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Abstract

Data-driven Riemannian geometry has emerged
as a powerful tool for interpretable representation
learning, offering improved efficiency in down-
stream tasks. Moving forward, it is crucial to
balance cheap manifold mappings with efficient
training algorithms. In this work, we integrate
concepts from pullback Riemannian geometry
and generative models to propose a framework
for data-driven Riemannian geometry that is scal-
able in both geometry and learning: score-based
pullback Riemannian geometry. Focusing on uni-
modal distributions as a first step, we propose
a score-based Riemannian structure with closed-
form geodesics that pass through the data prob-
ability density. With this structure, we construct
a Riemannian autoencoder (RAE) with error
bounds for discovering the correct data manifold
dimension. This framework can naturally be used
with anisotropic normalizing flows by adopting
isometry regularization during training. Through
numerical experiments on diverse datasets, includ-
ing image data, we demonstrate that the proposed
framework produces high-quality geodesics pass-
ing through the data support, reliably estimates
the intrinsic dimension of the data manifold, and
provides a global chart of the manifold. To the
best of our knowledge, this is the first scalable
framework for extracting the complete geometry
of the data manifold.
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1. Introduction
Data often reside near low-dimensional non-linear mani-
folds as illustrated in Figure 1. This manifold assumption
(Fefferman et al., 2016) has been popular since the early
work on non-linear dimension reduction (Belkin & Niyogi,
2001; Coifman & Lafon, 2006; Roweis & Saul, 2000; Sam-
mon, 1969; Tenenbaum et al., 2000). Learning this non-
linear structure, or representation learning, from data has
proven to be highly successful (DeMers & Cottrell, 1992;
Kingma & Welling, 2013) and continues to be a recurring
theme in modern machine learning approaches and down-
stream applications (Chow et al., 2022; Gomari et al., 2022;
Ternes et al., 2022; Vahdat & Kautz, 2020; Zhong et al.,
2021).

Recent advances in data-driven Riemannian geometry have
demonstrated its suitability for learning representations. In
this context, these representations are elements residing in
a learned geodesic subspace of the data space, governed
by a non-trivial Riemannian structure1 across the entire
ambient space (Arvanitidis et al., 2016; Diepeveen, 2024;
Hauberg et al., 2012; Peltonen et al., 2004; Scarvelis &
Solomon, 2023; Sorrenson et al., 2024; Sun et al., 2024).
Among these contributions, it is worth highlighting that
Sorrenson et al. (2024) are the first and only ones so far
to use information from the full data distribution obtained
though generative models (Dinh et al., 2017; Song et al.,
2020), even though this seems a natural approach given
recent studies such as Horvat & Pfister (2022); Tempczyk
et al. (2022); Sakamoto et al. (2024); Stanczuk et al. (2024).
A possible explanation for the limited use of generative
models in constructing Riemannian geometry could lie in
challenges regarding scalability of the manifold mappings.
Indeed, even though the generative models can be trained
efficiently, Sorrenson et al. (2024) also mention themselves
that it can be numerically challenging to work with their
induced Riemannian geometry.

If the manifold mapping scalability challenges were to be
overcome, the combined power of Riemannian geometry
and state of the art generative modelling could have pro-
found implications on how to handle data in general. In-

1rather than the standard ℓ2-inner product
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(a) Hemisphere (2,3) (b) Sinusoid (1,3) (c) Sinusoid (2,3)

Figure 1. Approximate data manifolds learned by the Riemannian autoencoder generated by score-based pullback Riemannian geometry
for three datasets. The orange surfaces represent the manifolds learned by the model, while the blue points correspond to the training data.
Each manifold provides a convincing low-dimensional representation of the data, isometric to its respective latent space.

deed, beyond typical data analysis tasks such as comput-
ing distances, means, and interpolations/extrapolations of
data points, a data-driven Riemannian structure also offers
greater potential for representation learning and downstream
applications. For instance, many advanced data processing
methods, from Principal Component Analysis (PCA) to
score and flow-matching, have Riemannian counterparts
(Diepeveen et al. (2023); Fletcher et al. (2004) and Chen
& Lipman (2023); Huang et al. (2022)) that have proven
beneficial by improving upon full black box methods in
terms of interpretability (Diepeveen, 2024) or Euclidean
counterparts in terms of efficiency (Kapusniak et al., 2024;
de Kruiff et al., 2024). Here it is worth highlighting that
scalability of manifold mappings was completely circum-
vented by (Diepeveen, 2024) and (de Kruiff et al., 2024) by
using pullback geometry. However, here learning a suitable
(and stable) pullback geometry suffers from challenges re-
garding scalability of the training algorithm, contrary to the
approach by (Sorrenson et al., 2024).

Motivated by the above, this work aims to address the fol-
lowing question: How to strike a good balance between
scalability of training a data-driven Riemannian structure
and of evaluating its corresponding manifold mappings?

1.1. Contributions

In this paper, we take first steps towards striking such a
balance and propose a score-based pullback Riemannian
metric assuming a relatively simple but generally applicable
family of probability densities, which we show to result in
both scalable manifold mappings and scalable learning algo-
rithms. We emphasize that we do not directly aim to find the
perfect balance between the two types of scalability. Instead
we start from a setting which has many nice properties, but
will allow for generalization to multimodal densities, which
we reserve for future work.

Specifically, we consider a family of unimodal probability
densities whose negative log-likelihoods are compositions
of strongly convex functions and diffeomorphisms. As this
work is an attempt to bridge between the geometric data anal-
ysis community and the generative modeling community,
we break down the contributions in two ways. Theoretically,

• We propose a score-based pullback Riemannian metric
such that manifold mappings respect the data distribution.

• We demonstrate that this density-based Riemannian struc-
ture naturally leads to a Riemannian autoencoder2 and
provide error bounds on the expected reconstruction error,
which allows for approximation of the data manifold as
illustrated in Figure 1.

• We introduce a learning scheme based on adaptations of
normalizing flows to find the density to be integrated into
the Riemannian framework, which is tested on several
synthetic data sets.

Practically, this work showcases how two simple adapta-
tions to the normalizing flows framework enable data-driven
Riemannian geometry. This significantly expands the poten-
tial for downstream applications compared to the unadapted
framework.

1.2. Outline

After introducing notation in Section 2, Section 3 considers
a family of probability distributions, from which we ob-
tain suitable geometry, and Section 4 showcases how one
can subsequently construct Riemannian Autoencoders with
theoretical guarantees. From these observations Section 5
discusses the natural limitations of standard normalizing

2in the sense of Diepeveen (2024)
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flows and how to change the parametrisation and training
for downstream application in a Riemannian geometric set-
ting. Section 6 showcases several use cases of data-driven
Riemannian structure on several data sets. Finally, we sum-
marize our findings in Section 7.

2. Notation
Here we present some basic notations from differential and
Riemannian geometry, see Boothby (2003); Carmo (1992);
Lee (2013); Sakai (1996) for details.

Smooth Manifolds and Tangent Spaces. Let M be a smooth
manifold. We write C∞(M) for the space of smooth func-
tions over M. The tangent space at p ∈ M, which is
defined as the space of all derivations at p, is denoted by
TpM and for tangent vectors we write Ξp ∈ TpM. For
the tangent bundle we write T M and smooth vector fields,
which are defined as smooth sections of the tangent bundle,
are written as X (M) ⊂ T M.

Riemannian Manifolds. A smooth manifold M becomes
a Riemannian manifold if it is equipped with a smoothly
varying metric tensor field ( · , · ) : X (M) × X (M) →
C∞(M). This tensor field induces a (Riemannian) metric
dM : M×M → R. The metric tensor can also be used to
construct a unique affine connection, the Levi-Civita con-
nection, that is denoted by ∇( · )( · ) : X (M)×X (M) →
X (M). This connection is in turn the cornerstone of a
myriad of manifold mappings.

Geodesic. One is the notion of a geodesic, which for two
points p,q ∈ M is defined as a curve γp,q : [0, 1] → M
with minimal length that connects p with q. Another closely
related notion to geodesics is the curve t 7→ γp,Ξp(t) for a
geodesic starting from p ∈ M with velocity γ̇p,Ξp(0) =
Ξp ∈ TpM.

Exponential Map. This can be used to define the exponential
map expp : Dp → M as expp(Ξp) := γp,Ξp(1), where
Dp ⊂ TpM is the set on which γp,Ξp(1) is defined.

Logarithmic Map. Furthermore, the logarithmic map
logp : exp(D′

p) → D′
p is defined as the inverse of expp, so

it is well-defined on D′
p ⊂ Dp where expp is a diffeomor-

phism.

Pullback metrics. Finally, if (M, (·, ·)) is a d-dimensional
Riemannian manifold, N is a d-dimensional smooth man-
ifold and ϕ : N → M is a diffeomorphism, the pullback
metric

(Ξ,Φ)ϕ := (D(·)ϕ[Ξ(·)], D(·)ϕ[Φ(·)])ϕ(·), (1)

where Dpϕ : TpN → Tϕ(p)M denotes the differential of
ϕ, defines a Riemannian structure on N , which we denote
by (N , (·, ·)ϕ). Pullback metrics literally pull back all ge-
ometric information from the Riemannian structure on M.

Throughout the rest of the paper pullback mappings will be
denoted similarly to Equation (1) with the diffeomorphism
ϕ as a superscript, i.e., we write dϕN (p,q), γϕp,q, expϕp(Ξp)

and logϕp q for p,q ∈ N and Ξp ∈ TpN .

3. Riemannian geometry from unimodal
probability densities

We remind the reader that the ultimate goal of data-driven
Riemannian geometry on Rd is to construct a Riemannian
structure such that geodesics always pass through the sup-
port of data probability densities. In this section we will
focus on constructing Riemannian geometry that does just
that from unimodal densities p : Rd → R of the form

p(x) ∝ e−ψ(φ(x)), (2)

where ψ : Rd → R is a smooth strongly convex function
and φ : Rd → Rd is a diffeomorphism. In particular, we
will consider pullback Riemannian structures of the form3

(Ξ,Φ)∇ψ◦φx := (Dx∇ψ ◦ φ[Ξ], Dx∇ψ ◦ φ[Φ])2. (3)

For proofs of the results below and those of more general
statements we refer the reader to Appendix A.

The following result, which is a direct application of
(Diepeveen, 2024, Prop. 2.1), gives us closed-form ex-
pressions of several important manifold mappings under
(·, ·)∇ψ◦φ if we choose

ψ(x) =
1

2
x⊤A−1x, (4)

where A ∈ Rd×d is symmetric positive definite.

Proposition 3.1. Let φ : Rd → Rd be a smooth diffeo-
morphism and let ψ : Rd → R be a function of the form
Equation (4).

Then,

d∇ψ◦φRd (x,y) = ∥A−1(φ(x)− φ(y))∥2, (5)

γ∇ψ◦φx,y (t) = φ−1((1− t)φ(x) + tφ(y)), (6)

exp∇ψ◦φx (Ξx) = φ−1(φ(x) +Dxφ[Ξx]), (7)

log∇ψ◦φx y = Dφ(x)φ
−1[φ(y)− φ(x)]. (8)

Remark 3.2. We note that ℓ2-stability of geodesics is inher-
ited by (Diepeveen, 2024, Thm. 3.4), if we have (approxi-
mate) local ℓ2-isometry of φ on the data support.

A direct result of Proposition 3.1 is that geodesics will
pass through the support of p(x) from (2), in the sense
that geodesics pass through regions with higher likelihood
than the end points. This can be formalized in the following
result.

3Note that ∇ψ ◦ φ should be read as (∇ψ) ◦ φ.
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Theorem 3.3. Let φ : Rd → Rd be a smooth diffeomor-
phism and let ψ : Rd → R be a function of the form (4).

Then, mapping

t 7→ ψ(φ(γ∇ψ◦φx,y (t))), t ∈ [0, 1] (9)

is strongly convex.

The Riemannian structure in Equation (3) is related to the
Riemannian structure obtained from the score function4

∇ log(p(·)) : Rd → Rd if φ is close to a smooth local ℓ2-
isometry on the data support, i.e., Dxφ is an orthogonal
operator:

(Dx∇ log(p(·))[Ξ], Dx∇ log(p(·))[Φ])2
= (Dx∇(ψ ◦ φ)[Ξ], Dx∇(ψ ◦ φ)[Φ])2
= (Dx((D(·)φ)

⊤ ◦ ∇ψ ◦ φ)[Ξ],
Dx

(
(D(·)φ)

⊤ ◦ ∇ψ ◦ φ
)
[Φ])2

≈ (Dx∇ψ ◦ φ[Ξ], Dx∇ψ ◦ φ[Φ])2 = (Ξ,Φ)∇ψ◦φx . (10)

For that reason, we call such an approach to data-driven
Riemannian geometry: score-based pullback Riemannian
geometry.

4. Riemannian autoencoder from unimodal
probability densities

Proposition 3.1 begs the question what ψ could still be used
for. We note that this case comes down to having a data
probability density that is a deformed Gaussian distribution.
In the case of a regular (non-deformed) Gaussian, one can
compress the data generated by it through projecting them
onto a low rank approximation of the covariance matrix such
that only the directions with highest variance are taken into
account. This is the basic idea behind PCA. In the following
we will generalize this idea to the Riemannian setting and
observe that this amounts to constructing a Riemannian au-
toencoder (RAE) (Diepeveen, 2024, Sec. 4), whose error we
can bound by picking the dimension of the autoencoder in a
clever way, reminiscent of the classical PCA error bound.

Concretely, we assume that we have a unimodal density
of the form Equation (2) with a quadratic strongly convex
function ψ(x) := 1

2x
⊤A−1x for some diagonal matrix

A := diag(a1, . . .ad) with positive entries5. Next, we de-
fine an indexing uw ∈ [d] := {1, . . . , d} for w = 1, . . . , d
such that

au1 ≥ . . . ≥ aud
, (11)

4Note that the score by itself is not always a diffeomorphism.
5Note that this is not restrictive as for a general symmetric

positive definite matrix A the eigenvalues can be used as diagonal
entries and the orthonormal matrices can be concatenated with the
diffeomorphism.

and consider a threshold ε ∈ [0, 1]. We then consider dε ∈
[d] defined as the integer that satisfies

dε = min
{
d′ ∈ [d− 1]

∣∣∣ d∑
w=d′+1

auw
≤ ε

d∑
u=1

au

}
(12)

if aud
≤ ε

∑d
u=1 au and dε = d otherwise.

Finally, we define the encoder (chart) Eε : Rd → Rdε

Eε(x)w := (logφφ−1(0) x, D0φ
−1[euw ])φφ−1(0)

Equation (8)
= (φ(x), euw)2, w = 1, . . . , dε, (13)

and define the decoder (inverse chart) Dε : Rdε → Rd as

Dε(p) := expφφ−1(0)

( dε∑
w=1

pwD0φ
−1[euw ]

)
Equation (7)

= φ−1
( dε∑
w=1

pwe
uw

)
, (14)

which generate a Riemannian autoencoder and the set
Dε(Rdε) ⊂ Rd as an approximate data manifold as in the
scenario in Figure 1.

Similarly to classical PCA, this Riemannian autoencoder
comes with an error bound on the expected approximation
error, which is fully determined by the diffeomorphism’s
deviation from isometry around the data manifold. For the
proof, we refer the reader to Appendix B.

Theorem 4.1. Let φ : Rd → Rd be a smooth diffeomor-
phism and let ψ : Rd → R be a quadratic function of the
form Equation (4) with positive definite diagonal matrix
A ∈ Rd×d. Furthermore, let p : Rd → R be the corre-
sponding probability density of the form Equation (2). Fi-
nally, consider ε ∈ [0, 1] and the mappings Eε : Rd → Rdε
and Dε : Rdε → Rd in Equations (13) and (14) with
dε ∈ [d] as in Equation (12).

Then,

EX∼p[∥Dε(Eε(X))−X∥22] ≤ εCφ tr(A)+o(ε), (15)

where

Cφ := inf
β∈[0, 12 )

{C1
β,φC

2
β,φC

3
β,φ

1− 2β

( 1 + β

1− 2β

) d
2
}

(16)

for

C1
β,φ := sup

x∈Rd

{∥Dφ(x)φ
−1∥22e−

β
2 φ(x)

⊤A−1φ(x)}, (17)

C2
β,φ := sup

x∈Rd

{|det(Dxφ)|e−
β
2 φ(x)

⊤A−1φ(x)}, (18)

4



Score-based pullback Riemannian geometry

and

C3
β,φ := sup

x∈Rd

{|det(Dφ(x)φ
−1)|e−

β
2 φ(x)

⊤A−1φ(x)}.

(19)

Remark 4.2. Note that the RAE latent space is interpretable
as it is ℓ2-isometric to the data manifold if φ is an approx-
imate ℓ2-isometry on the data manifold. In other words,
latent representations being close by or far away correspond
to similar behaviour in data space, which is not the case for
a VAE (Kingma & Welling, 2013).

5. Learning unimodal probability densities
Naturally, we want to learn probability densities of the form
Equation (2), which can then directly be inserted into the
proposed score-based pullback Riemannian geometry frame-
work. In this section we will consider how to adapt normal-
izing flow (NF) (Dinh et al., 2017) training to a setting that
is more suitable for our purposes6. In particular, we will con-
sider how training a normalizing flow density p : Rd → R
given by

p(x) :=
1

Cψ
e−ψ(φ(x))|det(Dxφ)|, (20)

where Cψ > 0 is a normalisation constant that only de-
pends on the strongly convex function ψ, yields our target
distribution Equation (2).

From Sections 3 and 4 we have seen that ideally the strongly
convex function ψ : Rd → R corresponds to a Gaussian
with a parameterised diagonal covariance matrix A ∈ Rd×d,
resulting in more parameters than in standard normalizing
flows, whereas the diffeomorphism φ : Rd → Rd is regu-
larized to be an isometry. In particular, A ideally allows
for learnable anisotropy rather than having a fixed isotropic
identity matrix. The main reason is that through anisotropy
we can construct a Riemannian autoencoder (RAE), since it
is known which dimensions are most important. Moreover,
the diffeomorphism should be ℓ2-isometric, unlike standard
normalizing flows which are typically non-volume preserv-
ing, enabling stability (Remark 3.2) and a practically useful
and interpretable RAE (Theorem 4.1 and Remark 4.2).

In addition, ℓ2-isometry (on the data support) implies
volume-preservation, which means that |det(Dxφ)| ≈ 1
so that the model density (20) reduces to the desired form of
Equation (2)7. While volume preservation theoretically fol-

6We note that the choice for adapting the normalizing flow
training scheme rather than using diffusion model training schemes
is due to more robust results through the former.

7We note that without these constraints (accommodating mul-
timodality) the learned mappings can in principle be used to con-
struct Riemannian geometry and a RAE. However, from the theory
discussed in this paper we cannot guarantee stability of manifold
mappings nor that the RAE has the right dimension.

lows from ℓ2-isometry, in practice, the flow can only approx-
imate local isometry through optimization. Thus, we found
it beneficial to explicitly include a volume-preservation loss,
resulting in an adapted normalizing flow loss that enforces
both constraints for improved alignment with the desired
Riemannian structure.

L(θ1, θ2) := EX∼pdata [− log pθ1,θ2(X)]

+ λvolEX∼pdata

[
log(|det

(
DXφθ2

)
|)2
]

+ λisoEX∼pdata

[
∥(DXφθ2)

⊤DXφθ2 − Id∥2F
]

(21)

where λvol, λiso > 0 and the negative log likelihood term
reduces to

1

2
EX∼pdata

[
φθ2(X)⊤A−1

θ1
φθ2(X)

]
+

1

2
tr(log(Aθ1))

− EX∼pdata

[
log(|det

(
DXφθ2

)
|)
]
+
d

2
log(2π), (22)

where Aθ1 is a diagonal matrix and φθ2 is a normalizing
flow with affine coupling layers8 (Dinh et al., 2017). For
small ambient dimensions, isometry regularization is feasi-
ble, but in high dimensions, computing the full Jacobian is
impractical. To address this, we use a scalable sliced isom-
etry loss based on Jacobian-vector products, significantly
reducing both computational and memory costs while pre-
serving effectiveness. See Appendix I.2 for details.

6. Experiments
We conducted two sets of experiments to evaluate the pro-
posed scheme from 5 to learn suitable pullback Riemannian
geometry. The first set investigates whether our adaptation
of the standard normalizing flow (NF) training paradigm
leads to more accurate and stable manifold mappings, as
measured by the geodesic and variation errors. The second
set assesses the capability of our method to generate a robust
Riemannian autoencoder (RAE).

For all experiments in this section, detailed training configu-
rations are provided in Appendix C and additional results in
Appendix D.

6.1. Manifold mappings

As discussed in (Diepeveen, 2024), the quality of learned
manifold mappings is determined by two key metrics: the
geodesic error and the variation error. The geodesic er-
ror measures the average deviation form the ground truth

8We note that the choice for affine coupling layers rather than
using more expressive diffeomorphisms such as rational quadratic
flows (Durkan et al., 2019) is due to our need for high regularity for
stable manifold mappings (Remark 3.2) and an interpretable RAE
(Remark 4.2), which has empirically shown to be more challenging
to achieve for more expressive flows as both first-and higher-order
derivatives of φ will blow up the error terms in Theorem 4.1.
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geodesics implied by the ground truth pullback metric, while
the variation error evaluates the stability of geodesics under
small perturbations. We define these error metrics for the
evaluation of pullback geometries in Appendix E.

Our approach introduces two key modifications to the nor-
malizing flow (NF) training framework:

1. Anisotropic Base Distribution: We parameterize the
diagonal elements of the covariance matrix Aθ1 , intro-
ducing anisotropy into the base distribution.

2. ℓ2-Isometry Regularization: We regularize the flow
φθ2 to be approximately ℓ2-isometric.

To assess the effectiveness of these modifications in learning
more accurate and robust manifold mappings, we compare
our method against three baselines:

(1) Normalizing Flow (NF): Standard NF with an isotropic
Gaussian base N (0, Id), no isometry regularization.

(2) Anisotropic NF: NF with a parameterized diagonal
covariance base, no isometry regularization.

(3) Isometric NF: NF with an isotropic Gaussian base,
regularized to be ℓ2-isometric.

We conduct experiments on three datasets, illustrated in 7 in
F.1: the Single Banana Dataset, the Squeezed Single Banana
Dataset, and the River Dataset. Detailed descriptions of
the construction and characteristics of these datasets are
provided in F.1.

Table 1 presents the geodesic and variation errors for each
method across the three datasets and Figure 2 visually com-
pares the geodesics computed using each method on the
river dataset. Our method consistently achieves significantly
lower errors compared to the baselines, indicating more
accurate and stable manifold mappings.

Introducing anisotropy in the base distribution without en-
forcing isometry in the flow offers no significant improve-
ment over the standard flow. On the other hand, regularizing
the flow to be approximately isometric without incorpo-
rating anisotropy in the base distribution results in under-
fitting, leading to noticeably worse performance than the
standard flow. Our results demonstrate that the combina-
tion of anisotropy in the base distribution with isometry
regularization (our method) yields the most accurate and sta-
ble manifold mappings, as evidenced by consistently lower
geodesic and variation errors.

6.2. Riemannian Autoencoder

To evaluate our method’s ability to learn a Riemannian
autoencoder (RAE), we conducted experiments on both

low-to-moderate dimensional Euclidean datasets and higher-
dimensional image datasets:

• Hemisphere(d′, d) and Sinusoid(d′, d): Synthetic Eu-
clidean datasets with controllable intrinsic dimension d′

and ambient dimension d.

• d′-Gaussian Blobs Image Manifold: A synthetic image
dataset, also with controllable intrinsic dimension d′, em-
bedded in a 1024-dimensional ambient space.

• MNIST: A dataset of handwritten digits, originally em-
bedded in a 784-dimensional space, which we further
embed into a 1024-dimensional ambient space using bicu-
bic rescaling.

The Hemisphere and Sinusoid datasets are used to evalu-
ate RAE’s performance on low-to-moderate dimensional
manifolds, while the Gaussian Blobs and MNIST datasets
are used to test its scalability to higher-dimensional and
more complex image manifolds. For further details on each
dataset, refer to Appendix F.2.

6.2.1. EUCLIDEAN DATASETS

1D and 2D manifolds. In Figures 1 and 5, we present the
data manifold approximations by our Riemannian autoen-
coder for four low-dimensional manifolds: Hemisphere(2,3),
Sinusoid(1,3), Sinusoid(2,3) and Sinusoid(1,100). In Ap-
pendix G, we detail the process used to create the data
manifold approximations for these experiments. In our ex-
periments, we set ϵ = 0.01, which resulted in dϵ = d′ for
all cases, accurately capturing the intrinsic dimension of
each manifold and producing accurate global charts.

Higher-dimensional manifolds. To assess the scalability
of our method, we conducted experiments on the Hemi-
sphere(5,20) and Sinusoid(5,20) datasets. The learned vari-
ances effectively indicate the importance of each latent di-
mension, with high variances corresponding to the intrinsic
manifold structure.

On the Hemisphere(5,20) dataset, our model correctly iden-
tified five non-vanishing latent dimensions, achieving near-
zero reconstruction error when selecting them. In contrast,
choosing latent dimensions with vanishing variance resulted
in no meaningful error reduction, confirming the model’s
ability to separate important from redundant dimensions.
A more detailed analysis of this effect is provided in Ap-
pendix D.

For the more challenging Sinusoid(5,20) dataset, our method
remains highly effective, though slightly less precise than
for the Hemisphere dataset. The first six most important
latent dimensions account for approximately 97% of the

6
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Metric Our Method NF Anisotropic NF Isometric NF
Single Banana Dataset

Geodesic Error 0.0315 (0.0268) 0.0406 (0.0288) 0.0431 (0.0305) 0.0817 (0.1063)
Variation Error 0.0625 (0.0337) 0.0638 (0.0352) 0.0639 (0.0354) 0.0639 (0.0355)

Squeezed Single Banana Dataset
Geodesic Error 0.0180 (0.0226) 0.0524 (0.0805) 0.0505 (0.0787) 0.1967 (0.2457)
Variation Error 0.0631 (0.0326) 0.0663 (0.0353) 0.0661 (0.0350) 0.0669 (0.0361)

River Dataset
Geodesic Error 0.1691 (0.0978) 0.2369 (0.1216) 0.2561 (0.1338) 0.3859 (0.2568)
Variation Error 0.0763 (0.0486) 0.1064 (0.0807) 0.1113 (0.0863) 0.0636 (0.0333)

Table 1. Comparison of evaluation metrics for different methods across three datasets. Best-performing results for each metric are
highlighted in bold. Values are reported as mean (std). The proposed method performs best in all metrics on each data set.

(a) Ground Truth (b) Our Method (c) Standard NF (d) Anisotropic NF (e) Isometric NF

Figure 2. Comparison of geodesics computed using different methods on the river dataset. The geodesics generated by the proposed
method have the fewest artifacts, aligning with expectations from Table 1.

variance, increasing to over 99% with the seventh dimen-
sion. The model slightly overestimates the intrinsic dimen-
sionality, likely due to the increased optimization challenges
of learning a more intricate distribution while regularizing
for isometry.

6.2.2. IMAGE DATASETS

In our preliminary experiments on image datasets, we ob-
served significant overestimation of the intrinsic dimen-
sion, despite the high quality of the geodesic interpolations.
This issue stems from the use of non-affine flows,9 which
increase the model’s flexibility but also inflate a Hessian-
vector product term in the expansion of the Hessian of the
model log-density. This inflation can disrupt the RAE’s
ability to assign high variances to the most important latent
dimensions (see Appendix H for details).

To address this issue, we repeated the image experiments
after including the Hessian vector product term as an ad-
ditional regularization term in the loss function. The addi-
tional regularization term is given by:

λhess EX∼pdata

[∥∥D2
Xφθ2 ·A−1

θ1
φθ2(X)

∥∥
2

]
, (23)

where λhess is the regularization weight, andD2
Xφθ2 denotes

the Hessian of the flow. As demonstrated in the following

9We used compositions of affine coupling layers and 1 × 1
invertible convolutions, with the latter introducing non-affine trans-
formations to the flow.

experiments, introducing this term substantially improved
the RAE’s ability to correctly detect the intrinsic dimen-
sion while maintaining smooth geodesic paths and accurate
reconstructions.

Computing the Hessian-vector product is impractical in
high dimensions. To improve scalability, we instead mini-
mize the norm of a single randomly chosen column of the
Hessian-vector product (Rd×d) per iteration. This signifi-
cantly reduces computational and memory overhead while
preserving effectiveness. See Appendix I.3 for details.

d′-Gaussian Blobs. We evaluated our RAE on syn-
thetic d′-Gaussian Blobs manifolds embedded in a 1024-
dimensional ambient space with intrinsic dimensions d′ =
20, 50, and 100. The RAE accurately captured the structure,
assigning over 99% of the total variance to 22, 51, and 101
latent dimensions respectively, closely aligning with the
ground-truth intrinsic dimensions.

Figure 3 shows the normalized cumultative variance and
the L2 reconstruction error as functions of the number of
most important latent dimensions. All curves saturate very
close to the ground truth intrinsic dimension demonstrating
RAE’s ability to effectively capture the intrinsic structure of
the data in high dimensional settings.

MNIST. We evaluated the RAE on the MNIST dataset, a
real-world benchmark known for its multimodal distribution
(each digit class represents a separate “mode”). While our

7



Score-based pullback Riemannian geometry

Figure 3. Normalized cumulative variance (top) and L2 reconstruc-
tion error (bottom) for d′-Gaussian Blobs with intrinsic dimensions
d′ = 20, 50, and 100. Black dotted vertical lines mark the ground-
truth intrinsic dimensions for each dataset. Curves are shown for
the first 200 dimensions to highlight the critical range, as the be-
havior from 200 to 1024 dimensions remains effectively constant.

method is theoretically best suited for unimodal distributions
of the form in Equation (2), it still performs remarkably well
on MNIST, with only a slight tendency to overestimate the
intrinsic dimension. Specifically, at ϵ = 0.1, the RAE
assigns 90% of the variance to 176 latent dimensions, which
slightly exceeds the maximum local intrinsic dimension
(LID) of 152 estimated by ID-DIFF, a state-of-the-art LID
method (Stanczuk et al., 2024).

We further examined two stricter variance thresholds, ϵ =
0.05 (208 dimensions) and ϵ = 0.01 (271 dimensions). Fig-
ure 4 shows that reconstructions are visually convincing at
176 dimensions and improve slightly with more dimensions,
becoming nearly perfect at 271. We anticipate that incor-
porating more expressive transformations, such as rational
quadratic spline flows (Durkan et al., 2019), could further
refine the dimensionality estimation and improve reconstruc-
tion quality by better handling the optimization challenges
associated with learning the distribution under the isometry
and Hessian constraints.

Overall, these experiments illustrate that our approach scales
to real-world data, provided we incorporate the Hessian vec-
tor product regularization term when using non-affine flows.
These results mark significant progress toward robust data-

Figure 4. RAE reconstructions on MNIST. The leftmost column
shows original images, while the next three show reconstructions
for decreasing variance thresholds ϵ (0.1, 0.05, 0.01), using 176,
208, and 271 latent dimensions, respectively. Reconstructions
are clear at 176 dimensions and nearly indistinguishable from the
originals at 271.

driven Riemannian geometry in high-dimensional settings.

7. Conclusions
In this work we have taken a first step towards a practical
data-driven Riemannian geometry framework, striking a bal-
ance between scalability of training a data-driven Rieman-
nian structure and of evaluating its corresponding manifold
mappings. We have considered a family of unimodal proba-
bility densities whose negative log-likelihoods are compo-
sitions of strongly convex functions and diffeomorphisms,
and sought to learn them. We have shown that once these
unimodal densities are learned, the proposed score-based
pullback geometry provides closed-form geodesics that pass
through the data support and an interpretable Riemannian
autoencoder with error bounds that estimates the intrinsic
dimension of the data. Finally, to learn the distribution we
have proposed an adaptation to normalizing flow training.
Through numerical experiments on Euclidean and image
datasets, we have shown that these modifications are crucial
for extracting geometric information, and that our frame-
work not only generates high-quality geodesics across the
data support, but also accurately estimates the intrinsic di-
mension of the approximate data manifold while construct-
ing a global chart, even in high-dimensional settings.

Although the framework is theoretically best suited for uni-
modal distributions, it performs remarkably well on real
multimodal distributions, albeit with a slight overestima-
tion of intrinsic dimensionality. This highlights its practical
utility for extracting geometry from real data. However,
extending the formulation to better handle multimodal dis-
tributions remains an important direction for future work.

This work paves the way for scalable learning of data geome-
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try, unlocking applications that were previously out of reach.
It enables efficient computation of manifold maps such as
geodesics and distances, with significant potential for ad-
vancing deep metric learning. Furthermore, it introduces
Riemannian auto-encoders with interpretable latent spaces
that effectively capture the intrinsic structure of data. Look-
ing ahead, it paves the way for Riemannian optimization
directly on the data manifold by enabling the computation of
intrinsic gradients, with the potential to revolutionize inverse
problem-solving and push the boundaries of controllable
generative modeling.
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A. Generalizations and proofs of Proposition 3.1 and Theorem 3.3
Proposition 3.1 is a special case of the result below.

Proposition A.1. Let φ : Rd → Rd be a smooth diffeomorphism and let ψ : Rd → R be a smooth strongly convex function,
whose Fenchel conjugate is denoted by ψ⋆ : Rd → R. Next, consider the ℓ2-pullback manifolds (Rd, (·, ·)∇ψ◦φ) and
(Rd, (·, ·)φ) defined through metric tensor fields

(Ξ,Φ)∇ψ◦φx := (Dx∇ψ ◦ φ[Ξ], Dx∇ψ ◦ φ[Φ])2, and (Ξ,Φ)φx := (Dxφ[Ξ], Dxφ[Φ])2. (24)

Then,

(i) the distance d∇ψ◦φRd : Rd × Rd → R on (Rd, (·, ·)∇ψ◦φ) is given by

d∇ψ◦φRd (x,y) = ∥(∇ψ ◦ φ)(x)− (∇ψ ◦ φ)(y)∥2. (25)

In addition, if ψ is of the form Equation (4)

d∇ψ◦φRd (x,y) = ∥φ(x)− φ(y)∥A−2 := ∥A−1(φ(x)− φ(y))∥2. (26)

(ii) length-minimising geodesics γ∇ψ◦φx,y : [0, 1] → Rd on (Rd, (·, ·)∇ψ◦φ) are given by

γ∇ψ◦φx,y (t) = (φ−1 ◦ ∇ψ⋆)((1− t)(∇ψ ◦ φ)(x) + t(∇ψ ◦ φ)(y)). (27)

In addition, if ψ is of the form Equation (4)

γ∇ψ◦φx,y (t) = γφx,y(t) = φ−1((1− t)φ(x) + tφ(y)). (28)

(iii) the exponential map exp∇ψ◦φx (·) : TxRd → Rd on (Rd, (·, ·)∇ψ◦φ) is given by

exp∇ψ◦φx (Ξx) = (φ−1 ◦ ∇ψ⋆)((∇ψ ◦ φ)(x) +Dφ(x)∇ψ[Dxφ[Ξx]]). (29)

In addition, if ψ is of the form Equation (4)

exp∇ψ◦φx (Ξx) = expφx(Ξx) = φ−1(φ(x) +Dxφ[Ξx]). (30)

(iv) the logarithmic map log∇ψ◦φx (·) : Rd → TxRd on (Rd, (·, ·)∇ψ◦φ) is given by

log∇ψ◦φx y = Dφ(x)φ
−1[D(∇ψ◦φ)(x)∇ψ⋆[(∇ψ ◦ φ)(y)− (∇ψ ◦ φ)(x)]]. (31)

In addition, if ψ is of the form Equation (4)

log∇ψ◦φx y = logφx y = Dφ(x)φ
−1[φ(y)− φ(x)]. (32)

Proof of Proposition 3.1. First note that ∇ψ ◦ φ is a diffeomorphism with inverse φ−1 ◦ ∇ψ⋆. Then, Equations (25), (27),
(29) and (31) follow directly from (Diepeveen, 2024, Prop. 2.1).

Next, if ψ is of the form Equation (4), i.e.,

ψ(x) =
1

2
x⊤A−1x,

we have that its Fenchel conjugate is given by

ψ⋆(y) =
1

2
y⊤Ay. (33)

So both ∇ψ(x) = A−1x and ∇ψ⋆(y) = Ay are linear mappings, from which follows that they cancel to identity
everywhere and yield Equations (26), (28), (30) and (32).

Similarly, Theorem 3.3 is a special case of the result below.
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Theorem A.2. Let φ : Rd → Rd be a smooth diffeomorphism and let ψ : Rd → R be a smooth strongly convex function,
whose Fenchel conjugate is denoted by ψ⋆ : Rd → R. Next, consider the function f : Rd → Rd×d given by

f(z) := Dz∇ψ⋆ +
d∑
i=1

zi∂iD(·)∇ψ⋆. (34)

Finally, let x,y ∈ Rd be vectors and assume that for all vectors

z ∈ {(1− t)(∇ψ ◦ φ)(x) + t(∇ψ ◦ φ)(y) | t ∈ [0, 1]} ⊂ Rd

the matrix f(z) is positive definite.

Then, mapping
t 7→ ψ(φ(γ∇ψ◦φx,y (t))), t ∈ [0, 1] (35)

is strongly convex, where γ∇ψ◦φx,y is the geodesic between x and y under the Riemannian structure (Rd, (·, ·)∇ψ◦φ).

In addition, if ψ is of the form Equation (4) the mapping Equation (35) is strongly convex for any x,y ∈ Rd.

Proof. By Equation (27) in Proposition 3.1 we have

ψ(φ(γ∇ψ◦φx,y (t))) = ψ(φ((φ−1 ◦ ∇ψ⋆)((1− t)(∇ψ ◦ φ)(x) + t(∇ψ ◦ φ)(y))))
= ψ(∇ψ⋆((1− t)(∇ψ ◦ φ)(x) + t(∇ψ ◦ φ)(y))). (36)

So the claim holds if on the linear subspace

{(1− t)(∇ψ ◦ φ)(x) + t(∇ψ ◦ φ)(y) | t ∈ [0, 1]} ⊂ Rd (37)

the function ψ ◦ ∇ψ⋆ is convex.

Next, note that the Hessian of ψ ◦ ∇ψ⋆ satisfies

Dz∇(ψ ◦ ∇ψ⋆) = f(z). (38)

By assumption f(z) is positive definite for all z in the subspace Equation (37). In other words, on this subspace ψ(∇ψ⋆(z))
is positive definite, which implies strong convexity and yields the main claim.

The claim for the special case of ψ is of the form Equation (4) follows directly, because

f(z) = A, (39)

which is always positive definite.

B. Proof of Theorem 4.1
Auxiliary lemma
Lemma B.1. Let φ : Rd → Rd be a smooth diffeomorphism and let ψ : Rd → R be a quadratic function of the form
Equation (4) with diagonal A ∈ Rd×d. Furthermore, let p : Rd → R be the corresponding probability density of the form
Equation (2). Finally, consider ε ∈ [0, 1] and the mappings Eε : Rd → Rdε and Dε : Rdε → Rd in Equations (13) and (14)
with dε ∈ [d] as in Equation (12).

Then, for any α ∈ [0, 1) and any β ∈ [0, 1− α)

EX∼p[d
φ
Rd(Dε(Eε(X)),X)2e

α
2 φ(X)⊤A−1φ(X)] ≤ ε

C2
β,φC

3
β,φ

1− α− β

( 1 + β

1− α− β

) d
2

d∑
i=1

ai, (40)
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where
C3
β,φ := sup

x∈Rd

{|det(Dφ(x)φ
−1)|e−

β
2 φ(x)

⊤A−1φ(x)}, (41)

and
C2
β,φ := sup

x∈Rd

{|det(Dxφ)|e−
β
2 φ(x)

⊤A−1φ(x)}. (42)

Proof. We need to distinct two cases: (i) dε = d and (ii) 1 ≤ dε < d

(i) If dε = d we have that Dε(Eε(x)) = x for any x ∈ Rd. In other words

EX∼p[d
φ
Rd(Dε(Eε(X)),X)2e

α
2 φ(X)⊤A−1φ(X)] = 0 ≤ ε

C2
β,φC

3
β,φ

1− α− β

( 1 + β

1− α− β

) d
2

d∑
i=1

ai. (43)

(ii) Next, we consider the case 1 ≤ dε < d. First, notice that we can rewrite

∥φ(Dε(Eε(x)))− φ(x)∥22
Equations (13) and (14)

= ∥
dε∑
k=1

(φ(x), eik)2e
ik − φ(x)∥22 = ∥

d∑
k=dε+1

(φ(x), eik)2e
ik∥22

orthogonality
=

d∑
k=dε+1

∥(φ(x), eik)2eik∥22 =

d∑
k=dε+1

(φ(x), eik)22 =

d∑
k=dε+1

φ(x)2ik . (44)

Moreover, we define

C :=

∫
Rd

e−
1
2φ(x)

⊤A−1φ(x)dx. (45)

Then,

EX∼p[d
φ
Rd(Dε(Eε(X)),X)2e

α
2 φ(X)⊤A−1φ(X)] =

∫
Rd ∥φ(Dε(Eε(x)))− φ(x)∥22e−( 1

2−
α
2 )φ(x)⊤A−1φ(x)dx∫

Rd e
− 1

2φ(x)
⊤A−1φ(x)dx

Equation (45)
=

1

C

∫
Rd

∥φ(Dε(Eε(x)))− φ(x)∥22e−( 1
2−

α
2 )φ(x)⊤A−1φ(x)dx

Equation (44)
=

1

C

∫
Rd

d∑
k=dε+1

φ(x)2ike
−( 1

2−
α
2 )φ(x)⊤A−1φ(x)dx =

1

C

d∑
k=dε+1

∫
Rd

φ(x)2ike
−( 1

2−
α
2 )φ(x)⊤A−1φ(x)dx

x=φ−1(y)
=

1

C

d∑
k=dε+1

∫
Rd

y2
ik
e−( 1

2−
α
2 )y⊤A−1y|det(Dyφ

−1)|dy

=
1

C

d∑
k=dε+1

∫
Rd

y2
ik
e−( 1

2−
α
2 − β

2 )y⊤A−1y|det(Dyφ
−1)|e−

β
2 y⊤A−1ydy

≤
supy∈Rd{|det(Dyφ

−1)|e−
β
2 y⊤A−1y}

C

d∑
k=dε+1

∫
Rd

y2
ik
e−( 1

2−
α
2 − β

2 )y⊤A−1ydy

Equation (41)
=

C2
β,φ

C

d∑
k=dε+1

∫
Rd

y2
ik
e−( 1

2−
α
2 − β

2 )y⊤A−1ydy =
C2
β,φ

C

d∑
k=dε+1

∫
Rd

y2
ik
e
−( 1

2−
α
2 − β

2 )
∑d

j=1

y2
j

aj dy

=
C2
β,φ

C

d∑
k=dε+1

∫
R
y2
ik
e
−( 1

2−
α
2 − β

2 ) y2

aik dyik

∫
Rd−1

e
−( 1

2−
α
2 − β

2 )
∑d

j ̸=ik

y2
j

aj dy1 . . . dyik−1dyik+1 . . . dyd

=
C2
β,φ

C

d∑
k=dε+1

aik
(1− α− β)

∫
R
e
−( 1

2−
α
2 − β

2 ) y2

aik dyik

∫
Rd−1

e
−( 1

2−
α
2 − β

2 )
∑d

j ̸=ik

y2
j

aj dy1 . . . dyik−1dyik+1 . . . dyd
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=
C2
β,φ

C

d∑
k=dε+1

aik
(1− α− β)

∫
Rd

e−( 1
2−

α
2 − β

2 )y⊤A−1ydy

=
C2
β,φ

C

d∑
k=dε+1

aik
(1− α− β)

( 1 + β

1− α− β

) d
2

∫
Rd

e−( 1
2+

β
2 )y⊤A−1ydy

y=φ(x)
=

C2
β,φ

C

d∑
k=dε+1

aik
(1− α− β)

( 1 + β

1− α− β

) d
2

∫
Rd

e−( 1
2+

β
2 )φ(x)⊤A−1φ(x)|det(Dxφ)|dx

=
C2
β,φ

C

d∑
k=dε+1

aik
(1− α− β)

( 1 + β

1− α− β

) d
2

∫
Rd

e−
1
2φ(x)

⊤A−1φ(x)|det(Dxφ)|e−
β
2 φ(x)

⊤A−1φ(x)dx

≤
C2
β,φ supx∈Rd{|det(Dxφ)|e−

β
2 φ(x)

⊤A−1φ(x)}
C

d∑
k=dε+1

aik
(1− α− β)

( 1 + β

1− α− β

) d
2

∫
Rd

e−
1
2φ(x)

⊤A−1φ(x)dx

Equation (42)
=

C2
β,φC

3
β,φ

C

d∑
k=dε+1

aik
(1− α− β)

( 1 + β

1− α− β

) d
2

∫
Rd

e−
1
2φ(x)

⊤A−1φ(x)dx

Equation (45)
=

C2
β,φC

3
β,φ

1− α− β

( 1 + β

1− α− β

) d
2

d∑
k=dε+1

aik

Equation (12)
≤ ε

C2
β,φC

3
β,φ

1− α− β

( 1 + β

1− α− β

) d
2

d∑
i=1

ai. (46)

Proof of the theorem

Proof of Theorem 4.1. First, consider the Taylor approximation

φ−1(φ(y))− φ−1(φ(y)) = Dφ(x)φ
−1[φ(y)− φ(x)] +O(∥φ(y)− φ(x)∥22)

= Dφ(x)φ
−1[φ(y)− φ(x)] +O(dφRd(y,x)

2). (47)

Moreover, we define

C :=

∫
Rd

e−
1
2φ(x)

⊤A−1φ(x)dx. (48)

Subsequently, notice that

EX∼p[∥Dφ(X)φ
−1[φ(Dε(Eε(X)))− φ(X)]∥22]

=
1

C

∫
Rd

∥Dφ(x)φ
−1[φ(Dε(Eε(x)))− φ(x)]∥22e−

1
2φ(x)

⊤A−1φ(x)dx

≤ 1

C

∫
Rd

∥Dφ(x)φ
−1∥22∥φ(Dε(Eε(x)))− φ(x)∥22e−

1
2φ(x)

⊤A−1φ(x)dx

≤
supx∈Rd{∥Dφ(x)φ

−1∥22e−
β
2 φ(x)

⊤A−1φ(x)}
C

∫
Rd

∥φ(Dε(Eε(x)))− φ(x)∥22e−( 1
2−

β
2 )φ(x)⊤A−1φ(x)dx

Equation (17)
=

C1
β,φ

C

∫
Rd

∥φ(Dε(Eε(x)))− φ(x)∥22e
β
2 φ(x)

⊤A−1φ(x)e−
1
2φ(x)

⊤A−1φ(x)dx

= C1
β,φEX∼p[d

φ
Rd(Dε(Eε(X)),X)2e

β
2 φ(X)⊤A−1φ(X)]

Lemma B.1
≤ ε

C1
β,φC

2
β,φC

3
β,φ

1− 2β

( 1 + β

1− 2β

) d
2

d∑
i=1

ai. (49)
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Then,

EX∼p[∥Dε(Eε(X))−X∥22] = EX∼p[∥φ−1(φ(Dε(Eε(X))))− φ−1(φ(X))∥22]
Equation (47)

= EX∼p[∥Dφ(X)φ
−1[φ(Dε(Eε(X)))− φ(X)] +O(dφRd(Dε(Eε(X)),X)2)∥22]

= EX∼p[∥Dφ(X)φ
−1[φ(Dε(Eε(X)))− φ(X)]∥22 +O(dφRd(Dε(Eε(X)),X)3)]

Equation (49)
≤ ε

C1
β,φC

2
β,φC

3
β,φ

1− 2β

( 1 + β

1− 2β

) d
2

d∑
i=1

ai + o(ε), (50)

which yields the claim as β was arbitrary.

C. Training Details
This section describes the configuration parameters necessary to reproduce our experiments. The experiments are categorized
into two groups: Euclidean datasets (Sinusoid and Hemisphere) and image datasets (Gaussian Blobs and MNIST). All
experiments share some common parameters, listed below, while dataset-specific parameters are provided in Table 2.

Common Parameters:

• Optimizer: Adam with betas = (0.9, 0.99), eps = 1× 10−8, and weight decay of 1× 10−5.

• Gradient Clipping: Gradient norm clipped to 1.0.

• Model Architecture:

– Euclidean Datasets: A normalizing flow composed of affine coupling layers, where each layer transforms part
of the input while leaving the remaining dimensions unchanged. The parameters of the affine transformations are
parameterized by a ResNet with 64 hidden features and 2 residual blocks. Transformations alternate across dimensions
at each step.

– Image Datasets: A normalizing flow composed of three levels, each beginning with a squeeze operation that redis-
tributes spatial dimensions into channels. Within each level, we apply a stack of seven flow steps, leading to a total of
21 flow steps across all levels. Each flow step consists of:

* An ActNorm layer.

* A 1× 1 invertible convolution for channel mixing.

* An affine coupling transform, where the parameters of the affine transformation are parameterized by a convolutional
ResNet. This ResNet has 96 hidden channels and 3 residual blocks.

Table 2. Training configurations for each experiment.
Dataset Flow Steps Epochs Batch Size λiso λvol λhess Learning Rate
Sinusoid(1,3) 8 1000 64 1.0 1.0 - 3× 10−4

Sinusoid(2,3) 8 1000 64 1.0 1.0 - 3× 10−4

Sinusoid(5,20) 24 2000 128 1.2 2.5 - 4× 10−4

Hemisphere(2,3) 8 2000 64 1.0 1.0 - 4× 10−4

Hemisphere(5,20) 12 2000 64 0.75 1.2 - 4× 10−4

20-Blobs 21 500 64 100 1.0 0.5 2× 10−4

50-Blobs 21 500 64 100 1.0 0.5 2× 10−4

100-Blobs 21 500 64 100 1.0 0.5 2× 10−4

MNIST 21 500 64 100 2.0 1.0 2× 10−4
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D. Additional Experimental Results

(a) Dims (5, 59, 92) (b) Dims (31, 55, 66) (c) Dims (64, 72, 90)

Figure 5. Approximate data manifold learned by the Riemannian autoencoder for the Sinusoid(1, 100) dataset. The orange curves depict
the learned manifold, while blue points represent training data.

Hemisphere (5,20)

(a) Learned variances in decreasing order. (b) Reconstruction error for three latent orders.
Sinusoid (5,20)

(c) Learned variances in decreasing order. (d) Reconstruction error for three latent orders.

Figure 6. Learned variances and reconstruction errors for Hemisphere(5,20) and Sinusoid(5,20). Left: variances in decreasing order.
Right: average ℓ2 reconstruction error vs. latent dimensions. Errors are shown for three variance-based orders: blue (decreasing variance),
green (increasing variance), and red (random).
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E. Error Metrics for Evaluation of Pullback Geometries
Geodesic Error. The geodesic error measures the difference between geodesics on the learned and ground truth pullback
manifolds. Given two points x0,x1 ∈ Rd, let γφθ2

x0,x1(t) and γφGT
x0,x1

(t) denote the geodesics induced by the learned map φθ2
and the ground truth map φGT, respectively, where t ∈ [0, 1].

The geodesic error is calculated as the mean Euclidean distance between the learned and ground truth geodesics over N
pairs of points:

Geodesic Error =
1

N

N∑
i=1

1

T

T∑
k=1

∥∥∥∥γφθ2

x
(i)
0 ,x

(i)
1

(tk)− γφGT

x
(i)
0 ,x

(i)
1

(tk)

∥∥∥∥
2

,

where T is the number of time steps used to discretize the geodesic, and tk = k−1
T−1 for k = 1, . . . , T .

This metric captures the average discrepancy between the learned and ground truth geodesics, reflecting the accuracy of the
learned pullback manifold.

Variation Error. The variation error quantifies the sensitivity of the geodesic computation under small perturbations to
one of the endpoints. For two points x0,x1 ∈ Rd, let z = x1 + ∆x, where ∆x is a random variable sampled from the
Gaussian distribution:

∆x ∼ N (0, 0.12I),

with mean 0 and covariance 0.12I, where I is the identity matrix. Define γφθ2
x0,x1(t) and γφθ2

x0,z(t) as the geodesics from x0 to
x1 and z, respectively, induced by the learned map φθ2 .

The variation error is calculated as the mean Euclidean distance between the geodesic from x0 to x1 and the perturbed
geodesic from x0 to z:

Variation Error =
1

N

N∑
i=1

1

T

T∑
k=1

∥∥∥∥γφθ2

x
(i)
0 ,x

(i)
1

(tk)− γ
φθ2

x
(i)
0 ,z(i)

(tk)

∥∥∥∥
2

,

where N is the number of sampled point pairs, T is the number of time steps used to discretize the geodesic, and tk = k−1
T−1

for k = 1, . . . , T .

This metric evaluates the robustness of the learned geodesic against small perturbations, providing insight into the stability
of the learned manifold.

F. Dataset Construction Details
In this section, we provide a detailed explanation of the construction of the datasets used in our experiments. We organize
the datasets into two categories based on the experimental sections in which they are used.

F.1. Datasets for Manifold Mapping Experiments

In our manifold mapping experiments (Section 6.1), we use the following datasets illustrated in Figure 7:

• Single Banana Dataset: A two-dimensional dataset shaped like a curved banana.

• Squeezed Single Banana Dataset: A variant of the Single Banana with a tighter bend.

• River Dataset: A more complex 2D dataset resembling the meandering path of a river.

Each dataset is constructed by defining specific diffeomorphisms φ and convex quadratic functions ψ, then sampling from
the resulting probability density using Langevin Monte Carlo Markov Chain (MCMC) with Metropolis-Hastings correction.
The probability density function is defined as:
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(a) Single Banana (b) Squeezed Single Banana (c) River

Figure 7. Visualization of the datasets used in our manifold mapping experiments.

p(x) ∝ e−ψ(φ(x)), (51)

where the strongly convex function ψ is given by:

ψ(v) =
1

2
v⊤A−1v, (52)

and A is a positive-definite diagonal matrix. The specific choices of φ and A for each dataset determine its geometric
properties.

F.1.1. DIFFEOMORPHISMS AND CONVEX QUADRATIC FUNCTIONS

The key differences between the datasets arise from the diffeomorphism φ and the covariance matrix A used in the sampling
process. Below, we describe the specific settings for each dataset.

1. Single Banana Dataset

• Diffeomorphism:

φ(x) =

(
x1 − ax22 − z

x2

)
where a = 1

9 and z = 0.

• Covariance matrix:

A =

(
1
4 0
0 4

)
2. Squeezed Single Banana Dataset

• Diffeomorphism: Same as the Single Banana Dataset.

• Covariance matrix:

A =

(
1
81 0
0 4

)
3. River Dataset

• Diffeomorphism:

φ(x) =

(
x1 − sin(ax2)− z

x2

)
where a = 2 and z = 0.
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• Covariance matrix:

A =

(
1
25 0
0 3

)
F.1.2. DATASET GENERATION ALGORITHM

Algorithm 1 outlines the dataset generation process for all three datasets. The specific diffeomorphisms and quadratic
functions differ for each dataset.

Algorithm 1 General Dataset Generation Algorithm

Require: Number of samples N , MCMC steps T , Step size δ, Diffeomorphism φ, Covariance matrix Λ
Ensure: Dataset {x1,x2, . . . ,xN}

1: Initialize: Set initial state x0 = 0 ∈ R2.
2: for i = 1 to N do
3: x = x0

4: for k = 1 to T do
5: Compute the score function ∇x log ptarget(x).
6: Propose x′ = x+ δ2

2 ∇x log ptarget(x) + δη, where η ∼ N (0, I2).
7: Compute the forward kernel:

Kforward =
|x− x′ + δ2

2 ∇x′ log ptarget(x
′)|2

2δ2

8: Compute the reverse kernel:

Kreverse =
|x′ − x+ δ2

2 ∇x log ptarget(x)|2

2δ2

9: Compute the Metropolis-Hastings acceptance probability:

A = min

(
1,
ptarget(x

′)

ptarget(x)
exp (−Kforward +Kreverse)

)
10: Accept x′ with probability A; else set x′ = x.
11: Update x = x′.
12: end for
13: Store the final x as sample xi.
14: end for

F.2. Datasets for Riemannian Autoencoder Experiments

In the Riemannian autoencoder experiments (Section 6.2), we use the following datasets:

• Hemisphere(d’, d) Dataset: Samples drawn from the upper hemisphere of a d’-dimensional unit sphere and embedded into
Rd via a random isometric mapping.

• Sinusoid(d’, d) Dataset: Generated by applying sinusoidal transformations to d’-dimensional latent variables, resulting in
a complex, nonlinear manifold in Rd.

F.3. Hemisphere(d′, d) Dataset

The Hemisphere(d′, d) dataset consists of samples drawn from the upper hemisphere of a d′-dimensional unit sphere, which
are then embedded into a d-dimensional ambient space using a random isometric embedding. Below are the steps involved
in constructing this dataset.

1. Sampling from the Upper Hemisphere We begin by sampling points from the upper hemisphere of the d′-dimensional
unit sphere Sd

′

+ ⊂ Rd′+1. The upper hemisphere is defined as:

Sd
′

+ =
{
x ∈ Rd

′+1 : ∥x∥ = 1, x1 ≥ 0
}
.
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The first angular coordinate θ1 is sampled from a Beta distribution with shape parameters α = 5 and β = 5, scaled to the
interval

[
0, π2

]
. This sampling method emphasizes points near the “equator” of the hemisphere. The remaining angular

coordinates θ2, . . . , θd′ are sampled uniformly from the interval [0, π]:

θ1 ∼ Beta(5, 5) ·
(π
2

)
, θi ∼ Uniform(0, π), for i = 2, . . . , d′.

2. Conversion to Cartesian Coordinates Next, each sampled point in spherical coordinates is converted into Cartesian
coordinates in Rd′+1 using the following transformation equations:

x1 = cos(θ1), x2 = sin(θ1) cos(θ2), . . . , xd′+1 = sin(θ1) sin(θ2) · · · sin(θd′).

This conversion ensures that the sampled points lie on the surface of the unit sphere in (d′ + 1)-dimensional space.

3. Random Isometric Embedding into Rd After sampling points on the hemisphere in Rd′+1, the points are embedded
into a d-dimensional ambient space (d ≥ d′+1) using a random isometric embedding. The embedding process is as follows:

1. Generate a random matrix A ∈ Rd×(d′+1), where each entry is sampled from a standard normal distribution N (0, 1).

2. Perform a QR decomposition on matrix A to obtain Q ∈ Rd×(d′+1):

A = QR.

The columns of Q form an orthonormal basis for a (d′ + 1)-dimensional subspace of Rd, ensuring that Q defines an
isometric embedding from Rd′+1 into Rd. This guarantees that distances and angles are preserved during the mapping,
maintaining the geometric structure of the original space within the higher-dimensional ambient space.

3. Use matrix Q to map each sample x ∈ Rd′+1 into the ambient space:

y = Qx,

where y ∈ Rd are the embedded samples.
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Algorithm 2 Hemisphere(d′, d) Dataset Generation

1: Input: Intrinsic dimension d′, ambient dimension d, number of samples n, Beta distribution parameters α = 5, β = 5
2: Output: Dataset Y ∈ Rn×d
3: Step 1: Generate Random Isometric Embedding
4: Generate a random matrix A ∈ Rd×(d′+1) with entries from N (0, 1)
5: Perform QR decomposition on A to obtain Q ∈ Rd×(d′+1):

A = QR

6: Step 2: Construct Dataset
7: for i = 1 to n do
8: Step 2.1: Sample Spherical Coordinates
9: Sample the first angular coordinate θ1 from a scaled Beta distribution:

θ1 ∼ Beta(α, β) ·
(π
2

)
10: Sample the remaining angular coordinates θ2, . . . , θd′ from a uniform distribution:

θi ∼ Uniform(0, π), for i = 2, . . . , d′

11: Step 2.2: Convert to Cartesian Coordinates
12: Convert the spherical coordinates to Cartesian coordinates xi ∈ Rd′+1 using:

x1 = cos(θ1), x2 = sin(θ1) cos(θ2), . . . , xd′+1 = sin(θ1) sin(θ2) · · · sin(θd′).

13: Step 2.3: Embed Sample xi into Ambient Space
14: Map the sample xi to the ambient space using:

yi = Qxi

15: Append yi to the dataset Y
16: end for
17: Return: The final dataset Y = [y1,y2, . . . ,yn]

F.4. Sinusoid(d′, d) Dataset

The Sinusoid(d′, d) dataset represents a d′-dimensional manifold embedded in d-dimensional space through nonlinear
sinusoidal transformations. Below are the detailed steps involved in constructing this dataset.

1. Sampling Latent Variables The latent variables z ∈ Rd′ are sampled from a multivariate Gaussian distribution with
zero mean and isotropic variance, as follows:

z ∼ N
(
0, σ2

mId′
)
,

where σ2
m controls the variance along each intrinsic dimension, and Id′ is the d′ × d′ identity matrix. The value of σ2

m is set
to 3 for our experiments.

2. Defining Ambient Coordinates with Sinusoidal Transformations For each of the d− d′ ambient dimensions, we
construct a shear vector aj ∈ Rd′ , with its elements drawn uniformly from the interval [1, 2]:

aj ∼ Uniform(1, 2)d
′
, for j = 1, . . . , d− d′.

The shear vectors aj apply a fixed linear transformation to the latent space z ∈ Rd′ , determining how the latent variables
influence each ambient dimension. These vectors, sampled once for each of the d− d′ ambient dimensions, modulate the
scale and periodicity of the sinusoidal transformation.

Each ambient coordinate xj is generated as a sinusoidal function of the inner product between aj and z, with a small
Gaussian noise added for regularization.
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xj = sin
(
a⊤j z

)
+ ϵj ,

where ϵj ∼ N (0, σ2
a) is Gaussian noise with variance σ2

a. In our experiments, we set σ2
a = 10−3.

3. Constructing the Dataset Samples The final samples y ∈ Rd are formed by concatenating the ambient coordinates
x1, x2, . . . , xd−d′ with the latent variables z1, z2, . . . , zd′ :

y = [x1, x2, . . . , xd−d′ , z1, z2, . . . , zd′ ]
⊤
.

Algorithm 3 Sinusoid(d′, d) Dataset Generation

1: Input: Intrinsic dimension d′, ambient dimension d, number of samples n, variance σ2
m = 3, noise variance σ2

a = 10−3

2: Output: Dataset Y ∈ Rn×d
3: Step 1: Generate Shear Vectors
4: for j = 1 to d− d′ do
5: Sample shear vector aj ∈ Rd′ from Uniform(1, 2)d

′

6: end for
7: Step 2: Construct Dataset
8: for i = 1 to n do
9: Step 2.1: Sample Latent Variables

10: Generate latent variables zi ∈ Rd′ from a multivariate Gaussian:

zi ∼ N (0, σ2
m · Id′)

11: Step 2.2: Compute Ambient Coordinates for Sample i
12: for j = 1 to d− d′ do
13: Compute ambient coordinate xj for the i-th sample:

xj = sin
(
a⊤j zi

)
+ ϵj , ϵj ∼ N (0, σ2

a)

14: end for
15: Step 2.3: Form Final Sample yi
16: Concatenate the ambient coordinates x = [x1, x2, . . . , xd−d′ ] and the latent variables zi to form the final sample

yi ∈ Rd:
yi = [x1, x2, . . . , xd−d′ , z1, z2, . . . , zd′ ]

⊤

17: Append yi to the dataset Y
18: end for
19: Return: The final dataset Y = [y1,y2, . . . ,yn]

F.5. Gaussian Blobs Image Manifold

The Gaussian Blobs Image Manifold dataset defines an image manifold with a controllable intrinsic dimension d′ (number
of Gaussian blobs) embedded in a 1024-dimensional ambient space (32 × 32 pixel images). The dataset is constructed as
follows:

1. d′ Gaussian blob centers are randomly selected from a 32 × 32 grid without replacement. These centers are fixed and
remain the same for all points in the dataset.

2. For each image, a Gaussian mixture is generated by centering Gaussian distributions at the fixed locations, with
standard deviations sampled uniformly from a specified range [smin, smax].

3. The normalized density of the Gaussian mixture defines the intensity values of the 2D image. Each combination of
standard deviations uniquely defines a point on the manifold.
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Algorithm 4 Gaussian Blobs Image Manifold Dataset Generation

Require: Number of samples N , intrinsic dimension d′, image size I , standard deviation range [smin, smax], random seed
S

Ensure: Dataset {x1,x2, . . . ,xN} with xi ∈ RI×I
1: Initialize: Set random seed S for reproducibility.
2: Generate d′ Gaussian centers by sampling without replacement from the I × I pixel grid. These centers are fixed for

all samples in the dataset.
3: for i = 1 to N do
4: Initialize an empty image xi of size I × I .
5: for j = 1 to d′ do
6: Select the j-th Gaussian center (xj , yj) from the preselected centers.
7: Sample standard deviation sj uniformly from [smin, smax].
8: Compute the Gaussian density over the entire image grid:

g(x, y) =
1√
2πsj

exp

(
− (x− xj)

2 + (y − yj)
2

2s2j

)

9: Add the Gaussian density to the image: xi(x, y) += g(x, y).
10: end for
11: Normalize xi to the range [0, 1]:

xi =
xi −min(xi)

max(xi)−min(xi)

12: Store the normalized image xi as a sample.
13: end for

G. Data Manifold Approximation
The learned manifold, shown in orange in Figure 1, is the set Dϵ(U), where Dϵ is the RAE decoder Equation (14), the set U
in the latent space is the open set given by

U =

dϵ∏
i=1

(−3
√
aui

, 3
√
aui

)

and au1 , . . . ,audϵ
are the dϵ highest learned variances corresponding to the ones used in the RAE construction.

To visualize this in practice, we construct a mesh grid by linearly sampling each latent dimension from −3
√
aui

to +3
√
aui

,
for i = 1, . . . , dϵ, where dϵ is the number of significant latent dimensions. Practically, the off-manifold latent dimensions
(those corresponding to negligible variances) are set to zero. The decoder Dϵ then maps this grid from U back to Rd,
generating an approximation of the data manifold, as illustrated in Figure 1.

H. Explanation for the Need of Higher Regularity in Non-Affine Flows
As described in Section 6.2.2, introducing a small regularization term involving the Hessian vector product of the flow can
substantially improve the RAE’s ability to assign higher variances to the on-manifold (semantically meaningful) directions
and suppress variances in off-manifold directions for non-affine flows. The core issue arises from the fact that, for non-affine
normalizing flows, the second-order derivatives of φθ2 appear in the Hessian of the modeled log-density in a way that can
adversely impact the performance of the RAE if left unregularized, as we shall see below.

H.1. Hessian of the Log-Density and Intrinsic Dimensionality

Recently, Stanczuk et al. (2024) formally proved—and Stanczuk et al. (2024); Kadkhodaie et al. (2024); Wenliang & Moran
(2022) independently demonstrated empirically—that when data concentrate locally around a lower-dimensional manifold
of dimension k, the Jacobian of the score function or equivalently, the Hessian of the log-density has k vanishing singular
values. The eigenvectors corresponding to these vanishing singular values span the local tangent space of the data manifold.
Consequently, for a trained model, large singular values of ∇2

xlog pθ1,θ2(x) indicate off-manifold directions, while near-zero
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singular values reveal on-manifold directions—those spanning the locally flat subspace in which the data reside.

H.2. Analyzing the Hessian of the Log-Density of Our Model

With the background knowledge on the connection between the Hessian of the log-density and the local intrinsic structure in
mind, let’s investigate the Hessian of the logdensity of our model under the assumption that φθ2 is local isometry and hence
volume preserving as well. The modeled density function is

pθ1,θ2(x) = pθ1
(
φθ2(x)

) ∣∣∣det(Dxφθ2(x)
)∣∣∣ , (53)

whereDxφθ2(x) is the Jacobian of φθ2 at x and pθ1
(
φθ2(x)

)
= N (x;0,Aθ1). Since φθ2 is volume preserving, the absolute

value of the Jacobian determinant is 1, simplifying the density to:

pθ1,θ2(x) = pθ1
(
φθ2(x)

)
, (54)

Taking logarithms and differentiating yields the expression for the Hessian of the logdensity:

∇2
xlog pθ1,θ2(x) = −∇2

xφθ2(x)A
−1
θ1
φθ2(x) −

(
Dxφθ2(x)

)⊤
A−1
θ1

(
Dxφθ2(x)

)
, (55)

where ∇2
xφθ2(x) is the Hessian of φθ2 .We see that the Hessian of the log-density consists of the sum of two terms:

• A Hessian vector product term:
−∇2

xφθ2(x)A
−1
θ1
φθ2(x),

• A term that depends on the Jacobian and the learned covariance matrix Aθ1 :

−
(
Dxφθ2(x)

)⊤
A−1
θ1

(
Dxφθ2(x)

)
.

When φθ2 is affine (e.g., composed of affine coupling layers only), the Hessian vector product term in equation 55 vanishes.
Hence, the Hessian of the logdensity simplifies to:

∇2
xlog pθ1,θ2(x) = −

(
Dxφθ2(x)

)⊤
A−1
θ1

(
Dxφθ2(x)

)
, (56)

Noting that the Jacobian of φθ2 , denoted as Dxφθ2(x), is an orthogonal matrix due to φθ2 being a local isometry, and
considering that Aθ1 is a diagonal matrix with strictly positive entries, it becomes clear that the right-hand side of
Equation equation 56 represents the eigendecomposition of the Hessian of the log-density. The magnitude of the eigenvalues
of the Hessian directly influences how variance is allocated in the latent space. Large eigenvalues correspond to off-manifolds
directions and therefore will be encoded by latent dimensions of small learned variance, while small eigenvalues correspond
to on-manifold directions and will be encoded by latent dimensions of high learned variance. This analysis provides a
clear and intuitive explanation of why the Riemannian Autoencoder effectively detects and encodes important semantic
information in the latent dimensions associated with high learned variances when trained with an affine normalizing flow
regularized for local isometry.

However, for non-affine flows—such as those incorporating 1× 1 invertible convolutions after each affine coupling layer or
rational quadratic splines—the Hessian vector product term can become significant and may interfere with the Jacobian
term. This disruption can distort the learned manifold geometry, leading to an incorrect allocation of variances in the latent
space. Specifically, the model may assign large variances to an increased number of latent dimensions and thus overestimate
the intrinsic dimension. To address this, we add a Hessian vector product penalty to the loss, minimizing its contribution
to the Hessian of the log-density and allowing the Riemannian Autoencoder to accurately capture the data manifold’s
lower-dimensional structure in Aθ1 .

Note that φθ2 maps Rd → Rd, making its Hessian ∇2
xφθ2(x) a rank-3 tensor of shape d× d× d. Multiplying this Hessian

by A−1
θ1
φθ2(x) results in a d× d matrix, whose computation becomes prohibitively expensive in high dimensions, even

with optimized methods. To address this in our MNIST experiments, we randomly selected a dimension at each iteration,
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computed the corresponding column of the Hessian vector product, and penalized its Euclidean norm (refer to Appendix I
for additional details). This efficient regularization was enough to keep the Hessian term orders of magnitude smaller in
Frobenius norm compared to the Jacobian term, allowing the Riemannian Autoencoder to perform effectively with non-affine
flows.

I. Computational Complexity of the Regularization Terms
In this section, we discuss the computational complexity and memory requirements for each of the additional regularization
terms introduced in our objective. For simplicity, we denote the normalizing flow φθ2(x) as ϕ(x) throughout this section:

Lreg(θ1, θ2) = λvol Ex∼pdata

[(
log |det(Dxϕ)|

)2]︸ ︷︷ ︸
Volume Regularization

+ λiso Ex∼pdata

[∥∥(Dxϕ)
⊤Dxϕ− Id

∥∥2
F

]
︸ ︷︷ ︸

Isometry Regularization

+ λhess Ex∼pdata

[∥∥D2
xϕ · Σ−1

θ1
ϕ(x)

∥∥
2

]
︸ ︷︷ ︸

Hessian Regularization

.

The Hessian regularization term is only applied when ϕ is a non-affine flow. For affine flows, the volume and isometry
regularization terms are sufficient, as the second derivatives vanish in this case, making the Hessian penalty unnecessary.

The presented regularization objective is computationally feasible only for low-dimensional data, as evaluating the full
Jacobian and the Hessian-vector product is expensive in both computation and memory for high dimensions. To address this,
we present efficient approximations designed to significantly reduce computational and memory costs while preserving
the effectiveness of the regularization. The details of these approximations, including their implementation and impact on
scalability, are provided in this section.

I.1. Volume Regularization

The volume regularization term
Ex∼pdata

[(
log
∣∣det(Dxϕ

)∣∣)2]
relies on the log-determinant of the Jacobian, which is typically already computed during the forward pass in normalizing
flows. Most flow architectures are designed so that log |det(Dxϕ)| is tractable and inexpensive to obtain (e.g., via coupling
transforms or autoregressive transforms).

Hence, no extra gradient backprop or additional memory overhead is needed for this volume penalty—it essentially comes
for free from the standard normalizing flow likelihood computation.

I.2. Isometry Regularization

The isometry regularization term,
Ex∼pdata

[∥∥(Dxϕ
)⊤
Dxϕ− Id

∥∥2
F

]
,

penalizes deviations of the Jacobian Dxϕ from orthogonality. By enforcing this condition, the regularization ensures that
the mapping ϕ approximates a local isometry, preserving distances and angles in the vicinity of each point.

Full Objective. The full implementation involves computing the d× d Jacobian matrix for each sample, which is both
computationally and memory-intensive in high-dimensional settings. These constraints render the full objective impractical
for high-dimensional data, limiting its application to low-dimensional scenarios where such costs remain manageable.

Sliced Objective. To address the scalability limitations of the full objective, we introduce the sliced objective. Instead of
computing the full Jacobian, we approximate it using Jacobian-vector products (JVPs) with a small number m of randomly
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sampled orthonormal vectors. This approach significantly reduces computational and memory requirements while retaining
the effectiveness of the regularization. The procedure is outlined in Algorithm 5.

Algorithm 5 Sliced Isometry Regularization Objective

1: Input: Mapping ϕ, batch of inputs x ∈ RB×d, number of orthonormal vectors m, and device.
2: Output: Approximate orthogonality regularization loss Liso.
3: Generate a random matrix R ∈ RB×d×m with entries sampled from N (0, 1).
4: Perform QR decomposition on R for each batch sample to obtain orthonormal vectors Q ∈ RB×d×m.
5: Compute Jacobian-vector products (JVPs) for all m orthonormal vectors vi ∈ Q:

Jvi = ∇ϕ(x)vi for i = 1, . . . ,m.

6: Construct the Gram matrix:
G[i, j] = (Jvi)

⊤(Jvj) ∀i, j ∈ {1, . . . ,m}.

7: Compute the deviation of G from the identity matrix:

G− Im,

where Im is the identity matrix of size m×m.
8: Compute the Frobenius norm of the deviation for each sample:

∥G− Im∥2F .

9: Compute the batch mean of the Frobenius norms:

Liso =
1

B

B∑
i=1

∥Gi − Im∥2F .

In practice, we employ PyTorch’s efficient Jacobian-vector product implementation to compute Jvi efficiently. To further
enhance performance, we leverage torch.vmap to vectorize computations over the batch dimension, enabling parallelized
and streamlined evaluation of the regularization term across all samples in the batch. These optimizations substantially
improve scalability, making the sliced objective well-suited for larger batch sizes and high-dimensional data.

Notably, our experiments demonstrate that using only m = 2 slicing orthonormal vectors is sufficient for efficient and
effective isometry regularization. This approach effectively reduces the computational cost of the regularization term to
2 JVPs per sample, compared to d full backpropagation passes required for the full objective. Consequently, the sliced
objective enables the method to scale effectively to high-dimensional datasets.

I.3. Hessian-Vector Product (HVP) Regularization

The Hessian-vector product regularization Ex∼pdata

[∥∥D2
xϕ · Σ−1

θ1
ϕ(x)

∥∥
2

]
, limits the influence of second-order derivatives

on the Hessian of the log-density of the model distribution, enhancing the Riemannian Auto-encoder’s ability to capture the
intrinsic geometry of the data manifold with expressive non-affine flows. It is unnecessary for affine flows, where these
terms naturally vanish. See Appendix H for details.

Full Objective. For each output dimension j of ϕ, the Hessian D2
xϕj(x) is a d× d matrix, and the full Hessian across all

d outputs forms a rank-3 tensor of shape Rd×d×d. As a result, even with optimized Hessian-vector product implementations,
computing this term becomes infeasible for high-dimensional data.

Sliced Objective. To reduce computational overhead, we approximate the Hessian penalty by sampling a single dimension
j ∈ {1, . . . , d} at each training iteration. Instead of minimizing the Frobenius norm of the full Hessian-vector product
matrix, we compute and minimize the norm of a single column (of size d× 1) corresponding to the sampled dimension j.
This approach is lightweight and empirically sufficient for effective regularization.
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Algorithm 6 Sliced Hessian Regularization Objective

1: Input: Mapping ϕ, batch of inputs x ∈ RB×d, inverse covariance Σ−1
θ1

.
2: Output: Approximate Hessian regularization loss Lhess.
3: Randomly sample a single output dimension j ∈ {1, . . . , d}.
4: Compute the Hessian-vector product (HVP) for each batch sample:

HVPj = D2
xϕj(x) ·

(
Σ−1
θ1
ϕ(x)

)
,

using torch.autograd.functional.hvp or equivalent.
5: Compute the norm of the resulting d× 1 vector for each batch sample:∥∥HVPj

∥∥2
2
.

6: Compute the batch mean of the norms:

Lhess =
1

B

B∑
i=1

∥∥HVPj [i]
∥∥2
2
.

In our experiments, evaluating a single random column of the Hessian-vector product matrix per iteration and penalizing
its norm was sufficient to maintain low Frobenius norm of the full d × d matrix, effectively regularizing the flow. The
computation of the sliced Hessian-vector product in optimized deep learning libraries is equivalent to two backpropagation
passes: one for the gradient and one for the vector-Jacobian product. Therefore, the sliced objective enables the method to
scale effectively to complex, high-dimensional datasets.
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