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Abstract

While machine translation (MT) systems are001
achieving increasingly strong performance on002
benchmarks, they often produce translations003
with errors and anomalies. Understanding these004
errors can potentially help improve the trans-005
lation quality and user experience. This paper006
introduces XTOWER, an open large language007
model (LLM) built on top of TOWERBASE008
designed to provide free-text explanations for009
translation errors in order to guide the gener-010
ation of a corrected translation. The quality011
of the generated explanations by XTOWER are012
assessed via both intrinsic and extrinsic eval-013
uation. We ask expert translators to evaluate014
the quality of the explanations across two di-015
mensions: relatedness towards the error span016
being explained and helpfulness in error un-017
derstanding and improving translation quality.018
Extrinsically, we test XTOWER across various019
experimental setups in generating translation020
corrections, demonstrating significant improve-021
ments in translation quality. Our findings high-022
light XTOWER’s potential towards not only pro-023
ducing plausible and helpful explanations of au-024
tomatic translations, but also leveraging them025
to suggest corrected translations.1026

1 Introduction027

Neural machine translation (MT) systems have028

made significant strides in recent years. How-029

ever, despite their high performance on standard030

benchmarks, these systems often produce trans-031

lations that contain errors and anomalies. Com-032

mon methods for evaluating MT quality, such as033

BLEU (Papineni et al., 2002), and neural metrics034

like COMET (Rei et al., 2020) and BLEURT (Sel-035

lam et al., 2020), provide only a numerical score036

reflecting overall translation quality. Recent met-037

rics like XCOMET (Guerreiro et al., 2023a) and038

AUTOMQM (Fernandes et al., 2023) highlight er-039

ror spans to justify their scores but do not offer040

1XTOWER will be publicly released upon acceptance.

explanations about the nature of these errors. In- 041

structScore, a recent work by Xu et al. (2023), lever- 042

ages large language models (LLMs) to provide a 043

quality score conditioned on built-in error detection 044

and explanations. However, InstructScore primar- 045

ily functions as a reference-based metric, using 046

explanations as a means to improve score estimates 047

via meta-feedback/finetuning. 048

In this paper, we introduce XTOWER (Figure 1), 049

a LLM specifically tailored to produce high-quality 050

explanations for translation errors and to utilize 051

these explanations to suggest corrections through 052

chain-of-thought prompting (Wei et al., 2023). 053

XTOWER is built on TOWERBASE 13B (Alves 054

et al., 2024), a strong open multilingual LLM for 055

MT-related tasks. Unlike InstructScore, XTOWER 056

can operate without the need for reference transla- 057

tions while also considering information contained 058

in the source sentence. Moreover, XTOWER is 059

designed to be agnostic about the source of error 060

spans, as they can be obtained manually via human 061

annotation or via automatic tools. In this work, 062

we experiment with both. For the automatic case, 063

we leverage XCOMET (Guerreiro et al., 2023a). 064

This modular approach offers flexibility to experi- 065

ment with span-level error annotations from vari- 066

ous sources, and easily incorporate future improve- 067

ments in span error detection tools without requir- 068

ing retraining. 069

We evaluate XTOWER’s explanations both in- 070

trinsically and extrinsically. Intrinsically, we em- 071

ploy human evaluation to score explanations on 072

two dimensions: relatedness to the error spans be- 073

ing explained (§4.2) and helpfulness in guiding 074

towards a better translation (§4.3). Extrinsically, 075

we assess XTOWER’s ability to suggest translation 076

corrections (§5), experimenting with different error 077

span sources (human vs. predicted). We compare 078

XTOWER’s performance against leading closed and 079

open LLMs, such as GPT-3.5 Turbo, Mixtral 8x7B, 080

and TOWERINSTRUCT 13B. Our findings demon- 081
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SOURCE (PT)

TRANSLATION (EN)

Durante minha viagem ao peru, 

experimentei um copo de suco de 

manga e fiquei com muita dor de 

cabeça.

During my trip to turkey, I tried a 

glass of sleeve juice and got a  

really bad head pain.

ERROR ANALYSIS XTOWERINPUT

MARKED TRANSLATION

Weak
QUALITY SCORE

EXPLANATIONS

During my trip to turkey, I tried a 

glass of sleeve juice and got a  

really bad head pain.

MINOR MAJOR

CORRECTION
During my trip to Peru, I tried a glass of mango juice and got a really bad headache.

The source mentions "Peru", which is a country in South America, while the 
translation misinterprets it as "turkey", which can mean a bird or another country.

The term "suco de manga" from the source translates to "mango juice". 
The word "manga" in Portuguese can mean "sleeve" or "mango" (fruit).

The translation used "head pain" to translate "dor de cabeça" from the source.
 The more conventional English term is "headache".

(XCOMET)

Figure 1: Illustration of our approach. In this example, the input consisting of a source and a translation is passed to
XCOMET, which annotates the translation with error spans and produces a (discretized) quality score. The full input,
marked translation, and quality score are passed to XTOWER, which, in turn, produces an explanation for each error
span along with a final suggestion for a new, corrected translation.

strate that XTOWER improves error interpretability082

by providing explanations that effectively relate to083

the marked errors. Expert translators endorse these084

explanations as helpful for understanding transla-085

tion errors and generally useful for improving trans-086

lations, particularly for English-German. Further-087

more, prompting XTOWER with these explanations088

leads to improved translation corrections. Overall,089

our main contributions are:090

• We introduce XTOWER, a multilingual LLM that091

generates free-text explanations for translation092

errors and provides corrected translations.093

• We conduct extensive human evaluations to094

assess the relatedness and helpfulness of095

XTOWER’s explanations, linking their results096

with dedicated qualitative analyses.097

• We evaluate XTOWER’s corrected translations098

across multiple language pairs and experimen-099

tal setups, showing significant improvements in100

translation quality.101

2 Background102

In this section, we provide an overview of the key103

components and concepts relevant to our work.104

TOWER. Alves et al. (2024) developed a suite105

of state-of-the-art multilingual LLMs via con-106

tinued pretraining of LLaMA2 (Touvron et al.,107

2023) — TOWERBASE— and supervised fine-108

tuning for translation-related tasks — TOWERIN-109

STRUCT. TOWER is trained to handle diverse tasks110

such as MT, automatic post-editing, and grammati-111

cal error correction. However, it lacks support for112

error-annotated inputs and cannot produce high-113

quality, span-level explanations for translation er-114

rors. XTOWER addresses these limitations by ex-115

tending TOWER— through distillation and finetun- 116

ing — enabling it to provide explanations for trans- 117

lation errors and generate corrected translations. 118

MT Evaluation. Evaluating the quality of ma- 119

chine translations is a critical aspect of improving 120

MT systems. Traditional metrics like BLEU (Pap- 121

ineni et al., 2002) and CHRF (Popović, 2015) have 122

been widely used to measure the accuracy of trans- 123

lations by comparing them to reference translations. 124

However, these lexical metrics do not correlate well 125

with human judgments (Freitag et al., 2023). More 126

recent neural metrics, such as BLEURT (Sellam 127

et al., 2020) and COMET (Rei et al., 2020), offer im- 128

proved performance by finetuning pretrained neural 129

models to predict translation quality. Still, they lack 130

the ability to explain errors in human-interpretable 131

terms. To this end, Rei et al. (2023); Guerreiro et al. 132

(2023a) propose methods to highlight input words 133

relevant to the output. However, highlighting input 134

words offers a limited view of interpretability, as 135

the end-user often needs additional information to 136

understand what the error consists of and how it 137

can be fixed. Our approach with XTOWER aims to 138

bridge this gap by generating free-text explanations 139

for translation errors, thus offering more insightful 140

and detailed quality reports. 141

3 XTOWER 142

In this section, we provide details on the method- 143

ology behind XTOWER (Figure 1), a model built 144

on top of TOWERBASE via distilled supervised 145

finetuning (Tunstall et al., 2023). 146

3.1 Distillation 147

Data. We use GPT-4 to generate explanations 148

for samples annotated with MQM spans and 149
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to generate a final translation correction.2 Our150

dataset comprises English→German (EN-DE),151

English→Russian (EN-RU), and Chinese→English152

(ZH-EN) samples from the WMT 2022 Metric153

shared task (Freitag et al., 2022). Each error span154

is annotated by humans according to the MQM155

framework, which includes a severity rating such156

as minor or major. Detailed statistics about this157

dataset are provided in Appendix A. Overall, our158

distillation dataset consists of 33,442 samples con-159

taining 63,188 human-annotated error spans.3160

Prompt. We use an XML format to obtain an161

“annotated translation”, which includes the demar-162

cations of error spans as tags alongside their sever-163

ity as attributes. Following Farinha et al. (2022),164

we discretize the MQM quality score into buck-165

ets: weak, moderate, good, excellent, best. Table 1166

shows a prompt example. As output, GPT-4 gener-167

ates explanations for each marked error, followed168

by a corrected translation in the following format:4169

• Explanation for errorN : the explanation170

given to the N th error span. Explanations for171

each error span are separated by newlines.172

• Translation correction: the translation re-173

finement produced by the model. Corrections are174

placed in a new line after the last explanation.175

Notably, this ordering acts as chain-of-thought176

prompting (Wei et al., 2023). We collect outputs for177

referenceless and reference-based evaluation (by178

providing a reference translation in the input).179

3.2 Finetuning180

We obtained XTOWER by finetuning TOWERBASE-181

13B on a dataset that includes the GPT-4 generated182

explanations described in §3.1, and machine trans-183

lation data from TOWERBLOCKS, the dataset used184

to train TOWERINSTRUCT.5 We combined all avail-185

able data to train a single, multilingual model, in-186

stead of training separate models for each language187

pair. Moreover, following (Longpre et al., 2023),188

we employed a mixed prompt setting (zero-shot,189

few-shot) during training. As a result, XTOWER190

can handle both referenceless and reference-based191

k-shot prompts. Our training hyperparameters and192

configuration follows that used to train TOWERIN-193

STRUCT (Alves et al., 2024).194

2We use gpt-4-0125 available from the OpenAI API.
3The dataset will be released upon acceptance.
4We manually inspected a few outputs to ensure reliability.
5https://huggingface.co/datasets/Unbabel/

TowerBlocks-v0.1

Instruction:
You are provided with a Source, Translation, Translation qual-
ity analysis, and Translation quality score (weak, moderate,
good, excellent, best). The Translation quality analysis con-
tains a translation with marked error spans with different levels
of severity (minor or major). Given this information, generate
an explanation for each error and a fully correct translation.

Input:
English source: All were wearing avalanche beacons.
German translation: Alle trugen Lawinenschilder.
Translation quality analysis: Alle trugen <error1 sever-
ity=“major”>Lawinenschilder</error1>.
Translation quality score: weak

Output:
Explanation for error1: The term “Lawinenschilder” trans-
lates to “avalanche signs”, which is a significant mistransla-
tion of “avalanche beacons”. Avalanche beacons are specific
devices used to locate people trapped under snow after an
avalanche, not signs. This error changes the meaning of the
sentence and introduces confusion about the context.
Translation correction: Alle trugen Lawinensuchgeräte.

Table 1: Example of prompt used for generating expla-
nations and translation corrections.

4 Explaining Translation Errors 195

In this section, we provide a detailed human eval- 196

uation of the quality of the explanations produced 197

by XTOWER, which are obtained in a more realistic 198

setting via referenceless prompting. 199

4.1 Experimental Setup 200

Data. We evaluate our models on MQM an- 201

notations from the WMT 2023 Metrics shared 202

task test set (Kocmi et al., 2023), spanning 203

three language pairs: English→German (EN-DE), 204

Hebrew→English (HE-EN), and Chinese→English 205

(ZH-EN). This dataset contains 24,781 samples 206

with 69,564 human-annotated error spans. To 207

obtain a fully automatic approach, we use error 208

spans predicted by XCOMET-XL (Guerreiro et al., 209

2023a).6 For a consistent evaluation, we also query 210

XCOMET without references for our experiments. 211

In total, we obtain a set of 108,507 spans, indicat- 212

ing that XCOMET has a higher tendency to predict 213

errors. Detailed statistics are shown in Appendix A. 214

Prompting. We use the same prompt template as 215

the one used in our distillation experiments, shown 216

in Table 1. We use 0-shot prompting for all experi- 217

ments involving XTOWER in this section. 218

Evaluation. While recent works propose frame- 219

works to assess free-text explanations for classifi- 220

cation tasks (Wiegreffe et al., 2021; Ramnath et al., 221

6https://huggingface.co/Unbabel/XCOMET-XL
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EN-DE ZH-EN

LEVEL XCOMET HUMAN XCOMET HUMAN

Explanation 3.5±1.5 4.4±1.6 3.4±1.6 4.3±1.7
Document 3.4±1.5 4.3±1.7 3.3±1.6 4.3±1.7

Correlation 0.96 0.89 0.96 0.96

Table 2: Relatedness scores (6-Likert scale) computed
at explanation and document-level, along with the Spear-
man correlation between the two.

2023; Joshi et al., 2023; Chen et al., 2023), apply-222

ing a similar evaluation for MT is challenging due223

to the occurrence of multiple error spans with var-224

ied impact on translation quality. Therefore, we225

choose to assess our explanations through human226

evaluation and qualitative analysis (§4.4). The eval-227

uation comprises the following two dimensions:228

• Relatedness: The extent to which the explana-229

tion is related to the content of the error span.230

• Helpfulness: The extent to which the explana-231

tion helps in understanding the nature of the error232

and in guiding towards a translation correction.233

We present the setup and findings from both234

evaluations next. Human evaluation details and235

guidelines can be found in Appendix C.236

4.2 Relatedness237

A total of 6 annotators were employed for the238

task, evaluating samples marked with XCOMET239

and human-annotated error spans. 3 annotators as-240

sessed explanations for EN-DE, and other 3 for ZH-241

EN. For each language pair and error span source,242

we randomly sampled 50 translations, resulting in243

200 examples in total. Inspired by the direct assess-244

ment and scalar quality metric (DA+SQM) scale245

used in MT evaluation (Kocmi et al., 2022), we246

asked annotators to rate explanations on a 6-point247

Likert scale: nonsense/unrelated (0), somewhat248

(2), mostly (4), and fully related (6).7 Moreover,249

we asked annotators to rate the quality of explana-250

tions individually (explanation-level) and by look-251

ing at all explanations at once (document-level).252

The annotations were carried out on the Upwork253

platform.8 We obtain an overall inter-annotator254

agreement, as measured via Spearman correlation255

(Pavlick and Tetreault, 2016), of 0.51 (EN-DE) and256

0.40 (ZH-EN) at the explanation-level, and of 0.50257

(EN-DE) and 0.37 (ZH-EN) at the document-level,258

7The full scoring rubric is provided in Appendix C.
8https://www.upwork.com
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Figure 2: Relatedness according to the number of spans
for XCOMET and human error spans.

suggesting a fair-to-moderate agreement among an- 259

notators, typical in explanations evaluation which 260

is a subjective task (Wiegreffe et al., 2022; Kunz 261

et al., 2022). Results are shown in Table 2. 262

Discussion. For human-annotated error spans, 263

the overall relatedness scores range around 4.3, 264

while for XCOMET spans the scores drop to around 265

3.2. This difference indicates that the quality of 266

error spans heavily impacts the quality of their 267

explanations. Nonetheless, for both cases, hu- 268

man ratings are in the 3-5 range, indicating that 269

XTOWER’s explanations are mostly related to 270

the error spans. We also note a very high correla- 271

tion between the quality of explanations assessed at 272

the explanation and document-level, especially for 273

human-annotated spans, indicating that the quality 274

of explanations is consistent across granularities. 275

In Figure 2 we show how relatedness scores vary 276

according to the number of error spans. We observe 277

that, while the number of spans does not affect the 278

relatedness of explanations produced for human- 279

annotated error spans, they lead to a slight decrease 280

of the relatedness scores when the spans are pre- 281

dicted by XCOMET. We hypothesize this is due to 282

XCOMET overpredicting error spans (see Table 6). 283

4.3 Helpfulness 284

To quantify the idea of how helpful explanations are 285

to the end user, we carried a new human evaluation 286

with 4 of the same annotators from the previous 287

task, and asked them to rate explanations based on 288

two questions: 289

• Q1: How helpful is the explanation in improving 290

the understanding of the nature of the error? 291

• Q2: How helpful is the explanation in guiding 292

towards writing a better translation? 293

The rating is again performed on a 6-point Likert 294

scale, ranging from less to more helpful. Moreover, 295

we focus on studying the helpfulness of correct 296

4
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QUESTION EN-DE ZH-EN

Q1: error understanding 4.6±1.7 4.4±2.1
Q2: translation guidance 3.9±1.6 3.3±2.1

Correlation 0.85 0.72

Table 3: Helpfulness scores (6-Likert scale) for Q1 (un-
derstanding the nature of the errors) and Q2 (guiding
towards better translations), along with the Spearman
correlation between the two.

error spans only, in order to isolate the effect of297

providing accurate information towards improving298

error understanding. To this end, we filter out sam-299

ples with an overall relatedness score lower than300

4 and only use error spans labeled by humans. Ta-301

ble 3 shows the results.302

Discussion. We find that annotators mark the303

explanations as being on average helpful (scores304

range in 4.4-4.6) in improving error understand-305

ing for both language pairs. Here, scores over 4306

imply that “the explanation clearly identifies the307

error and provides relevant details about its nature”.308

Furthermore, the usefulness of these explanations309

in guiding towards a potential correction ranges on310

average between 3.3-3.9, demonstrating that the311

explanations do hint towards a potential solution312

for correction, but they can be made more specific.313

For example, one of our expert annotators quoted:314

Many cases had a very clear explanation of the nature315
of the error, but in terms of helpfulness in guiding316
towards writing a correction, it was a bit less clear317
than the above-mentioned examples as they do not318
suggest a correction. Nonetheless, the explanation319
still correctly guides the editor to a post-edition.320

4.4 Qualitative Analysis321

Based on the annotators’ feedback for the previous322

experiments, and by manually inspecting the anno-323

tated examples, we present a qualitative analysis of324

the explanations generated by XTOWER in Table 4.325

Our analysis reveals several interesting scenarios326

that highlight XTOWER’s strengths and weaknesses.327

We categorize our findings into four main groups:328

• Correct Spans: For error spans that correctly329

correspond to an error in the translation, explana-330

tions are accurate when they effectively detail331

the nature of the error, and inaccurate when they332

are unattached to the error, possibly suggesting333

wrong modifications.334

• Incorrect Spans: Despite incorrect spans, ex-335

planations can still be valuable by pointing out336

that there are no errors in the translation. In other 337

cases, they are mislead by the incorrect span and 338

become worthless by being nonsensical to the 339

error, possibly including a boilerplate suggestion 340

for stylistic improvement. 341

We also estimate the prevalence and compute the 342

average relatedness score of each category. Specif- 343

ically, we consider explanations as accurate/valu- 344

able when their average relatedness score is larger 345

or equal to 4, otherwise we consider them as in- 346

accurate/worthless. This analysis indicates that 347

XTOWER is not only capable of generating high- 348

quality explanations when the error spans are cor- 349

rectly identified, but can also provide valuable ex- 350

planations for incorrect spans, amounting to 59.1% 351

of the cases with an average relatedness score of 352

5.3. However, over a quarter of all explanations 353

(26.8%) either misidentify the nature of the error 354

or provide generic, boilerplate suggestions. These 355

findings suggest that while XTOWER has the po- 356

tential to be a useful tool for automatic translation 357

error analysis, there is still significant room for im- 358

provement, especially for cases where translation 359

errors spans are incorrectly identified. 360

5 Correcting Translations 361

Having established that XTOWER can provide help- 362

ful and useful explanations, we turn to prompting 363

it towards obtaining translation corrections. 364

5.1 Experimental Setup 365

Our setup for correcting translations follows the 366

same design choices used for explaining transla- 367

tion errors in §4, including the test data (WMT23), 368

source of error spans (human vs. XCOMET), and 369

prompting format. In addition, we employ auto- 370

matic metrics for measuring translation quality and 371

use robust baselines, which we describe next. We 372

focus on referenceless prompting in the main text.9 373

Evaluation. To assess the overall quality of the 374

translation correction produced by LLMs, we 375

rely on neural-based metrics, which obtain the 376

strongest results in the WMT23 Metrics shared 377

task (Freitag et al., 2023). Specifically, we re- 378

port COMET (Rei et al., 2022a) as our primary 379

metric, alongside BLEURT (Sellam et al., 2020), 380

and COMETKIWI (Rei et al., 2022b).10 Notably, 381

9In Appendix D.2 we carefully investigate the impact of
providing reference translations to XTOWER.

10wmt22-comet-da and wmt22-cometkiwi-da.
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CATEGORY EXAMPLE

Correct Span with
Accurate Explanation

Prevalence: 31.3%
Relatedness: 5.3

Source: Indian govt withdraws appeal to hug cows on Valentine’s Day after criticism
Reference: Indische Regierung zieht Aufruf zur Umarmung von Kühen am Valentinstag nach Kritik zurück
Translation: Indian Govt zieht Berufung zurück, Kühe am Valentinstag nach Kritik zu umarmen
Explanation: The term "Indian Govt" is a direct transliteration of "Indian govt" from English to German, which is grammatically
incorrect in German. The correct form should use the German spelling for "government" to match German grammatical rules,
which would be "Indische Regierung."

Correct Span with
Inaccurate Explanation

Prevalence: 14.1%
Relatedness: 1.6

Source: Is it so ephemeral then? Merely a "catchphrase" with no clear originator?
Reference: Ist es also so vergänglich? Lediglich ein „Sprichwort“ ohne eindeutigen Urheber?
Translation: Ist er also so kurzlebig? Lediglich ein " Schlagwort" ohne klaren Urheber?
Explanation: The quotation marks around "Schlagwort" are correctly placed, but the analysis might be pointing out a minor
stylistic preference or a typographical inconsistency. In German, the use of quotation marks can vary, but the provided translation
is not incorrect in this regard.

Incorrect Span with
Valuable Explanation

Prevalence: 27.8%
Relatedness: 5.3

Source: To agonize over personal failure & guilt in a world where "success" is so often bestowed on people responsible for the
most reprehensible acts...
Reference: Sich in einer Welt, in der „Erfolg“ so oft Menschen zuteilwird, die für die schlimmsten Taten verantwortlich sind,
mit persönlichem Versagen und Schuldgefühlen herumzuquälen ...
Translation: Sich über persönliches Versagen und Schuld zu quälen in einer Welt, in der "Erfolg" so oft Menschen zuteilwird,
die für die verwerflichsten Taten verantwortlich sind...
Explanation: The phrase "Schuld zu quälen" is a direct translation of "agonize over guilt." The error marking might suggest
a preference for a different phrasing or structure to convey the depth of emotional distress. However, "Schuld zu quälen" is a
correct and idiomatic way to express the idea of being tormented by guilt in German.

Incorrect Span with
Worthless Explanation

Prevalence: 26.83%
Relatedness: 1.3

Source: Balenciaga boss calls holiday campaign ’stupid mistake’
Reference: Balenciaga-Chef nennt Feiertagskampagne ‚dummen Fehler‘
Translation: Balenciaga -Chef nennt Weihnachtskampagne „dummer Fehler“
Explanation: The use of a hyphen between "Balenciaga" and "Chef" is not incorrect but could be seen as stylistically awkward
in German. The hyphen here might make the name of the position seem less formal or less integrated into the sentence.

Table 4: Examples of explanations according to our qualitative analysis. Error spans are highlighted in red .

while the first metrics rely on a reference transla-382

tion, COMETKIWI yields an overall score without a383

reference. We cover lexical metrics in Appendix D.384

Baselines. We adopt three models as baselines:385

TOWERINSTRUCT 13B (Alves et al., 2024)—386

TOWER’s translation-oriented LLM—, Mixtral387

8x7B, and GPT 3.5 Turbo.11 We use them in a388

translation-only mode: we pass a source sentence389

and ask for a translation in a 0-shot manner. We390

also prompt Mixtral 8x7B and GPT 3.5T for a trans-391

lation correction given error spans and explanations.392

Since they are not trained to receive this informa-393

tion, we provide a 1-shot example for in-context394

learning.12 Appendix B has more prompt details.395

5.2 Results396

We show results in Table 5 for each language pair.397

Is XTOWER effective at refining translations?398

We observe that XTOWER’s corrections improve399

the translation quality of the original translations400

for all language pairs. Interestingly, XTOWER401

obtains similar results with human-annotated and402

XCOMET error spans. For the latter, COMET deltas403

vary from 1 to 3 points, leading to significant404

quality improvements for EN-DE and ZH-EN.13405

11We move from GPT 4 to 3.5T due to financial constraints.
12We experiment with 5-shot in Appendix D, but the results

are on par with 1-shot, while also being more costly.
13As per (Kocmi et al., 2024), COMET deltas of ∼1.0 denote

improvements with a 90% accuracy with human judgments.

How does XTOWER compare to prompting 406

LLMs? Comparing the best scores obtained by 407

XTOWER—either from XCOMET or human spans— 408

and TOWERINSTRUCT, we find that XTOWER out- 409

performs TOWERINSTRUCT on HE-EN and ZH-EN, 410

with a delta of 9 COMET points on the former.14 411

Interestingly, however, XTOWER has a gap of only 412

0.2 to the original MT for HE-EN, suggesting that 413

XTOWER is only slightly editing the original trans- 414

lation. Mixtral presents the lowest scores overall, 415

while GPT 3.5T achieves the highest scores overall, 416

outperforming XTOWER on all language pairs in 417

terms of BLEURT and COMET. However, in con- 418

trast to XTOWER, we find that GPT 3.5T displays 419

a consistent drop of performance when refining 420

translations, suggesting that it may not utilize error 421

spans and explanations as effectively. 422

Are the error spans being fixed? To assess 423

how effectively the models address the errors high- 424

lighted in the prompt, we computed the percent- 425

age of fixed error spans with a string matching ap- 426

proach. Overall, XTOWER fixes 80% of the errors 427

for EN-DE, 83% for HE-EN, and 84% for ZH-EN, 428

while GPT 3.5T fixes 75% of the errors for EN-DE, 429

82% for HE-EN, and 80% for ZH-EN. These results 430

indicate that both GPT-3.5T and XTOWER can, to 431

some degree, leverage error spans and explanations 432

to fix a large portion of the errors, with XTOWER 433

showing a consistent edge over GPT-3.5T. 434

14TOWER models were not trained to support Hebrew.

6



EN-DE HE-EN ZH-EN

MODEL BLEURT COMET CKIWI BLEURT COMET CKIWI BLEURT COMET CKIWI

Original MT 48.4 78.4 75.5 59.8 77.5 75.5 55.2 78.0 76.7

Translation-only LLMs:
Mixtral 8x7B 46.4 ↓ 2.0 80.4 ↑ 2.0 76.6 ↑ 1.1 53.9 ↓ 5.9 71.6 ↓ 5.9 69.3 ↓ 6.2 53.5 ↓ 1.7 77.7 ↓ 0.3 77.3 ↑ 0.6

GPT 3.5T 51.3 ↑ 2.9 82.7 ↑ 4.3 78.6 ↑ 3.1 65.5 ↑ 5.8 80.9 ↑ 3.4 77.8 ↑ 2.2 57.1 ↑ 1.8 79.9 ↑ 2.0 79.2 ↑ 2.5

TOWERINST 13B 50.0 ↑ 1.6 82.2 ↑ 3.8 78.7 ↑ 3.2 50.7 ↓ 9.1 68.7 ↓ 8.8 66.5 ↓ 9.0 56.5 ↑ 1.3 79.1 ↑ 1.1 78.4 ↑ 1.7

With predicted error spans:
Mixtral 8x7B 42.9 ↓ 5.5 64.9 ↓ 13.5 58.7 ↓ 16.8 58.1 ↓ 1.6 76.4 ↓ 1.0 73.2 ↓ 2.3 51.2 ↓ 4.1 74.4 ↓ 3.6 73.4 ↓ 3.3

GPT 3.5T 53.4 ↑ 5.0 81.6 ↑ 3.2 77.5 ↑ 2.1 63.9 ↑ 4.1 80.9 ↑ 3.5 77.9 ↑ 2.4 56.2 ↑ 1.0 79.1 ↑ 1.1 77.9 ↑ 1.1

XTOWER 13B 52.7 ↑ 4.3 81.3 ↑ 2.9 77.0 ↑ 1.5 60.9 ↑ 1.1 78.5 ↑ 1.0 75.6 ↑ 0.1 56.0 ↑ 0.7 79.0 ↑ 1.0 78.4 ↑ 1.7

+ Hybrid 52.4 ↑ 4.0 82.2 ↑ 3.8 80.1 ↑ 4.6 62.4 ↑ 2.6 80.0 ↑ 2.5 78.7 ↑ 3.2 55.4 ↑ 0.2 79.1 ↑ 1.1 78.8 ↑ 2.1

With human-annotated error spans:
Mixtral 8x7B 42.1 ↓ 6.2 66.8 ↓ 11.7 61.3 ↓ 14.2 57.7 ↓ 2.0 76.0 ↓ 1.5 73.1 ↓ 2.4 52.8 ↓ 2.5 75.7 ↓ 2.2 74.1 ↓ 2.7

GPT 3.5T 50.2 ↑ 1.8 80.6 ↑ 2.2 76.5 ↑ 1.0 62.6 ↑ 2.8 80.0 ↑ 2.5 77.4 ↑ 1.9 56.5 ↑ 1.3 79.2 ↑ 1.2 77.9 ↑ 1.2

XTOWER 13B 50.2 ↑ 1.8 81.3 ↑ 2.9 77.3 ↑ 1.8 60.0 ↑ 0.2 77.7 ↑ 0.2 75.0 ↓ 0.5 56.4 ↑ 1.2 79.4 ↑ 1.4 78.6 ↑ 1.9

+ Hybrid 52.7 ↑ 4.3 82.5 ↑ 4.1 79.9 ↑ 4.4 63.6 ↑ 3.8 80.8 ↑ 3.4 79.4 ↑ 3.9 56.2 ↑ 1.0 79.7 ↑ 1.7 79.2 ↑ 2.5

Table 5: Results for correcting translations with XCOMET-predicted or human-annotated error spans. We also show
absolute differences from the original translation, where red and blue denote negative and positive deltas.
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Figure 3: At the top, we show the quality of the original
translation versus the corrected translation on EN-DE
with human spans. At the bottom, we show how often
the latter is higher than the former per quality bin.

Can we design an effective hybrid approach?435

We have established above that XTOWER’s correc-436

tions can lead to significant improvements in trans-437

lation quality. Here, we analyse where it is most438

effective in regards to the translation quality of the439

original translation. The scatter plot in Figure 3440

illustrates the relationship between COMET scores441

for original and the corrected translations on EN-442

DE samples. It shows that XTOWER is most effec-443

tive for low-quality original translations (COMET444

score ≤ 80), while for high-quality translations445

(COMET score > 80) retaining the original trans- 446

lation may be better.15 This is because the test 447

dataset (WMT23) includes translations from di- 448

verse MT systems, including strong models like 449

GPT-4 and (private) commercial systems (Freitag 450

et al., 2023). Given these findings, we propose a hy- 451

brid approach that selects the best method based 452

on the original translation’s COMET score. Instead 453

of a fixed threshold, we find the optimal threshold 454

τ on 10% of the samples and use the following rule 455

to obtain the final translation y: 456

y =


yoriginal if m(yoriginal) > τ

ycorrection elif m(ycorrection) > m(yoriginal)

yoriginal otherwise,

(1)
457

where m is a metric. We use COMETKIWI, a ref- 458

erenceless metric, as m. Results in Table 5 (under 459

"Hybrid") show that this approach consistently im- 460

proves translation quality across all language pairs, 461

with boosts as high as 2 COMET points for HE- 462

EN. These results suggest that a hybrid approach 463

can significantly improve translation performance, 464

especially for the more realistic scenario of us- 465

ing XCOMET spans, while also reducing inference 466

costs by only querying XTOWER sporadically.16 467

How does explanation quality affect correc- 468

tions? In Figure 4 we show that the largest qual- 469

ity gains are typically associated with explana- 470

tions that have a high relatedness score (§4.2). 471

15This is consistent for all language pairs (cf. Figure 7).
16Portion of original translations kept: {46%, 41%} for

EN-DE, {49%, 48%} for HE-EN, and {30%, 32%} for ZH-EN
using XCOMET and human spans, respectively.
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Figure 4: Delta between COMET scores for corrected
and original translations according to how related expla-
nations are to error spans.

Furthermore, we find a negative Pearson correla-472

tion (r = −0.15) between explanations’ related-473

ness and original translations’ COMET scores, high-474

lighting that higher quality explanations are often475

associated with poorer quality original translations.476

This suggests that high-quality explanations lead477

to significant improvements primarily for con-478

texts where the initial translation quality is poor,479

as hinted by Figure 3.480

6 Related Work481

Here, we discuss key related works in the domains482

of free-text explanations, automatic post-editing,483

span-level error detection, and the use of LLMs for484

translation and error explanation.485

Free-text Explanations. Recent work has ex-486

plored methods for generating free-text expla-487

nations either by utilizing human-written exam-488

ples (Marasovic et al., 2022; Wiegreffe et al., 2022)489

or by prompting LLMs (Wei et al., 2022; Jung et al.,490

2022; Atanasova et al., 2023; Joshi et al., 2023).491

However, these explanations are typically produced492

to understand a model’s decision rather than being493

constrained to justify marked spans in the input.494

In a similar vein, Feldhus et al. (2023) propose495

leveraging dense saliency maps to improve the ver-496

balization of explanations by LLMs. In contrast,497

XTOWER focuses on producing explanations that498

are tied to specific error spans (§4.2) and helpful to499

humans (§4.3), within the context of MT.500

Span-level Error Detection and Correction.501

In the context of span-level error detection,502

AUTOMQM (Fernandes et al., 2023), In-503

structScore (Xu et al., 2023), and XCOMET (Guer-504

reiro et al., 2023a) have demonstrated the effec-505

tiveness of using neural models to identify errors506

in machine translations. For correcting errors in 507

translations, a task more generally known as au- 508

tomatic post-editing (APE; Simard et al. 2007; 509

Bhattacharyya et al. 2023), recent works prompt 510

LLMs to produce suggestions for a new transla- 511

tion, such as TOWERAPE (Alves et al., 2024) and 512

prompting GPT-4 (Raunak et al., 2023). We ex- 513

periment with error spans annotated by humans or 514

predicted by XCOMET for correcting translations in 515

§5. Finally, incorporating error feedback into post- 516

editing prompts has been concurrently explored by 517

Ki and Carpuat (2024). While effective, their ap- 518

proach does not consider the addition of detailed 519

explanations, which, as shown in §5, can further 520

improve the translation correction process. 521

LLMs for Translating and Explaining Trans- 522

lation Errors. LLMs have been increasingly 523

employed for translation tasks. TOWER (Alves 524

et al., 2024) and ALMA (Xu et al., 2024) are no- 525

table examples of models designed specifically for 526

translation-related tasks. InstructScore, a recent 527

work by Xu et al. (2023), uses LLMs to provide 528

explanations for translation errors. However, in 529

contrast to XTOWER, InstructScore relies on refer- 530

ence translations, sidesteps the information in the 531

source sentence, and produces explanations only 532

as a by-product to improve quality score predic- 533

tions. Additionally, while InstructScore focuses 534

on producing a single quality score to reflect over- 535

all translation quality, XTOWER not only provides 536

plausible and helpful explanations for humans, but 537

also generates translation corrections. 538

7 Conclusions 539

In this paper, we introduced XTOWER, a mul- 540

tilingual LLM designed to provide free-text ex- 541

planations for translation errors and generate cor- 542

rected translations. By leveraging the strengths 543

of TOWER and integrating specialized error detec- 544

tion from XCOMET, XTOWER can improve the 545

interpretability of machine translation outputs in 546

an automatic process. Our evaluations demonstrate 547

that XTOWER not only produces high-quality and 548

helpful explanations, as assessed by human evalua- 549

tion, but can also significantly improves translation 550

quality, especially when combined with accurate 551

error spans. Furthermore, we propose a hybrid 552

approach that dynamically selects between using 553

the original translation or querying XTOWER for 554

a correction, resulting in overall improvements in 555

translation quality for all language pairs. 556
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Limitations557

While XTOWER significantly advances machine558

translation interpretability, it has various limita-559

tions. Even though the model’s dependence on560

external error span detector tools like XCOMET561

brings modularity and flexibility, it also introduces562

pipeline complexity. Our evaluation, focused on563

the few language pairs which have MQM anno-564

tations available, may not generalize across all565

languages and domains. Additionally, the com-566

putational resources required for distillation and567

finetuning are substantial, limiting reproducibil-568

ity for some users. The generated explanations,569

though helpful, may not always faithfully represent570

the model’s reasoning or effectively guide users.571

Lastly, potential biases in the training data could572

affect translation and explanation quality, requiring573

further work to ensure fairness and reliability.574

Potential Risks575

The use of XTOWER may carry potential risks. One576

concern is the possibility of the model generating577

fluent but misleading explanations, which could578

affect user trust. There are also fairness considera-579

tions; as discussed above, the model might inadver-580

tently reinforce biases present in the training data,581

potentially disadvantaging historically marginal-582

ized groups. Lastly, the focus on certain languages583

and datasets could lead to the underrepresentation584

of less commonly spoken languages. Careful mon-585

itoring and ongoing evaluation, such as detecting586

and overcoming hallucinations (Guerreiro et al.,587

2023b; Dale et al., 2023), can help mitigate these588

risks and ensure the model’s responsible use.589
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EN-DE HE-EN ZH-EN EN-RU

WMT 2022
# Samples 8,815 - 13,631 10,996
# Error Spans 14,174 - 26,506 22,508
Avg. Input Length 42.2 - 72.3 40.5
Avg. Span Length 1.8 - 2.4 1.6

WMT 2023
# Samples 4,111 5,325 15,690 -
# Error Spans 17,439 8,476 43,649 -
Avg. Input Length 190.0 18.1 52.9 -
Avg. Span Length 3.0 1.0 2.5 -

XCOMET spans (without references):
# Error Spans 33,774 16,816 57,917 -
Avg. Span Length 2.4 1.1 2.0 -

XCOMET spans (with references):
# Error Spans 30,856 16,434 53,602 -
Avg. Span Length 2.5 1.1 2.0 -

Table 6: Datasets statistics.

A Datasets Statistics879

We show statistics for all datasets used in this work880

in Table 6.881

B Prompting882

Prompting explanations and translation correc-883

tion. For 1-shot, we pass a unique example as884

input: for EN-DE we pass a single EN-DE example,885

whereas for HE-EN and ZH-EN we pass a ZH-EN886

example. For 5-shot, we pass a list of 5 examples887

containing 3 EN-DE, 1 EN-RU, and 1 ZH-EN sam-888

ples. For all models, we sample new tokens using889

a temperature set to zero. We provide an exam-890

ple of our prompt template used for 1-shot EN-DE891

experiments in Table 1.892

Prompting translation-only LLMs. For the893

translation LLMs baselines, we use the prompt894

shown in Table 7 to obtain translations.895

Translate the following English source text to German:

English source: This is a great product and suitable for all
bikes, cars and commercial applications.

German translation: Dieses großartige Produkt eignet
sich für alle Motorräder, Autos und gewerbliche Anwen-
dungen.

Table 7: 0-shot prompt for generating translations.

C Human Evaluation896

Detailed Task Instructions. We present the de-897

tailed task instructions provided to the annotators898

in Figures 5 (relatedness) and 6 (helpfulness). The899

EN-DE ZH-EN

SPAN LEVEL r ρ r ρ

Human Explanation 0.56 0.51 0.34 0.20
Human Document 0.50 0.38 0.21 0.17
XCOMET Explanation 0.47 0.46 0.54 0.46
XCOMET Document 0.39 0.40 0.50 0.46

Average Explanation 0.52 0.48 0.44 0.33
Average Document 0.45 0.39 0.35 0.32

Table 8: Inter-annotator agreement at explanation and
document-level, according to Pearson’s r and Spear-
man’s ρ correlation coefficients.

interface was created using Appraise (Federmann, 900

2018). 901

Inter-annotator agreement. We ask human an- 902

notators to assess the translations at both the expla- 903

nation and document levels. The inter-annotator 904

agreement was measured using two statistical met- 905

rics: Pearson correlation coefficient (r) and Spear- 906

man rank correlation coefficient (ρ). Specifically, 907

following Pavlick and Tetreault (2016), for each in- 908

stance either at explanation or document-level, we 909

randomly choose one annotator’s scores to be the 910

scores provided by Annotator 1, and take the mean 911

scores of the other two annotators to be the scores 912

given by an Annotator 2. We then compute the 913

correlation for these two simulated annotators. Ta- 914

ble 8 presents the results. The results indicate that 915

while human annotators exhibit higher consistency 916

for EN-DE translations, the agreement is generally 917

lower for ZH-EN translations. For XCOMET spans, 918

however, annotators agree more consistently across 919

both language pairs. 920

Sample size. For relatedness experiments, we 921

evaluated a total of 282 explanations for EN-DE 922

and 279 for ZH-EN (561 in total). For helpfulness, 923

we evaluated 83 explanations EN-DE and 99 for 924

ZH-EN (182 in total). 925

Participants Details. We hired native speakers 926

of Chinese and German (fluent in English) for this 927

task (four females and two males). They were 928

compensated at $24 per hour. 929

D Translation Correction 930

D.1 Referenceless 931

K-shot prompt. In Table 9, we present results 932

with k-shot for samples with human-annotated 933

translation error spans in terms of COMET, cov- 934

ering both referenceless and reference-based se- 935

12



Figure 5: Screenshot of the relatedness task interface presented to annotators.

tups. Note that only xTower was evaluated with936

k = 0, as it was finetuned on explanations, and937

thus it can sidestep the in-context learning exam-938

ples. Mixtral 8x7B seems to benefit more with939

k = 5 than other models for HE-EN and ZH-EN,940

but looses more around 4 COMET points for EN-DE.941

On the other hand, GPT 3.5 performs better with942

k = 1 than with k = 5 for referenceless experi-943

ments, with k = 1 results also being very close to944

k = 5 for reference-based experiments. Finally,945

xTower with k = 5 usually obtains slightly better946

results than with k ∈ {0, 1} (delta within 0.2-0.4), 947

but it introduces substantial runtime and memory 948

costs as the prompt grows ∼5 times its original 949

size. These findings motivated us to select k = 1 950

for Mixtral and GPT, and k = 0 for xTower, for all 951

experiments in the paper. 952

D.2 Reference-based 953

For many use cases, users can provide an initial 954

translation draft and then query XTOWER with the 955

goal of obtaining an improved version. Here, we in- 956

13



Figure 6: Screenshot of the helpfulness task interface presented to annotators.

Referenceless Reference-based

MODEL k en-de he-en zh-en en-de he-en zh-en

Mixtral 1 66.8 76.0 75.7 69.9 84.5 80.0
Mixtral 5 63.1 77.1 76.6 65.4 85.3 81.4
GPT 3.5T 1 80.6 80.0 79.2 83.7 87.6 82.9
GPT 3.5T 5 79.9 79.9 79.0 81.4 87.9 83.2
xTower 0 81.3 77.7 79.4 84.1 88.2 83.6
xTower 1 81.4 77.6 79.3 84.3 88.7 83.9
xTower 5 81.2 77.9 79.2 84.4 88.6 84.0

Table 9: Results for translation refinement with k-shot
prompting in terms of COMET.

vestigate the impact of providing a reference trans-957

lation to the input on the quality of corrected trans-958

lations.959

D.2.1 Experimental Setup960

Distillation data. Since references might play961

an important role in understanding and explaining962

translation errors, for example by offering context963

and highlighting specific areas where the transla-964

tion deviates from the ideal, we include the refer-965

ence in our prompts in 50% of the cases during966

distillation. Consequently, after finetuning, this967

approach allows us to balance between leveraging 968

references for better explanations and ensuring the 969

model engages in genuine error correction. 970

Prompting with XCOMET spans. Since we in- 971

troduce the reference translation as an additional 972

signal to our prompt, we rerun XCOMET with 973

source-translation-reference triplets as input, ob- 974

taining a total of 99,892 spans. 975

Hybrid strategy. We use the same hybrid ap- 976

proach use for reference-less experiments, as de- 977

fined in Equation 1. However, here we use COMET 978

as m, a reference-based metric. 979

D.2.2 Results 980

We present our results in Table 11. Next, we discuss 981

out main findings. 982

What’s the gap to referenceless? Comparing 983

the results with and without references, we find that 984

reference-based models consistently outperform 985

referenceless ones across all metrics and language 986

pairs. For example, we obtain COMET boosts of 987

roughly 3 points for EN-DE, 11 for HE-EN, and 5 for 988

ZH-EN. Moreover, we note that human-annotated 989
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EN-DE HE-EN ZH-EN

SPANS C S ∆ C S ∆ C S ∆

Without references:
XCOMET .01 .42 .44 .01 .41 .39 .01 .17 .77
HUMAN .01 .43 .49 .00 .40 .39 .01 .18 .77

With references:
XCOMET .10 .57 .49 .18 .72 .51 .08 .33 .79
HUMAN .06 .57 .55 .15 .69 .53 .07 .33 .78

Table 10: Portion of samples where the corrected trans-
lation is same as the reference (C ↓), their normalized
Levenshtein similarity (S ↓), and how often the former
is judged better than the latter by COMETKIWI (∆ ↑).

spans yield again similar results with XCOMET990

spans across the board. These findings indicate that991

XTOWER effectively leverages references, leading992

to significant improvements for the task of correct-993

ing translations.994

Is XTOWER simply copying the reference?995

Since we are now providing a reference transla-996

tion to XTOWER, it is not clear whether the quality997

gap that we have measured is not just an effect of998

copying the provided reference. To address this999

question, we computed two additional metrics: the1000

percentage of translation corrections that are iden-1001

tical to the reference, and their closeness using1002

normalized Levenshtein similarity. The results, pre-1003

sented in Table 10, indicate that XTOWER does not1004

simply copy the reference. While the translation1005

corrections become more similar to the reference,1006

this is beneficial as it shows the model relies on the1007

reference to generate improved translations. Fur-1008

thermore, to determine the quality of these improve-1009

ments, we compared the COMETKIWI scores of the1010

corrected translations and the original references1011

relative to the source. The results show that this per-1012

centage is generally above 50%, demonstrating that1013

XTOWER effectively produces translations that are1014

on par with or better than the original references.1015

Is the hybrid approach effective? Our hy-1016

brid approach, which dynamically alternates be-1017

tween utilizing high-quality original translations1018

and high-quality corrections, yields significant im-1019

provements, particularly in terms of COMET and1020

BLEURT scores, just as observed in referenceless1021

experiments in §5. Overall, these findings highlight1022

the full potential of XTOWER towards improving1023

translation quality.1024

D.3 Additional Results 1025

Lexical metrics. For completeness, we include 1026

lexical metrics for referenceless and reference- 1027

based experiments for the translation refinement 1028

task in Table 12. Specifically, we include BLEU 1029

and ChrF.17 1030

TOWERBASE vs XTOWER. To verify whether 1031

XTOWER maintains the original TOWERBASE 1032

translation capabilities after extending it, we also 1033

report its performance as a translation-only LLM 1034

in Table 12. That is, we prompt XTOWER with 1035

the 0-shot template shown in Table 7. The table 1036

shows that XTOWER performs on par or slightly 1037

surpass TOWERINSTRUCT for all language pairs 1038

in terms of BLEURT, COMET, and COMETKIWI. 1039

This suggests that XTOWER not only keeps the orig- 1040

inal translation capabilities of TOWERBASE, but 1041

also holds potential to improve them. 1042

COMET scores for original vs corrected transla- 1043

tions. In Figure 3 (in §5), we show how XTOWER 1044

behaves depending on the quality of the original 1045

translation for EN-DE samples. Now, in Figure 7 1046

we show plots for HE-EN and ZH-EN. Overall, we 1047

observe that the same trend remains: XTOWER is 1048

particularly helpful for cases where the original 1049

translation obtains weak-moderate COMET scores 1050

(from 0 to 80%). 1051

E Computational Details 1052

All experiments involving XTOWER and Mixtral 1053

8x7B were carried on Nvidia RTX A6000 GPUS 1054

with 48GB VRAM. For GPT 4 and GPT 3.5T, 1055

we used the official API from OpenAI. We used 1056

VLLM18 for efficient generation. 1057

F AI Assistants 1058

We have used Github Copilot19 during code devel- 1059

opment, and ChatGPT20 during paper writing for 1060

grammar correction. 1061

17SacreBLEU signature: |1|mixed|no|13a|exp|.
18https://github.com/vllm-project/vllm
19https://github.com/features/copilot
20https://chat.openai.com/
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EN-DE HE-EN ZH-EN

MODEL BLEURT COMET CKIWI BLEURT COMET CKIWI BLEURT COMET CKIWI

Original MT 48.4 78.4 75.5 59.8 77.5 75.5 55.2 78.0 76.7

Translation-only LLMs:
Mixtral 8x7B 46.4 ↓ 2.0 80.4 ↑ 2.0 76.6 ↑ 1.1 53.9 ↓ 5.9 71.6 ↓ 5.9 69.3 ↓ 6.2 53.5 ↓ 1.7 77.7 ↓ 0.3 77.3 ↑ 0.6

GPT 3.5T 51.3 ↑ 2.9 82.7 ↑ 4.3 78.6 ↑ 3.1 65.5 ↑ 5.8 80.9 ↑ 3.4 77.8 ↑ 2.2 57.1 ↑ 1.8 79.9 ↑ 2.0 79.2 ↑ 2.5

TOWERINST 13B 50.0 ↑ 1.6 82.2 ↑ 3.8 78.7 ↑ 3.2 50.7 ↓ 9.1 68.7 ↓ 8.8 66.5 ↓ 9.0 56.5 ↑ 1.3 79.1 ↑ 1.1 78.4 ↑ 1.7

With predicted error spans:
Mixtral 8x7B 49.4 ↑ 1.0 70.0 ↓ 8.4 62.8 ↓ 12.7 74.1 ↑ 14.4 85.6 ↑ 8.2 77.2 ↑ 1.7 62.4 ↑ 7.1 80.6 ↑ 2.6 75.2 ↓ 1.5

GPT 3.5T 63.3 ↑ 15.0 85.2 ↑ 6.8 78.6 ↑ 3.1 80.2 ↑ 20.5 88.8 ↑ 11.4 79.3 ↑ 3.8 66.5 ↑ 11.2 83.3 ↑ 5.3 77.7 ↑ 0.9

xTower 13B 62.9 ↑ 14.6 84.6 ↑ 6.2 77.7 ↑ 2.2 80.5 ↑ 20.8 89.0 ↑ 11.5 79.3 ↑ 3.8 66.8 ↑ 11.6 83.7 ↑ 5.7 78.2 ↑ 1.5

+ Hybrid 62.4 ↑ 14.0 85.8 ↑ 7.4 79.4 ↑ 3.9 80.2 ↑ 20.4 88.4 ↑ 10.9 79.5 ↑ 4.0 66.5 ↑ 11.2 83.8 ↑ 5.8 78.0 ↑ 1.3

With human-annotated error spans:
Mixtral 8x7B 46.3 ↓ 2.1 69.9 ↓ 8.5 63.5 ↓ 12.0 72.1 ↑ 12.3 84.5 ↑ 7.1 76.5 ↑ 0.9 60.7 ↑ 5.4 80.0 ↑ 2.0 75.3 ↓ 1.4

GPT 3.5T 58.5 ↑ 10.2 83.7 ↑ 5.3 77.9 ↑ 2.5 77.7 ↑ 18.0 87.6 ↑ 10.2 78.7 ↑ 3.2 65.3 ↑ 10.0 82.9 ↑ 4.9 77.9 ↑ 1.2

xTower 13B 59.1 ↑ 10.7 84.1 ↑ 5.7 77.8 ↑ 2.4 78.8 ↑ 19.1 88.2 ↑ 10.8 78.7 ↑ 3.2 66.5 ↑ 11.2 83.6 ↑ 5.6 78.5 ↑ 1.8

+ Hybrid 61.7 ↑ 13.3 86.0 ↑ 7.6 79.7 ↑ 4.2 79.6 ↑ 19.8 88.6 ↑ 11.1 80.1 ↑ 4.5 67.1 ↑ 11.9 84.3 ↑ 6.3 78.5 ↑ 1.8

Table 11: Reference-based results for correcting translations conditioned on explanations and error spans predicted
via XCOMET or obtained via human annotation. We also show the absolute difference to the original translation,
with red and blue denoting negative and positive deltas, respectively.
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Figure 7: COMET of the original translation versus the corrected translation with human-annotated spans for HE-EN
(left) and ZH-EN (right). At the bottom, we show how often the COMET for the corrected translation is higher than
for the original per quality bin.
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EN-DE HE-EN ZH-EN

MODEL chrF bleu bleurt comet ckiwi chrF bleu bleurt comet ckiwi chrF bleu bleurt comet ckiwi

Original MT 64.8 39.0 48.4 78.4 75.5 56.5 33.5 59.8 77.5 75.5 49.6 23.8 55.2 78.0 76.7

Translation-only LLMs:
Mixtral 8x7B 61.5 32.4 46.4 80.4 76.6 50.9 24.5 53.9 71.6 69.3 46.5 17.0 53.5 77.7 77.3
GPT 3.5T 68.2 41.9 51.3 82.7 78.6 64.5 43.9 65.5 80.9 77.8 50.2 22.0 57.1 79.9 79.2
TOWERINST 13B 66.3 40.1 50.0 82.2 78.7 45.9 22.6 50.7 68.7 66.5 48.3 21.6 56.5 79.1 78.4
XTOWER 13B 66.5 40.0 50.5 82.2 78.6 45.8 22.2 50.6 69.4 67.3 48.7 21.6 56.8 79.5 78.5

Referenceless
With predicted error spans:
Mixtral 8x7B 29.9 10.4 42.9 64.9 58.7 53.5 31.6 58.1 76.4 73.2 41.5 18.1 51.2 74.4 73.4
GPT 3.5T 62.8 37.5 53.4 81.6 77.5 60.0 38.2 63.9 80.9 77.9 48.6 22.1 56.2 79.1 77.9
XTOWER 13B 59.5 34.1 52.7 81.3 77.0 57.1 34.5 60.9 78.5 75.6 48.5 20.8 56.0 79.0 78.4
+ Hybrid 64.8 38.4 52.4 82.2 80.1 59.9 37.4 62.4 80.0 78.7 51.4 24.1 55.4 79.1 78.8

With human-annotated error spans:
Mixtral 8x7B 37.7 16.4 42.1 66.8 61.3 54.0 30.7 57.7 76.0 73.1 43.3 19.4 52.8 75.7 74.1
GPT 3.5T 63.1 37.6 50.2 80.6 76.5 58.6 36.1 62.6 80.0 77.4 48.8 22.3 56.6 79.2 77.9
XTOWER 13B 61.3 35.3 50.2 81.3 77.3 56.3 33.3 60.0 77.7 75.0 49.2 21.3 56.4 79.4 78.6
+ Hybrid 64.7 38.4 52.7 82.5 79.9 60.3 38.2 63.6 80.8 79.4 51.7 24.6 56.2 79.7 79.2

Reference-based
With predicted error spans:
Mixtral 8x7B 36.9 16.1 49.4 70.0 62.8 71.2 54.2 74.1 85.6 77.2 53.2 31.0 62.4 80.6 75.2
GPT 3.5T 74.1 55.4 63.3 85.2 78.6 79.1 65.3 80.2 88.8 79.3 58.8 36.6 66.5 83.3 77.7
XTOWER 13B 70.0 50.8 62.9 84.6 77.7 81.0 66.2 80.5 89.0 79.4 60.1 35.9 66.8 83.7 78.3
+ Hybrid 73.4 52.7 62.4 85.8 79.4 82.3 69.5 80.2 88.4 79.5 63.6 39.8 66.5 83.8 78.1

With human-annotated error spans:
Mixtral 8x7B 40.3 18.7 46.3 69.9 63.5 69.0 50.4 72.1 84.5 76.4 51.6 29.1 60.7 80.0 75.3
GPT 3.5T 71.6 50.9 58.5 83.7 77.9 75.9 60.8 77.7 87.6 78.7 57.7 35.0 65.3 82.9 77.9
XTOWER 13B 70.6 50.7 59.1 84.1 77.9 78.9 62.5 78.8 88.2 78.7 59.8 35.6 66.5 83.6 78.5
+ Hybrid 73.5 52.5 61.7 86.0 79.7 80.6 67.1 79.6 88.6 80.1 63.3 39.7 67.1 84.3 78.5

Table 12: Full results for translation correction experiments in terms of lexical and neural metrics.
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