
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPEECHQC-AGENT: A NATURAL LANGUAGE DRIVEN
MULTI-AGENT SYSTEM FOR SPEECH DATASET QUAL-
ITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Ensuring the quality of large-scale datasets is a prerequisite for reliable machine
learning, yet current verification pipelines are static, domain-specific, and heav-
ily reliant on human experts. We introduce SpeechQC-Agent, the first natural
language-driven agentic framework for dataset quality control that generalizes
across modalities, vendors, and languages. A central planner LLM decomposes
user queries into directed acyclic graph (DAG) workflows executed by modular
sub-agents that combine reusable tools with LLM-synthesized functions, enabling
flexible and scalable verification. Unlike rule-based scripts, this design supports
parallelism, dependency management, and adaptive extension to novel schemas.
To benchmark verification systems, we release SpeechQC-Dataset, a multilin-
gual speech corpus with controlled perturbations spanning audio, transcripts, and
metadata, allowing systematic evaluation of 24 verification tasks. Experiments
show that SpeechQC-Agent achieves 80-90% of expert-level accuracy while op-
erating at less than 20% of the cost and time, and generalizes from synthetic per-
turbations to real vendor-supplied corpora. Comparative analysis across multiple
planner LLMs highlights trade-offs between fidelity (GPT-4.1-mini), efficiency
(LLaMA-3.3-70B), and reasoning strength (DeepSeek-R1). Beyond speech, our
approach establishes a general paradigm for LLM-driven workflow generation in
dataset quality assurance, with implications for the curation of multimodal and
multilingual resources on scale.

1 INTRODUCTION

India is the epicenter of linguistic diversity (Graziosi, 2017), and the Census of India(India, 2001)
reported 30 languages spoken by more than a million native speakers. However, despite this di-
versity, even widely spoken languages such as Hindi (Javed et al., 2024a) remain under-resourced
in the context of publicly available speech-text datasets. Building speech technologies such as Au-
tomatic Speech Recognition (ASR) (Kumar et al., 2022b), Text-to-Speech (TTS) (Tankala et al.,
2024), Speech Translation (ST) (Gupta et al., 2025), etc., for these languages is critically dependent
on the availability of large-scale, high-quality, and diverse speech datasets (Javed et al., 2023). How-
ever, curating such datasets is a slow, labor-intensive process fraught with several challenges. For
example, manual verification for 1,000 hours of conversational speech may require 3-4 annotators
working full-time for 6 months, making scalability prohibitive (Kumar et al., 2022a).

Speech dataset construction typically involves collaboration with multiple vendors, each following
different conventions for audio encoding (e.g., sampling rate, file format, channel configuration),
transcript formatting (e.g., CSV vs. JSON, sentence vs. file-level alignment), and metadata or-
ganization (e.g., speaker demographics or dialect tags) (Javed et al., 2024b). This heterogeneity
makes it difficult to design unified processing pipelines. Beyond formatting inconsistencies, dataset
quality requires extensive manual validation: transcripts must be checked for accuracy, audio must
be screened for corruption or poor recording conditions, and speaker demographics must be mon-
itored to maintain linguistic and social diversity. In practice, such validation is either performed
through random sampling (He et al., 2024), which is fast but risks overlooking systemic errors, or
by exhaustive verification (Jiang et al., 2024), which ensures quality but is prohibitively slow. These

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

 Linear Workflow Graph Workflow

START 41 2 START

3 4

1

2END END

Parallel Execution EfficientSequential Execution Inefficient

Natural
Language-Driven

Multi-Agent Workflow

Parallel Planning

Efficient Execution

Structured Prior
Knowledge

3

Check the audio files of the speech dataset on sample rate, audio file corruption and domain with audio_dir: "xyz/test/"

Planning Steps:
1. Check if the sample rate is 16 KHz or 8 KHz.
2. Check if the audio files are corrupt or not.
3. Create the transcript of the audio files.
4. Based on the created transcript, predict the domain of the audio file.

Figure 1: Our system leverages structured prior knowledge and parallel planning capabilities to
generate efficient, self-managing task workflows for speech dataset verification.

challenges make high-quality corpus creation both time-intensive and resource-demanding (Kumar
et al., 2025), underscoring the need for scalable, automated verification frameworks.

Several initiatives have sought to address the scarcity of high-quality, standardized, and scalable
speech datasets for Indian languages. Projects such as AI4Bharat (Javed et al., 2024b), IITB (Adiga
et al., 2021) and the Vaani (Team, 2025) collaboration represent important steps toward resource cre-
ation, but they remain constrained by human-in-the-loop verification pipelines. Recruiting and train-
ing large annotator teams is logistically complex and financially burdensome, and manual checks
do not scale reliably as dataset size or vendor diversity increases. Similarly, the Spring Lab (Sarkar
et al., 2025) random-sampling approach has been shown to overlook recurring systematic error types
in speech datasets, reducing their reliability for downstream applications. As a result, no existing
solution provides a scalable and automated framework that simultaneously ensures efficiency and
high quality in the verification of multilingual speech dataset.

In parallel, recent advances in Large Language Models (LLMs) as agents (Guo et al., 2024) have
demonstrated competitive performance in tool use (Li et al., 2023), planning (), and decision-making
(Yao et al., 2023) tasks. Although these advances have transformed many areas, their potential in
speech dataset quality control, a relatively niche domain, remains largely untapped. The scarcity
of specialized models and benchmarks in this area is due to two key limitations: (i) the absence
of comprehensive, high-quality datasets that capture diverse real-world error conditions, and (ii)
the heterogeneity of speech-text data formats across languages and vendors. Moreover, prior agen-
tic systems designed for text-based data processing face well-documented challenges: inconsistent
environment configurations (Hu et al., 2024b), difficulty adapting to novel schemas (Tang et al.,
2023), hallucinating actions (Zhong et al., 2024b), unnecessary repetition of steps (Zhang et al.,
2024a), and weak contextual grounding (Song et al., 2023). These problems are magnified in mul-
timodal speech settings, where alignment between audio, transcripts, and metadata is critical and
difficult to verify.

In this paper, we introduce SpeechQC-Agent, a natural language-driven multi-agent framework
for automating the quality control and verification of large-scale speech datasets. Unlike prior
approaches that rely on fixed scripts or manual annotator checks, SpeechQC-Agent leverages a
centralized LLM to interpret user instructions and orchestrate specialized sub-agents for format
normalization, transcript validation, audio quality checks, and metadata verification. By allowing
users to issue natural language prompts (for example, “Check the audio files for sample rate, cor-
ruption, and domain”), the system dynamically constructs task-specific workflows, reducing human
dependency and enabling scalable dataset processing (Figure 1). Beyond synthetic perturbations,
we validate SpeechQC-Agent on vendor-supplied corpora, showing that the framework generalizes
to real-world noise and annotation inconsistencies.

This paper makes the following key contributions:
1. Natural Language-Driven Workflow Generation: We present the first system to automatically
generate speech dataset verification workflows directly from natural language prompts, reducing the
dependency on rigid rules or manual scripting.
2. Modular Multi-Agent Execution Framework: We propose a graph-based framework that de-
composes verification into modular sub-agents, enabling both task-level parallelism and structured

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

dependency management.
3. Tool Synthesis and Reuse: We demonstrate how LLM-synthesized tools can be combined with
robust pre-defined components (e.g., VAD, domain identification, CTC scoring), supporting both
adaptability and efficiency.
4. First Application to SpeechQC-Dataset: We release SpeechQC-Dataset, a synthetic yet realis-
tic multilingual benchmark, and show that SpeechQC-Agent is the first end-to-end system capable
of applying agentic workflow generation to real-world speech-text data quality control across het-
erogeneous vendor formats1.

2 RELATED WORK

Recent advances in large language models (LLMs) have enabled agent-based frameworks for auto-
mated task orchestration and tool-driven reasoning (Liu et al., 2023; 2024; Zhong et al., 2024a; Zhu
et al., 2024; Sun et al., 2024; Xie et al., 2024). Our work intersects with three lines of research:
(i) LLM-powered multi-agent collaboration, (ii) workflow generation and evaluation, and (iii) mod-
ular agent design. However, none directly address the verification of large-scale speech datasets,
particularly in low-resource multilingual settings.

MacNet (Qian et al., 2024) introduces a DAG topology for reasoning among thousands of agents,
while EvoMAC (Hu et al., 2024c) proposes a self-evolving collaboration framework for software de-
velopment. These emphasize scaling collaboration, whereas our system focuses on task-specialized
decomposition and coordination for audio-text validation.

AFlow (Zhang et al., 2024b) formalizes workflows as DAGs of LLM-invoking nodes, and Worf-
Bench/WorfEval (Qiao et al., 2024) evaluates planning quality through subsequence and subgraph
metrics. We adapt such methods to speech by grounding workflows in dataset curation and evalu-
ating with domain-specific metrics such as word error rate (WER), character error rate (CER), and
alignment accuracy.

AgentPrune (Zhang et al., 2024a) reduces communication redundancy, and T3-Agent (Gao et al.,
2024b) improves multi-modal tool usage (Gao et al., 2024a). AutoAgent (Tang et al., 2025),
AgentSquare (Shang et al., 2024), and automated design frameworks (Hu et al., 2024b) simplify
agent creation. In contrast, our system emphasizes robust reusable tools for speech data (e.g., VAD,
IndicLID (Madhani et al., 2023), CTC validators), integrated into an end-to-end verification pipeline
that handles heterogeneous formats, multilingual scripts, and demographic balance.

Unlike NVIDIA Speech Explore2, which is limited to transcript verification with 8 tasks,
SpeechQC-Agent supports 24 overall verification tasks, 13 dedicated to transcripts, while also ex-
tending to audio and metadata level checks. It is the first agentic system applied to real-world speech
corpus curation, combining workflow-graph metrics with speech-specific quality indicators.

3 DATA CREATION PIPELINE

We develop SpeechQC-Dataset, a synthetic speech-text benchmark designed to capture realistic
quality control (QC) challenges. Unlike prior synthetic pipelines that primarily generate clean train-
ing data, the SpeechQC-Dataset is explicitly QC-aware: it integrates controlled noise, multilingual
translation, and LLM-as-a-Judge validation to simulate diverse error conditions. This makes it the
first dataset design to evaluate verification agents.

The general workflow for creating synthetic data is illustrated in Figure 2. The pipeline proceeds in
five stages:

1. Prompt-Driven Dialogue Generation: A carefully crafted natural language prompt encodes
the intention of the task, speaker roles, and domain constraints. An LLM-based dialogue planner
(Deng et al., 2023; Yi et al., 2024) expands this into multi-turn conversations, guided by long-
form examples for discourse coherence. A controller agent may invoke LLM-as-a-Judge (Gu et al.,
2024b) to enforce factuality and conversational realism.

1Code and Dataset Availability: https://anonymous.4open.science/r/SpeechQC-Agent-B971/
2https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/

tools/speech_data_explorer.html

3

https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/tools/speech_data_explorer.html
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/tools/speech_data_explorer.html

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Prompt-Driven
Dialogue Planner

Metadata & Prob.
Perturbation (𝛂)

Post-Validation &
Structured Export

Speaker Attr. &
TTS Synthesis

Indic/low-resource
languages

4

A

3 51

LLM-as-a-Judge

Cross-Lingual
Translation

2

A

LLM-as-a-Judge

A

LLM-as-a-Judge

Tags, swaps, rare
vocab, noise injection

Speaker conditioned
voices: accent, gender etc

Syn. Data
Corrupted

Syn. Data
Clean

.json/.xml + audio
(clean & corrupted)

Figure 2: The five-stage data creation pipeline used for SpeechQC-Dataset: (1) prompt-driven dia-
logue planning, (2) cross-lingual translation, (3) metadata extraction and probabilistic perturbation,
(4) speaker attribution & TTS synthesis, and (5) post-validation with structured export. LLM-as-a-
Judge checkpoints (dashed) provide filtering and consistency checks at key stages.

2. Cross-Lingual Translation: The generated dialogues are translated into low-resource languages
using multilingual LLMs (Joshi et al., 2024) or specialized translation modules, enabling coverage
across Indic and other under-resourced settings.

3. Metadata Extraction and Perturbation: Conversations are automatically annotated with
speaker turns, utterance boundaries, and intent labels. A probabilistic perturbation module intro-
duces structured noise, such as tag insertions (<noise>, <html>), token swaps, or injection of
rare vocabulary, under a tunable threshold parameter α. This simulates systematic QC-relevant er-
rors that are absent in previous corpora.

4. Speaker Attribution and TTS Synthesis: Synthetic speaker IDs condition TTS models to
produce speech audio with varied voices, accents, prosody, and gender. This ensures demographic
and acoustic diversity while maintaining alignment with transcripts.

5. Post-Validation and Structured Export: Both transcripts and audio undergo selective cor-
ruption (e.g., clipping, token drops) to mimic real-world ASR artifacts. The final outputs, text,
metadata, and audio, are exported in standardized .json or .xml formats. In multiple stages,
LLM-as-a-Judge (Gu et al., 2024a) is invoked to detect hallucinations or inconsistencies, filtering
low-quality samples.

The resulting dataset provides fine-grained control over linguistic, acoustic, and structural proper-
ties, yielding a benchmark that is both scalable and realistic for evaluating multi-agent QC systems.3

3.1 DATA QUALITY VERIFICATION

To systematically evaluate dataset quality, we design the SpeechQC-Dataset to include controlled
errors injected through rule-based perturbations and LLM-as-a-Judge validation (Gu et al., 2024a).
This allows us to benchmark verification methods against realistic error distributions.

The verification process is implemented as a two-stage suite that mirrors the multi-agent architecture
of SpeechQC-Agent: (i) QC1 for audio and metadata validation, and (ii) QC2 for transcript and
content validation. This modular separation enables parallelization while covering complementary
error types. For further details, see Appendix E.

Checklist Overview: Table 1 summarizes all the QC1 and QC2 checks. Together, they capture a
broad spectrum of quality dimensions, from file integrity and speaker uniqueness to transcription
reliability, script consistency, and domain balance. Unlike prior ad hoc QC efforts, this structured
design provides the first unified, evaluation-aware benchmark for speech dataset verification.

4 METHODOLOGY

In this section, we describe our proposed SpeechQC-Agent, a natural language-driven, LLM-
coordinated multi-agent framework designed specifically for speech dataset quality verification. The
framework takes as input a batch of speech data (waveforms, transcripts, metadata) and a natural-

3For further details, please refer to Appendix D.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

QC1: Audio & Metadata Verification (11 tasks)
ASR Transcription Speaker count & duration Audio length Silence calculation (VAD)
Upsampling check Speaker identity (new vs.

old)
Audio corruption check Audio format / extension

check
Sample rate check Speaker duration stats Language ID (ASR + IndicLID)

QC2: Transcript & Content Verification (13 tasks)
Transcript quality Grapheme / character stats Vocabulary stats Language verification
English word counter CTC score Domain classification Transcript-audio alignment
Transcript normalization
(tags removal)

Transcript coherence
(LLM-as-a-Judge)

Transliteration (Ro-
man→Native)

Utterance duplicate check /
WER computation

Table 1: Overview of the 24 verification tasks implemented in SpeechQC-Agent, grouped into QC1
(audio/metadata) and QC2 (transcript/content).

3 41 2

Dependency

3 41 2

START

3 4

1

2 END

Tools+
Pre-defined

B

A D

E

F

G
Workflow Graph

Task-Description Action List Node List

K H
Nested ListExecution

Output
M

J

L

I

Check the audio files of
the speech dataset on
sample rate, audio file
corruption and domain
with audio_dir: "xyz/test/"

1. Check sample rate (16/8 KHz)
2. Detect corruption
3. Generate transcripts
4. Infer domain from
transcripts.

Data Verification
N

C

Figure 3: Architecture of the SpeechQC-Agent system. Given a natural language task description
(A), a central planner LLM interprets the input and generates an ordered action list (C), which
is validated (D) and mapped to a node list (E). Dependencies among nodes are resolved into a
nested structure (F) and used to generate a topologically sorted workflow graph (G). Each node is
executed (H) using dynamically synthesized (I) or pre-defined tools (J). Execution is monitored for
completeness, and outputs (L) are aggregated into a structured Data Verification Dashboard (M) for
final review.

language verification request. It then (i) decomposes the request into atomic checks, (ii) builds an
executable directed acyclic graph (DAG) of those checks, (iii) instantiates or retrieves the required
tools, and (iv) executes the graph while monitoring progress. Each stage in SpeechQC-Agent is
powered by a specialized agent with its own planning, execution, or verification role, and these
agents are coordinated by a central LLM planner (Wei et al., 2025). Figure 3 illustrates the pipeline,
which consists of the following stages:

4.1 TASK PARSING AND ACTION GENERATION

The SpeechQC-Agent: central planning agent (A-B) is the primary interface for interacting with the
user. It receives tasks from the user, comprehends the tasks in natural language tasks description
q, a central planning agent leverages an LLM to interpret and decompose it into a structured action
list A = {ai}ni=1, where each action ai denotes a specific atomic quality check. Each action corre-
sponds to a specific atomic quality check, such as CheckSampleRate , DetectAudioCorruption , or

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

ValidateTranscript etc. The PlannerLLM is a constrained sequence-to-sequence model that maps
natural language queries to validated action lists.

A← PlannerLLMθ(q)

This planning process uses a combination of lexical mapping (e.g., “VAD”→ SilenceCheck) and
semantic prompting of an LLM to infer implied actions. Moreover, a lightweight rule-based LLM
verifier ensures the consistency of A with known hard constraints. For instance, if q mentions silence
or VAD, the agent appends asilence to A if missing by the central planning agent.

4.2 NODE GENERATION AND DEPENDENCY GRAPH CONSTRUCTION

We define an agentic workflow as a series of LLM invokes in which the action list is further trans-
formed into executable nodes V = {v1, v2, . . . , vn}. Each node vi represents a specific discrete
verification subtask performed by an LLM. The dependencies between nodes are explicitly captured
to construct a Directed Acyclic Graph (DAG) that is a pair G = (V,E), where:

• V is a finite set of vertices,

• E ⊆ V × V is a set of directed edges,

such that there does not exist any sequence of distinct vertices v1, v2, . . . , vk ∈ V with k ≥ 2
satisfying (v1, v2) ∈ E, (v2, v3) ∈ E, . . . , (vk−1, vk) ∈ E, and (vk, v1) ∈ E where edges E
represent dependencies between subtasks, which also govern the execution sequence.

Although graph structures can represent workflow relationships W , they require complex extensions
beyond basic DAGs to naturally express parallel execution and conditional logic (Hu et al., 2024a).
Neural networks enable adaptive transitions but lack precise control over workflow execution (Liu
et al., 2023). In contrast, code representation inherently supports all the above relationships through
standard programming constructs. Therefore, we adopt the code (Zhuge et al., 2024) as our primary
edge structure to maximize expressivity. Then, the nodes are first linearly sequenced using topologi-
cal sorting, where a linear ordering of the vertices is established such that each vertex appears before
all vertices to which it has outgoing edges, followed by the establishment of parallel or sequential
execution relationships:

C(V)⇒ TopologicalSort⇒ G

4.3 TOOL SYNTHESIS AND RETRIEVAL

Each verification node vi is associated with an executable tool Ti. Tools are selected or synthesized
via: 1) Dynamic LLM-based tool synthesis Tgen: The agent prompts an LLM to generate the tools
and callable functions. The tools are generated on demand for new or customized tasks. and 2)
Predefined tool repository Tlib: A curated set of robust tools pre-generated using GPT-4o for stable
performance when synthesis fails or confidence is low. The overall tool set is represented as:

T = Tgen ∪ Tlib

The tool selection may be revised if the tool fails validation checks or runtime execution.

4.4 WORKFLOW EXECUTION AND MONITORING

We execute the workflow graph G following the topological order with dependency-aware paral-
lelism. A monitoring agent uses a separate LLM to track the execution status of each node, ensuring
completeness and robustness. Let yi be the output of node vi. If yi = ∅ or an exception is detected,
the execution checker retries Ti up to r times. This guarantees completeness:

∀vi ∈ V, ∃ŷi ̸= ∅ ∨ fail(vi)

Nodes that fail to execute are automatically retried or escalated for manual inspection4.

4See Appendix K for all the prompts.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.5 OUTPUT AGGREGATION AND DASHBOARD GENERATION

Upon completion, outputs from all executed nodes are aggregated into structured reports and visual
dashboards. These dashboards enable users to interactively inspect and review quality metrics, error
distributions, and execution logs for transparency and auditability. This enables both human analysts
and downstream systems to filter or prioritize batches for the data verification task.

4.6 MODULARITY AND EXTENSIBILITY

SpeechQC-Agent is modular by design, with each stage (action parsing, node building, tool genera-
tion, execution) being LLM-agent pluggable. New tasks can be added by either extending the action
ontology or defining a new node schema, supplying new tool definitions, or enabling auto-synthesis.
This architecture generalizes across vendor schemas, speech domains, and languages without man-
ual scripting, making it especially suited for multi-source, low-resource datasets. It also ensures
adaptability and scalability to diverse speech dataset curation challenges.

5 EXPERIMENTS

5.1 DATASET CONSTRUCTION

To rigorously evaluate SpeechQC-Agent, we introduce the SpeechQC-Dataset, a synthetic yet QC-
aware benchmark specifically designed for multilingual low-resource settings, with a focus on Indic
languages, starting with Hindi language. Unlike prior synthetic corpora that emphasize clean train-
ing data, the SpeechQC-Dataset explicitly incorporates controlled variability and error patterns to
stress-test verification systems.

The dataset is generated through a multi-step LLM+TTS pipeline (Section 3). Three strong LLMs:
LLaMA-3.3-70B, GPT-4o/4o-mini, and DeepSeek-R1-distill, produce English multi-turn dialogues
across 11 domains and 55 scenarios, ensuring conversational and stylistic diversity. The dialogues
are translated into Hindi (Devanagari script) using multilingual LLMs, normalized, and converted
into audio with a speaker-conditioned TTS model, yielding natural variation in voice, accent, and
prosody.

Each sample is annotated with metadata fields including verbatim text, audio duration, scenario,
domain, speaker ID, native language, gender, and age group. Speaker IDs and demographics are
adapted from the LAHAJA dataset (Javed et al., 2024a), ensuring realistic population balance. Im-
portantly, original Lahaja transcripts/audio are replaced with synthetic content, preserving demo-
graphics while avoiding data leakage. For further details, see Appendix C.

5.2 QUALITY VERIFICATION FRAMEWORK

We benchmark SpeechQC-Agent on a two-stage verification suite aligned with its modular architec-
ture: QC1: Audio & Metadata Verification - Includes language ID, file format integrity, sample
rate, silence/noise, upsampling artifacts, speaker reuse detection, and speaker-hour balance. QC2:
Transcript & Content Verification - Includes forced alignment, CTC loss (wav2vec2.0), ensemble
WER/CER scoring, LLM-as-a-Judge fluency scoring, domain classification, transliteration consis-
tency, grapheme distribution, vocabulary rarity and duplication detection.

Table 1 enumerates all 24 checked implementations. To control difficulty, the dataset is partitioned
into subfolders: QC1/2-1 (single transformation), QC1/2-2 (randomly paired transformations), and
QC1/2-3 (three or more transformations). This design allows for controlled evaluation verification
under increasing error complexity.

5.3 BASELINES AND LLM VARIANTS

We evaluated SpeechQC-Agent with five planner LLMs: GPT-4o, GPT-4.1, DeepSeek-R1-distill,
LLaMA-3.3-70B, and LLaMA-3.1-8B.
1. Execution Accuracy: proportion of verification actions producing correct results given ground-
truth annotations.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

2. Hallucination Rate: fraction of actions not present in the requested query but introduced by the
planner.
3. Runtime: average end-to-end wall-clock time per verification batch.
4. Cost Efficiency: normalized token cost per 1K tokens (see Appendix B.1).

We compare against one non-agentic and two agentic baselines: (i) a Human Annotation baseline,
simulated through 5 annotators performing random 10% sampling. These establish lower/upper
bounds for scalability and quality. (ii) a Single-Agent parses the user query, creates an action plan,
and directly executes all verification tasks sequentially without explicit decomposition or depen-
dency modeling, and (iii) a Multi-Agent handle subtasks in parallel, but without a central LLM
planner or dependency graph, leading to limited coordination and potential ordering errors across
tasks.

Our evaluation addresses three questions:
(1) Can the SpeechQC-Agent generalize verification workflows across languages and vendor for-
mats?
(2) Which planner LLM offers the best trade-off between accuracy, hallucination, and cost?
(3) How does agentic verification compare against static pipelines and human-in-the-loop sampling?

Model File-Format Corrupt Sample-Rate Domain
gpt-4o-mini 100 100 100 28.17
gpt-4.1-mini 100 100 100 60.32
deepseek-r1 0 100 0 81.30
llama-3.1-8b 0 100 0 21.48
llama-3.3-70b 100 100 100 75.40

Table 2: QC1 evaluation across four subtasks. Detect file format error, corrupt file error, sample rate
error, and domain identification error. Reported values correspond to accuracy.

LLM Variant Roman Script Mean WER # HTML Tags # EN Tokens
gpt-4.1-mini 99.64 0.094 99.96 100
gpt-4o-mini 66.40 1.151 98.33 68.17
deepseek-r1 85.2 0.334 0 0
llama-3.1-8b 0 0 0 91.34
llama-3.3-70b 99.46 0.120 100 78.70

Table 3: QC2 evaluation across four subtasks. Lower WER, Roman script, HTML Tags, and English
Tokens, the accuracy calculated based on detection.

Model Accuracy (%) Time (sec)
gpt-4o-mini 75 354.207
gpt-4.1-mini 75 136.545
llama-3.3-70b 62.5 64.056
llama-3.1-8b 25 80.326
deepseek-r1 25 72.693

Table 4: LLM performance on QC1 instructions. Each model was evaluated using 3 audio samples
each from QC1-1, QC1-2, and QC1-3. The number of missed tasks and total execution time (in
seconds) are reported.

6 RESULTS AND DISCUSSION

Tables 2 and 3 show that SpeechQC-Agent consistently performs verification tasks across heteroge-
neous data sources. In QC1 (audio and metadata), all strong planner LLMs achieve near-perfect
detection of file-format errors, corruption, and sample rate anomalies, confirming robustness to
vendor-side audio inconsistencies. In QC2 (transcripts and content), clearer differences emerge:
GPT-4.1-mini and LLaMA-3.3-70B both surpass 99% accuracy in Roman script and HTML tag de-
tection with low WER scores, while smaller models degrade substantially. Importantly, SpeechQC-
Agent transfers effectively from Hindi Devanagari-script benchmarks to additional Indic languages

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Model Accuracy Hallucinated Tasks Time (sec)
gpt-4o-mini 100 0 347.397
gpt-4.1-mini 100 0 298.261
deepseek-r1 12.5 2 65.314
llama-3.1-8b 33 0 60.542
llama-3.3-70b 72 0 37.380

Table 5: Evaluation of LLMs on QC2 instructions. Each model was prompted to execute 8 quality
verification tasks (language check, WER/CTC computation, normalization, etc.) for 3 audio sam-
ples. Models were evaluated based on task completion accuracy and hallucination rate.

in our extended in-house corpus, suggesting that its workflow abstraction generalizes beyond the
synthetic dataset. Together, these results validate our claim that SpeechQC-Agent can handle both
cross-lingual variability and vendor-specific data formats.

Tables 4 and 5 compare planner LLMs on execution accuracy, hallucination rate, and runtime. GPT-
4.1-mini achieves the strongest transcript-level fidelity (99.64% in Roman script, 0.094 mean WER)
with zero hallucinated steps, albeit at a moderate runtime cost (136-298s per batch). LLaMA-3.3-
70B offers the best trade-off between efficiency and accuracy, completing QC pipelines in under 40s
with only minor accuracy degradation. By contrast, smaller models such as GPT-4o-mini struggle
with high hallucination rates, while DeepSeek-R1, although less reliable for QC pipelines, proves
highly effective for reasoning-oriented tasks such as domain classification. Overall, the results reveal
a flexible deployment spectrum: high-stakes verification may prioritize GPT-4.1-mini for maximal
fidelity, LLaMA-3.3-70B enables cost- and time-efficient batch verification, and DeepSeek-R1 sup-
ports logical checks like domain identification. We also used SpeechQC-Agent to check large-scale
real vendor corpora and to determine the domain of the IndicVoice (Javed et al., 2024b) dataset (see
Appendix H.1 and H.2).

The results collectively underscore three findings. First, the QC-aware dataset design, incorporating
controlled variability and perturbations, enables robust generalization across languages and vendor
formats. Second, modular multi-agent orchestration ensures that planner LLMs can be swapped to
balance accuracy and efficiency, with GPT-4.1-mini excelling in reliability and LLaMA-3.3-70B in
speed. Finally, SpeechQC-Agent achieves 80-90% of expert-level verification accuracy while re-
ducing runtime and cost to less than 20% expert annotation (see Appendix H.3). Taken together,
these findings validate SpeechQC-Agent as the first scalable end-to-end framework for the verifica-
tion of the quality of the speech dataset in low-resource multilingual settings5. We include a detailed
case study in the Appendix F to demonstrate the generalizability of SpeechQC-Agent to real-world
scenarios.

7 CONCLUSION

We introduced SpeechQC-Agent, the first natural language-driven multi-agent framework for scal-
able speech dataset quality verification. Unlike static rule-based pipelines or human-in-the-loop
sampling, our approach leverages a central planner LLM to decompose user queries into DAG-based
workflows that seamlessly integrate reusable and LLM-synthesized tools. Our evaluations show that
LLaMA-3.3-70B and DeepSeek-R1 together provide an effective balance, handling large-scale ver-
ification and logical tasks such as domain classification while maintaining cost and time efficiency
without sacrificing accuracy. Alongside the release of SpeechQC-Dataset, a realistic multilingual
benchmark, we demonstrate that SpeechQC-Agent achieves 80-90% of expert-level verification ac-
curacy in less than 20% of cost and time, offering a flexible and practical solution for large-scale
speech corpus curation.

REFERENCES

Devaraja Adiga, Rishabh Kumar, Amrith Krishna, Preethi Jyothi, Ganesh Ramakrishnan, and Pawan
Goyal. Automatic speech recognition in sanskrit: A new speech corpus and modelling insights.
arXiv preprint arXiv:2106.05852, 2021.

5For future directions and limitations, see Appendix I and J.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Yang Deng, Wenxuan Zhang, Wai Lam, See-Kiong Ng, and Tat-Seng Chua. Plug-and-play policy
planner for large language model powered dialogue agents. arXiv preprint arXiv:2311.00262,
2023.

Zhi Gao, Bofei Zhang, Pengxiang Li, Xiaojian Ma, Tao Yuan, Yue Fan, Yuwei Wu, Yunde Jia, Song-
Chun Zhu, and Qing Li. Multi-modal agent tuning: Building a vlm-driven agent for efficient
tool usage. ArXiv, abs/2412.15606, 2024a. URL https://api.semanticscholar.org/
CorpusID:274965020.

Zhi Gao, Bofei Zhang, Pengxiang Li, Xiaojian Ma, Tao Yuan, Yue Fan, Yuwei Wu, Yunde Jia, Song-
Chun Zhu, and Qing Li. Multi-modal agent tuning: Building a vlm-driven agent for efficient tool
usage. arXiv preprint arXiv:2412.15606, 2024b.

Andrea Graziosi. India and the soviet model: The linguistic state reorganization and the problem of
hindi. Harvard Ukrainian Studies, 35(1/4):443–471, 2017.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
han Shen, Shengjie Ma, Honghao Liu, Yuanzhuo Wang, and Jian Guo. A survey on llm-as-
a-judge. ArXiv, abs/2411.15594, 2024a. URL https://api.semanticscholar.org/
CorpusID:274234014.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
han Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint
arXiv:2411.15594, 2024b.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges. arXiv preprint arXiv:2402.01680, 2024.

Mahendra Gupta, Maitreyee Dutta, and Chandresh Kumar Maurya. Benchmarking hindi-to-english
direct speech-to-speech translation with synthetic data. Language Resources and Evaluation, pp.
1–39, 2025.

Haorui He, Zengqiang Shang, Chaoren Wang, Xuyuan Li, Yicheng Gu, Hua Hua, Liwei Liu, Chen
Yang, Jiaqi Li, Peiyang Shi, et al. Emilia: An extensive, multilingual, and diverse speech dataset
for large-scale speech generation. In 2024 IEEE Spoken Language Technology Workshop (SLT),
pp. 885–890. IEEE, 2024.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. ArXiv,
abs/2408.08435, 2024a. URL https://api.semanticscholar.org/CorpusID:
271892234.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024b.

Yue Hu, Yuzhu Cai, Yaxin Du, Xinyu Zhu, Xiangrui Liu, Zijie Yu, Yuchen Hou, Shuo Tang, and
Siheng Chen. Self-evolving multi-agent collaboration networks for software development. arXiv
preprint arXiv:2410.16946, 2024c.

C India. o.(2001). Census of India, 2001.

Tahir Javed, Kaushal Bhogale, Abhigyan Raman, Pratyush Kumar, Anoop Kunchukuttan, and
Mitesh M Khapra. Indicsuperb: A speech processing universal performance benchmark for in-
dian languages. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp.
12942–12950, 2023.

Tahir Javed, Janki Nawale, Sakshi Joshi, Eldho George, Kaushal Bhogale, Deovrat Mehendale, and
Mitesh M Khapra. Lahaja: A robust multi-accent benchmark for evaluating hindi asr systems.
arXiv preprint arXiv:2408.11440, 2024a.

Tahir Javed, Janki Atul Nawale, Eldho Ittan George, Sakshi Joshi, Kaushal Santosh Bhogale, De-
ovrat Mehendale, Ishvinder Virender Sethi, Aparna Ananthanarayanan, Hafsah Faquih, Pratiti
Palit, et al. Indicvoices: Towards building an inclusive multilingual speech dataset for indian
languages. arXiv preprint arXiv:2403.01926, 2024b.

10

https://api.semanticscholar.org/CorpusID:274965020
https://api.semanticscholar.org/CorpusID:274965020
https://api.semanticscholar.org/CorpusID:274234014
https://api.semanticscholar.org/CorpusID:274234014
https://api.semanticscholar.org/CorpusID:271892234
https://api.semanticscholar.org/CorpusID:271892234

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Pan-Pan Jiang, Jimmy Tobin, Katrin Tomanek, Robert L MacDonald, Katie Seaver, Richard Cave,
Marilyn Ladewig, Rus Heywood, and Jordan R Green. Learnings from curating a trustworthy,
well-annotated, and useful dataset of disordered english speech. arXiv preprint arXiv:2409.09190,
2024.

Raviraj Joshi, Kanishk Singla, Anusha Kamath, Raunak Kalani, Rakesh Paul, Utkarsh Vaidya,
Sanjay Singh Chauhan, Niranjan Wartikar, and Eileen Long. Adapting multilingual llms to
low-resource languages using continued pre-training and synthetic corpus. arXiv preprint
arXiv:2410.14815, 2024.

Rishabh Kumar, Devaraja Adiga, Mayank Kothyari, Jatin Dalal, Ganesh Ramakrishnan, and Preethi
Jyothi. Vagyojaka: An annotating and post-editing tool for automatic speech recognition. In
INTERSPEECH, pp. 857–858, 2022a.

Rishabh Kumar, Devaraja Adiga, Rishav Ranjan, Amrith Krishna, Ganesh Ramakrishnan, Pawan
Goyal, and Preethi Jyothi. Linguistically informed post-processing for asr error correction in
sanskrit. In INTERSPEECH, pp. 2293–2297, 2022b.

Rishabh Kumar, Devaraja Adiga, Rishav Ranjan, Amrith Krishna, Ganesh Ramakrishnan, Pawan
Goyal, and Preethi Jyothi. Linguistically informed automatic speech recognition in sanskrit. Com-
puter Speech & Language, pp. 101861, 2025.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms. arXiv
preprint arXiv:2304.08244, 2023.

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi Jiang, Yuxin Zhang, Ju Fan, Guoliang Li,
Nan Tang, and Yuyu Luo. A survey of nl2sql with large language models: Where are we, and
where are we going? arXiv preprint arXiv:2408.05109, 2024.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. A dynamic llm-powered agent net-
work for task-oriented agent collaboration. 2023. URL https://api.semanticscholar.
org/CorpusID:263608687.

Yash Madhani, Mitesh M. Khapra, and Anoop Kunchukuttan. Bhasa-abhijnaanam: Native-script
and romanized language identification for 22 indic languages. In Annual Meeting of the Associa-
tion for Computational Linguistics, 2023. URL https://api.semanticscholar.org/
CorpusID:258887508.

Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yufan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. Scaling large-language-model-based multi-agent collaboration.
arXiv preprint arXiv:2406.07155, 2024.

Shuofei Qiao, Runnan Fang, Zhisong Qiu, Xiaobin Wang, Ningyu Zhang, Yong Jiang, Pengjun
Xie, Fei Huang, and Huajun Chen. Benchmarking agentic workflow generation. arXiv preprint
arXiv:2410.07869, 2024.

Sankalpa Sarkar, Samriddhi Kashyap, Advait Joglekar, and Srinivasan Umesh. Effectively combin-
ing phi-4 and nllb for spoken language translation: Spring lab iitm’s submission to low resource
multilingual indic track. In Proceedings of the 22nd International Conference on Spoken Lan-
guage Translation (IWSLT 2025), pp. 399–404, 2025.

Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu, Fengli Xu, and Yong Li. Agentsquare: Automatic
llm agent search in modular design space. arXiv preprint arXiv:2410.06153, 2024.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2998–
3009, October 2023.

Yiyou Sun, Junjie Hu, Wei Cheng, and Haifeng Chen. Dfa-rag: Conversational semantic router
for large language model with definite finite automaton. In International Conference on
Machine Learning, 2024. URL https://api.semanticscholar.org/CorpusID:
267522819.

11

https://api.semanticscholar.org/CorpusID:263608687
https://api.semanticscholar.org/CorpusID:263608687
https://api.semanticscholar.org/CorpusID:258887508
https://api.semanticscholar.org/CorpusID:258887508
https://api.semanticscholar.org/CorpusID:267522819
https://api.semanticscholar.org/CorpusID:267522819

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jiabin Tang, Tianyu Fan, and Chao Huang. Autoagent: A fully-automated and zero-code framework
for llm agents. arXiv e-prints, pp. arXiv–2502, 2025.

Nan Tang, Chenyu Yang, Ju Fan, and Lei Cao. Verifai: Verified generative ai. ArXiv,
abs/2307.02796, 2023. URL https://api.semanticscholar.org/CorpusID:
259360404.

Pavan Tankala, Preethi Jyothi, Preeti Rao, and Pushpak Bhattacharyya. STORiCo: Storytelling
TTS for Hindi with character voice modulation. In Yvette Graham and Matthew Purver (eds.),
Proceedings of the 18th Conference of the European Chapter of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pp. 426–431, St. Julian’s, Malta, March 2024. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.eacl-short.37. URL https:
//aclanthology.org/2024.eacl-short.37/.

VAANI Team. Vaani: Capturing the language landscape for an inclusive digital india (phase 1).
https://vaani.iisc.ac.in/, 2025.

Hui Wei, Zihao Zhang, Shenghua He, Tian Xia, Shijia Pan, and Fei Liu. Plangenllms: A modern
survey of llm planning capabilities. arXiv preprint arXiv:2502.11221, 2025.

Yupeng Xie, Yuyu Luo, Guoliang Li, and Nan Tang. Haichart: Human and ai paired visualiza-
tion system. ArXiv, abs/2406.11033, 2024. URL https://api.semanticscholar.org/
CorpusID:270559276.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

Zihao Yi, Jiarui Ouyang, Zhe Xu, Yuwen Liu, Tianhao Liao, Haohao Luo, and Ying Shen. A survey
on recent advances in llm-based multi-turn dialogue systems. arXiv preprint arXiv:2402.18013,
2024.

Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun, Guancheng Wan, Kun Wang, Dawei Cheng,
Jeffrey Xu Yu, and Tianlong Chen. Cut the crap: An economical communication pipeline for
llm-based multi-agent systems. arXiv preprint arXiv:2410.02506, 2024a.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow genera-
tion. arXiv preprint arXiv:2410.10762, 2024b.

Li Zhong, Zilong Wang, and Jingbo Shang. Debug like a human: A large language model debugger
via verifying runtime execution step by step. In Annual Meeting of the Association for Compu-
tational Linguistics, 2024a. URL https://api.semanticscholar.org/CorpusID:
268032812.

Weihong Zhong, Xiaocheng Feng, Liang Zhao, Qiming Li, Lei Huang, Yuxuan Gu, Weitao Ma,
Yuan Xu, and Bing Qin. Investigating and mitigating the multimodal hallucination snowballing
in large vision-language models. arXiv preprint arXiv:2407.00569, 2024b.

Yizhang Zhu, Shiyin Du, Boyan Li, Yuyu Luo, and Nan Tang. Are large language models good
statisticians? ArXiv, abs/2406.07815, 2024. URL https://api.semanticscholar.
org/CorpusID:270391790.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. GPTSwarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
uTC9AFXIhg.

12

https://api.semanticscholar.org/CorpusID:259360404
https://api.semanticscholar.org/CorpusID:259360404
https://aclanthology.org/2024.eacl-short.37/
https://aclanthology.org/2024.eacl-short.37/
https://vaani.iisc.ac.in/
https://api.semanticscholar.org/CorpusID:270559276
https://api.semanticscholar.org/CorpusID:270559276
https://api.semanticscholar.org/CorpusID:268032812
https://api.semanticscholar.org/CorpusID:268032812
https://api.semanticscholar.org/CorpusID:270391790
https://api.semanticscholar.org/CorpusID:270391790
https://openreview.net/forum?id=uTC9AFXIhg
https://openreview.net/forum?id=uTC9AFXIhg

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

In the Appendix, we provide:

1. Section B: Compute Infrastructure
2. Section C: Dataset Composition
3. Section D: SpeechQC-Dataset
4. Section E: Data Quality Verification Framework
5. Section F: Case Study Example
6. Section G: Tasks Information
7. Section H: Further Analysis
8. Section I: Future Directions
9. Section J: Limitations

10. Section K: Prompts

B COMPUTE INFRASTRUCTURE

Compute details: For all our pre-training and fine-tuning experiments, we used two NVIDIA A100-
SXM4-80GB GPUs. Each training requires 4-48 hours.
Software and Packages details: We implement all our models in PyTorch6.

B.1 INFERENCE COST

Table 6 compares the inference costs across LLMs, showing that open-source models like LLaMA-
3.3-70B and LLaMA-3.1-8B are substantially cheaper than GPT variants, making them attractive
for large-scale deployment.

Model Cost
gpt-4o-mini $0.06
gpt-4.1-mini $0.08
llama-3.3-70b < $0.03
llama-3.1-8b $0.02
deepseek-r1 $0.05

Table 6: Inference cost (USD / 1K tokens) per 1,000 tokens for different LLMs.

C DATASET COMPOSITION

To evaluate the robustness of our audio and transcript quality control mechanisms, we constructed a
synthetic dataset with intentional flaws from the LAHAJA dataset and custom-generated data. The
dataset comprises four subsets to test specific quality control aspects across diverse error profiles
and sources.

- Vendor A (Audio-Specific): Applied QC1 transformations (e.g., File Format Conversion, Corrupt
File Simulation, Sample Rate Reduction) to 3,000 LAHAJA entries (1,000 individual, 1,000 paired,
1,000 multiple QC1).
- Vendor B (Transcript Quality): Applied QC2 transformations (e.g., Audio-Transcript Misalign-
ment, Script Inconsistency, Transcript De-normalization) to 3,000 LAHAJA entries (1,000 individ-
ual, 1,000 paired, 1,000 multiple QC2).
- Vendor C (Mixed Flaws): Applied both QC1 and QC2 transformations to 100 random LAHAJA
entries for combined audio-transcript testing.
- Vendor D (Synthetic Data): Generated an independent dataset using LLMs and TTS models for
synthetic audio and transcripts with controlled quality parameters.

6https://pytorch.org/

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C.1 ADDITIONAL DATA INFORMATION

Figure 4: Distribution of speakers in the SpeechQC-Dataset by native language accent (left) and
age group (right). The dataset exhibits broad linguistic diversity, with representation from 19 native
languages, and covers a wide range of age groups, ensuring demographic balance for robust speech
technology evaluation.

It includes 15.51 hours of Hindi speech data from 110 unique speakers, with a balanced gender
split of 54 female and 56 male. Speakers cover age groups of 18-30, 30-45, 45-60, and 60+, and
represent 19 native languages, led by Telugu, Malayalam, Bengali, Hindi, and others (Fig 4). The
data set spans 11 domains, such as agriculture and science and technology, in 55 conversational
settings (Table 7). Its strength lies in its extensive demographic and linguistic diversity, paired with
broad domain coverage, making it a vital tool for inclusive speech technologies.

D SPEECHQC-DATASET

Prompt Conversation

Conv. Details

Final json/xml
Files

random()
> 𝛂 ?

Speaker Detailsswap.

Yes No

Translation

S1:

S2:

S1:

Speakers

TTS Model

Transcript

Audios

Syn. Data
Corrupt.

Both Audio or Transcript

108 9

6

42 3

57

13

11

1

+

+

A

B+A B

fun1()
+

fun2()

LLM-as-a-Judge

Figure 5: SpeechQC-Dataset generation pipeline. Each numbered step corresponds to an LLM or
tool-based operation within the multi-LLM workflow.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Domain Setting LLM Used
Indian Agri. Village farm on crops GPT Models

Agri fair innovations GPT Models
Rural sustainable workshop Llama Model
Farmers’ crop tips Llama Model
School farm trip DeepSeek

Indian Law Mock court basics GPT Models
Library governance talk GPT Models
Civic rights discussion Llama Model
Town hall governance Llama Model
Constitution lecture DeepSeek

Indian Finance Budgeting workshop GPT Models
Digital banking expo GPT Models
Savings community chat Llama Model
Loan process at bank Llama Model
Banks’ role in class DeepSeek

Indian Sports Sports event at park GPT Models
Movie event planning GPT Models
Fitness benefits in gym Llama Model
Dance prep in area Llama Model
Cinema fan club DeepSeek

Indian Military Fitness drills camp GPT Models
Military history talk GPT Models
Veterans’ community event Llama Model
Defence awareness seminar Llama Model
Armed forces career fair DeepSeek

Indian Politics Democracy school talk GPT Models
Political history session GPT Models
Civic duties debate Llama Model
Voting cultural event Llama Model
Civic podcast DeepSeek

Indian Edu. Rural learning school GPT Models
Student science fair GPT Models
Exam study group Llama Model
Parent-teacher engagement Llama Model
University education day DeepSeek

Indian Science Tech innovation exhibit GPT Models
Basic coding workshop GPT Models
Tech future school club Llama Model
Eco-tech startup hub Llama Model
Digital tools outreach DeepSeek

Indian Rural Dev. Infrastructure village meet GPT Models
Sanitation campaign GPT Models
Amenities workshop Llama Model
Renewable energy event Llama Model
Model village project DeepSeek

Indian Business Entrepreneurship fair GPT Models
Small business seminar GPT Models
Trade at marketplace Llama Model
Supply-demand class Llama Model
Financial planning DeepSeek

Indian Art Art evolution exhibit GPT Models
Cultural fair performance GPT Models
Modern art club Llama Model
Architecture history Llama Model
Heritage preservation DeepSeek

Table 7: Domains and Settings with LLM Attribution

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We develop SpeechQC-Dataset, a synthetic dataset generation framework powered by multi-LLMs.
As illustrated in Figure 5, the pipeline simulates realistic conversational interactions, diverse speaker
characteristics, and common ASR artifacts, producing structured audio-text pairs annotated with
rich metadata. Unlike prior synthetic pipelines focused on text-only generation, SpeechQC-Dataset
integrates dialogue planning, cross-lingual translation, perturbation, and TTS-driven synthesis into
a unified workflow tailored for speech quality verification.

1. Prompt Initialization: The pipeline begins with a carefully designed prompt (Figure 5, Step 1)
encoding task-specific intent, speaker roles, or domain constraints. This is passed to an LLM agent
that orchestrates conversation planning.

2. Conversation Generation: An LLM agent (Step 3) generates multi-turn dialogue from the
prompt, simulating realistic human interactions. Long-form in-context examples improve coherence
and pragmatic diversity. A controller agent (Step 2) may invoke an LLM-as-a-Judge to monitor
factuality and conversational realism.

3. Translation: Conversations are translated into one or more low-resource languages using mul-
tilingual LLMs or specialized modules (Step 5), ensuring coverage and supporting cross-lingual
generalization.

4. Metadata Extraction: A parsing module extracts fine-grained metadata, including turn segmen-
tation, utterance boundaries, intent types, and context tags (Steps 6-7).

5. Probabilistic Perturbation: Controlled variability is introduced through randomized operations
such as tag insertion (e.g., <noise>, <html>), token swaps, or word-level noise (Step 8). The
perturbation is applied according to a threshold parameter α which simulates the variation of the
structured data.

6. Speaker Attribution: Synthetic speaker IDs are assigned to utterances (Step 9) to simulate
multi-speaker settings. These annotations condition downstream TTS synthesis, enabling diversity
in voice, accent, prosody, and gender.

7. TTS-driven Audio Synthesis: A TTS model synthesizes audio from transcripts and speaker
metadata (Step 13). Speaker-conditioned synthesis ensures demographic and prosodic diversity.

8. Optional corruption: To mimic real-world ASR challenges, both audio and transcripts may be
selectively corrupted (e.g., dropped tokens, clipping). These corrupted variants support robustness
evaluation (left branch of “Syn. Data”).

9. Structured Conversion: The final outputs, including transcripts, metadata, and audio files, are
exported in standardized formats (.json, .xml) for compatibility with the downstream QC tasks
(Step B).

10. Post-Processing and Validation: Custom functions (e.g., fun1(), fun2(), Step 11) per-
form final consistency checks and metadata linking. An LLM-as-a-Judge (Gu et al., 2024a) may be
invoked at multiple stages (Steps 2, 4, 6, 10) to detect missing information or hallucinations.

Overall, this pipeline provides fine-grained control over dataset characteristics while leveraging
LLM-based creativity, yielding a benchmark tailored for evaluating and training multi-agent speech
verification systems.

E DATA QUALITY VERIFICATION FRAMEWORK

Figure 6 illustrates the two-stage data quality verification framework implemented in SpeechQC-
Agent. QC1: Audio and Metadata Verification. As shown in the left panel of Figure 6, QC1
begins by applying a multilingual language identification model to determine the spoken language
directly from the audio (Step 1). Subsequent checks validate the audio format, sampling rate, silence
duration, frequency upsampling artifacts, and number of channels (Step 2). To handle speaker-
related verification, we use speaker embedding-based clustering to identify unique speakers (Step
4) and validate whether speakers are reused across batches by comparing against known public and
private datasets (Step 3). Additional statistics, such as the number of speakers (Step 5) and total
speaking time per speaker (Step 6), are computed to assess speaker diversity and duration balance.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Speech Audio Data

Public Speech
Dataset

Speaker
Embedding Private Speech

Dataset

+

Verify Speaker

Language Identifier # Channels

Hrs of Silence Frequency

of Hrs

Format

Transcript Data

Audio & Transcript
Matching

Quality of TranscriptVerify Domain

Verify Grapheme (gi)
and Vocab (vi)

Vocab List (V)

+ Verify Content

n-gram Matching

CTC Score

Mixture of
Expert

LLM Score

of
Speakers

A

1

2

3

45
6

A 1

2
3

4

5

6

Figure 6: Overview of the SpeechQC-Agent quality control framework. QC1 (left) verifies audio
and metadata through checks such as language ID, format integrity, silence detection, and speaker
diversity. QC2 (right) validates transcripts using alignment, CTC loss, WER/CER ensembles, LLM-
based fluency scoring, domain classification, and duplication detection. Together, these two stages
provide comprehensive coverage of audio- and text-level dataset quality.

QC2: Transcript and Content Verification. The right panel of Figure 6 depicts QC2, which starts
by aligning the transcript with the corresponding audio using a timestamp-agnostic model (Step
1). Transcript quality is scored using three different metrics: (i) Connectionist Temporal Classi-
fication (CTC) loss from a pretrained wav2vec2.0 model, (ii) Mixture-of-Experts (MoE) relative
WER/CER scores from multiple ASR models, and (iii) LLM-as-a-Judge scores evaluating fluency
and coherence (Step 2). Domain labels (Step 3) are inferred to ensure topic coverage and diversity.
Further checks analyze the distribution of graphemes (Characters) and vocabulary rarity (Step 4),
using an internal vocabulary list (Step 5). Finally, content duplication is measured using n-gram and
embedding-based overlap with both intra-dataset and public corpus references (Step 6).

F CASE STUDY EXAMPLE

To illustrate the functionality of SpeechQC-Agent, we present a concrete example (Figure 7). The
user submits the following natural language query:

“Check the audio files of the speech dataset on sample rate, audio file corruption,
and domain with audio dir: xyz/test/.”

The Orchestrator Agent parses this query and decomposes it into four atomic verification tasks: (1)
validate the audio sampling rate, (2) detect corrupted files, (3) generate transcripts, and (4) infer
domain labels from transcripts.

A Prompt Checker ensures the task list is complete and consistent (e.g., enforcing that transcript
generation precedes domain inference). It re-verifies selected tasks and iteratively patches missing
ones (up to three iterations) before graph build. The validated list is then compiled into a directed
acyclic graph (DAG), where dependencies are explicitly encoded. Topological sorting guarantees
that independent checks (e.g., sample rate and corruption detection) run in parallel, while dependent
tasks follow sequential order. The Constrained topological scheduling and node-level validators are
used in the pipeline to prevent hallucination (Task Selection / Topological Sorting / Prompt Checker
prompts in Appx. K) .

Each DAG node is mapped to an execution agent:
- Predefined Agent Nodes (e.g., sample rate agent) handle standard checks such as verifying
whether each file is at 16 kHz or 8 kHz.
- Python REPL Tool is invoked for low-level operations such as scanning directories or reading
audio headers.
- Predefined Tools (e.g., silence detectors, WER scorers) are reused for stability.
Intermediate outputs are stored in a shared State Dictionary, ensuring later tasks (e.g., domain
inference) can access transcripts generated earlier.

The final results are compiled into structured CSV files. For example, the sample-rate check pro-
duces a file with entries of the form:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 7: Illustrative example of SpeechQC-Agent executing a user query. The user requests checks
on sample rate, file corruption, and domain inference for an input directory. The Orchestrator
Agent decomposes the query into atomic tasks, validates them, and constructs a DAG workflow
via topological sorting. Each node is executed within the Execution Block using either predefined
agent nodes, dynamic Python REPL tools, or reusable predefined modules. Intermediate results are
stored in a shared state dictionary and aggregated into structured outputs (e.g., CSV reports). This
case study highlights the system’s ability to translate natural language instructions into end-to-end,
dependency-aware verification pipelines.

FilePath	Samp R
xyz/test/a1.wav | 16000
xyz/test/a2.wav | Invalid

This case study highlights how SpeechQC-Agent automatically translates a single user query into
a multi-step verification workflow as shown in Figure 8. The system dynamically integrates LLM-
synthesized tools with reusable predefined modules, respects dependencies through DAG orchestra-
tion, and outputs human-interpretable reports. This functionality demonstrates the practicality and
flexibility of our agentic design for large-scale speech dataset verification.

G TASKS INFORMATION

SpeechQC-Agent implements a comprehensive suite of verification modules that span both audio
(QC1) and transcript/content (QC2) modalities, enabling fine-grained inspection of speech datasets
(Table 8).

Together, QC1 and QC2 provide 24 modular checks covering file integrity, speaker diversity, lin-
guistic correctness, and content variety. This dual-stage design enables SpeechQC-Agent to detect
both low-level anomalies (e.g., corrupted audio, missing metadata) and high-level linguistic errors
(e.g., script inconsistency, domain imbalance), making it suitable for benchmarking multilingual,
low-resource speech datasets.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 8: Complete audio processing summary for directory xyz/test/ including speaker diarization
metrics, Voice Activity Detection (VAD) silence analysis, and comprehensive quality control vali-
dation

QC
Level Check Name Description

QC1 Language Identification (Audio) Uses multilingual models to detect the spoken language, independent of metadata.
QC1 File Format Validates that the audio file conforms to required encoding standards (e.g., WAV).
QC1 Corrupt File Detection Detects corrupted or zero-length audio files.
QC1 Sample Rate Check Verifies if the sample rate is 16 kHz and above.
QC1 Silence Duration Calculates the total silence duration per audio file.
QC1 Upsampling Detection Identifies audio upsampled from low fidelity (e.g., 8 kHz to 16 kHz).
QC1 Number of Speakers Estimates the number of unique speakers in the batch.
QC1 Per-Speaker Duration Measures cumulative speaking time per speaker to ensure speaker diversity.
QC1 Speaker Validity Checks if a speaker is repeated across batches (e.g., same vendor, same voice reused).
QC2 Audio-Transcript Alignment Aligns transcript with audio, regardless of format or file structure.
QC2 Timestamp-Based Segmentation Segments long audio using provided transcription time-stamps for utterance-level alignment.
QC2 Script Consistency Ensures transcript uses the correct native script, avoiding Romanized text unless intentional.
QC2 Code-Mixing Detection Identifies code-mixed utterances (e.g., English-Hindi), which may require for diverse dataset.
QC2 MOE Score (Mixture of Expert) Calculates WER and CER using multiple ASR models to quantify transcription quality.
QC2 CTC Score Computes the Connectionist Temporal Classification (CTC) loss using the wav2vec model.
QC2 LLM Score Evaluates transcript coherence and fluency using LLM-as-a-Judge.
QC2 Transcript Normalization Removes HTML tags, other tags, or other extraneous tokens from the transcript.
QC2 Transliteration Consistency Checks Roman-to-native script transliteration for consistent representation.
QC2 Grapheme Analyze the distribution of different characters.
QC2 Vocabulary Coverage Analyzes the distribution of rare words.
QC2 Domain Classification Assigns each sample to domain labels (e.g., agriculture, etc) to ensure topic diversity.
QC2 Content Repetition Check Flags duplicated or reused content within or across datasets, including public corpora overlaps.

Table 8: Overview of Data Quality Control (QC) Modules used by the SpeechQC-Agent for analyz-
ing SpeechQC-Dataset and other speech datasets.

H FURTHER ANALYSIS

Table 9 shows that while GPT-4.1-mini and LLaMA-3.3-70B maintain high accuracy across QC2
tasks, LLaMA-3.1-8B performs poorly, with accuracies dropping below 30% and frequent task
failures. This weakness stems from two factors: (i) its smaller scale limits compositional reasoning
over multi-step workflows, and (ii) unlike larger models, it has been trained on comparatively less
(or no) Indic language data, making it ill-suited for tasks involving script consistency, transliteration,
and code-mixing checks. As a result, the model struggles to interpret instructions and generate valid
verification outputs, highlighting the importance of both model capacity and linguistic coverage for
robust dataset quality control.

Table 10 presents a comparative analysis of LLM performance in QC1 tasks involving audio and
metadata verification. Among all evaluated models, GPT-4o-mini exhibited the most reliable be-
havior, successfully completing all five tasks, including file format validation, corruption detection,
sample rate checking, speaker duration estimation and speaker validity matching. GPT-4.1-mini

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Model Task Accuracy Hallucination
GPT-4o-mini QC2-1 92.34 0

QC2-2 91.49 0
QC2-3 47.99 0

gpt-4.1-mini QC2-1 100 57.21
QC2-2 100 10.89
QC2-3 98.07 6.35

llama-3.1-8b QC2-1 27.64 10.57
QC2-2 18.02 0
QC2-3 0 0

llama-3.3-70b QC2-1 100 0
QC2-2 95.74 0
QC2-3 91.58 0

Table 9: Evaluation of different LLMs on quality control tasks (QC2-1 to QC2-3) measuring Accu-
racy and Hallucination rate in percent.

LLMs File Corrupt Sample Speaker Valid
Format File Rate (Duration) Speaker

llama-3.1-8b NP NP NP NP (2/3) NP
llama-3.3-70b C C C C C
deepseek-r1 NP NP NP C NP
gpt-4.1-mini C C C C Failed
gpt-4o-mini C C C C C

Table 10: Performance of LLMs on QC1 verification tasks. Each model is evaluated on its ability to
execute file format validation, corruption detection, sample rate checks, speaker duration analysis,
and valid speaker matching. Remarks provide qualitative insights into model behavior during task
execution. (NP - Not Performing, C - Completed)

also performed well in most categories but failed to correctly handle valid speaker identification.
In contrast, LLaMA-3.3-70b completed all core tasks, but introduced unnecessary operations, in-
dicating weaker task-grounding. In particular, LLaMA-3.1-8b, while the fastest model, failed to
perform most tasks and struggled with topological reasoning and task mapping. DeepSeek-R1
demonstrated partial success in speaker tasks, but did not engage with other checks and required
more iterations. These results highlight the trade-offs between speed, instruction-following capabil-
ity, and task reliability across model families, reinforcing the need for instruction-based evaluation
in speech data quality workflows.

Protocol Block Metric In Sheet? Missing Evidence / Action
QC1 - Audio & Metadata
File format & corruption Accuracy 2 Log SoX/ffprobe checks per file
Silence hours Precision/Recall 2 Duration histograms with silence detector
Upsampling (8→16 kHz) Binary accuracy 2 FFT-based up-sampling flag per file
Language ID (MMS) Accuracy 2 MMS predictions + meta-tags
Speaker hours / diversity Completeness, SDI 2 Diarisation output, per-ID hours
Speaker reuse detection Match-rate 2 Embedding match vs. public pools
QC2 - Transcript & Content
Audio-text alignment WER, CER 1 CER still missing
Segmentation by timestamps Seg. accuracy 2 Gold vs. predicted boundaries
Script validity Script-match % 3 Need total-token denominator
CTC quality score Avg. CTC 1 -
LLM-as-Judge rating 1-5 score, 2 Per-utt. ratings + agreement
Normalization noise HTML-error rate 1 Tag counts → rate per K tokens
Transliteration match Accuracy 2 IndicTrans vs. transcript tokens
Vocab / grapheme diversity Diversity score 2 Entropy or TTR statistics
Domain verification Domain-match 3 Need gold domain labels
Duplication detection Dup. score 3 Embedding-similarity counts

Table 11: Coverage of the full QC-metric suite. 1 = logged, 2 = partially logged, 3 = not present.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 11 reveals substantial metric-coverage gaps: none of the QC-1 audio-metadata checks (for-
mat integrity, silence detection, up-sampling, language ID, speaker diversity or reuse) are logged,
and several critical QC-2 dimensions, segmentation accuracy, CER, LLM-as-a-judge agreement,
transliteration accuracy, vocabulary diversity, domain match, and duplication detection, remain un-
populated or only partially captured. Closing these gaps will require integrating raw SoX/ffprobe di-
agnostics, diarisation statistics, IndicTrans comparisons, lexical-entropy measures and embedding-
based duplication scores, enabling a truly end-to-end, metrics-complete evaluation pipeline for fu-
ture batches.

H.1 SPEECHQC-AGENT ON REAL-WORLD VENDOR DATASETS

We deployed SpeechQC-Agent on a 12,000-hour multi-vendor speech corpus spanning Hindi, As-
samese, Marathi, and other 5 Indic languages. The system automatically flagged large-scale quality
issues, including 800 hours of Hindi audio with substandard sampling rates, 100 hours of Assamese
and 200 hours of Marathi with Roman-script transcripts, 200 hours of silence-only audio, 200 hours
of proxy (synthetic) speakers, 100 hours of misaligned audio-transcript pairs, and 500 hours of du-
plicated content across vendors. It also identified 987 corrupted audio files, while validating the
majority of data as clean (Table 12). The hours flagged under each type of error were requested
again from the vendors as replacement datasets.

Crucially, SpeechQC-Agent did not only surface errors, but also highlighted vendors consistently
delivering high-quality corpora, enabling more informed procurement decisions and vendor ac-
countability. Table 13 presents aggregate results: across the 6,000 hours, the system flagged 1,950
hours (32.5%) as problematic and validated 4,050 hours (67.5%) as reliable. The remaining datasets
are currently under validation. These results illustrate that SpeechQC-Agent can perform system-
atic, large-scale dataset audits, offering both coverage and cost-efficiency beyond static pipelines or
manual sampling.

Error Type Hours / Files Affected Vendor Batches
Low sample rate (Hindi) 800 hrs Hindi vendor (B1)
Mis-scripted transcripts (Assamese, Marathi) 100 hrs Assamese + 200 hrs Marathi Assamese (B1), Marathi (B2)
Silence-only audio 200 hrs Multi-vendor (12k hrs total)
Proxy speakers 200 hrs Proxy vendor batch
Misaligned audio-transcript pairs 100 hrs Vendor B2
Duplicate audio-transcript (cross-vendor) 500 hrs Across vendors/languages
Corrupted audio files 987 files Batch B1 (Hindi)

Table 12: Summary of errors flagged by SpeechQC-Agent on real vendor datasets.

Category Hours Percentage
Flagged problematic data 1,950 32.5%
Validated clean data 4,050 67.5%
Total 6,000 100%

Table 13: Aggregate audit of multi-vendor corpora (12,000 hours) using SpeechQC-Agent.

H.2 PERFORMANCE OF LLMS ON INDICVOICE DATASET

Model Zero-Shot 7-Shot
gpt-4o-mini 0.314 0.254
gpt-4.1-mini 0.360 0.340
deepseek-r1 0.456 0.386
llama-3.1-8b 0.180 0.110
llama-3.3-70b 0.338 0.352

Table 14: Performance of different models on the IndicVoice validation subset (500 utterances)
across zero-shot and 7-shot settings.

Table 14 presents the domain classification performance of different LLMs in zero-shot and few-
shot (7-shot) settings on the IndicVoice validation subset (Javed et al., 2024b) of 500 utterances.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

DeepSeek-R1 achieves the highest accuracy across all conditions, with 45.6 in domain generaliza-
tion, 0.456 in zero-shot classification, and 0.386 in few-shot classification. Its superior performance
can be attributed to its reasoning-centric design, which enables it to capture contextual cues more
effectively and make consistent domain assignments. In contrast, smaller models such as LLaMA-
3.1-8B-Instant demonstrate weaker adaptability to domain variability. These results highlight the
importance of reasoning-oriented LLMs in improving domain classification robustness for multi-
domain Indic speech datasets. Furthermore, the relatively low WER observed in this setting can
be explained by the nature of the utterances. For example, when a speaker refers to a “vessel,” the
utterance could plausibly belong to either the Daily Life Conversation domain (household usage) or
the Product Review domain (product evaluation). Since both interpretations are semantically close
and share overlapping vocabulary, therefore, it is difficult to identify the domain correctly.

H.3 AGENTIC VS. STATIC AND HUMAN-IN-THE-LOOP PIPELINES

Single Agent
Execution

Multi-Agent w/o
Central LLM

Full System
(Llama 70B)

Full System
(ChatGPT-4o)

Human
In Loop

System

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (P
ro

po
rti

on
)

0

500

1000

1500

2000

2500

Ti
m

e
(s

ec
on

ds
)

Figure 9: Comparison of verification accuracy (blue bars) and runtime (red line) across different
system configurations. Static pipelines such as single-agent execution and no-central-LLM baselines
achieve low accuracy despite faster execution. Full SpeechQC-Agent setups (with LLaMA-70B or
GPT-4o as planner) substantially improve accuracy while keeping runtime manageable. Human-in-
the-loop verification attains perfect accuracy but at the cost of prohibitively long runtimes.

Figure 9 contrasts SpeechQC-Agent with static pipelines and human verification. Static baselines
(single-agent execution) achieve low accuracy (≤ 0.4) despite fast runtime, underscoring their in-
ability to capture interdependent checks. In contrast, the full SpeechQC-Agent (with centralized
LLM planning) attains accuracies above 0.8, approaching human-level reliability, while maintain-
ing runtimes an order of magnitude lower than manual verification. The Human Verifier in this study
is a speech technology expert, highly skilled in applying multiple techniques to assess the quality of
speech datasets, and thus represents the gold standard (∼1.0 accuracy). However, such expert veri-
fication is prohibitively expensive (more than 2500s per batch). SpeechQC-Agent therefore bridges
the gap, providing 80-90% of expert-level verification accuracy at less than 20% of the time cost.

I FUTURE DIRECTIONS

While SpeechQC-Agent demonstrates strong performance in synthetic and vendor datasets, sev-
eral avenues remain open to advancing both scope and methodology. First, we aim to develop
SpeechQC-Agent+, a dynamic extension capable of synthesizing new QC tasks on the fly from
quires from natural language, enabling adaptation to emerging dataset standards and modalities.
Second, to address current gaps such as dialect imbalance detection and speaker bias auditing, we
plan to integrate clustering-based dialect tagging, metadata-speech alignment, and distributional
fairness checks. Third, scaling to 100k hour corpora requires distributed execution and schedul-

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

ing optimizations; we will explore hybrid orchestration strategies combining LLM planners with
lightweight rule-based controllers to reduce cost and latency. Fourth, we envision extending the
framework beyond speech to multimodal data curation, including OCR datasets, vision-language
corpora, and conversational agents, positioning dataset verification as a unified agentic AI problem.
Finally, incorporating formal guarantees on workflow soundness and hallucination containment,
e.g., using schema validation, consistency checks, and LLM-as-judge ensembles, offers a path to-
ward provably reliable agentic QC systems.

J LIMITATIONS

Although SpeechQC-Agent represents a first step toward scalable quality verification of multilingual
speech datasets, it has several limitations. First, the performance of the system strongly depends on
PlannerLLM. Smaller models (e.g., LLaMA-3.1-8B) underperform due to limited exposure to Indic
languages, and even stronger models (e.g., GPT-4.1-mini) sometimes hallucinate additional steps,
creating reliability challenges. Second, the current evaluation focuses on the verification of audio-
transcript; extensions to multimodal data (e.g. speech-translation or dialogue corpora) remain
unexplored. Third, the system cannot yet detect dialect/accent imbalance or socio-linguistic biases
in large corpora. Finally, runtime remains non-trivial for large corpora, and while significantly
faster than human annotation, scaling to hundreds of thousands of hours will require additional
optimization and distributed execution strategies.

Despite these limitations, SpeechQC-Agent establishes a foundation for future research in dynamic,
LLM-driven quality control of speech and multimodal datasets.

K PROMPTS

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Task Selection Prompt

Prompt:
You are given the following functions:
1. ASR Transcription
2. Number of Speakers calculation and duration per speaker
3. Quality of Transcript
4. Graphene or character calculation
5. Vocab calculation
6. Language identification
7. Audio length calculation
8. Silence calculation (using VAD)
9. Sample rate check
10. CTC score calculation
11. Upsampling Check
12. Check if speakers are new or old
13. Check the domain of the speech dataset
14. Map transcriptions to audio files using forced alignment
15. Language identification using ASR transcriptions and IndicLID
16. Normalization by removing HTML and other tags from transcriptions in JSON or XML
files
17. Evaluate transcript coherence and fluency using LLM-as-a-Judge and score out of 10
18. Transliteration - Convert Roman script words to Native script using Transliteration for a
specified file and language

Based on the prompt, reply with task numbers that have to be done without any explanation
or reasoning.

Input:
Prompt: {user prompt}

Output Format:
Example: 1,3,5

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Topological Sorting Prompt

Prompt:
You are given the following functions:
1. ASR Transcription using audio files
2. Number of Speakers calculation and duration per speaker using audio files
3. Quality of Transcript using transcriptions
4. Graphene or character calculation using transcriptions
5. Vocab calculation using transcriptions
6. Language identification using transcriptions
7. Audio length calculation using audio files
8. Silence calculation (using VAD) using audio files
9. Sample rate check using audio files
10. CTC score calculation using audio files and transcriptions
11. Upsampling Check using audio files
12. Check if speakers are new or old using the results from number of speakers calculation
13. Check the domain of the speech dataset using transcriptions from ASR
14. Map transcriptions to audio files using forced alignment, using ground truth transcrip-
tions
15. Language identification using ASR transcriptions and IndicLID, using transcriptions
from ASR
16. Normalization by removing HTML and other tags from transcriptions in JSON or XML
files
17. Evaluate transcript coherence and fluency using LLM-as-a-Judge and score out of 10,
using transcriptions from ASR
18. Transliteration - Convert Roman script words to Native script using Transliteration,
using a specified file and language code from the prompt

We have to do tasks: {resp 1}.

Make a Topological sorting for what is the best way to proceed with these tasks, sequentially
and concurrently.

Guidelines:
- We can do tasks concurrently if they are independent of each other.
- Task 12 depends on task 2.
- Task 13 depends on task 1.
- Task 14 depends on the ground truth conversion process.
- Task 15 depends on task 1.
- Task 17 depends on task 1.
- Task 18 is independent.

Output Format:
Example: [[1,3], [5], [8]] (this means do 1 and 3 concurrently, then do 5, and finally do 8)

Finally, give me the topological sorting for the tasks: {resp 1} without any explanation or
reasoning.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Input Source Determination Prompt

Prompt:
Determine the source of the following inputs for task {task id}:
{json.dumps(required inputs, indent=2)}

Parameters:
Possible sources:
- User prompt: {state.get(’user prompt’, ”)}
- Previous task outputs in CombinedStateDict: {json.dumps(k: v for k, v in state.items()
if k not in [’folder path’, ’user prompt’, ’execution log’, ’task inputs’, ’topological sort’],
indent=2)}
- Default: folder path={state.get(’folder path’, ”)}

Output Format:
Return a JSON object mapping each input to its source value or an error message if not
found.

Corruption Check Prompt

Prompt:
You are given a folder with audios at this path: {state[’folder path’]}.

Write a Python script to:
- Attempt to open and read each audio file.
- If a file fails to load or raises an error, mark it as corrupted and capture the error message.

Save a CSV listing all files and their status (”Corrupt” or ”Valid”) as audio validity.csv in
the same directory.

Finally, Respond with ”Success” if all files are valid, otherwise ”Invalid”.

Audio Extension and Format Check Prompt

Prompt:
You are given a folder with audios at this path: {state[’folder path’]}.

Write a Python script to:
1. Confirm that each file except {file path} has a valid audio extension (only .wav or .mp3).
Ignore files with extensions: .csv, .xml, and .json (do not process, validate or flag them).
2. For audio files, also check if they are in WAV format by attempting to read them using a
library like wave or librosa.
3. Create a CSV with columns: Filename, Valid Extension, Is WAV Format, Status
4. Status should be ”Pass” only if both extension is valid and format is WAV.
5. Save the CSV as audio format check.csv in the same directory.

Respond with ”Success” if all files pass, otherwise ”Invalid”.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Sample Rate Check Prompt

Prompt:
You are given a folder with audio files at this path: {state[’folder path’]}.

Write a Python script to:
1. Check each audio file’s sample rate
2. Create a CSV with columns: Filename, Sample Rate, Status
3. Store ”Pass” in Status if sample rate is 16000 Hz, otherwise ”Fail”
4. Save the CSV as sample rate check.csv in the same directory

Use libraries like librosa, soundfile, or wave to check the sample rate.

Ground Truth File Conversion Prompt

Prompt:
You are given a file of ground truths of audios {state[’folder path’]} at {file path}.

1. Get the structure of the txt, csv, json, xml file.
2. Identify the element/column that contains the filename and transcriptions (ground truth).
If there is no such column, return ”Invalid”.
3. Convert the file to CSV with added columns of Filename and Transcription.
4. Save the updated CSV with the new column to the same directory as
new transcriptions.csv.

Finally, Respond with ”Success” if all steps are done, otherwise ”Invalid”.

Conversation Generation Prompt

Prompt:
You are a conversation generator tasked with creating realistic dialogue between exactly two
speakers in English.
Topic: {topic}
Setting: {setting}
Speakers: {speaker1} and {speaker2}

Requirements:
- The conversation must be rich in content related to the specified topic and reflect the given
setting.
- Generate a long conversation with approximately 100 dialogue exchanges.
- Format the output strictly as:
{speaker1}: sentence1
{speaker2}: sentence2
{speaker1}: sentence3
...and so on.
- Do not include any explanations, actions, or additional text outside the conversation
format.
- Ensure the conversation flows naturally and is meaningful with detailed exchanges relevant
to the setting and topic.

Output:

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Translation Prompt

Prompt:
Translate the following sentence into {language}while maintaining realism and natural flow.
Guidelines:
- The conversation should primarily be in {language}, but preserve certain English words
commonly used by {language} speakers.
- Enclose all preserved English words within ¡eng¿...¡/eng¿ tags.
- Randomly and sparsely insert conversational effect tags such as [babble], [bg-speech],
[laugh], [music], [no-speech], [noise], [overlap], or [silence].
- Use ¡initial¿...¡/initial¿ tags for any initials or abbreviations.
- Avoid overusing English words and tags; include them only when contextually appropriate.
- Output only the translated sentence without any explanation.

Input:
Sentence: {content}

Output Format:
Translation: [Translated sentence will be provided here in the specified format with appro-
priate tags.]

Conversation Metadata Prompt

Prompt:
Generate conversation metadata based on the provided conversation content.
Input:
Conversation: {translated content}

Output Format:
Generate conversation metadata in the following JSON format:
{”domain”:”¡domain¿”,”topic”:”¡topic¿”,”language”:”{language}”,”conversation name”:”{conv id}-
GPT”}

Instructions:
- Determine the ”domain” and ”topic” based on the conversation content.
- Set ”language” to the predominant language of the conversation.
- Use the provided ”conversation name” as is.
- Provide only the raw JSON string without any explanation or formatting wrappers.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Speaker Details Prompt

Prompt:
Generate speaker information for two speakers based on the provided conversation content.
Input:
Conversation: {translated content}

Output Format:
Generate speaker information for {speaker1} and {speaker2} in the following JSON format:
{
”{speaker1}”: {
”speakers”: [
{
”gender”: ”¡male or female¿”,
”speakerId”: ”¡alphanumeric ID¿”,
”recorderId”: ”¡alphanumeric ID¿”,
”nativity”: ”{language}”,
”ageRange”: ”¡age range like 25-34¿”
}
]
},
”{speaker2}”: {
”speakers”: [
{
”gender”: ”¡male or female¿”,
”speakerId”: ”¡alphanumeric ID¿”,
”recorderId”: ”¡alphanumeric ID¿”,
”nativity”: ”{language}”,
”ageRange”: ”¡age range like 35-44¿”
}
]
}
}

Instructions:
- Follow the exact JSON structure shown above with all opening and closing braces properly
matched.
- Randomly assign values for ”gender” (choose either ”male” or ”female”).
- For ”speakerId”, use a format like ”S-XXXXX” where X is a digit.
- For ”recorderId”, use a format like ”RXXX” where X is a digit.
- Set ”nativity” to exactly ”{language}” as provided.
- For ”ageRange”, use one of these formats: ”18-24”, ”25-34”, ”35-44”, ”45-54”, ”55-64”,
”65+”.
- Ensure the JSON is properly formatted and valid - all quotes, commas, and braces must be
correctly placed.
- Provide only the raw JSON string without any explanation, markdown formatting, or code
blocks.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Transcription Function Prompt

Prompt:
Transcribe audio files from a specified folder and return the transcription output in CSV
format. This task assumes that all audio files are in Hindi.
Input:
- A folder path containing audio files.
- The folder must exist and be a valid directory.
- All audio files should be in Hindi.

Output Format:
A dictionary with the following structure:
{
”A” [where A is node in the node graph]: ”¡CSV transcription result or error message¿”,
”audio dir”: ”¡Path to the input folder¿”
}

Instructions:
- Validate that the provided folder path exists and is a directory.
- If invalid, return the error message: "A": "Error: Invalid audio
directory".
- If valid, perform transcription of all audio files in the folder.
- Use the transcribe folder to csv() function for transcription.
- Assume the source language is ”Hindi”.
- Log the transcription process using appropriate logging levels (info and error).
- Return the transcription results in the key ”A” along with the input directory.

Silence Detection Prompt

Prompt:
Perform silence detection on all audio files within a specified directory and return the result.
Input:
- A directory path containing audio files to be processed.
- The folder must exist and be a valid directory.

Output Format:
A dictionary with the following structure:
{
”D”: ”¡Silence detection result or error message¿”
}

Instructions:
- Check if the provided audio directory exists and is valid.
- If the directory is invalid or not found, return the error message: "D": "Error:
Invalid audio directory".
- If valid, apply silence detection to all audio files in the directory using the
process folder vad() function.
- Log the beginning of the detection process with an info-level message.
- Return the result under the key ”D”.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Vocabulary Extraction Prompt

Prompt:
Extract unique words (vocabulary) from the transcriptions in a CSV file and save them into
a new column. Output the updated CSV with the extracted vocabulary.
Input:
- A directory containing a CSV file, typically named indicconf hypothesis.csv.
- The CSV must have a column named Transcription or Ground Truth (case-
insensitive).

Output Format:
A dictionary in the following format:
{
”vocab output”: ”¡Path to vocab list.csv or error message¿”
}

Instructions:
- Locate the CSV file using the key "A" in state, or fallback to
audio dir/indicconf hypothesis.csv.
- If the file doesn’t exist, return: "vocab output": "Error: CSV file
<path> not found".
- Within the CSV, identify the transcription column by searching for ’Transcription’ or
’Ground Truth’ (case-insensitive).
- For each row, extract a list of **unique words** from the transcription.
- Store the list in a new column named vocab list.
- Save the updated CSV as vocab list.csv in the same directory.
- Return "vocab output": "CSV saved at: <path>" if successful.
- If the agent fails to complete the task or the file is not created, return an appropriate error
message.
- Handle and log all exceptions clearly.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Character Extraction Prompt

Prompt:
Extract unique characters from each transcription in a CSV file and save them into a new
column. Output the updated CSV with the extracted characters.
Input:
- A directory containing a CSV file, typically named indicconf hypothesis.csv.
- The CSV must have a column named Transcription or Ground Truth (case-
insensitive).

Output Format:
A dictionary in the following format:
{
”character output”: ”¡Path to character list.csv or error message¿”
}

Instructions:
- Locate the CSV file using the key "A" in state, or fallback to
audio dir/indicconf hypothesis.csv.
- If the file doesn’t exist, return: "character output": "Error: CSV file
<path> not found".
- Identify the transcription column by searching for ’Transcription’ or ’Ground Truth’
(case-insensitive).
- For each row, extract a list of **unique characters** from the transcription.
- Store the list in a new column named character list.
- Save the updated CSV as character list.csv in the same directory.
- If the script completes successfully and the file is created, return:
"character output": "CSV saved at: <path>".
- If the agent fails or the output file is not found, return an appropriate error message.
- Log any exceptions during processing clearly and accurately.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Audio Length Calculation Prompt

Prompt:
Calculate the duration of each audio file in a given folder and save the results in a CSV file.
Input:
- A valid directory path containing audio files.

Output Format:
A dictionary in the format:
{
”audio length output”: ”¡Result of operation or error message¿”
}

Instructions:
- Check if the audio dir exists and is a directory. If invalid, return:
"audio length output": "Error: Invalid audio directory".
- Write a Python script that performs the following tasks:
1. Iterate over all audio files in the directory.
2. Calculate the duration of each audio file in seconds.
3. Store the filename and corresponding duration in a CSV with columns: Filename,
Audio length.
4. Save the resulting CSV as audio length.csv in the same folder.
- Execute the script using the [python repl] tool.
- Return the script’s output message under the key "audio length output".
- In case of failure or exceptions, return an appropriate error message.
- Log errors clearly to aid debugging.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Devanagari Script Verification Prompt

Prompt:
Verify whether each transcription in a CSV file is written in the Devanagari script using
Unicode checks.
Input:
- Path to a CSV file (e.g., indicconf hypothesis.csv) with a column containing
ground truth text.

Output Format:
A dictionary in the format:
{
”language verification output”: ”¡Result of operation or error message¿”
}

Instructions:
- Load the CSV file and identify the transcription column (case-insensitive: ’Ground Truth’,
’Transcription’, etc.).
- For each row:
1. Remove whitespace and punctuation from the transcription.
2. Check if all remaining characters fall within the Unicode range U+0900-U+097F
(Devanagari script).
3. If they do, set Is Devanagari to True; otherwise False.
4. If the transcription is empty or only punctuation, set Is Devanagari to False.
- Add a new column Is Devanagari to the CSV.
- Save the output file as language verification.csv in the same directory.
- Ensure the final CSV includes: Filename, Transcription, Is Devanagari.
- Use the [python repl] tool to execute the script.
- On success, return "Success"; else provide an error message.
- Handle edge cases and log any errors encountered.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

CTC Score Computation Prompt

Prompt:
Compute Connectionist Temporal Classification (CTC) alignment scores from audio-
transcription pairs and classify alignment quality.
Input:
- A directory containing audio files (audio dir)
- A CSV file (e.g., indicconf hypothesis.csv) with aligned transcripts, identified
via key ’A’

Output Format:
A dictionary in the format:
{
”ctc score output”: ”¡CSV output path or error message¿”
}

Instructions:
• Load the CSV and audio directory.
• For each audio file, compute alignment scores using the transcriptions in the CSV.
• Use process audio directory() to return segment-wise alignment with

scores and timestamps.
• Aggregate results by:

– Grouping by filename.
– Combining the segment labels into a full transcript

(Aligned Transcript).
– Taking the average CTC score as CTC Score.
– Serializing segment-level details (label, start, end, score) into JSON under
Aligned Segments.

• Classify the score using:
– Good if score > 0.7
– Medium if score > 0.5
– Poor otherwise

• Save the final CSV with columns: Filename, Aligned Segments,
Aligned Transcript, CTC Score, CTC Status.

• Output the result to ctc scores.csv in the same directory as the input CSV.
• Log and report errors appropriately.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Valid Speaker Verification Prompt

Prompt:
Analyze speaker presence across files to determine whether a speaker is ”New” or ”Old”
based on repetition across files.
Input:
- A directory containing a CSV named num speakers.csv with columns:

• File Name

• Number of Speakers

• Speaker Durations - JSON object mapping speaker IDs to durations
Output Format:
A dictionary:
{
”valid speaker output”: ”¡CSV output path or error message¿”
}
Instructions:

1. Load num speakers.csv.
2. Build a dictionary to track how many files each speaker appears in.
3. For each row:

• Skip if Number of Speakers == ”Error”.
• If only one speaker and SPEAKER 00 is reused across files, mark as Old.
• If multiple speakers and any speaker is reused across files, mark as Old.
• Otherwise, mark the speaker as New.

4. For each row, populate:
• Filename
• Speaker Status (New or Old)
• Common File (the current file name if status is Old, else empty)

5. Save the result to valid speaker.csv in the same directory.
6. Respond with ”Success” if the script runs without errors and file is saved. Other-

wise, return ”Invalid”.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Domain Checker Prompt

Prompt:
You are a Hindi language expert. Analyze the following normalized Hindi transcript and
determine the general domain of the speech dataset.
Instructions:

• Return the domain as a single word (e.g., News, Call Center, Interview,
Conversation, Education).

Input:
A CSV file indicconf hypothesis.csv located inside a directory, containing a col-
umn named transcriptions with normalized Hindi transcripts.
Expected Output:
A new column domain added to the CSV, representing the predicted domain of each tran-
scription. The final output is saved as domain check.csv in the same directory.
Agent Behavior:

1. Validate the input directory and CSV.
2. Iterate over each row in the transcriptions column.
3. For each transcript, send a prompt to the language model to classify the domain.
4. If the LLM fails, label the domain as Unknown.
5. Save the resulting DataFrame with the new domain column to

domain check.csv.

IndicLID Language Identification Agent Prompt

Prompt Objective:
Identify the language of each transcript using the IndicLID model.
Input Description:

• A folder containing a CSV file (default name: indicconf hypothesis.csv).
• The CSV should include a column named transcriptions and optionally
Filename.

Instructions:
1. For each row in the CSV:

• Extract the transcript and filename.
• If the transcript is empty or NaN, assign Language Code = Unknown,
Confidence = 0.0, Model Used = IndicLID.

• Otherwise, use the IndicLID model to perform language identification.
2. If language identification fails for a transcript, mark it with Language Code =

Error.
3. Store all results in a new DataFrame with columns: Filename,

Transcription, Language Code, Confidence, Model Used.
4. Save the output as indiclid language identification.csv in the

same directory.
Expected Output:
A CSV file containing language identification results for each transcript, with confidence
scores and the model used (IndicLID).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Text Normalization and Tag Removal Agent Prompt

Prompt Objective:
Normalize transcription text by cleaning ground truth data in a CSV file.
Input Description:

• A directory containing a CSV file named indicconf hypothesis-gt.csv.
• The file should have a column named Transcriptions or ground truth

(case-insensitive).
Instructions:

1. Read the CSV file and identify the transcription column (Transcriptions or
ground truth).

2. Clean each transcript using the following rules:
• Remove HTML tags like and .
• Remove any text enclosed in square brackets (e.g., [START]).
• Remove symbols such as #, $, and %.

3. Add a new column named normalized transcripts with the cleaned text.
4. Save the updated CSV as normalized list.csv in the same directory.

Expected Output:
A new CSV file with the original columns and an additional normalized transcripts
column saved as normalized list.csv.

LLM-Based Transcription Quality Scoring Agent Prompt

Prompt Objective:
Evaluate the fluency and coherence of ASR-generated transcriptions using a Language
Model (LLM) and assign scores and comments.
Input Description:

• A directory path containing a CSV file named indicconf hypothesis.csv.
• The CSV contains:

– Filename column (case-insensitive).
– One of ground truth or transcriptions columns (case-insensitive),

containing ASR outputs.
Instructions:

1. Load the CSV file.
2. For each transcription:

• Analyze sentence fluency and meaning very strictly.
• Score each transcription from 0 to 10:

– 10: Highly meaningful and fluent Hindi sentence.
– 0: Nonsensical or contains language other than Hindi.
– Gradually decrease score based on fluency degradation.

• Provide a brief Evaluation Comment justifying the score.
3. Create a new CSV file with the columns: Filename, Transcription,

LLM Score, and Evaluation Comment.
4. Save the output as llm scores.csv in the same directory.
5. Handle errors gracefully during execution.

Expected Output:
A CSV file named llm scores.csv containing scored and reviewed transcriptions.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

English Word Count Agent Prompt

Prompt Objective:
Determine the number of English words present in each line of a normalized transcript using
an LLM.
Input Description:

• A directory path that contains a CSV file named normalized list.csv.
• The CSV must have a column named ground truth, containing the transcrip-

tion text.
Instructions:

1. Load the normalized list.csv file.
2. For each row in the ground truth column:

• Construct a prompt asking a language expert to count the number of English
words (case-insensitive) in the given text.

• Extract the integer response.
• If the LLM fails, assign -1 for that row.

3. Append the count as a new column called english word count.
4. Save the updated CSV as english word count.csv in the same directory.

Prompt Template:
You are a language expert. Count and return only the number of English
words (case-insensitive) in the following text.
Text:
{ground truth text}
Respond with just the number.

Expected Output:
A CSV named english word count.csv containing an additional column
english word count with English word frequencies per row.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Utterance Duplicate Checker Agent Prompt

Prompt Objective:
Identify and report duplicate utterances across all text-based columns in a CSV.
Input Description:

• A directory containing a CSV file named normalized list.csv.
Instructions:

1. Load the normalized list.csv file.
2. Iterate through each column of the DataFrame.
3. For columns with text (dtype == object):

• Detect duplicated utterances (preserve all duplicates using keep=False).
• For each unique duplicated utterance, count the number of occurrences.
• Record the column name, the duplicated utterance, and the count.

4. Save the results in a new CSV called duplicate utterances.csv contain-
ing:

• column name, utterance, and count
5. If no duplicates are found, return a message indicating that.

Expected Output:
• A CSV file named duplicate utterances.csv if duplicates exist.
• Otherwise, a message stating "No duplicate utterances found."

WER Computation Agent Prompt

Prompt Objective:
Compute Word Error Rate (WER) between normalized reference transcriptions and pre-
dicted hypotheses.
Input Description:

• A directory containing two CSV files:
– normalized list.csv with the column
normalized transcripts.

– indicconf hypothesis.csv with the column transcriptions.
Instructions:

1. Ensure both CSVs exist and contain the same number of rows.
2. For each row, compute the Word Error Rate (WER) between:

• Reference← normalized transcripts
• Hypothesis← transcriptions

3. Use the jiwer library for WER calculation.
4. Handle exceptions on a per-row basis to ensure continuity even if some rows fail.
5. Save the output in a CSV named wer.csv with columns:

• Reference, Hypothesis, and WER
Expected Output:

• A CSV file named wer.csv saved in the same directory.
• Each row shows the WER score for the respective transcription pair.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Graph Builder Agent Prompt

Prompt Objective:
Construct a ‘StateGraph‘ from a structured list of task groups while filtering by a valid task
set.
Input Description:

• structure: A list of lists where each sublist represents a group of task IDs that
can be executed in parallel.

• valid tasks: A set of valid task identifiers (as strings). Only these will be
included in the final graph.

Instructions:
1. Filter the structure to retain only task IDs present in valid tasks.
2. If the resulting structure is empty but valid tasks is non-empty, use all numeric

valid tasks as a fallback.
3. Add each valid task as a node in the graph using node map, which maps task id

to a tuple: (node name, function, description).
4. Add a dummy start node and connect it to the first group.
5. Connect each group to the next group, allowing fan-in/fan-out connections.
6. Connect the last group to the terminal END node.

Expected Output:
• A compiled StateGraph object that respects the dependency structure implied

by the groupings and task validity.
• An error is raised if no valid tasks remain after filtering.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Prompt Checker Agent Prompt

Prompt Objective:
Analyze a user’s natural language prompt to determine whether the currently selected task
IDs are appropriate, and update the task list if any are missing based on defined task descrip-
tions and selection rules.
Input Description:

• user prompt: A natural language prompt provided by the user describing the
task they want to perform.

• selected tasks: A comma-separated string of task numbers (e.g., ”1,2,5”) that
have been initially selected for execution.

Task Descriptions:
• Contains 24 predefined task definitions, ranging from ASR transcription to WER

computation.
Selection Rules:

• Uses keyword and semantic rules (e.g., “if prompt mentions ‘Vocab calculation’,
include task 5”) to guide inclusion.

• Tasks 1 and 15 are linked if language identification is mentioned.
• Certain tasks (e.g., 9, 23, 24) trigger the inclusion of dependent tasks (e.g., task 16).

Instructions to the LLM:
1. Analyze the user prompt and determine which tasks are required based on se-

mantic understanding and rules.
2. Compare the determined tasks with selected tasks.
3. If any tasks are missing, return Status: Missing, with task IDs and an ex-

planation.
4. If all are correct, return Status: Correct and the list of tasks.
5. Format the output as:

Status: <Correct|Missing>
Tasks: <comma-separated task IDs>
Explanation: <why tasks were added (if Missing)>

Execution Loop:
• Repeats for a maximum of 3 iterations to ensure task completeness.
• Dynamically updates task list with each LLM feedback.
• Calls select tasks() if new insights are needed.

Output:
• Returns the final list of task IDs as a comma-separated string.

42

	Introduction
	Related Work
	Data Creation Pipeline
	Data Quality Verification

	Methodology
	Task Parsing and Action Generation
	Node Generation and Dependency Graph Construction
	Tool Synthesis and Retrieval
	Workflow Execution and Monitoring
	Output Aggregation and Dashboard Generation
	Modularity and Extensibility

	Experiments
	Dataset Construction
	Quality Verification Framework
	Baselines and LLM Variants

	Results and Discussion
	Conclusion
	Appendix
	Compute Infrastructure
	Inference Cost

	Dataset Composition
	Additional Data Information

	SpeechQC-Dataset
	Data Quality Verification Framework
	Case Study Example
	Tasks Information
	Further Analysis
	SpeechQC-Agent on Real-World Vendor Datasets
	Performance of LLMs on IndicVoice Dataset
	Agentic vs. Static and Human-in-the-Loop Pipelines

	Future Directions
	Limitations
	Prompts

