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ABSTRACT

Data sampling acts as a pivotal role in training deep learning models. However, an
effective sampling schedule is difficult to learn due to its inherent high-dimension
as a hyper-parameter. In this paper, we propose the AutoSampling method to
automatically learn sampling schedules for model training, which consists of
the multi-exploitation step aiming for optimal local sampling schedules and the
exploration step for the ideal sampling distribution. More specifically, we achieve
sampling schedule search with shortened exploitation cycle to provide enough
supervision. In addition, we periodically estimate the sampling distribution from
the learned sampling schedules and perturb it to search in the distribution space.
The combination of two searches allows us to learn a robust sampling schedule.
We apply our AutoSampling method to a variety of image classification tasks
illustrating the effectiveness of the proposed method.

1 INTRODUCTION

Data sampling policies can greatly influence the performance of model training in computer vision
tasks, and therefore finding robust sampling policies can be important. Handcrafted rules, e.g. data
resampling, reweighting, and importance sampling, promote better model performance by adjusting
the training data frequency and order (Estabrooks et al., 2004; Weiss et al., 2007; Bengio et al., 2009;
Johnson & Guestrin, 2018; Katharopoulos & Fleuret, 2018; Shrivastava et al., 2016; Jesson et al.,
2017). Handcrafted rules heavily rely on the assumption over the dataset and cannot adapt well to
datasets with their own characteristics. To handle this issue, learning-based methods (Li et al., 2019;
Jiang et al., 2017; Fan et al., 2017) were designed to automatically reweight or select training data
utilizing meta-learning techniques or a policy network.

However existing learning-based sampling methods still rely on human priors as proxies to optimize
sampling policies, which may fail in practice. Such priors often include assumptions on policy
network design for data selection (Fan et al., 2017), or dataset conditions like noisiness (Li et al., 2019;
Loshchilov & Hutter, 2015) or imbalance (Wang et al., 2019). These approaches take images features,
losses, importance or their representations as inputs and use the policy network or other learning
approaches with small amount of parameters for estimating the sampling probability. However, for
example, images with similar visual features can be redundant in training, but their losses or features
fed into the policy network are more likely to be close, causing the same probability to be sampled for
redundant samples if we rely on aforementioned priors. Therefore, we propose to directly optimize
the sampling schedule itself so that no prior knowledge is required for the dataset. Specifically, the
sampling schedule refers to order by which data are selected for the entire training course. In this
way, we only rely on data themselves to determine the optimal sampling schedule without any prior.

Directly optimizing a sampling schedule is challenging due to its inherent high dimension. For
example, for the ImageNet classification dataset (Deng et al., 2009) with around one million samples,
the dimension of parameters would be in the same order. While popular approaches such as deep
reinforcement learning (Cubuk et al., 2018; Zhang et al., 2020), Bayesian optimization (Snoek et al.,
2015), population-based training (Jaderberg et al., 2017) or simple random search (Bergstra & Bengio,
2012) have already been utilized to tune low-dimensional hyper-parameters like augmentation sched-
ules, their applications in directly finding good sampling schedules remain unexploited. For instance,
the dimension of a data augmentation policy is generally only in dozens, and it needs thousands
of training runs (Cubuk et al., 2018) to sample enough rewards to find an optimal augmentation
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policy because high-quality rewards require many epochs of training to obtain. As such, optimizing a
sampling schedule may require orders of magnitude more rewards than data augmentation to gather
and hence training runs, which result in prohibitively slow convergence.

To overcome the aforementioned challenge, we propose a data sampling policy search framework,
named AutoSampling, to sufficiently learn an optimal sampling schedule in a population-based
training fashion (Jaderberg et al., 2017). Unlike previous methods, which focus on collecting long-
term rewards and updating hyper-parameters or agents offline, our AutoSampling method collects
rewards online with a shortened collection cycle but without priors. Specifically, the AutoSampling
collects rewards within several training iterations, tens or hundred times shorter than that in existing
works (Ho et al., 2019; Cubuk et al., 2018). In this manner, we provide the search process with much
more frequent feedback to ensure sufficient optimization of the sampling schedule. Each time when a
few training iterations pass, we collect the reward from the previous several iterations, accumulate
them and later update the sampling distribution using the rewards. Then we perturb the sampling
distribution to search in distribution space, and use it to generate new mini-batches for later iterations,
which are recorded into the output sampling schedule. As illustrated in Sec. 4.1, shortened collection
cycles with less interference also can better reflect the training value of each data.

Our contributions are as follows:
• To our best knowledge, we are the first to propose to directly learn a robust sampling

schedule from the data themselves without any human prior or condition on the dataset.
• We propose the AutoSampling method to handle the optimization difficulty due to the high

dimension of sampling schedules, and efficiently learn a robust sampling schedule through
shortened reward collection cycle and online update of the sampling schedule.

Comprehensive experiments on CIFAR-10/100 and ImageNet datasets (Krizhevsky, 2009; Deng
et al., 2009) with different networks show that the Autosampling can increase the top-1 accuracy by
up to 2.85% on CIFAR-10, 2.19% on CIFAR-100, and 2.83% on ImageNet.

2 BACKGROUND

2.1 RELATED WORK

Data sampling is of great significance to deep learning, and has been extensively studied. Approaches
with human-designed rules take pre-defined heuristic rules to modify the frequency and order by
which training data is presented. In particular, one intuitive method is to resample or reweight
data according to their frequencies, difficulties or importance in training (Estabrooks et al., 2004;
Weiss et al., 2007; Drummond et al., 2003; Bengio et al., 2009; Lin et al., 2017; Shrivastava et al.,
2016; Loshchilov & Hutter, 2015; Wang et al., 2019; Johnson & Guestrin, 2018; Katharopoulos &
Fleuret, 2018; Byrd & Lipton, 2018; Jesson et al., 2017). These methods have been widely used in
imbalanced training or hard mining problems. However, they are often restricted to certain tasks
and datasets based on which they are proposed, and their ability to generalize to a broader range of
tasks with different data distribution may be limited. In another word, these methods often implicitly
assume certain conditions on the dataset, such as cleanness or imbalance. In addition, learning-based
methods have been proposed for finding suitable sampling schemes automatically. Methods using
meta-learning or reinforcement learning are also utilized to automatically select or reweight data
during training (Li et al., 2019; Jiang et al., 2017; Ren et al., 2018; Fan et al., 2017), but they are
only tested on small-scale or noisy datasets. Whether or not they can generalize over tasks of other
datasets still remain untested. In this work, we directly study the data sampling without any prior,
and we also investigate its wide generalization ability across different datasets such as CIFAR-10,
CIFAR-100 and ImageNet using many typical networks.

As for hyper-parameter tuning, popular approaches such as deep reinforcement learning (Cubuk
et al., 2018; Zhang et al., 2020), Bayesian optimization (Snoek et al., 2015) or simply random search
(Bergstra & Bengio, 2012) have already been utilized to tune low-dimensional hyper-parameters and
proven to be effective. Nevertheless, they have not been adopted to find good sampling schedule
due to its inherent high dimensiona. Some recent works tackle the challenge of optimizing high-
dimensional hyper-parameter. MacKay et al. (2019) uses structured best-response functions and
Jonathan Lorraine (2019) achieve this goal through the combinations of the implicit function theorem
and efficient inverse Hessian approximations. However, they have not been tested on the task of
optimizing sampling schedules, which is the major focus of our work in this paper.
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Figure 1: Overview of AutoSampling illustrated through one multi-exploitation-and-exploration cycle.
a) The multi-exploitation step, illustrated by the left half, is the process of learning optimal sampling
schedule locally. The same color of model for each worker indicates that the same model weight is
cloned into it. Also for simplicity, in this figure we adopt the exploitation interval of length 1. b) The
exploration step, shown by the right half, is to search in the sampling distribution space. Specifically,
we estimate the sampling distribution from the schedules collected in the multi-exploitation step and
perturb it to generate new sampling schedules for all workers.

2.2 POPULATION BASED TRAINING

Hyper-parameter tuning task can be framed as a bi-level optimization problem with the following
objective function,

min
h∈H
L(θ∗, h)

subject to θ∗ = argmax
θ∈Θ

eval(θ, h)
(1)

where θ represents the model weight and h = (h1, h2, · · · , hT ) is the hyper-parameter schedule
for T training intervals. Population based training (PBT) (Jaderberg et al., 2017) solves the bi-
level optimization problem by training a population P of child models in parallel with different
hyper-parameter schedules initialized:

P = {(θi, hi, t)}
Np

i=1 (2)

where θi, hi respectively represents the child model weight, the corresponding hyper-parameter
schedule for the training interval t on worker i, and Np is the number of workers. PBT proceeds in
intervals, which usually consists of several epochs of training. During the interval, the population of
models are trained in parallel to finish the lower-level optimization of weights θi.

Between intervals, an exploit-and-explore procedure is adopted to conduct the upper-level optimiza-
tion of the hyper-parameter schedule. In particular for interval t, to exploit we evaluate child models
on a held-out validation dataset:

h∗t , θ
∗
t = argmax

pi=(θi,hi,t)∈P
eval(θi, hi)

θ∗ → θi, i = 1, · · · , Np
(3)

We record the best performing hyper-parameter setting h∗t and broadcast the top-performing model
θ∗t to all workers. To explore, we initialize new hyper-parameter schedules for interval t+ 1 with
different random seeds on all workers, which can be viewed as a search in the hyper-parameter
space. The next exploit-and-explore cycle will then be continued. In the end, the top-performing
hyper-parameter schedule h∗ = (h∗1, h

∗
2, · · · , h∗T ) can be obtained.

PBT is applied to tune low-dimenisal hyper-parameters such as data augmentation schedules (Ho
et al., 2019; Jaderberg et al., 2017). However, it cannot be directly used for finding sampling
strategies due to the high dimension. Unlike PBT, our AutoSampling adopts a multi-exploitation-and-
exploration structure, leading to much shorter reward collection cycles that contribute to much more
and effective rewards for sufficient optimization within a practical computational budget.

3 AUTOSAMPLING WITH SEARCHING

The overview of our AutoSampling is illustrated in Fig.1. AutoSampling alternately runs multi-
exploitation step and exploration step. In the exploration step, we 1) update the sampling distribution
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Algorithm 1: The Multi-Exploitation Step

Input: Training dataset D, population P = {(θi, hi, t)}
Np

i=1, number of workers Np, number of
exploitation intervals T , exploitation interval length Ns
Initialize H∗ ← ()
for t = 1 to T do

for j = 1 to Ns do
for (θi, ht,i, t) ∈ P do
θi ←5L(θi, ht,i) B update the weight of child model i

end for
h∗t , θ

∗
t = argmaxP eval(θi, hi)

H∗ ← H∗ + h∗t B update the sampling for child model i
for i = 1 to Np do
θi ← θ∗t B clone the optimal weight

end for
end for

end for
Return H∗, P

using the rewards collected from the multi-exploitation step (the sampling distribution is uniform
distribution initially); 2) perturb the updated sampling distribution for child models so that different
child models have different sampling distributions; 3) use the corresponding perturbed sampling
distribution for each child model to sample mini-batches of training data. In the multi-exploitation
step, we 1) train multiple child models using the mini-batches sampled from the exploration step;
2) collect short-term rewards from the child models. AutoSampling finishes with a recorded top-
performing sampling schedule, which can be transferred to other models.

3.1 MULTI-EXPLOITATION BY SEARCHING IN THE DATA SPACE

In the multi-exploitation step, we aim to search locally in the data space by collecting short-term
rewards and sub-schedules. Specifically, we wish to learn a sampling schedule for T exploitation
intervals. In each interval, there are a population P of Np child models. Denote ht,i as the training
data sub-schedule in the tth interval for the ith child model. When all of the T exploitation intervals
for the ith child model are considered, we have Hi = {ht,i|t = 1, . . . , T} = {x1, · · · , xN}, where
N is the number of training data for the multi-exploitation step. Each interval consists of Ns training
iterations that is also equivalent to Ns training mini-batches, where Ns is the length of the interval.
AutoSampling is expected to produce a sequence of training samples, denoted by H∗, so that a given
model is optimally trained. The population {Hi} forms the local search space, from which we aim to
search for an optimal sampling schedule H∗.

Given the population P , we train them in parallel on Np workers. Once an interval of data ht,i
containing Ns training batches have been used for training, we evaluate all child models and use the
top evaluation performance as the reward. According to the reward, we record the top-performing
weight and sub-schedule for the current interval t, in particular,

h∗t , θ
∗
t = argmax

pi=(θi,hi,t)∈P
eval(θi, ht,i) (4)

On the other hand, we update all child model weights of P by cloning into them with the top-
performing weight θ∗t so we can continue searching based on the more promising child. We will
continue the exploit steps through the whole training process, and output the recorded optimal
sampling schedule H∗ = {h∗1, h∗2, · · · , h∗T }. By using exploitation interval of mini-batches rather
than epochs or even entire training runs adopted by earlier methods, AutoSampling may yield a better
and more robust sampling schedule. It should be pointed out that even though in AutoSampling
rewards are collected within a much shorter interval, they remain effective. As we directly optimize
the sampling schedule, we are concerned with only the data themselves. The short-term rewards
reflect the training value of data from the exploitation interval they are collected. But for global hyper-
parameters such as augmentation schedules, short-term rewards may lead to inferior performance
as these hyper-parameters are concerned with the overall training outcome. We describe the multi-
exploitation with details in Alg.1.

4



Under review as a conference paper at ICLR 2021

Algorithm 2: Search based AutoSampling
Input: Training dataset D, population size Np
Initialize H∗ ← () , P (D)← uniform(D) and initialize child models θ1, · · · , θNp

while not end of training do
for i = 1 to Np do

Sample hi from Mixture(log(P (D) + β), Nu × uniform(D))
end for
Initialize P = {(θi, hi, t)}

Np

i=1
H∗,P ← Alg.1
Estimate P (D) according to Equation (5)
Update P (D) according to Equation (6)
H∗ ← H∗ +H∗

end while
Return H∗, P (D)

3.2 EXPLORATION BY SEARCHING IN SAMPLING DISTRIBUTION SPACE

In the exploration, we search in sampling distribution space by updating and perturbing the sampling
distribution. We first estimate the underlying sampling distribution P (D) from the top sampling
schedule h∗ produced in the multi-exploitation, that is, for x ∈ D,

P (x) =
count(x ∈ H∗)∑
x∈D count(x ∈ H∗)

(5)

where count(x ∈ H∗) denotes the number of x’s appearances in H∗. We further perturb the
P (D) and generate the sampling schedules on each worker for the later multi-exploitation. We
introduce perturbations into the generated schedules by simply sampling from the multinomial
distribution P (D) using different random seeds. However, in our experiments, we observe that the
distribution produced by P (D) tends to be extremely skewed and a majority of the data actually
have zero frequencies. Such skewness causes highly imbalanced training mini-batches, and therefore
destabilizes subsequent model training.

Distribution Smoothing To tackle the above issue, we first smooth P (D) through the logarithmic
function, and then apply a probability mixture with uniform distributions. In particular for the dataset
D,

P ′(D) =Mixture(log(P (D) + β), Nu × uniform(D)) (6)
where β ≥ 1 is the smoothing factor and Nu × uniform(D) denotes Nu uniform multinomial
distributions on the dataset D. The smoothing through the log function can greatly reduce the
skewness, however, log(P (D) + β) may still contain zero probabilities for some training data,
resulting in unstable training. Therefore, we further smooth it through a probability mixture with Nu
uniform distribution uniform(D) to ensure presence of all data. This is equivalent to combining Nu
epochs of training data to the training batches sampled from P (D), and shuffling the union. Once we
have new diverse sampling schedules for the population, we proceed to the next multi-exploitation
step.

We continue this alternation between multi-exploitation and exploration steps until the end of training.
Note that to generate sampling schedule for the first multi-exploitation run, we initialize P (D) to be
an uniform multinomial distribution. In the end, we output a sequence of optimal sampling schedules
H∗ = (H∗1, · · · ,H∗n) for n alternations. The entire process is illustrated in details in Alg.2.

4 EXPERIMENTS

In this section, we present comprehensive experiments on various datasets to illustrate the perfor-
mance of AutoSampling, and also demonstrate the process of progressively learning better sampling
distribution.

4.1 ABLATION STUDY

For this part, we gradually build up and test components of AutoSampling on CIFAR-100, and then
examine their performances on CIFAR-10 and ImageNet datasets. The training implementation
details and computational complexity can be found in Appendix A.1.
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Table 1: Performance on CIFAR-100 using different configurations of AutoSampling and baselines.
Worker is the number of workers used and Interval is the exploitation interval in terms of batches.

NETWORK WORKER INTERVAL EXPLORATION TYPE TOP1(%)

RESNET18 (ZHANG ET AL., 2019) - - - 78.34±0.05
RESNET18 1 - UNIFORM 78.46±0.035
RESNET18 20 80 BATCHES RANDOM 78.76±0.003
RESNET18 20 20 BATCHES RANDOM 78.99±0.003
RESNET18 80 20 BATCHES RANDOM 79.09±0.017
RESNET18 20 20 BATCHES MIXTURE 79.44±0.020
RESNET50 (JIN ET AL., 2019) - - - 79.34
RESNET50 1 - UNIFORM 79.70±0.023
RESNET50 20 80 BATCHES RANDOM 80.55±0.129
RESNET50 20 20 BATCHES RANDOM 81.05±0.064
RESNET50 80 20 BATCHES RANDOM 81.19±0.072
RESNET50 20 20 BATCHES MIXTURE 81.53±0.088
DENSENET121 1 - UNIFORM 80.13±0.028
DENSENET121 20 80 BATCHES RANDOM 80.62±0.694
DENSENET121 20 20 BATCHES RANDOM 81.11±0.127
DENSENET121 80 20 BATCHES RANDOM 81.08±0.021
DENSENET121 20 20 BATCHES MIXTURE 80.97±0.006

Table 2: Experiments on CIFAR-10.

NETWORK EXPLORATION TYPE TOP1(%)

RESNET18 UNIFORM 93.01±0.009
RESNET18 RANDOM 95.86±0.003
RESNET18 MIXTURE 95.80±0.018
RESNET50 UNIFORM 93.60±0.004
RESNET50 RANDOM 96.10±0.002
RESNET50 MIXTURE 96.09±0.070

Table 3: Experiments on ImageNet.

NETWORK EXPLORATION TYPE TOP1(%)

RESNET18 UNIFORM 70.38
RESNET18 RANDOM 72.07
RESNET18 MIXTURE 72.91
RESNET34 UNIFORM 74.09
RESNET34 RANDOM 76.11
RESNET34 MIXTURE 76.92

Adding Workers To look into the influence of the worker numbers, we conduct experiments using
worker numbers of 1, 20, 80 respectively with the same setting (Ns = 20 with random exploration).
With the worker number of 1, the experiment is simply the normal model training using stochastic
gradient descent. To show the competitiveness of our baselines, we also include state-of-the-art
results on CIFAR-100 with ResNet-18 and ResNet-50 (Zhang et al., 2019; Jin et al., 2019). We
notice significant performance gain using the worker number of 20 for ResNet-18, ResNet-50 and
DenseNet-121 (He et al., 2015; Huang et al., 2017), as illustrated in Table 1. However, we note that
increasing worker number from 20 to 80 only brings marginal performance gains across various
model structures, as shown in Table 1. Therefore, we set the worker number to be 20 for the rest of
the experiments.

Shortening Exploitation Intervals To study the effects of the shortened exploitation interval, we
run experiments using different exploitation intervals of 20 and 80 batches(iterations) respectively. As
shown in Table 1, models with the shorter exploitation interval of 20 batches(iterations) perform better
than the one with the longer exploitation interval across all three network structures, conforming to
our assumptions that the reward collected reflects value of each data used in the exploitation interval.
This result adheres to our intuition that shorter exploitation interval can encourage the sampler to
accumulate more rewards to learn better sampling schedules. For the rest of this section we keep the
exploitation interval of 20.

Adding Exploration Type We further add mixture as the exploration type to see the effects of
learning the underlying sampling distribution, and completing the proposed method. As shown in
Table 1, with ResNet-18 and ResNet-50 we push performance higher with the mixture exploration,
and outperform the baseline method by about 1 and 1.8 percentage on CIFAR-100 respectively.
However, we found that it is not true in the case of DenseNet-121 and this case may be attributed to
the bigger capacity of DenseNet-121.

Generalization Over Datasets In addition, we experiment on other datasets. We report the results on
CIFAR10 in Table 2 and the results of ResNet-18, ResNet-34 on ImageNet in Table 3. For CIFAR-10,
we notice that the mixture and random exploration methods are comparable while both outperforming
the uniform baseline, and we believe it is due to the simplicity of the dataset. In the more challenging
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Figure 2: The comparison between histograms estimated from the sampling schedules of Epoch
80, 160 and 240 from CIFAR-100 with ResNet-18. We divide the 50000 training images into 500
segments of 100 images, and calculate the histograms of total data counts of all segments. We reorder
the x-axis based on the ranking of data counts for epoch 240 for easier comparison.

Table 4: Static vs dynamic sampling schedule on CIFAR-100 (%)

NETWORK SAMPLING TYPE
UNIFORM STATIC DYNAMIC

RESNET18 78.46±0.035 78.80±0.007 79.44±0.020
RESNET50 79.70±0.023 80.21±0.014 81.53±0.088

ImageNet, the mixture exploration outperforms the random exploration by a clear margin. We also
compare our AutoSampling with some recent non-uniform sampling methods on CIFAR-100, which
can be found in Appendix A.2.

4.2 STATIC VS DYNAMIC SCHEDULES

We aim to see if the final sampling distribution estimated by our AutoSampling is sufficient to produce
robust sampling schedules. In another word, we wish to know training with the AutoSampling is
either a process of learning a robust sampling distribution, or a process of dynamically adjusting the
sampling schedule for optimal training. To this end, we conduct training using different sampling
schedules. First, we calculate the sampling distribution estimated throughout the learning steps of
AutoSampling, and use it to generate the sampling schedule of a full training process, which we
denote as STATIC. Moreover, we denote the sampling schedule learned using AutoSampling as
DYNAMIC, since AutoSampling dynamically adjust the sampling schedule alongside the training
process. Finally, we denote the baseline method as UNIFORM, which uses the sampling schedule
generated from uniform distribution.

We report results on CIFAR-100 with ResNet-18 and ResNet-50 in Table 4. Model trained with
STATIC sampling schedules exceeds the baseline UNIFORM significantly, indicating the superiority of
the learned sampling distribution over the uniform distribution. It shows the ability of AutoSampling
to learn good sampling distribution. Nonetheless, note that models trained with DYNAMIC sampling
schedules outperform models trained with STATIC, by a margin bigger than the one between STATIC
and UNIFORM. This result shows the fact that despite the AutoSampling’s capability of learning good
sampling distribution, its flexibility during training matters even more. Moreover, this phenomenon
also indicates that models at different stages of learning process may require different sampling
distributions to achieve optimal training. One single sampling distribution, even gradually estimated
using AutoSampling, seems incapable of covering the needs from different learning stages. We
plot the histograms of data counts in training estimated from schedules of different learning stages
with ResNet-18 on CIFAR-100 in Fig.2, showing the great differences between optimized sampling
distributions from different epochs.

4.3 ANALYZING SAMPLING SCHEDULES LEARNED BY AUTOSAMPLING

To further investigate the sampling schedule learned by AutoSampling, we review the images at the
tail and head part of the sampling spectrum. In particular, given a sampling schedule learned we rank
all images based on their appearances in training. Training images at the top and bottom of the order
are extracted, corresponding to high and low probabilities of being sampled respectively. In Fig.3, we
show 4 classes of exemplary images. The images of low probability tend to have clearer imagery
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Figure 3: Example images on the head and tail of the sampling spectrum. The images on the left are
the ones with low sampling probability, while the images on the right more likely to be sampled. We
obtain these images using AutoSampling with the ResNet-18 model on CIFAR-100.

Table 5: Transfer of sampling distributions learned by three model structures to ResNet-50 on
CIFAR-100 (%). UNIFORM denotes the baseline result using uniform sampling distribution.

NETWORK SAMPLING SCHEDULE SOURCE
UNIFORM RESNET18 RESNET50 DENSENET121

RESNET50 79.70±0.023 80.27±0.014 80.21±0.014 80.47±0.194

features enabling easy recognition, while the images of high probability tend to be more obscure,
indicating that the sampling schedule may show hard samples mining effects. However, as shown in
A.3 and Fig. 4, the loss values and probabilities of being sampled seem to be not highly correlated,
which indicates more potential of AutoSampling beyond visually hard example mining. In addition,
we notice the images of low probability also contain low quality images. For instance, in Fig.3 the
leftmost image of CAMAL class contains only legs. This shows that AutoSampling may potentially
rule out problematic training data for better training.

Furthermore, we examine the transfer ability of sampling distributions learned by AutoSampling to
other network structures. Specifically, we run training on ResNet-50 (He et al., 2015) using STATIC
sampling schedule generated by three distributions learned by AutoSampling on 3 different models.
As shown in Table 5, using sampling schedules learned by AutoSampling from other models, we
demonstrate similar improvements over the UNIFORM baseline. This result, combined with the above
observations on images of different sampling probability, indicates that there may exist a common
optimal sampling schedule determined by the intrinsic property of the data rather than the model
being optimized. Our AutoSampling is an effort to gradually converge to such an optimal schedule.

4.4 DISCUSSIONS

The experimental results and observations from Section 4.2 and 4.3 shed light on the possible
existence of an optimal sampling schedule, which relies only on the intrinsic property of the data and
the learning stage of the model, regardless of the specific model structure or any prior knowledge. The
learned sampling schedule may provide enough rewards in the searching process, leading to sufficient
convergence compared to other related works. Once obtained, the optimal sampling schedule may
also be generalized over other model structures for robust training. Although AutoSampling requires
relatively large amount of computing resources to find a robust sampler, we want to point out that
the efficiency of our method can be improved through better training techniques. Moreover, the
possibility of an optimal sampling schedule relying solely on the data themselves may indicate more
efficient sampling policy search algorithms, if one can quickly and effectively determine data value
based on its property.

5 CONCLUSIONS
In this paper, we introduce a new search based AutoSampling scheme to overcome the issue of
insufficient rewards for optimizing high-dimensional sampling hyper-parameter by utilizing a shorter
period of reward collection. We use a shortened exploitation interval to search in the local data space
and provide sufficient rewards. For the exploration step, we estimate sampling distribution from the
searched sampling schedule and perturb it to search in the distribution space. We test our method and
it consistently outperforms the baseline methods across different benchmarks.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Experiments on CIFAR We use the same training configuration for both CIFAR-100 and CIFAR-10
datasets, which both consist of 50000 training images. In particular, for model training we use the
base learning rate of 0.1 and a step decay learning rate schedule where the learning rate is divided
by 10 after each 60 epochs. We run the experiments for 240 epochs. In addition, we set the training
batch size to be 128 per worker, and each worker is for one Nvidia V100 GPU card.

We run the explore step for each Nu + 1 epochs with Nu = 3, but note that we take the first explore
step after the initial 20 epochs to better accumulate enough rewards. The experiments require 4800
epochs of training for 20 workers, and roughly 14 hours of training time.

Experiments on ImageNet For ImageNet which consists of 1.28 million training images, we adopted
the base learning rate of 0.2 and a cosine decay learning rate schedule. We run the experiments with
100 epochs of training. For each worker we utilize eight Nvidia V100 GPU cards and a total batch
size of 512. Eight workers are used for all ImageNet experiments, and the rest of the setting adheres
to that of CIFAR experiments. In addition, we utilize FP16 computation to achieve faster training,
which has almost no drop in accuracy in practice. The experiments require 800 epochs of training for
8 workers, and roughly 4 days of training time.

A.2 COMPARISON WITH EXISTING SAMPLING METHODS

To better illustrate the effectiveness of our AutoSampling method, we conduct experiments in
comparison with recent non-uniform sampling methods DLIS (Johnson & Guestrin, 2018) and
RAIS (Katharopoulos & Fleuret, 2018). DLIS (Johnson & Guestrin, 2018) achieves faster conver-
gence by selecting data reducing gradient norm variance, while RAIS (Katharopoulos & Fleuret,
2018) does so through approximating the ideal sampling distribution using robust optimization. The
comparison is recorded in Table 6.

First, we run AutoSampling using Wide Resnet-28-2 (Zagoruyko & Komodakis, 2016) on CIFAR-100
with the training setting aligned roughly to (Katharopoulos & Fleuret, 2018). AutoSampling achievs
improvement of roughly 3 percentage points (73.37±1.09%→ 76.24±1.02%), while Katharopoulos
& Fleuret shows improvement of 2 percentage points (66.0%→ 68.0 %). Second, we report the
comparison between AutoSampling and RAIS on CIFAR-100. Johnson & Guestrin shows no
improvement (76.4%→ 76.4 %) on accuracy and 0.027 (0.989→ 0.962 ) decrease in validation loss,
while our method shows improvement of 0.008 (78.6%→ 79.4%) on accuracy and 0.014 (0.886→
0.872 ) decrease in validation loss. As such, our method demonstrates significant improvements over
existing non-uniform sampling methods.

Table 6: Comparisons between AutoSampling and existing sampling methods on CIFAR-100

Methods Network Baseline (%) With method (%) Improvement (%)

DLIS WRN-28-2 66.0 68.0 2.0
AutoSampling (ours) WRN-28-2 73.37±1.09 76.24±1.02 2.87
RAIS ResNet18 76.4 76.4 0.0
AutoSampling (ours) ResNet18 78.46±0.035 79.44±0.020 0.98

A.3 COMPARISON BETWEEN LEARNED SAMPLING SCHEDULES AND DATA LOSS VALUES

To further interpret the learned sampling schedules, we compare the sampling frequency of each
training image and its loss values in different epochs during training of CIFAR-100 with ResNet-18.
We draw the comparison for randomly selected 500 training images in Fig. 4 for epoch 80, 160, and
240. As shown in the figure, across different learning stages, the correlation between loss values
and sampling frequencies of training data is not obvious. The high chance of being sampled by
AutoSampling does not necessarily lead to high loss values, which demonstrates that AutoSampling
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Epoch 80 

Epoch 160 

Epoch 240 

Figure 4: The comparison between the sampling frequency of each training image and its loss values
of Epoch 80, 160 and 240 from CIFAR-100 with ResNet-18. We randomly selected 500 training
images, and calculate their sampling frequency and loss values. The x-axis is the indexes of 500
training images, while the left y-axis denotes loss values and the right y-axis denotes the sampling
frequency. The blue line represents the sampling frequencies and the red lines represents the loss
values of all 500 images. As we can see from the figure, the two lines are not obviously correlated.

is not merely over-sampling difficult samples as pointed by the loss. The resulting sampling schedule
learned by AutoSampling would be significantly different from the one guided by loss. Moreover as
the training progresses the loss values of data are reduced, which is expected.
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