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ABSTRACT

How can we predict future interaction trajectories of human hands in a scene given
high-level colloquial task specifications in the form of natural language? In this
paper, we extend the classic hand trajectory prediction task to two tasks involving
explicit or implicit language queries. Our proposed tasks require extensive under-
standing of human daily activities and reasoning abilities about what is happening
next given cues from the current scene. We also develop new benchmarks to eval-
uate the proposed two tasks, Vanilla Hand Prediction (VHP) and Reasoning-Based
Hand Prediction (RBHP). We enable solving these tasks by integrating high-level
world knowledge and reasoning capabilities of Vision-Language Models (VLMs)
with the auto-regressive nature of low-level ego-centric hand trajectories. Our
model, HandsOnVLM is a novel VLM that can generate textual responses and pro-
duce future hand trajectories through natural-language conversations. Our exper-
iments show that HandsOnVLM outperforms existing task-specific methods and
other VLM baselines on proposed tasks, and demonstrates its ability to effectively
utilize world knowledge for reasoning about low-level human hand trajectories
based on the provided context.

1 INTRODUCTION

Ah, I need something to 
help open this slippery 
jar more easily…

To open the slippery lid you can use 
the cloth nearby. Here is a plauisble 
trajectory your right hand can take 
overlaid on the scene: <HAND> 
<HAND> .........<HAND>.

HandsOnVLM Assistant

Figure 1: HandsOnVLM forecasts low-level actions in the form of hand trajectories in the user’s
egocentric view of a scene when queried with a question via natural language.

Humans interact with the everyday world and express themselves with informal and oftentimes
vague language descriptions. Consider the example in Fig. 1 - when we try to open the jar, we might
think, “Ah, I need something to help open this slippery jar more easily.” We are uncertain about
what we want exactly as well as about how to come up with a solution. To build a computational
system for addressing this need, we would require a good understanding of what tools we have lying
around (visual scene understanding), general apriori experience of opening jars (reasoning ability
and world knowledge priors), and the ability to actually execute the necessary actions for opening the
jar (low-level trajectory). In this paper, we develop two language-conditioned tasks for tackling this
problem, propose benchmarks for evaluating progress on these tasks, and build a vision-language
model (VLM) for predicting low-level hand trajectories in a user’s egocentric view of a scene given
colloquial language queries.

Towards a similar goal, some prior works have focused on identifying human intentions based on
egocentric human videos of daily activities (high-level intentions of the form “cutting pepper”,
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“washing plates”) (Krishna et al., 2017; Grauman et al., 2022; Kahatapitiya et al., 2024), while
others have focused on predicting low-level actions such as hand trajectories given human action
clips (Liu et al., 2022; Zhang et al., 2024b) without conditioning the predictions on detailed lan-
guage descriptions of the task to be performed. Both these scenarios are a bit restrictive since for
most everyday tasks (e.g. in Fig. 1) we need a combination of high-level reasoning of what to do in
a scene and low-level understanding of how to interact with the relevant objects in the scene.

By drawing on the recent successes of VLMs for high-level reasoning (Liu et al., 2024; Lai et al.,
2024; Cheng et al., 2024) and advancements in hand reconstructions from generic web videos (Shan
et al., 2020b; Rong et al., 2020; Pavlakos et al., 2024), we develop a system for future hand trajectory
prediction given conversation-style language instructions. Current best multimodal VLMs are good
at predicting semantic actions in the form of what is happening at a certain point in a video (Maaz
et al. (2023); Huang et al. (2024)), interpreting what objects are in a scene (Achiam et al., 2023) and
natively support free-form language conversations for conditioning. However, they are not good at
directly predicting low-level actions (in the future) of the form of hand-object trajectories. At the
same time, recovering low-level interactions in videos, like hand meshes (Pavlakos et al., 2024),
object meshes (Fan et al., 2024), and regions of interactions (Shan et al., 2020b; Goyal et al., 2022)
has independently become very reliable in recent years. Our key insight is to fine-tune a pre-trained
VLM with auto-regressive trajectory predictions of human hand positions, given a few seconds of
video and a language description of the task.

Our approach HandsOnVLM casts hand trajectory prediction as an auto-regressive next token predic-
tion conditioned on fused video and language tokens. We develop HandsOnVLM as an interactive
chat assistant that we can query with informal instructions of the form, “Where should my hand
move if I want to open the refrigerator?” and a video (or an image) of a scene, and obtain outputs
of the form, “To open the refrigerator, the predicted hand trajectory is <HAND> ,.... <HAND> ”
The HandsOnVLM model first converts the RGB video context to visual tokens and fuses them with
the language tokens through slow-fast pooling (Huang et al., 2024) for capturing temporal informa-
tion from the context video at a fine resolution. We extend the vocabulary to add a new <HAND> to-
ken, and output a sequence of text and and hand tokens. We finally have a trajectory decoder to
convert the hand tokens to a sequence of 2D positions of the left and right hands over the prediction
horizon.

In summary, our paper has the following contributions:

• We develop HandsOnVLM, a novel VLM that can generate textual responses and produce
future hand trajectories through conversations by expanding the original vocabulary with
hand tokens and having iterative position encodings for auto-regressive predictions during
inference.

• We extend existing traditional hand prediction tasks to two new tasks, Vanilla Hand Pre-
diction (VHP) and Reasoning-based Hand Prediction (RBHP), to predict hand trajectories
from ego-centric human videos conditioned on language queries of different forms.

• We develop benchmarks for evaluating progress on the VHP and RBHP tasks which we
will open-source to the community, in addition to our trained models on the benchmarks.

Our results on diverse real-world datasets of human videos and zero-shot evaluations on completely
unseen datasets demonstrate strong generalization and reasoning capabilities of HandsOnVLM for
hand trajectory prediction given colloquial language instructions. Furthermore, the model outper-
forms most baselines on the Reasoning-based Hand Prediction (RBHP) task, showcasing its capa-
bility to reason and leverage world knowledge of VLMs.

2 RELATED WORK

We discuss prior works on human motion reconstruction and forecasting, developments in multi-
modal large language models and action understanding from human videos.
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2.1 HUMAN MOTION RECONSTRUCTION AND FORECASTING

Several prior works have attempted to recover hand meshes and full body meshes from human
videos Rong et al. (2020); Pavlakos et al. (2024). Going beyond reconstruction, other works have
also investigated forecasting motions of humans in the future. Early works used RNNs Bütepage
et al. (2017; 2018); Honda et al. (2020) for anticipating future human poses, and recent approaches
include Transformer architectures for more diverse and plausible future predictions Ding et al.
(2023). More directly related to our work, some approaches predict egocentric hand-trajectories
in the form of 2D waypoints (Liu et al., 2020), and others also predict object affordances jointly
with hand trajectories (Liu et al., 2022). Some predict hand trajectories in a 3D space conditioned
on a few RGB observations from an egocentric view Bao et al. (2023). Architectures for such ego-
centric predictions have ranged from transformers (Liu et al., 2022; Bao et al., 2023) to diffusion
models Ma et al. (2024b;a) trained specifically for this prediction task. Our work extends this line of
low-level egocentric trajectory prediction by enabling reasoning capabilities through augmentation
and joint training with a pre-trained VLM.

2.2 MULTIMODAL LARGE LANGUAGE MODELS

Our work is enabled by developments in multimodal Large Language Models that augment vi-
sion and language reasoning in a unified model. Such models like LLaVA (Liu et al., 2024) and
Video-ChatGPT (Maaz et al., 2023) have enabled large-scale video understanding and localization
of temporal events (semantic actions) in videos (Huang et al., 2024). Adjacently, other works have
sought to make the inputs to the VLMs more flexible and informal through automatic segmentations
of language instructions (Lai et al., 2024; Yang et al., 2023) and visual grounding allowing flexibil-
ity to process both image and region inputs (Rasheed et al., 2024). Recent works have extended the
capabilities of VLMs to diverse domains including robotic navigation (Zhang et al., 2024a), robotic
manipulation (Kim et al., 2024; Brohan et al., 2023), spatial reasoning Cheng et al. (2024), and
reasoning about 3D human poses from images and text Feng et al. (2024). While these approaches
are orthogonal to our task of egocentric hand trajectory prediction, they serve as evidence of the
potential of VLMs for downstream applications.

2.3 ACTION RECOGNITION AND PREDICTION FROM VIDEOS

Understanding actions in the form of what is happening in a video segment has a long history in
computer vision (Sigurdsson et al., 2017; Liu et al., 2021; Kovashka & Grauman, 2010; Feichten-
hofer et al., 2019). Several benchmarks and datasets containing human videos and action labels for
tasks have also been proposed for related problems (Grauman et al., 2022; Caba Heilbron et al.,
2015; Goyal et al., 2017). Our work leverages such datasets and goes beyond recognition of actions
in videos to prediction of low-level actions in the future by first reasoning about future high-level
actions through a VLM. As such our work can have potential applications in robotics for learning
motion from web videos for manipulation by complementing prior works in this space (Bharadhwaj
et al., 2024a; Bahl et al., 2023; Bharadhwaj et al., 2024b; Nair et al., 2022).

3 APPROACH

HandsOnVLM is a video-based VLM with the capability of predicting future hand trajectories given
a video context and language instructions. There are three key components of HandsOnVLM’s ar-
chitecture: (1) SlowFast tokens to capture temporal information at fine temporal resolution, (2) hand
representation using an augmented vocabulary of <HAND> token, and (3) iterative hand decod-
ing to enable auto-regressive trajectory training and inference. In the training stage, we fine-tune a
pre-trained VLM by combining next-token prediction loss and trajectory loss.

3.1 ARCHITECTURE

We show an overview of the HandsOnVLM model architecture in Fig 2. HandsOnVLM takes a
sequence of T frames Xv and a language instruction Xq as input and predicts future hand trajectories
H = {hT+i}N1 , where N is the future horizon. At each future time step T + i, the future hand
location hT+i consists of the 2D location of the center of the left and right hands projected to the
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Sure! the predicted hand 
trajectory is <HAND> 
<HAND> <HAND> 
<HAND>. 

<images>Where should my 
hand move to if I want to 
gently mix the contents of 
the cooking vessel?

Large Language 
Model

Visual Backbone Trajectory Decoder…

Figure 2: Overview of the HandsOnVLM architecture, where and denote trainable and frozen
modules separately. HandsOnVLM casts hand trajectory prediction as an auto-regressive next to-
ken prediction conditioned on fused video and language tokens. The architecture augments a pre-
trained VLM with an additional hand token in the vocabulary. We use and to represent text
and <HAND> tokens respectively.

last observation frame Xv [−1]. The key components of the architecture include a visual backbone
Fenc, a vision-to-language projection layer f , a Large Language Model(LLM) F and a trajectory
decoder Fdec.

SlowFast Token Compression. To obtain a capable video-conditioned VLM we need to be able to
interpret temporal information at a fine resolution. Following Huang et al. (2024), given Xv , we
embed them into T ×M visual tokens using a visual backbone, where M is the number of tokens
in each frame. Then we apply slow-fast pooling to get T + M visual tokens. In the fast path, we
average all the tokens within each frame to get T tokens overall. We also uniformly select s frames
among all T frames and perform s× s spatial average pooling to get M slow frames in total. These
slow tokens will help preserve spatial information during the encoding process. Then we embed and
align T +M visual tokens to the language space through a vision-to-language projector f(·).
Hand as Embedding. To represent hand in the language space, we extend the existing vocabulary
with a new <HAND> token. However, a typical embedding layer would encode each <HAND> to-
ken identically, resulting in individual <HAND> token being indistinguishable from one another.
To overcome this limitation, we embed ground truth hand positions into the <HAND> tokens dur-
ing the tokenization process. We feed them into the Large Language Model backbone and get the
embedding of the last layer H , where H = F(Xq, f(Fenc(Xv))).

Iterative Hand Decoding. For i-th token in the sequence, let Hi be the last-layer embedding of this
token from the Large Language Model. HandsOnVLM decode it to predict the (i + 1)-th token as
LLMs do. When (i+ 1)-th token is a <HAND> token, we input Hi into a hand trajectory decoder
Fdec to predict the hand position of the (i + 1)-th token hi+1 = Fdec(Hi). During inference, this
decoded position is then encoded into the corresponding <HAND> token embedding for following
prediction rounds. In this way, we ensure that each subsequent prediction is conditioned on all previ-
ously predicted hand positions, maintaining temporal consistency and spatial awareness throughout
the inference process and mitigating compounding errors.

3.2 TRAINING OBJECTIVES

The model is trained end-to-end using a text generation loss Ltxt and a hand trajectory prediction
loss Lhand. The overall objective L is the weighted sum of both losses, determined by λtxt and λhand:

L = λtxtLtxt + λhandLhand (1)

Specifically, Ltxt is the auto-regressive cross-entropy loss for text generation, and Lhand is the hand
prediction loss, which encourages the model to generate high-quality hand trajectories as well. Fol-
lowing Liu et al. (2022), we employ a reconstruction loss over future timesteps and a KL-Divergence
Regularization loss as Lhand:

Lhand =

N∑
t=1

Lrecon

(
hT+t, ĥT+t

)
+ Lkl (µh, σh) . (2)
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We employ CVAE (Sohn et al., 2015) as the hand trajectory decoder in this work (although the
method is not tied to it). Thus, Lrecon is the MSE loss over valid hand positions, and µh, σh here
are the mean and the standard deviation that regularizes the latent z-space to be close to the normal
distribution.

4 REASONING AND PREDICTING HAND TRAJECTORIES

In this section, we introduce two tasks: the Vanilla Hand Prediction (VHP) task, which extends
the classic hand motion prediction (Liu et al., 2022), and the proposed Reasoning-based Hand Pre-
diction (RBHP) task. Finally, we describe a two-step annotation-generating pipeline to build the
corresponding RBHP dataset.

4.1 VANILLA HAND PREDICTION TASK

In this task, explicit action narration is required to predict the next hand motion. Here explicit means
the action narration directly specifies the action and the target object without ambiguity, such as “cut
the paper” or “open the microwave”. We choose Epic-Kitchen (Damen et al., 2018; 2022), H2O
(Kwon et al., 2021) and FPHA (Garcia-Hernando et al., 2018) as datasets for this task. To generate
the hand labels for all the datasets, following Liu et al. (2022), we first run an off-the-shelf active
hand-object detector (Shan et al., 2020a) to get the hand bounding box in each frame. To get the
ground truth of each future hand trajectory, we first compute pairwise homographies by matching
SURF (Bay, 2006) features of masked regions through RANSAC and project each future hand po-
sition into the last observation frame. Then, we apply cubic Hermite spline interpolation to smooth
the projected trajectories and fill any missing points. Finally, we filter the resulting trajectories with
multiple criteria, including confidence thresholds, highest-score detection selection, feature match-
ing thresholds, trajectory completeness checks, and boundary constraints.

To reformat these datasets for visual question answering, we structure them in a question-answer
format using the following template:

“USER:<images>,can you give me the future hand trajectory for {explicit action narra-
tion}?ASSISTANT: Sure, it is<HAND><HAND><HAND><HAND>.”,

where <images>represents a placeholder of visual tokens of the input frames. Note that the action
is optional because we can also generate general templates without specifying the action, and in this
case the task reduces to that in prior works Liu et al. (2022); Bao et al. (2023); Ma et al. (2024b).

4.2 REASONING-BASED HAND PREDICTION TASK

In addition to the Vanilla Hand Prediction Task, we introduce the Reasoning-based Hand Prediction
(RBHP) task. Instead of utilizing explicit instructions to directly predict the hand motion, here the
system is required to reason about it with implicit instructions. We define implicit instructions as
colloquial language instructions that provide sufficient information for inferring the intended human
hand action through reasoning, without explicitly naming the target object or action.

To construct a dataset for this task, we implement a two-step annotation-generating pipeline (Fig.
3) powered by GPT-4 (Achiam et al., 2023). This pipeline extracts implicit instructions from the
Epic-Kitchens-100 dataset (Damen et al., 2022). Prompt templates for these two steps are provided
in the Appendix A.5.

Action-aware Image Description. To get the implicit instructions, the first step is to generate a
detailed description of the scene including all the objects in the foreground. We prompt GPT-4 with
the ground truth action to capture action-related information, such as the physical properties of the
target object or the spatial relationship with other objects.

Implicit Action Generation. Using the action-aware description of the scene, we are able to gen-
erate the implicit instructions using GPT-4 in a text template as follows:

”USER:<images>,can you give me the future hand trajectory for {action implicit descrip-
tion}?ASSISTANT: Sure, it is<HAND><HAND><HAND><HAND>.”.
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Action: Get the dough

<images> What is the recommended hand 
movement for  accessing the mixture in the 
white container?

To accessing the mixture in the white container, the recommended 
hand trajectory is: <HAND><HAND><HAND><HAND>.

In the image, there is a countertop with various kitchen items. A hite mixing bowl containing dough is positioned on 
the left, while a black baking tray sits in the center. The person's hand, covered in dough, is reaching towards the 
tray, suggesting they are about to transfer the dough. To the right, there is a frying pan with some cooked meat, and 
a blender is visible in the background. The overall scene depicts a busy kitchen environment, focused on food 
preparation.

GPT-4 Action-aware Image Description 

Classic Hand Trajectory Dataset

Implicit Action Generation Visual Question-Answering Conversion

Figure 3: Illustration of the annotation pipeline for the RBHP task. By using GPT-4 on human video
datasets we extract implicit language instructions for visual question-answering. The red and blue
lines respectively show trajectories for the right and left hands.

We choose Epic-Kitchen and Ego4D (Grauman et al., 2022) as datasets for this task. Through the
annotation-generating pipeline, we generate 7.5k question-answering pairs from Epic-Kitchen, and
8k pairs from Ego4D for zero-shot evaluation.

5 EXPERIMENT

We perform experiments for both the proposed tasks in order to answer the following research
questions:

• How plausible are the hand trajectories produced by HandsOnVLM?
• Does HandsOnVLM exhibit reasoning abilities for implicit language queries?
• Does HandsOnVLM generalize zero-shot to unseen scenes from new datasets?

5.1 EXPERIMENT DETAILS

Architecture. Following LITA’s architecture, We use CLIP-L-14 (Radford et al., 2021) as the vi-
sual encoder and Vicuna (Chiang et al., 2023) as the LLM module. We adapt the vision-language
projector from LLaVA (Liu et al., 2024) and have a CVAE (Sohn et al., 2015) as trajectory decoder.
We use 4 frames for slow tokens and use average pool window s = 2. With 1 fast token per frame,
this leads to a total of 100 + 256 = 356 tokens per video.

Datasets. For VHP and RBHP datasets, we sample 10 frames and predict the hand position in
next 4 frames at 4 FPS. More details of dataset preparation can be found in Appendix A.1. In ad-
dition to our proposed datasets, HandsOnVLM† are also trained on a few additional datasets for
five different tasks, namely ActivityNet-Captions (Krishna et al., 2017)and YouCook2 (Zhou et al.,
2018) for dense video captioning and event localization, NExT-QA (Xiao et al., 2021) for video
question answering, LLaVA-150K (Liu et al., 2024) for image instruction tuning, ActivityNet-
RTL (Huang et al., 2024) for reasoning temporal localization. We co-train with these additional
tasks to help with visual understanding and reasoning, and this is enabled by the flexible modeling
of HandsOnVLM that allows training on generic QA datasets.

Implementation Details. For HandsOnVLM and other VLM-based baselines, in each epoch we
select 24K samples from the Epic-Kitchens-100 VHP dataset. For HandsOnVLM†, in each epoch
we randomly select 6K samples in Epic-Kitchens-100 VHP dataset, 6K in Epic-Kitchens-100 RBHP
dataset and another 12K that are uniformly distributed among all other 5 tasks. We use a batch size of
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On Validation Split Zero-shot
EK55 EK100 H2O FPHA

Approach BBox Input ADE ↓ FDE ↓ WDE ↓ ADE ↓ FDE ↓ WDE ↓ ADE ↓ FDE ↓ WDE ↓ ADE ↓ FDE ↓ WDE ↓
KF ✓ 0.392 0.386 0.199 0.317 0.318 0.168 - - - - - -

OCT ✓ 0.216 0.199 0.105 0.209 0.187 0.102 - - - - - -
OCT-global 0.232 0.218 0.115 0.216 0.193 0.105 - - - - - -

LLaVA-Pixel2Seq 0.156 0.139 0.076 0.254 0.224 0.124 0.150 0.121 0.032 0.214 0.189 0.043
LLaVA-Traj 0.126 0.142 0.073 0.201 0.191 0.103 0.133 0.130 0.031 0.191 0.167 0.041

HandsOnVLM 0.136 0.106 0.062 0.194 0.157 0.090 0.135 0.108 0.028 0.175 0.151 0.034

Table 1: Comparison of VHP task with different baselines. We reported the performance on the
validation split of Epic-Kitchen dataset. For the RBHP baselines, we also evaluate them on two
unseen datasets, H2O and FPHA.

128, a learning rate of 2e-5 and train for 40 epochs. The total wall-clock time for training is around
36 hours for the 7B models while using 4 H100 GPUs. The LLM and vision-language projector are
initialized with the LLaVA-1.5 pre-trained weights. During training, we freeze the visual backbone
and fully fine-tune other modules.

5.2 METRICS AND BASELINES

Following previous works (Liu et al., 2022; Ma et al., 2024b) we use Average Displacement Error
(ADE), Final Displacement Error (FDE) and Weighted Displacement Error (WDE) as metrics to
evaluate VHP and RBHP tasks.

Vanilla Hand Prediction. For the VHP task, we choose Kalman Filter(KF) and Object-centric
Transformer(OCT) (Liu et al., 2022) as the baselines. Since OCT still requires the bounding box
feature of the hand and object as input, to get a fairer comparison with other end-to-end methods,
we implement a version without the requirement of the bounding box, which we call OCT-global.

Reasoning-based Hand Prediction. To evaluate HandsOnVLM’s performance on the RBHP task,
we perform baseline comparisons with several VLM-based methods. We describe these basleines
below:

• LLaVA-Traj. Note that the hand trajectories are a sequence of pixel positions, we can rep-
resent them in text directly. In this case, we can directly fine-tune the LLaVA without any
modification.

• LLaVA-Pixel2Seq. An alternative approach to representing hand positions involves quantizing
the image into discrete spatial bins (Chen et al., 2021), each corresponding to a unique token.
We can extend the existing vocabulary with those discrete tokens.

• Language-conditioned Image-to-video Models. We also compare our model to base-
lines of the language-conditioned image-to-video generation followed by hand-tracking. We
use commercial state-of-the-art language-conditioned image-to-video systems such as LumaL-
abs (LumaLabs, 2024), Kling 1.5 (KlingAI, 2024) and generate videos conditioned on the last
observation frame and the language description. Following the hand label generation process
in Sec. 4.1, we track and extract the hand trajectories of the generated video.

5.3 COMPARISONS WITH BASELINES

We evaluate HandsOnVLM on both the VHP task and the proposed RBHP task and report the
results and comparisons with baselines in Table 1 and Table 2 respectively. All models ex-
cept HandsOnVLM† are trained on VHP datasets. HandsOnVLM† is trained on all available datasets
(Data Combo 5 in Table 3).

VHP Task. We evaluate all the baselines on the VHP datasets as described in section 5.1. Here,
the FPHA and H2O datasets serve as unseen datasets to test zero-shot generalization capabilities.
Among all the VHP datasets, HandsOnVLM outperforms both the task-specific methods as well
as the VLM-based methods, which demonstrates its strong ability to produce plausible trajectories
corresponding to how a real human hand would move given explicit instructions. We also find
that HandsOnVLM can generalize to completely unseen scenes (for example scenes from H2O and
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FPHA datasets), which demonstrates it can effectively leverage the world knowledge of the pre-
trained VLM.

RBHP Task. For evaluations on the RBHP task shown in Table 2, HandsOnVLM achieves state-of-
the-art performance in all three metrics. This suggests that HandsOnVLM is able to reason based on
implicit cues of the scene and be applied to complicated scenarios involving everyday natural lan-
guage conversations. However, we observe that LumaLabs (LumaLabs, 2024) achieves the smallest
ADE in the Ego4D RBHP benchmark but relatively higher FDE and WDE. This may be because
the commercial text-conditioned image-to-video generation models have realistic video generation
capabilities but cannot understand reasoning-based language prompts which is necessary for gener-
ating plausible videos maintaining temporal consistency. Since the training dataset compositions of
these video models are not disclosed, there may also be some data leakgae issues of the evaluation
datasets in this paper being a part of their training corpora.

5.4 ABLATION STUDY

RBHP(Epic-Kitchen) RBHP(Ego4D)
Approach ADE ↓ FDE ↓ WDE ↓ ADE ↓ FDE ↓ WDE ↓
Kling 1.5 0.311 0.358 0.197 0.277 0.411 0.184
LumaLabs 0.293 0.377 0.189 0.213 0.286 0.135

LLaVA-Pixel2Seq 0.277 0.248 0.137 0.312 0.287 0.143
LLaVA-Traj 0.196 0.187 0.101 0.381 0.353 0.178

HandsOnVLM 0.197 0.165 0.094 0.229 0.195 0.100
HandsOnVLM† 0.187 0.156 0.089 0.228 0.186 0.097

Table 2: Comparison of HandsOnVLM on the RBHP task with dif-
ferent baselines. †means fine-tuned on the RBHP dataset.

In this section, we conduct a
broad study of the different
components of our model.
All experiments in this sec-
tion are evaluated on the
RBHP task.

Effects of Different Sources
of Dataset. In Table 3, we
show the contribution of each
type of dataset to the per-
formance of HandsOnVLM.
LITA dataset denotes the dif-
ferent datasets for 5 additional tasks (Huang et al., 2024) described in Section 5.1 ranging from
dense video captioning to reasoning about temporal localization. While increasing the scale of the
VHP dataset (first two rows) can bring some improvement, we find that fine-tuning with the reason-
ing dataset (last two rows) can significantly boost the performance, even when fine-tuning with tasks
that are not directly related to hand trajectory prediction. This demonstrates that HandsOnVLM can
leverage world knowledge learned by other tasks to reason about predicting plausible hand trajecto-
ries.

Epic-Kitchen
Data Combos 55 100 LITA data RBHP data ADE↓ FDE↓ WDE↓

1 ✓ 0.206 0.195 0.101
2 ✓ ✓ 0.197 0.165 0.094
3 ✓ ✓ ✓ 0.199 0.163 0.094
4 ✓ ✓ ✓ ✓ 0.187 0.156 0.089

Table 3: Analysis of the impact of training data on the performance of HandsOnVLM. We can see
that performance increases with additional data of VHP (first two rows), even with datasets of other
tasks (third row), but the highest gains come from the proposed RBHP dataset (last rows).

Num of Generations ADE↓ FDE↓ WDE↓
1 0.187 0.156 0.089
4 0.184 0.152 0.087
8 0.182 0.151 0.086

16 0.182 0.150 0.086

Table 4: Analysis of test-time computations
for HandsOnVLM in the form of stochastic de-
coding with self-consistency (Wang et al., 2023).

Test-time Computation. Recent
works (Snell et al., 2024; OpenAI,
2024) have shown that using more test-
time computation is a critical step for
LLMs to improve their performance,
especially on reasoning tasks. Motivated
by these, we also investigate if such
properties can enhance the performance
of HandsOnVLM predictions. We report
the performance using different numbers
of generations during the stochastic
decoding with self-consistency(Wang et al. (2023)) in Table 4. The main idea is to sample a
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Where should my hand
move to if I want to remove 
debris from a round, 
metallic object in the sink?

Input GT LLaVA-Pixel2Seq

Can you provide the hand
trajectory for blending the
diced vegetables in the pan?

Prompt

Where should my hand move
to if I want to gently mix
the contents of the 
cooking vessel?

Can you provide the hand
trajectory for closing
the bottle of milk?

Can you provide the hand
trajectory for taking out
espresso?

HandsOnVLM

Figure 4: Qualitative results for different samples from the validation split of our RBHP dataset (top
in blue) and zero-shot evaluations on completely unseen datasets FPHA and H2O (bottom in pink).
The left-hand trajectory is visualized in blue and the right-hand trajectory is in red. The arrows
denote the direction of each trajectory. GT trajectories are provided for reference.

diverse set of reasoning paths instead of just one and then select the most consistent output through
marginalization. To obtain the self-consistency result in our context, we generate multiple answers
for each inquiry and then average the predicted hand trajectory. We find that increasing the test-time
computation in this form can robustly improve the performance of HandsOnVLMas seen by the
lower metrics from top to bottom in Table 4 .

Effect of different Observation Frames. In Table 5, we investigate performance of our ap-
proach and the baselines when conditioned on just one observation frame instead of an observa-
tion video. Here we have four comparisons: OCT-last-im, OCT-global-last-im, HandsOnVLM-last-
im, HandsOnVLM†-last-im, which respectively correspond to versions of our baselines in Sec. 5.2
but are only conditioned on the last frame of the input video context. We find that the results in
this evaluation scenario are comparable to the setting where the context is a video, indicating that
HandsOnVLM can flexibly be conditioned on just one image when a video context is not available.

5.5 QUALITATIVE RESULTS

Method Num of Generations ADE↓ FDE↓ WDE↓

VHP

OCT 0.209 0.187 0.102
OCT-last-im 0.213 0.191 0.104
OCT-global 0.216 0.193 0.105

OCT-global-last-im 0.212 0.189 0.103
HandsOnVLM 0.194 0.157 0.090

HandsOnVLM-last-im 0.197 0.165 0.094

RBHP

HandsOnVLM 0.197 0.165 0.094
HandsOnVLM-last-im 0.197 0.163 0.093

HandsOnVLM† 0.187 0.156 0.089
HandsOnVLM†-last-im 0.187 0.155 0.088

Table 5: Analysis of the number of observation frames during inference.

In Fig. 4 we show
qualitative results
for HandsOnVLM and
the strongest baseline
LLaVA-Pixel2Seq.
The section above the
horizontal line shows
visualization from
the validation split of
RHBP datasets, while
the section below the
line shows zero-shot
results on scenes from
completely unseen datasets.
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In the second row, we observe that HandsOnVLM generates a trajectory where the left hand stably
holds the pan while the right hand performs the blending action. In contrast, LLaVA-Pixel2Seq fails
to correctly depict holding the pan. The third row results demonstrates HandsOnVLM’s ability to
reason about multi-modal solutions for the same task. While the ground truth shows the right hand
moving the pot, HandsOnVLM chooses to use the left hand to execute the same action, illustrating
its multi-modal reasoning ability capability.

6 CONCLUSION

Summary. In this work, we propose HandsOnVLM, a novel video-based VLM to predict hand
motion from ego-centric videos. We also proposed two tasks, Vanilla Hand Prediction(VHP) task
and Reasoning-based Hand Prediction(RBHP) task to benchmark the hand motion prediction as
well as the reasoning ability. We demonstrate its effectiveness through extensive quantitative and
qualitative results. We believe this research represents a promising initial step towards integrating
egocentric hand-object video understanding with the powerful capabilities of VLMs.

Limitations. While we enabled hand-trajectory prediction from colloquial language instructions,
the quality of our predictions are bottle-necked by the limitations of ground-truth hand location
extraction from videos, the models for which often fail when the hand is occluded or moving too
fast. In addition, the 2D locations of hand we predict are not rich enough for directly being adapted
for downstream applications like robotics and augmented reality.

Future Work. An interesting direction of future work would be to predict trajectories of full hand
meshes in the future including orientation and articulation and also include depth in the predictions.
Another exciting direction would be to adapt our model for long-horizon predictions for activities
like “making coffee” which would consist of several steps and require reasoning over an extended
period. Since video clips on the web have significant camera motion over time, a viable strategy for
this could be chaining the model sequentially for different sub-tasks.

REPRODUCIBILITY STATEMENT

We will provide the source code and the generated dataset including instructions on how to setup
training and evaluation of the models. We have thoroughly reviewed our implementation and vali-
dated its effectiveness through extensive experiments.

ETHICS STATEMENT

Our paper focused on learning hand trajectories from human videos and language descriptions.
There are many potential societal consequences of our work including deployments in AR/VR sys-
tems and augmenting user experience for everyday activities by forecasting low-level actions in their
egocentric frame of reference.
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A APPENDIX

Here we provide additional details of the model implementation, dataset curation, and more qualita-
tive results.

A.1 DATASET DETAILS

Statistics. Table 6 shows the statistics of all datasets used in our tasks. Note that H2O, FPHA and
Ego4D are only used for zero-shot evaluation so there are no training samples.

Task Dataset Training Samples Validation Samples

VHP

Epic-Kitchen-55 8523 1894
Epic-Kitchen-100 24148 3513

H2O - 503
FPHA - 501

RBHP Epic-Kitchen-100 4018 3513
Ego4D - 8673

Table 6: Data Statistics of VHP and RBHP task.

A.2 PIPELINE DETAILS

Here we provide the illustrations of the training pipeline and the inference pipeline.

The trajectory

Large Language Model

LLM Positional Embed

<HAND>

Input Token Embeddings

Output Token Embeddings

Linear CVAE

Predicted 
Position

Token 
Probabilities

Ground Truth Position

Actual Next Token
is <HAND>

Hand Position Embed

Figure 5: Illustration of training pipeline.

A.3 OTHER ABLATION STUDIES

Scaling Model Improves the Prediction. To evaluate the scaling ability of our model, we use
LLaVA-V1.5-7B and LLaVA-V1.5-13B as the LLM backbone of our model. We refer them
as HandsOnVLM-7B and HandsOnVLM-13B. We show the performance of both models in Fig.
7.

Zero-shot Chain-of-thought. We also conduct an ablation study on the zero-shot chain-of-thought
(Wei et al., 2022; Kojima et al., 2022) prompting, as shown in Fig. 8. We add “Let’s think step by
step” in the front of the answer generated in the inference stage. Contrary to our expectations, this
approach yielded poorer results. This unexpected outcome may be attributed to the limited diversity
of our datasets.
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The trajectory

Large Language Model

LLM Positional Embed

<HAND>

Hand Position Embed

Input Token Embeddings

Output Token Embeddings

Linear CVAE

Predicted 
Position

Token 
Probabilities

Predicted Next Token
is <HAND>

Predicted Position

Sampling
Strategy

Current Token

Figure 6: Illustration of inference pipeline.

Approach ADE↓ FDE↓
HandsOnVLM-7B 0.197 0.165

HandsOnVLM-13B 0.183 0.149

Figure 7: Ablation study on the LLM backbone
size. We evaluate them on the RBHP task.

Reasoning Method ADE↓ FDE↓
Direct Answer 0.197 0.165

Chain-of-Thought 0.220 0.191

Figure 8: Comparison of direct answer and
chain-of-thought reasoning methods.

A.4 MORE VISUALIZATIONS

Failure Cases. We show some failure cases in Fig. 9. We observe failures when (1) there are
someone’s hands in the video, (2) the hands are occluded by objects, and (3) the target object in the
instruction is not found in the frame.

Figure 9: Failure cases of the model: (left) multiple hands in the video, (middle) occlusions, and
(right) the target trash can is out of view.

More Qualitative Results. We provide more visualizations in Fig. 10.

A.5 PROMPT FOR VHP AND RBHP DATASET GENERATION

We provide the GPT4 prompts for the RBHP dataset generation pipeline mentioned in Section 4.2
in Table 7 and Table 8.
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GPT4 Prompt for Action-aware Image Description
You are a system generating descriptions for ego-centric human images. Human is doing household
activities.

Provided with an image and a action narration of what is happening next, such as “use the scissor”,
you will describe the main item that you see in the image, giving details but staying concise.

You can describe unambiguously what the item is, its color or relative position if clearly identifiable.
You should also give out a overall description of the scene, the environment where the action is
taking place.

Table 7: GPT4 prompt for action-aware image description.

GPT4 Prompt for Implicit Action Generation
You are tasked with creating specific, indirect questions and instructions that human could use to
identify and interact with objects based on their names or detailed descriptions provided by users.

You will be given an action phrase which the human is going to do next, such as “use the scissor”.

Based on the descriptions, you must formulate responses that precisely hint at the action phrase
without naming it directly. The aim is to enable the agent to deduce the correct action through these
indirect cues, enhancing its ability to understand and execute tasks involving the object.

Please format your generated response as a hand trajectory question, some templates are provided
below for reference:
“Where should my hand move to if I want to {implicit description}”
“Can you provide the hand trajectory for {implicit description}?”
“What is the recommended hand movement for {implicit description}?”

Table 8: GPT4 prompt for implicit action generation.

Question Templates to Build VHP Datasets.
“Can you provide the hand trajectory?”
“What is the recommended hand movement?”
“What is the future hand trajectory in this video?”
“What is the predicted hand trajectory given current observations?”
“Where should my hand move to if I want to {explicit action}?”
“Can you provide the hand trajectory for {explicit action}?”
“What is the recommended hand movement for {explicit action}?”

Table 9: Question Templates to build VHP datasets.

Answer Templates to build VHP and RBHP datasets.
“Sure! Here is the hand trajectory {hand token sequence}.”
“Based on the video, the hand trajectory is as follows: {hand token sequence}.”
“The predicted hand trajectory is as follows: {hand token sequence}.”
“Certainly! The hand trajectory for {action instruction} is as follows: {hand token sequence}.”
“To {action instruction}, the recommended hand trajectory is: {hand token sequence}.”

Table 10: Answer Templates to build VHP and RBHP datasets.
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What is the recommended
hand movement for 
transferring a bottle and its 
lid into their respective 
containers?

Input GT LLaVA-Pixel2Seq

Where should my hand move
to if I want to transfer a 
delicious pizza from its
parchment paper to a
decorative dish?

Prompt

Where should my hand move
to if I want to place a long,
cylindrical baking tool 
into the wooden drawer?

HandsOnVLM

Where should my hand move
to if I want to transfer the
diced pieces of eggplant 
from the cutting board to
the cooking vessel?
Where should my hand move
to if I want to transfer a 
delicious pizza from its
parchment paper to a
decorative dish?

Where should my hand move
to if I want to add a savory
filling to the round pieces
of dough?

What is the recommended
hand movement for taking
out espresso?

What is the recommended
hand movement for
opening milk box?

Where should my hand move
to if I want to clean glasses?

What is the recommended
hand movement for
opening letter?

Figure 10: More Qualitative results for different samples from the validation split of our RBHP
dataset (top in blue) and zero-shot evaluations on completely unseen datasets FPHA and H2O (bot-
tom in pink). GT trajectories are provided for reference.
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