success” if the script runs without errors and file is saved. Other-

wise, return ”Invalid”.
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Domain Checker Prompt

Prompt:
You are a Hindi language expert. Analyze the following normalized Hindi transcript and
determine the general domain of the speech dataset.
Instructions:

• Return the domain as a single word (e.g., News, Call Center, Interview,
Conversation, Education).

Input:
A CSV file indicconf hypothesis.csv located inside a directory, containing a col-
umn named transcriptions with normalized Hindi transcripts.
Expected Output:
A new column domain added to the CSV, representing the predicted domain of each tran-
scription. The final output is saved as domain check.csv in the same directory.
Agent Behavior:

1. Validate the input directory and CSV.
2. Iterate over each row in the transcriptions column.
3. For each transcript, send a prompt to the language model to classify the domain.
4. If the LLM fails, label the domain as Unknown.
5. Save the resulting DataFrame with the new domain column to

domain check.csv.

IndicLID Language Identification Agent Prompt

Prompt Objective:
Identify the language of each transcript using the IndicLID model.
Input Description:

• A folder containing a CSV file (default name: indicconf hypothesis.csv).
• The CSV should include a column named transcriptions and optionally
Filename.

Instructions:
1. For each row in the CSV:

• Extract the transcript and filename.
• If the transcript is empty or NaN, assign Language Code = Unknown,
Confidence = 0.0, Model Used = IndicLID.

• Otherwise, use the IndicLID model to perform language identification.
2. If language identification fails for a transcript, mark it with Language Code =

Error.
3. Store all results in a new DataFrame with columns: Filename,

Transcription, Language Code, Confidence, Model Used.
4. Save the output as indiclid language identification.csv in the

same directory.
Expected Output:
A CSV file containing language identification results for each transcript, with confidence
scores and the model used (IndicLID).
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Text Normalization and Tag Removal Agent Prompt

Prompt Objective:
Normalize transcription text by cleaning ground truth data in a CSV file.
Input Description:

• A directory containing a CSV file named indicconf hypothesis-gt.csv.
• The file should have a column named Transcriptions or ground truth

(case-insensitive).
Instructions:

1. Read the CSV file and identify the transcription column (Transcriptions or
ground truth).

2. Clean each transcript using the following rules:
• Remove HTML tags like <b> and </b>.
• Remove any text enclosed in square brackets (e.g., [START]).
• Remove symbols such as #, $, and %.

3. Add a new column named normalized transcripts with the cleaned text.
4. Save the updated CSV as normalized list.csv in the same directory.

Expected Output:
A new CSV file with the original columns and an additional normalized transcripts
column saved as normalized list.csv.

LLM-Based Transcription Quality Scoring Agent Prompt

Prompt Objective:
Evaluate the fluency and coherence of ASR-generated transcriptions using a Language
Model (LLM) and assign scores and comments.
Input Description:

• A directory path containing a CSV file named indicconf hypothesis.csv.
• The CSV contains:

– Filename column (case-insensitive).
– One of ground truth or transcriptions columns (case-insensitive),

containing ASR outputs.
Instructions:

1. Load the CSV file.
2. For each transcription:

• Analyze sentence fluency and meaning very strictly.
• Score each transcription from 0 to 10:

– 10: Highly meaningful and fluent Hindi sentence.
– 0: Nonsensical or contains language other than Hindi.
– Gradually decrease score based on fluency degradation.

• Provide a brief Evaluation Comment justifying the score.
3. Create a new CSV file with the columns: Filename, Transcription,

LLM Score, and Evaluation Comment.
4. Save the output as llm scores.csv in the same directory.
5. Handle errors gracefully during execution.

Expected Output:
A CSV file named llm scores.csv containing scored and reviewed transcriptions.
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English Word Count Agent Prompt

Prompt Objective:
Determine the number of English words present in each line of a normalized transcript using
an LLM.
Input Description:

• A directory path that contains a CSV file named normalized list.csv.
• The CSV must have a column named ground truth, containing the transcrip-

tion text.
Instructions:

1. Load the normalized list.csv file.
2. For each row in the ground truth column:

• Construct a prompt asking a language expert to count the number of English
words (case-insensitive) in the given text.

• Extract the integer response.
• If the LLM fails, assign -1 for that row.

3. Append the count as a new column called english word count.
4. Save the updated CSV as english word count.csv in the same directory.

Prompt Template:
You are a language expert. Count and return only the number of English
words (case-insensitive) in the following text.
Text:
{ground truth text}
Respond with just the number.

Expected Output:
A CSV named english word count.csv containing an additional column
english word count with English word frequencies per row.
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Utterance Duplicate Checker Agent Prompt

Prompt Objective:
Identify and report duplicate utterances across all text-based columns in a CSV.
Input Description:

• A directory containing a CSV file named normalized list.csv.
Instructions:

1. Load the normalized list.csv file.
2. Iterate through each column of the DataFrame.
3. For columns with text (dtype == object):

• Detect duplicated utterances (preserve all duplicates using keep=False).
• For each unique duplicated utterance, count the number of occurrences.
• Record the column name, the duplicated utterance, and the count.

4. Save the results in a new CSV called duplicate utterances.csv contain-
ing:

• column name, utterance, and count
5. If no duplicates are found, return a message indicating that.

Expected Output:
• A CSV file named duplicate utterances.csv if duplicates exist.
• Otherwise, a message stating "No duplicate utterances found."

WER Computation Agent Prompt

Prompt Objective:
Compute Word Error Rate (WER) between normalized reference transcriptions and pre-
dicted hypotheses.
Input Description:

• A directory containing two CSV files:
– normalized list.csv with the column
normalized transcripts.

– indicconf hypothesis.csv with the column transcriptions.
Instructions:

1. Ensure both CSVs exist and contain the same number of rows.
2. For each row, compute the Word Error Rate (WER) between:

• Reference← normalized transcripts
• Hypothesis← transcriptions

3. Use the jiwer library for WER calculation.
4. Handle exceptions on a per-row basis to ensure continuity even if some rows fail.
5. Save the output in a CSV named wer.csv with columns:

• Reference, Hypothesis, and WER
Expected Output:

• A CSV file named wer.csv saved in the same directory.
• Each row shows the WER score for the respective transcription pair.
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Graph Builder Agent Prompt

Prompt Objective:
Construct a ‘StateGraph‘ from a structured list of task groups while filtering by a valid task
set.
Input Description:

• structure: A list of lists where each sublist represents a group of task IDs that
can be executed in parallel.

• valid tasks: A set of valid task identifiers (as strings). Only these will be
included in the final graph.

Instructions:
1. Filter the structure to retain only task IDs present in valid tasks.
2. If the resulting structure is empty but valid tasks is non-empty, use all numeric

valid tasks as a fallback.
3. Add each valid task as a node in the graph using node map, which maps task id

to a tuple: (node name, function, description).
4. Add a dummy start node and connect it to the first group.
5. Connect each group to the next group, allowing fan-in/fan-out connections.
6. Connect the last group to the terminal END node.

Expected Output:
• A compiled StateGraph object that respects the dependency structure implied

by the groupings and task validity.
• An error is raised if no valid tasks remain after filtering.
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Prompt Checker Agent Prompt

Prompt Objective:
Analyze a user’s natural language prompt to determine whether the currently selected task
IDs are appropriate, and update the task list if any are missing based on defined task descrip-
tions and selection rules.
Input Description:

• user prompt: A natural language prompt provided by the user describing the
task they want to perform.

• selected tasks: A comma-separated string of task numbers (e.g., ”1,2,5”) that
have been initially selected for execution.

Task Descriptions:
• Contains 24 predefined task definitions, ranging from ASR transcription to WER

computation.
Selection Rules:

• Uses keyword and semantic rules (e.g., “if prompt mentions ‘Vocab calculation’,
include task 5”) to guide inclusion.

• Tasks 1 and 15 are linked if language identification is mentioned.
• Certain tasks (e.g., 9, 23, 24) trigger the inclusion of dependent tasks (e.g., task 16).

Instructions to the LLM:
1. Analyze the user prompt and determine which tasks are required based on se-

mantic understanding and rules.
2. Compare the determined tasks with selected tasks.
3. If any tasks are missing, return Status: Missing, with task IDs and an ex-

planation.
4. If all are correct, return Status: Correct and the list of tasks.
5. Format the output as:

Status: <Correct|Missing>
Tasks: <comma-separated task IDs>
Explanation: <why tasks were added (if Missing)>

Execution Loop:
• Repeats for a maximum of 3 iterations to ensure task completeness.
• Dynamically updates task list with each LLM feedback.
• Calls select tasks() if new insights are needed.

Output:
• Returns the final list of task IDs as a comma-separated string.
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