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Abstract
During natural disasters, people often use so-001
cial media platforms, such as Twitter, to post002
information about casualties and damage pro-003
duced by disasters. This information can help004
relief authorities gain situational awareness in005
nearly real time, and enable them to quickly006
distribute resources where most needed. How-007
ever, annotating data for this purpose can be008
burdensome, subjective and expensive. In this009
paper, we investigate how to leverage the co-010
pious amounts of unlabeled data generated by011
disaster eyewitnesses and affected individuals012
during disaster events. To this end, we pro-013
pose a semi-supervised learning approach to014
improve the performance of neural models on015
several multimodal disaster tweet classification016
tasks. Our approach shows significant improve-017
ments, obtaining up to 3.5% F1 performance018
gain at no additional annotation cost.019

1 Introduction020

The upswing of text and image sharing on social021

media platforms, such as Twitter, during mass emer-022

gency situations has led to numerous opportunities023

to gain timely access to valuable information that024

can help disaster relief authorities act quicker and025

more efficiently. Specifically, as a disaster unfolds,026

information shared on social media can provide027

insights into the infrastructure and utility damage,028

casualties, and missing people. Recent studies have029

focused on collecting and manually annotating dis-030

aster data with respect to such situational aware-031

ness categories, followed by training machine learn-032

ing classifiers to automatically identify situational033

awareness information, useful for relief operations034

(Alam et al., 2018b; Ashktorab et al., 2014).035

However, disaster events produce large amounts036

of user-generated data, of which only a small frac-037

tion can be annotated, due to the time-sensitive038

nature of the problem, together with high annota-039

tion costs, and also inherent subjectivity associated040

with annotating data (e.g., tweets).041

To address this limitation, we propose a semi- 042

supervised multimodal approach that can lever- 043

age the copious amounts of unlabeled data to im- 044

prove the performance on various multimodal tasks. 045

Specifically, we extend the FixMatch (Sohn et al., 046

2020) algorithm proposed for semi-supervised im- 047

age classification to a multimodal setting. To ac- 048

count for subjective annotations and potentially 049

overlapping labels, we use soft pseudo-labels in- 050

stead of the original hard pseudo-labels. We ap- 051

ply the adapted FixMatch to the CrisisMMD la- 052

beled dataset and tasks (Alam et al., 2018b), to 053

improve the performance of supervised baselines 054

through the use of unlabeled data. We use 122K 055

unlabeled tweets, containing both text and images, 056

collected automatically using text queries about 057

disasters that occurred during the year of 2017. 058

Experimental results show that our proposed ap- 059

proach produces performance improvements on all 060

three CrisisMMD tasks. To our knowledge, we are 061

the first to propose a semi-supervised method for 062

multimodal data using FixMatch and text-based 063

searches for collecting a large unsupervised dataset. 064

While our experiments focus on disaster tweets, 065

the method can be easily generalized. Finally, we 066

provide an extensive error analysis of our models. 067

We analyze how the supervised model’s predictions 068

change with the introduction of unlabeled data and 069

reinforce the importance of our improved version 070

of FixMatch. 071

Our contributions are as follows: 072

(1) We extend FixMatch algorithm to a multi- 073

modal scenario and offer two extensions to the 074

original approach relevant for text and multimodal 075

datasets. (2) We show that inexpensive unlabeled 076

data gathered using text queries and basic prepro- 077

cessing can be leveraged by our multimodal Fix- 078

Match to improve performance on 3 classification 079

tasks. (3) We provide a detailed analysis into the 080

predictions of the semi-supervised approaches, and 081

compare them to their supervised counterparts. 082
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2 Related Work083

Semi-supervised learning. Semi-supervised learn-084

ing is the approach of combining labeled data with085

large amounts of unlabeled data during training.086

MixMatch (Berthelot et al., 2019b) uses a sharp-087

ening technique, and guesses low-entropy labels088

for augmented unlabeled data. Next, it employs089

MixUp (Zhang et al., 2017) to blend the labeled and090

unlabeled examples. FixMatch (Sohn et al., 2020)091

combines two standard semi-supervised techniques:092

consistency regularization (Rasmus et al., 2015;093

Sajjadi et al., 2016; Tarvainen and Valpola, 2017)094

and pseudo-labeling (Lee et al., 2013). The pseudo-095

labels are generated using the current model’s pre-096

dictions on weakly-augmented unlabeled images.097

Next, the model tries to predict the pseudo-labels098

for strongly augmented versions of the same im-099

ages. Noisy Student Training (Xie et al., 2020)100

first trains a teacher model on the labeled data to101

predict pseudo-labels for the unlabeled examples.102

Next, it trains a larger student model on all the data103

(i.e. labeled and unlabeled) using augmentation104

and dropout. The teacher model is then replaced105

by the student, and the process is repeated until106

convergence. Text and image methods are usually107

related: MixText (Chen et al., 2020) is an adapta-108

tion of MixMatch for text, while UDA (Xie et al.,109

2019) is introduced both for images and text.110

Disaster tweet classification. A significant body111

of research focuses on the benefits of social media112

information for improving disaster relief efforts.113

Some of these studies focus solely on the analysis114

of textual data (e.g., tweets) (Imran et al., 2015;115

Kryvasheyeu et al., 2016; Li et al., 2018a; Enenkel116

et al., 2018; Alam et al., 2018a), while others focus117

only on the analysis of images (Bica et al., 2017;118

Nguyen et al., 2017; Li et al., 2019; Weber et al.,119

2020). However, many tweets posted during disas-120

ters contain both text and images, which if studied121

jointly, can provide a better portrayal of the damage122

produced by disasters, or the needs of the affected123

individuals. Therefore, it is not surprising that mul-124

timodal models in the disaster space have recently125

started to gain popularity (Mouzannar et al., 2018;126

Rizk et al., 2019; Gautam et al., 2019; Nalluru et al.,127

2019; Agarwal et al., 2020; Abavisani et al., 2020;128

Xukun and Caragea, 2020; Hao and Wang, 2020).129

These existing approaches, however, do not use130

the large amounts of unlabeled multimodal data131

generated during disasters. In this paper, we pro-132

pose a semi-supervised approach to leverage this133

data to improve the multimodal disaster tweet clas- 134

sification. Our approach extends FixMatch (origi- 135

nally proposed for image classification) to the mul- 136

timodal setting and introduces two enhancements. 137

3 Methods 138

Baseline Modeling. First, we experiment with 139

an image-only model, ResNet-152 (He et al., 2016), 140

on top of which we add a linear layer for classifi- 141

cation. Next, we use a Multimodal Bitransformer 142

(MMBT) (Kiela et al., 2019) to leverage both the 143

image and text for disaster tweet classification, as 144

it already showed good results on this task (Sosea 145

et al., 2021). We randomly crop and rescale the 146

input images to 224x224, a common size for these 147

types of networks, and also perform a standard hori- 148

zontal flip and shift augmentation. We denote these 149

approaches by ResNet Aug and MMBT Aug. 150

Semi-supervised learning. To leverage the 151

large amounts of data generated during disaster 152

events, we adapt the FixMatch (Sohn et al., 2020) 153

algorithm to the multimodal setting. FixMatch ob- 154

tains impressive performance on several Computer 155

Vision tasks by combining consistency regulariza- 156

tion (Sajjadi et al., 2016; Laine and Aila, 2016) 157

and pseudo-labeling (McLachlan, 1975). FixMatch 158

computes the overall loss l as a weighted sum of 159

two loss terms l = ls+λulu, where λu is a weight- 160

ing parameter, ls is the loss on labeled data, and lu 161

is the loss on unlabeled data. Specifically, in the 162

multimodal setting, the labeled loss is defined as: 163

ls =
1

B

B∑
b=1

H(pb, pm(α(ximg
b ), β(xtxtb ))) 164

where B is the batch size, H is the cross-entropy 165

loss, pb is the one-hot encoding of the true label 166

of a multimodal tweet (ximg
b , xtxtb ), and pm is the 167

model’s prediction (i.e., probability distribution 168

over possible classes y) on a weakly augmented im- 169

age, α(ximg
b ), and weakly augmented text, β(xtxtb ). 170

The unlabeled loss is defined as: 171

lu =
1

µB

µB∑
b=1

1τ (qb)H(q̂b, pm(A(uimg
b ),B(utxtb ))) 172

where µ is the ratio between the number of la- 173

beled and unlabeled examples in a batch, and 174

qb = pm(α(uimg
b ), utxtb ) is the probability distri- 175

bution over classes y, for the unlabeled example 176

(uimg
b , utxtb ). The function 1τ (qb) is used to filter 177

out examples for which the prediction confidence, 178

i.e., max
y

(qb), is less than a threshold, τ . For the re- 179

maining examples, the prediction is converted to a 180
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pseudo-label using q̂b = argmax
y

(qb). Finally, the181

cross-entropy loss is computed between the one-hot182

encoding of this pseudo-label and the prediction183

of the model on a strongly augmented version of184

the current image, A(uimg
b ), and the corresponding185

augmented text, B(utxtb ). The strong augmenta-186

tions for image use either RandAugment (Cubuk187

et al., 2020) or CTAugment (Berthelot et al., 2019a).188

For text augmentation we experiment with EDA189

(Wei and Zou, 2019) and back-translation (Edunov190

et al., 2018). We offer more details about our text191

augmentation methods in Appendix F.192

In this paper, we apply the FixMatch algorithm193

to our multimodal disaster domain, using MMBT194

as the base model. To understand the benefits of195

the multimodal representation, we also apply Fix-196

Match on images only, using ResNet-152 as the197

base model. We denote these methods by MMBT198

FixMatch and ResNet FixMatch, respectively.199

FixMatch Enhancements. We propose two key200

enhancements to the unlabeled loss computation.201

First, we use soft pseudo-labels (qb) instead of the202

hard labels (q̂b) used in the original paper:203

lLSu =
1

µB

µB∑
b=1

H(qb, pm(A(uimg
b ),B(utxtb )))204

We argue that, in the disaster domain, there can205

be significant semantic overlap between two labels.206

For instance, in Figure 1e, which is labeled with207

Rescue, volunteering, or donation effort for the hu-208

manitarian task, there is a destroyed building in the209

background. By using soft labels, we can also in-210

corporate information about the Infrastructure and211

utility damage class instead of stirring the model212

towards confidently predicting the example into the213

Rescue, volunteering, or donation effort class.214

Second, we consider a variable weighting215

scheme for the loss, l. Originally, FixMatch em-216

ployed a fixed weighting between the labeled and217

unlabeled loss (e.g., λu = 1). We argue that the218

predictions of the model during the first few epochs219

are not qualitative, hence using the predicted labels220

of unlabeled data can hurt the performance. To221

prevent that, we employ a linear growth of the un-222

labeled loss. Starting with 0 in the first epoch, we223

increase this loss in steps of 2 each epoch. Our loss224

becomes lLS = ls + λu(t)l
LS
u , where λu(t) = 2t,225

and t is the epoch number. We denote the corre-226

sponding MMBT semi-supervised model by MMBT227

Fixmatch LS, while the corresponding ResNet-152228

model is denoted by Resnet Fixmatch LS.229

4 Experiments 230

Labeled Data. We evaluate our semi-supervised 231

multimodal approach on CrisisMMD (Alam et al., 232

2018b), a multimodal Twitter dataset from natu- 233

ral disasters. The dataset contains 18, 000 tweets 234

with both text and images extracted during disas- 235

ters such as the Iraq-Iran Earthquakes or Hurricanes 236

Irma, Harvey and Maria. CrisisMMD was manu- 237

ally labeled for three classification tasks: (1) Infor- 238

mativeness: A tweet is labeled as Informative or 239

Not Informative, depending on whether the tweet is 240

useful for humanitarian aid purposes or not useful. 241

(2) Humanitarian: We use the 5-class version of 242

this data (Ofli et al., 2020) to alleviate the skewed 243

label distribution. (3) Damage Assessment. We use 244

a 2-class version of this data, similar to prior works 245

(Li et al., 2018b). Each tweet image is labeled as 246

depicting Damage or No Damage. 247

Unlabeled Data. We show that, by using text 248

queries and preprocessing for collecting the unla- 249

beled corpus, the performance of FixMatch can 250

be improved even though the two datasets are not 251

sampled from the same distribution. We used the 252

Twitter Streaming API with a list of relevant key- 253

words for the text in the training dataset. Then we 254

selected 122k unique tweets containing both text 255

and images that do not overlap with CrisisMMD. 256

We provide more details in Appendix D. 257

Experimental Setup. To separately assess the im- 258

pact of using multimodal data and of introducing 259

text augmentations, we conduct our experiments 260

in two stages. First, to ensure a fair comparison 261

with the ResNet-based models, which only use the 262

image modality, we experimented with versions of 263

MMBT-based models where no text augmentation 264

is used ( B is the identity function). Second, we an- 265

alyze the impact of augmenting each modality sep- 266

arately or performing both text and image augmen- 267

tations. We propose the following Fixmatch adap- 268

tations: 1) FixMatchLSimg solely augments the 269

image, 2) FixMatchLSeda only augments the text 270

using EDA, 3) FixMatchLSimg+eda augments 271

both modalities, using EDA for text augmentation, 272

and 4) FixMatchLSimg+bt augments both modal- 273

ities, using back-translation for text augmentation. 274

All hyperparameters and model setups are avail- 275

able in Appendix A. To attain statistically signifi- 276

cant results, we ran each experiment 5 times and 277

report the average of the results. To improve repro- 278

ducibility, we will release the splits (see Appendix 279

B) for each task alongside our code. 280
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INFORMATIVE DAMAGE HUMANITARIAN
MODEL P R F1 P R F1 P R F1

RESNET AUG 0.767 0.767 0.766 0.861 0.863 0.858 0.804 0.812 0.806

RESNET FIXMATCH 0.793 0.793 0.793 0.886 0.887 0.886 0.820 0.820 0.816

RESNET FIXMATCH LS 0.804 0.804 0.804 0.887 0.888 0.887 0.829 0.825 0.819

MMBT AUG 0.786 0.785 0.785 0.865 0.867 0.865 0.865 0.862 0.863

MMBT FIXMATCH 0.808 0.806 0.806 0.882 0.882 0.882 0.865 0.865 0.864

MMBT FIXMATCH LS 0.820 0.820 0.820 0.885 0.882 0.883 0.873 0.872 0.872

Table 1: Results on CrisisMMD tasks using image augmentations - best results for each task are highlighted in bold.

INFORMATIVE 250/CLASS INFORMATIVE 500/CLASS HUMANITARIAN
MODEL P R F1 P R F1 P R F1

MMBT (supervised) 0.666 0.667 0.666 0.713 0.704 0.705 0.865 0.862 0.863

FixMatchLSimg 0.695 0.688 0.689 0.741 0.730 0.730 0.873 0.872 0.872

FixMatchLSeda 0.687 0.673 0.673 0.741 0.731 0.722 0.878 0.877 0.877

FixMatchLSimg+eda 0.701 0.702 0.701 0.759 0.756 0.756 0.885 0.881 0.881
FixMatchLSimg+bt 0.744 0.742 0.743 0.772 0.759 0.760 0.880 0.879 0.878

Table 2: Results on CrisisMMD tasks after adding text augmentations - best results are highlighted in bold.

5 Results281

Disaster Tweet Classification. We show experi-282

mental results using the previously described ap-283

proaches in Tables 1 and 2. As it can be seen in284

Table 1, our enhanced FixMatch models, which285

use soft-labels and a linear schedule for weighting286

the unlabeled loss, consistently outperform all the287

other models on all tasks. On the Informative task,288

MMBT FixMatch LS improves the F1 performance289

of the supervised MMBT Aug model by as much as290

3.5%. Interestingly, on the Humanitarian task, the291

MMBT FixMatch approach, which uses hard labels292

and a constant loss weighting, obtains similar per-293

formance to MMBT Aug, which uses no unlabeled294

data. We attribute this to the nature of the human-295

itarian task, where the boundary between classes296

may not be well defined, i.e., an example annotated297

with class y1 can exhibit characteristics specific to298

a different class y2. We argue that the use of the299

“hard labeling” mechanism for these types of tasks300

can lead to poor model performance. On the other301

hand, the MMBT FixMatch LS manages to prevent302

this shortcoming, and obtains an F1 increase of 1%303

over the MMBT Aug model. Finally, on the Dam-304

age task, we observe that the ResNet and the MMBT305

perform similarly, which is not surprising, given306

that the examples in this task were annotated based307

only on the image in the tweet. However, similar to308

the Informative task, the best semi-supervised ap-309

proach outperforms the other method by as much as310

2.9% F1. Table 2 shows the improvement obtained311

for the best model so far (MMBT FixMatch LS)312

when also introducing text augmentation. Here, to313

test the limit of our approach, we also experiment314

with few labeled examples (250/500) per class on315

the informative task. Our results show that while 316

there is no clear winner when augmenting only one 317

modality (FixMatchLSimg performs better than 318

FixMatchLSeda on Informative task, but worse 319

on Humanitarian), it is clear that augmenting both 320

modalities is always the best option. Using back- 321

translation instead of EDA gives better results on 322

the Informative tasks, but there is a slight decrease 323

in performance on the Humanitarian task. 324

All improvements of the enhanced FixMatch 325

over baselines are statistically significant, accord- 326

ing to a t-test with p < 0.01. These results show the 327

feasibility of our proposed FixMatch variant: using 328

cheap to acquire unlabeled data, the performance 329

of supervised models is significantly improved. 330

Error Analysis We also investigate common er- 331

rors of the supervised models, which are corrected 332

by our FixMatch approach. We explain a few pat- 333

terns and provide supporting examples in Appendix 334

E. Our proposed FixMatch variant is able to cor- 335

rect these types of errors. Moreover, the FixMatch 336

model is confident in its predictions, usually assign- 337

ing a probability over 90% to the correct class. 338

6 Conclusion 339

We extended FixMatch to multimodal data and 340

proposed two improvements. We applied the im- 341

proved FixMatch on three disaster-centric multi- 342

modal tweet classification tasks, and showed that 343

the approach can leverage large unlabeled data to 344

improve supervised model performance. Our semi- 345

supervised approach is general enough and can be 346

easily applied to other datasets, being at the same 347

time very efficient as it does not add any inference 348

complexity to the base model. 349
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A Fixmatch Setup542

First, we tried to find the best FixMatch setup543

for our experiments (without our extension). To544

achieve this, we experimented with a variety of545

setups, by manually tuning the FixMatch hyperpa-546

rameters and choosing the values that yield the best547

F1 score:548

• For the ratio µ between unlabeled and labeled549

examples we tried values from the set {3, 5,550

7}. We observed that setting µ to 7 produced551

the best results. We did not try values bigger552

that 7 due to computation limitations. How-553

ever, 7 is the reported best µ in the original554

FixMatch paper, too.555

• For the weight of the unlabeled loss, λu, we556

experimented with values in the set {1, 10,557

50,100}, and obtained the best results with558

value 1 (similar to the original paper).559

• For image preprocessing, we cropped and560

rescaled all images to 224x224 size. We also561

tried to reduce the size of the images to 96x96562

to improve computational performance, but563

the results were heavily affected.564

• For image augmentation we used random hor-565

izontal flip as weak augmentation and Ran-566

dAugment as strong augmentation in all our567

experiments.568

• Initially, the original paper used no dropout,569

but we observed that adding 0.2 dropout im-570

proved the results.571

• Exponential moving average (EMA) with de-572

cay 0.999 was kept as in the original paper.573

We experimented with a smaller decay or with-574

out EMA, but this negatively impacted the575

performance.576

• Instead of SGD and cosine learning rate577

schedule, we used Adam with a ReduceOn-578

Plateau schedule, which improved the results.579

• We experimented with learning rates from the580

set {10−5, 5× 10−5, 10−4}, and picked 10−5581

as the optimal value.582

• For the confidence threshold τ , we found that583

0.7 was the best for our tasks. This is compati-584

ble with the value chosen in the original paper585

on the ImageNet dataset. We experimented586

with values in the set {0.5, 0.7, 0.85, 0.95}.587

• Due to computation limitations, we used a 588

batch size of 8 with 40 gradient accumulation 589

steps in all our experiments. 590

We apply the best hyperparameters found for 591

the classic FixMatch algorithm to our extended 592

FixMatch LS version. Our changes are: 593

• we used soft labels instead of hard pseudo- 594

labels for the unlabeled data 595

• we used a linear schedule for the unlabeled 596

loss weight λu 597

Note that replacing pseudo labels with soft la- 598

bels for the unlabeled data completely removes the 599

confidence threshold parameter, τ . However, in- 600

troducing the linear schedule λu(t) = c ∗ t for the 601

unlabeled loss adds one extra parameter, c. This 602

is the only hyperparameter tuned for FixMatch LS. 603

After experimenting with values in the set {1, 2, 3}, 604

we choose λu(t) = 2 ∗ t to be our weight in all the 605

experiments. 606

In order to attain statistically significant results, 607

we ran each experiment 5 times and report the av- 608

erage of the results. The training process took 20 609

days to complete on a system with 4 Nvidia V100 610

GPUs, each experiment running for roughly 20 611

hours on a single GPU. 612

B Splits 613

We show the number of examples from the train, 614

development, and test sets for the 3 tasks in Crisis- 615

MMD in Table 3. Moreover we provide the class 616

distributions in Table 4. 617

C Predictions 618

We show comparisons between predictions of the 619

MMBT Aug and the FixMatch LS model in Tables 5 620

and 6. We show the input samples and the ground 621

truths in Figure 1. 622

D Unlabeled Data 623

We collected data from Twitter during disasters 624

that happened in 2017: California Wildfires, Mex- 625

ico Earthquake, and Hurricanes Harvey, Irma, and 626

Maria. The tweets were crawled using the Twit- 627

ter streaming API (keywords such as #hurricane- 628

harvey, #harvey, #hurricane) during the following 629

disasters: Hurricane Harvey, Hurricane Irma, Hur- 630

ricane Maria, Mexico Earthquake, and Chiapas 631
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DATASET SIZE TRAIN DEV TEST

INFORMATIVE 13494 10795 (80%) 1349 (10%) 1350 (10%)
DAMAGE 6089 4262 (70%) 913 (15%) 914 (15%)

HUMANITARIAN 8079 6126 (75.8%) 998 (12.4%) 955 (11.8%)

Table 3: Data splits for each task

DATASET INFORMATIVE DAMAGE HUMANITARIAN

Labels

uninformative (55%) no damage (70%) not humanitarian (53%)
informative (45%) damage (30%) other relevant information (22%)

rescue volunteering or donation effort (15%)
infrastructure and utility damage (9%)

affected individuals (1%)

Table 4: Labels distribution for each task

Earthquake. This collection was filtered for disas-632

ter relevance using a Naive Bayes classifier trained633

on CrisisLexT6 to ensure that it mostly contained634

tweets relevant to disasters. Subsequently, dupli-635

cate tweets, retweets and non-English tweets were636

removed. Finally, we selected only tweets that con-637

tained both an image and text.638

In addition, we used several methods to clean639

and filter out duplicates between our dataset and640

CrisisMMD. This is done in order to make sure641

that test samples (from CrisisMMD) are not seen642

during training, not even as unlabeled examples643

(as part of our unlabeled dataset). First, we re-644

moved all retweets (tweets with the “RT” token),645

and normalized the texts removing characters repe-646

titions (all consecutive identical characters of size647

> 2 are reduced to only 2 characters) and user648

mentions. Next, we removed duplicates using the649

drop_duplicates function from the pandas library.650

The resulting unlabeled corpus will be made pub-651

licly available.652

E Error Analysis653

We investigate common errors of the models that654

use no unlabeled data, which are corrected by our655

FixMatch models. To this end, we first sample 20656

such examples for each CrisisMMD task, followed657

by manually inspecting the output probabilities and658

the contents of the image and text. We show some659

examples in Figure 1, and provide the full model660

predictions in Appendix C. We observed a few pat-661

terns. First, we spotted some erroneous predictions662

due to semantic disparities between the textual and663

the image modalities (i.e., the image and text pin-664

point to different labels, hence the final label is665

subjective). An example is shown in Figure 1b. 666

Second, we encountered a significant number of 667

examples where the image modality is distorted, 668

or contains noise. For instance, in Figure 1c, the 669

photo contains perturbations (i.e., the rain drops) 670

that hinder the capability to observe the main focus 671

of the picture: a collapsed huge crane. Third, we 672

observe some examples which contain character- 673

istics specific to more than one class. In Figure 674

1e, even though the main focus of the tweet is on 675

Rescue and volunteering efforts, the image also ex- 676

hibits traits of the Infrastructure and utility damage 677

class: a destroyed building. 678

Our proposed FixMatch variant is able to cor- 679

rect these types of errors. Moreover, the FixMatch 680

model is confident in its predictions, usually assign- 681

ing a probability over 90% to the correct class. 682

F Text Augmentation 683

For the text augmentation, we explore with two 684

different techniques: 685

• easy data augmentation (EDA (Wei and Zou, 686

2019)), which consists of randomly applying 687

4 possible operators: syonoym replacement, 688

random insertion of a word, random swap of 2 689

words, random deletion of a word. The longer 690

a sentence is, the more transformations will be 691

applied to it, as we used the EDA framework 692

for applying these transformations on 10% of 693

the words in each text. 694

• back-translation ((Edunov et al., 2018)), as 695

described in UDA (Xie et al., 2019) and Mix- 696

Text (Chen et al., 2020); it consists of translat- 697

ing a sentence to another language and than 698
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IMAGE MODEL
LABEL

informative not informative

(a)
MMBT AUG 0.71 0.29

FIXMATCH LS 0.09 0.91

(c)
MMBT AUG 0.24 0.76

FIXMATCH LS 0.98 0.02

Table 5: Examples of predictions for the Informative Task

IMAGE MODEL
LABEL

not hum. other rescue damage affected

(b)
MMBT AUG 0.36 0.06 0.04 0.51 0.09

FIXMATCH LS 0.89 0.01 0.02 0.07 0.01

(d)
MMBT AUG 0.02 0.03 0.16 0.78 0.01

FIXMATCH LS 0.03 0.03 0.90 0.01 0.03

(e)
MMBT AUG 0.01 0.01 0.02 0.95 0.01

FIXMATCH LS 0.01 0.01 0.93 0.04 0.01

Table 6: Examples of predictions for the Humanitarian Task

back to the original language, thus obtaining699

a new sentence having the same meaning. In-700

spired by MixText(Chen et al., 2020), we use701

FairSeq(Ott et al., 2019) with Russian as an702

intermediate language and random sampling703

with 0.9 temperature instead of beam search704

in order to ensure the diversity of the augmen-705

tations.706

G Limitations707

While our approach provides significant improve-708

ments on all CrisisMMD tasks, we also have to ac-709

knowledge the limitations of the proposed method.710

As it generally is the case with semi-supervised711

approaches, the training time is significantly in-712

creased, as more data needs to be passed through713

the model until convergence, comparing to a su-714

pervised approach. Regarding our method of col-715

lecting unalabeled data by searching for relevant716

keywords, although it is generic and could be ap-717

plied to datasets from other domains, it is limited718

for datasets containing tweets. For other types of719

datasets, obtaining a relevant unlabeled corpus in720

the same manner could be more challenging.721

9



(a) This 4 BD/ 2 BA in Mora MUST be seen.
Call, text or direct message me for more info!

(b) St. Augustine bed & breakfast picking up
the pieces after Hurricane Irma

(c) A huge crane just collapsed
on top of building in down town
Miami

(d) Irma update: Free roof help available

(e) Magnitude 6.1 aftershock hits Mexico as
search for people and pets continues

Figure 1: Examples of errors of the MMBT model that are corrected by FixMatch on the Informativeness and
Humanitarian CrisisMMD tasks: (a) MMBT: informative; True: not informative (b) MMBT: infrastructure and
utility damage; True: not humanitarian (c) MMBT: not informative; True: informative (d) MMBT: infrastructure
and utility damage; True: rescue, volunteering, or donation effort (e) MMBT: infrastructure and utility damage;
True: rescue, volunteering, or donation effort
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