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Abstract

Diffusion Large Language Models (DLLMs) have emerged as a compelling alter-
native to Autoregressive models, designed for fast parallel generation. However,
existing DLLMs are plagued by a severe quality-speed trade-off, where faster
parallel decoding leads to significant performance degradation. We attribute this
to the irreversibility of standard decoding in DLLMs, which is easily polarized
into the wrong decoding direction along with early error context accumulation. To
resolve this, we introduce Wide-In, Narrow-Out (WINO), a training-free decoding
algorithm that enables revokable decoding in DLLMs. WINO employs a parallel
draft-and-verify mechanism, aggressively drafting multiple tokens while simulta-
neously using the model’s bidirectional context to verify and re-mask suspicious
ones for refinement. Verified in open-source DLLMs like LLaDA and MMaDA,
WINO is shown to decisively improve the quality-speed trade-off. For instance, on
the GSM8K math benchmark, it accelerates inference by 6× while improving ac-
curacy by 2.58%; on Flickr30K captioning, it achieves a 10× speedup with higher
performance. More comprehensive experiments are conducted to demonstrate the
superiority and provide an in-depth understanding of WINO. 1

1 Introduction

Autoregressive (AR) large language models [Radford et al., 2018, 2019], such as the GPT series [Ope-
nAI, 2022], have shown impressive performance in a ranging of language tasks. However, their
foundational token-by-token generation mechanism introduces inherent limitations, including se-
vere inference latency, susceptibility to error propagation [Stechly et al., 2023, Valmeekam et al.,
2023], and challenges in maintaining global coherence [Mei et al., 2025]. In response, Diffusion
Large Language Models (DLLMs) have emerged as a compelling non-autoregressive alternative,
architected to overcome these bottlenecks. By generating tokens simultaneously [Li et al., 2022],
DLLMs theoretically enable massive inference acceleration, while their native bidirectional attention
offers improved consistency. The immense potential of DLLMs has been showcased by proprietary,
closed-source systems (e.g., Mercury Coder [Inception Labs, 2025] and Gemini Diffusion [Google
DeepMind, 2025]), which have demonstrated astonishing speeds exceeding 1,000 tokens per second,
serving as a powerful proof-of-concept.

Despite this promise, the performance of open-source DLLMs has been still disappointing. One
critical bottleneck is that they are caught in a severe quality-speed trade-off dilemma. Specifically,
to achieve high-quality output, these models are often forced to decode slowly, generating just one
token at a time, which negates their primary architectural advantage. As shown in Fig. 1, attempting
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Figure 1: Demonstration of speedup and performance improvement of WINO over standard decoding
and naive parallel sampling evaluated on GSM8K with LLaDA and Flickr30K with MMaDA. The
standard decoding unmasks 1 token per decoding step, while the naive parallel sampling unmasks
M(> 1) tokens per decoding step. We set M = 4 for GSM8K and M = 8 for Flickr30K.

to accelerate inference by generating multiple tokens in parallel invariably leads to a significant
degradation in output quality [Nie et al., 2025]. This stark trade-off has largely prevented the
open-source DLLMs from becoming a viable, high-performance alternative to their AR counterparts.

We attribute this trade-off to a fundamental flaw in DLLMs [Sahoo et al., 2024, Ou et al., 2025]: its
irreversibility of the standard decoding process. Specifically, the standard generation in diffusion
steps typically begins with a sequence of [MASK] tokens, which are then filled in greedily. Once
a token is decoded, the decision is final and cannot be revised, even as more informative context
becomes available in later steps. However, this is challenging for parallel decoding, where initial
tokens are generated with very limited information, easily causing early errors to become permanently
embedded, accumulated and propagated throughout the output. Therefore, such a rigid process
essentially prevents DLLMs from using their greatest strength of bidirectional attention [Seo et al.,
2017] to refine the early errors when the context progressively becomes rich.

To resolve this problem, we introduce Wide-In, Narrow-Out (WINO), a novel decoding algorithm
that enables revokable decoding for DLLMs. WINO employs a novel draft-and-verify procedure
that operates in parallel. At each step, a draft module aggressively proposes multiple new tokens
based on a lenient threshold (the “Wide-In”). Concurrently, a verify module leverages the newly
enriched global context to re-evaluate all previously generated tokens. Any token that fails a stricter
verification check is re-masked for refinement in a future step (the “Narrow-Out”). This mechanism
brings two merits: 1) it breaks the irreversibility of the conventional decoding in DLLMs, allowing
the early error to be corrected for better performance; 2) it permits more aggressive token generation
in each diffusion step for faster speedup with quality guarantee. Besides, our WINO is training-free
and play-and-plug, which enables the general DLLMs to be both highly efficient and effective.

Our extensive experiments show that when applied to existing open-source models like LLaDA [Nie
et al., 2025] and MMaDA [Yang et al., 2025], WINO achieves massive speedups, and also consistently
improves model accuracy on both language and visual-language tasks. For instance, as shown in
Fig. 1, on the GSM8K [Cobbe et al., 2021] math reasoning benchmark, WINO accelerates inference
by 6× while simultaneously increasing accuracy by 2.58%, and on Flickr30K [Young et al., 2014]
image captioning benchmark, it speedup decoding by 10× with even higher performance. By making
decoding revokable, WINO unlocks the latent power of DLLMs in this area.

2 Related Work

Diffusion-based Language Models. Diffusion models [Sohl-Dickstein et al., 2015, Ho et al., 2020,
Song et al., 2021], originally popularized in image generation [Rombach et al., 2022, Nichol et al.,
2022, Saharia et al., 2022], have recently gained attention as an alternative to autoregressive language
models (ARLMs) for text generation. This expansion from continuous domain to discrete domain is
first studied by Sohl-Dickstein et al. [2015]. Subsequently, D3PM [Austin et al., 2021a] provides
a general framework which models the diffusion forward process as a discrete state Markov chain
defined by the multiplication of specific transition matrices over discrete time steps. Campbell et al.
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[2022] later expands D3PM to a continuous time setting, utilizing the theory of continuous time
Markov chain(CTMC). More recently, research on masked diffusion models(MDMs) [Shi et al.,
2024] derived from the absorbing state diffusion in D3PM has shown promising results both in
small-scale models (e.g., MDLM [Sahoo et al., 2024] and RADD [Ou et al., 2025]) and large-scale
implementations (e.g., LLaDA [Nie et al., 2025] and Dream [Ye et al., 2025]). Extending this line of
work, MMaDA [Yang et al., 2025] introduces a novel class of multimodal large diffusion models
featuring a shared probabilistic formulation and a modality-agnostic architecture.

DLLM Acceleration Techniques. The existing acceleration study for DLLMs falls into two direc-
tions: KV cache and sampling compression. The former targets to build the KV cache for DLLMs due
to its bidirectional full attention mechanism, unlike the causal attention of ARLMs. Typical works
like Block Diffusion [Arriola et al., 2025], Fast-dLLM-cache [Wu et al., 2025] and dLLM-cache [Liu
et al., 2025] respectively explore different caching mechanisms, which shows promising performance
for speedup. Note that this direction is out of the scope of our work here. The latter direction focuses
on optimizing the sampling process itself. For the classic low-confidence remasking strategy, several
works have introduced novel sampling strategies to dynamically adjust the number of tokens predicted
in parallel, thereby improving inference efficiency. Fast-dLLM-parallel [Wu et al., 2025] adopts a
straightforward approach by selecting tokens with confidence scores exceeding a predefined threshold.
Meanwhile, Ben-Hamu et al. [2025] propose an entropy-bounded (EB) sampler, a drop-in replace-
ment for conventional samplers that leverages an entropy-based unmasking procedure to dynamically
decode multiple tokens per step while maintaining a predefined error tolerance. Although our WINO
brings the acceleration promise due to sampling compression, different from these works, we explore
to address the inherent limitation of standard decoding in DLLMs.

3 Preliminary: Decoding Process for DLLMs

Given a prompt X , a DLLM is designed to generate a response Y = [y1, y2, . . . , yL] with a pre-
defined response length L. The response sequence is initialized as all special mask tokens, Y (0) =
[ [MASK] , [MASK] , . . . , [MASK] ]. The decoding process iteratively refines the response sequence Y (k)

over a total of K denoising steps. In the following, we detail the case of K = L (i.e., decoding one
token per step), as existing models typically achieve optimal performance under this setting [Nie
et al., 2025].

At step k, the goal of decoding is to refine the sequence Y (k−1) into Y (k). Given the token vocabulary
V and the model parameterized with θ, the model estimates the probability distribution over the
response sequence as pθ(Ŷ |X,Y (k−1)). As a common example, in high-confidence greedy decoding,
Y (k) is obtained by unmasking the most confident [MASK] token based on Y (k−1), i.e.,

l(k) = argmax
l∈{l|y(k−1)

l = [MASK] }

(
max
v∈V

pθ(ŷl = v|X,Y (k−1))

)
,

y
(k)
l =

argmax
v∈V

pθ(ŷl = v|X,Y (k−1)), if l = l(k),

y
(k−1)
l , otherwise,

∀l ∈ {1, 2, . . . , L}.
(1)

After completing all K decoding steps, the final generated response is Y = Y (K). Existing DLLMs,
such as LLaDA [Nie et al., 2025] and MMaDA [Yang et al., 2025], can also accelerate the decoding
process via naive parallel sampling by generating multiple tokens (e.g., 2 or 4) per step. However,
empirical results reveal that such strategies often result in substantial performance degradation,
limiting their practical effectiveness despite the computational speedup [Nie et al., 2025].

Semi-Autoregressive Diffusion Decoding. This strategy is widely adopted by DLLMs like
LLaDA [Nie et al., 2025] and MMaDA [Yang et al., 2025], which involves splitting the response
sequence into multiple blocks and decoding them sequentially from left to right. Within each block,
the typical diffusion decoding strategy described above is applied.
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Figure 2: (a) An overview of WINO. (b) Illustration of our designed attention mask. The green
squares denote 1, the grey squares denote 0, and “Pos ID” is short for position ID. Verified tokens
refer to tokens in the prompt X or previously decoded blocks. Draft tokens denote tokens in the
current block that are unmasked up to the current decoding step. [MASK] (shadow draft) refer to
tokens in the shadow block whose position IDs correspond to the draft tokens while [MASK] (shadow
mask) refer to the remaining tokens in the shadow block.

4 Method

4.1 Key Limitation of decoding process for DLLMs

While architecturally suited for parallelism, DLLMs face a critical bottleneck that hinders effective
multi-token decoding. During the early generation stages, the sparse context often causes the model
to produce low-quality or contradictory tokens when decoding in parallel. This issue is significantly
exacerbated by the standard decoding process due to its irreversibility nature. As these flawed initial
predictions are permanently locked in, they inevitably propagate and degrade the final generation
quality in the progressive diffusion steps, forcing an undesirable trade-off between the speed of
parallel decoding and the quality of serial decoding.

To improve the trade-off, one critical point is to abandon the assumption of irreversibility in the
standard decoding of DLLMs, and build a process of revokable decoding for progressive refinement.
This principle empowers the model to iteratively refine its initial parallel outputs. As more context
emerges during generation, the model can correct its preliminary predictions. Such a mechanism
effectively addresses the core conflict by marrying the efficiency of parallel generation with the
accuracy of context-driven corrections.

4.2 Iterative Refinement via Parallel Draft-and-Verify

Motivated by the above analysis and the design intuition, we propose a parallel Draft-and-Verify
framework to enable revokable decoding for more efficient and higher-quality generation in DLLMs.

Specifically, our framework performs two modules in parallel at each decoding step: 1) Draft:
aggressively unmasks multiple [MASK] tokens into candidate meaningful tokens; 2) Verify: evaluates
all currently unmasked tokens and re-masks those deemed low-quality for further refinement. We
adopt the most common and general semi-autoregressive decoding paradigm to present our method.
When the block length equals the generation length, it becomes equivalent to full diffusion decoding.

4.2.1 Drafting

We denote the entire sequence as Y = [Yleft, Ycur, Yright], where Yleft contains the prompt X and the
previously decoded blocks, Ycur = [ycur,1, . . . , ycur,Lb

] represents the current block being decoded,
and Yright denotes the remaining blocks to be decoded. Here, Lb is the block length. At the k-th
decoding step, instead of decoding a fixed number of tokens, we perform aggressive multi-token
parallel decoding based on a confidence threshold τ1:

y
(k)
cur,l = argmax

v∈V
pθ(ŷcur,l = v|Y ), if max

v∈V
pθ(ŷcur,l = v|Y ) > τ1 and y

(k−1)
cur,l = [MASK] . (2)
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Here, a relatively low confidence threshold τ1 is adopted to allow more possible tokens to be decoded
at each step, which will achieve the acceleration if only a few tokens among them are revoked during
the verification module detailed in the next section. This will be demonstrated in the experiments.

4.2.2 Verification

The design principle of the verification module is to utilize the increasingly enriched semantic context
at each decoding step—relative to earlier steps, to evaluate the quality of previously unmasked tokens.
By re-masking low-quality tokens, the decoding process becomes revokable and amenable for the
proper early error correction.

To realize effective quality verification about the decoded tokens, we design an auxiliary shadow
block consisting entirely of [MASK] , Yshad = [ [MASK] ]×Lb. This block is appended to the sequence
Y , resulting in an extended sequence Ỹ = [Yleft, Ycur, Yright, Yshad]. We carefully design the position
IDs and attention mask associated with Yshad to ensure that its output can effectively verify the quality
of the tokens decoded at the corresponding positions in Ycur.

Position IDs. Although Yshad is appended to the right end of the sequence, we assign it the same
position IDs as Ycur. Thus, the output of Yshad corresponds to the same positions as Ycur, enabling
position-wise verification.

Attention Mask. As illustrated in Fig. 2(b), we carefully design the attention mask after incorporating
Yshad into the sequence Ỹ . Specifically, tokens in Yleft, Ycur, and Yright can freely attend to each other,
but they are not allowed to attend to Yshad. In contrast, each token in Yshad is allowed to attend to all
tokens except its corresponding position in Ycur.

With the above design of position IDs and attention masks, we achieve the following properties:

• For any token in the current block Ycur, appending Yshad does not affect the model’s output.
Formally,

pθ(ŷcur,l|Y ) = pθ(ŷcur,l|Ỹ ).

• For any token in Yshad, the following properties hold. For example, consider the token yshad,3
in Fig. 2(a), which is assigned position ID 6.

– It shares the same position ID as ycur,3, and is allowed to attend to Yleft and Yright;
– It is explicitly prevented from attending to ycur,3, effectively avoiding information

leakage during verification;
– For all other positions in Ycur, each position is attended by exactly one decoded token

(from Ycur) and one [MASK] in Yshad. The former provides progressively richer contex-
tual semantics during decoding, while the latter serves to regularize the confidence of
decoded tokens in Ycur, reflecting the uncertainty and the need for potential refinement.

With the specially designed position IDs and the attention mask described above, the verification
module can be formally expressed as:

y
(k)
cur,l = [MASK] , if pθ(ŷshad,l = y

(k−1)
cur,l |Ỹ )) < τ2 and y

(k−1)
cur,l ̸= [MASK] , (3)

where τ2 is the confidence threshold for verification.

4.2.3 Overall Procedure

In summary, at decoding step k, our framework enables both the drafting and verification processes
to be completed in a single forward pass:

y
(k)
cur,l =


argmax

v∈V
pθ(ŷcur,l = v|Ỹ ), if max

v∈V
pθ(ŷcur,l = v|Ỹ ) > τ1 and y

(k−1)
cur,l = [MASK] ,

[MASK] , if pθ(ŷshad,l = y
(k−1)
cur,l |Ỹ )) < τ2 and y

(k−1)
cur,l ̸= [MASK] ,

y
(k−1)
cur,l , otherwise.

(4)

We iteratively refine the entire Ycur using the procedure in Eq. (4), until all tokens in Ycur are no longer
[MASK] . We set the drafting threshold τ1 and the verification threshold τ2 such that τ1 < τ2. A lower
τ1 accelerates the decoding process by allowing more tokens to be generated in parallel, while a
higher τ2 ensures the quality of the final output by enforcing stricter acceptance criteria. We refer to
this design philosophy as "Wide-In, Narrow-Out" and term our method as WINO in short.
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Table 1: Performance and inference speedup comparison on diverse language benchmarks.

Benchmark Method Accuracy Steps Step TPS TPS
Reduction Speedup

GSM8K
Math Reasoning

LLaDA 73.24 256 1.00 × 17.76 1.00 ×
WINO 75.82 (+2.58) 41.93 (-214.07) 6.10 × 100.53 (+82.77) 5.66 ×

MATH-500
Math Reasoning

LLaDA 32.00 256 1.00 × 17.62 1.00 ×
WINO 34.20 (+2.20) 74.44 (-181.56) 3.44 × 55.86 (+38.24) 3.17 ×

HumanEval
Code Generation

LLaDA 37.80 256 1.00 × 14.52 1.00 ×
WINO 42.07 (+4.27) 93.32 (-162.68) 2.74 × 37.19 (+22.67) 2.56 ×

MBPP
Code Generation

LLaDA 36.40 256 1.00 × 18.52 1.00 ×
WINO 36.40 (+0.00) 96.57 (-159.43) 2.65 × 45.39 (+26.87) 2.45 ×

Countdown
Logical Reasoning

LLaDA 24.21 256 1.00 × 17.22 1.00 ×
WINO 33.20 (+8.99) 105.88 (-150.12) 2.41 × 38.97 (+21.75) 2.26 ×

Sudoku
Logical Reasoning

LLaDA 14.23 256 1.00 × 11.61 1.00 ×
WINO 15.20 (+0.97) 131.96 (-124.04) 1.94 × 21.11 (+9.50) 1.82 ×

ARC-E
Commonsense Reasoning

LLaDA 59.13 256 1.00 × 17.26 1.00 ×
WINO 81.19 (+22.06) 40.19 (-215.81) 6.37 × 101.61 (+84.35) 5.89 ×

ARC-C
Commonsense Reasoning

LLaDA 51.87 256 1.00 × 17.10 1.00 ×
WINO 73.89 (+22.02) 47.41 (-208.59) 5.40 × 85.42 (+68.32) 5.00 ×

5 Experiment

5.1 Experiment setup

Datasets and Baselines. We conduct experiment to evaluate WINO across different types of tasks
and domains. Specifically, for language domain, we compare WINO with the standard decoding
of LLaDA on eight tasks: GSM8K [Cobbe et al., 2021], MATH-500 [Hendrycks et al., 2021],
HumanEval [Chen et al., 2021], MBPP [Austin et al., 2021b], Countdown [Zhao et al., 2025],
Sudoku [Zhao et al., 2025], ARC-E [Clark et al., 2018], and ARC-C [Clark et al., 2018], covering four
categories of textual generation tasks, including math reasoning, code generation, logical reasoning,
and commonsense reasoning. For vision-language domain, we evaluate WINO against the standard
decoding of MMaDA [Yang et al., 2025] on six multimodal understanding tasks: Flickr30k [Young
et al., 2014], AI2D [Kembhavi et al., 2016], MATH-Vision [Wang et al., 2024], MathVista [Lu et al.,
2024], MMMU [Yue et al., 2024] and ScienceQA [Lu et al., 2022], spanning four types of multimodal
tasks—captioning, chart understanding, math reasoning and multi-discipline reasoning. For clarity,
we test on the validation set of MMMU and the official testmini subset of MathVista.

Evaluation Details. All benchmarks are evaluated in a zero-shot manner, except Sudoku, which is
evaluated in a 4-shot setting. We use the CIDEr metric [Vedantam et al., 2015] for the Flickr30k
benchmark and accuracy for all the remaining benchmarks. To assess the inference efficiency of
the decoding method, we measure the required decoding steps and Tokens Per Second (TPS) of the
baselines and WINO on every task by averaging over all the samples in a benchmark.

Implementation details. We adopt the open-sourced LLaDA-8B-Instruct2 for language benchmarks
and MMaDA-8B-MixCoT3 for vision-language tasks. We employ the semi-autoregressive sampling
strategy introduced in LLaDA [Nie et al., 2025], where the output sequence is partitioned into multiple
blocks and generated from left to right. In our evaluation, we set the generation length to 256 and
the block length to 128, unless specified otherwise. For the hyperparameters of WINO, we set the
verification threshold τ2 to 0.9 and tune the drafting threshold τ1 from {0.5, 0.6, 0.7}.

5.2 Main Results

Performance and speedup on text generation. We report the performance, decoding steps and
throughput (TPS) of LLaDA, with and without WINO, on language benchmarks in Tab. 1. WINO
achieves significantly better accuracy with far fewer decoding steps than the baseline LLaDA, except
for the MBPP task, where WINO achieves the same performance as LLaDA. For instance, WINO

2https://huggingface.co/GSAI-ML/LLaDA-8B-Instruct
3https://huggingface.co/Gen-Verse/MMaDA-8B-MixCoT
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Table 2: Performance and inference speedup comparison across diverse multi-modal understanding
and reasoning benchmarks. We use CIDEr for Flickr30k and accuracy for other benchmarks.

Benchmark Method Performance Steps Step TPS TPS
Reduction Speedup

Flickr30k
Captioning

MMaDA 53.67 256 1.00 × 6.41 1.00 ×
WINO 53.83 (+0.16) 25.47 (-230.53) 10.05 × 55.11 (+48.70) 8.60 ×

AI2D
Chart Understanding

MMaDA 54.86 256 1.00 × 6.31 1.00 ×
WINO 57.19 (+2.33) 30.90 (-225.10) 8.30 × 46.04 (+39.73) 7.30 ×

MATH-Vision
Math Reasoning

MMaDA 8.55 256 1.00 × 6.22 1.00 ×
WINO 9.57 (+1.02) 44.69 (-211.31) 5.73 × 31.17 (+24.95) 5.01 ×

MathVista-mini
Math Reasoning

MMaDA 31.10 256 1.00 × 6.21 1.00 ×
WINO 31.40 (+0.30) 33.45 (-222.55) 7.65 × 41.96 (+35.75) 6.76 ×

MMMU-val
Multi-discipline Reasoning

MMaDA 18.56 256 1.00 × 6.02 1.00 ×
WINO 24.00 (+5.44) 38.47 (-217.53) 6.65 × 36.13 (+30.11) 6.00 ×

ScienceQA
Multi-discipline Reasoning

MMaDA 30.89 256 1.00 × 6.07 1.00 ×
WINO 42.24 (+11.35) 28.12 (-227.88) 9.10 × 49.45 (+43.38) 8.15 ×

improves accuracy on GSM8K by 2.58% with 6.10× step reduction and 5.66× TPS speedup. Tab. 1
demonstrate the effectiveness of WINO in enhancing generation quality and inference efficiency.

Performance and speedup on multimodal understanding and reasoning. We assess the perfor-
mance and efficiency gain of WINO incorporated into MMaDA and summarize the results in Tab. 2.
Compared to the vanilla MMaDA, WINO demonstrates consistent and substantial improvements in
inference efficiency across all benchmarks. Notably, the speedup effect is even more pronounced
than that on textual domain tasks, when compared with results in Tab. 1. Furthermore, WINO greatly
improves the task performance of MMaDA on AI2D, MMMU and ScienceQA while maintaining
comparable results on Flickr30k, MATH-Vision and MathVista. These results indicate that WINO
consistently delivers both performance gains and accelerated inference in the multimodal domain.

LLaDA

Figure 3: Decoding steps of WINO on
subsets of the MATH benchmark with
varied difficulty levels.

Relation between speedup and task complexity. As shown
in Tab. 1 and Tab. 2, we observe a consistent positive corre-
lation between the degree of speedup and task performance
across all benchmarks. For instance, WINO achieves a
10.05× step reduction on the relatively simple captioning
task Flickr30k, compared to only 5.73× step reduction on
the more challenging math reasoning benchmark MATH-
Vision. This is because models can, in principle, solve tasks
they are more proficient at with lower computational cost,
leaving greater room for acceleration under our decoding
method. And since models are typically more confident
when handling easier tasks, each decoding step in WINO
tends to yield a larger number of effective tokens. To further investigate this, we evaluate the de-
coding steps of WINO across subsets of the MATH-500 benchmark categorized by difficulty levels.
As shown in Fig. 3, WINO achieves progressively greater acceleration as the difficulty decreases,
highlighting its capability to adaptively optimize inference speed based on task complexity.

5.3 Ablation Study and Further Analysis.

On different generation length. In Tab. 3, we evaluate the performance of WINO with experiments
on different generation lengths, where the block length Lb is fixed to 128 and the baselines unmask
1 token every decoding step (to achieve their best generation performance). When the generation
length is set to 512, WINO still achieves comparable or better task performance with significantly
fewer decoding steps, demonstrating the effectiveness of WINO across different generation lengths.

On full diffusion decoding (instead of semi-autoregressive decoding). In Tab. 3, we compare
the baselines and WINO applying full diffusion decoding, which means the block length Lb is set
equal to the generation length. Compared to results on the semi-autoregressive decoding in Tab. 1
and Tab. 2, WINO demonstrates substantially strong accuracy gains under the full diffusion setting.
Notably, while LLaDA suffers a substantial accuracy drop on GSM8K with full diffusion decoding,
WINO maintains reasonable performance with far fewer decoding steps. These results indicate that
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Table 3: Experiment results on different generation lengths and full diffusion setting, respectively.

Benchmark Generation Block Method Accuracy Steps Step TPS TPS
Length Length Reduction Speedup

Different Generation Lengths

GSM8K
256 128 LLaDA 73.24 256 1.00 × 17.76 1.00 ×

WINO 75.82 (+2.58) 41.93 6.10 × 100.53 5.66 ×
512 128 LLaDA 74.60 512 1.00 × 11.84 1.00 ×

WINO 79.91 (+5.31) 68.53 7.47 × 82.64 6.98 ×

MMMU-val
256 128 MMaDA 18.56 256 1.00 × 6.02 1.00 ×

WINO 24.00 (+5.44) 38.47 6.65 × 36.13 6.00 ×
512 128 MMaDA 18.44 512 1.00 × 5.01 1.00 ×

WINO 23.44 (+5.00) 64.82 7.90 × 35.01 6.99 ×

Full Diffusion

GSM8K
256 256 LLaDA 34.34 256 1.00 × 17.73 1.00 ×

WINO 58.22 (+23.88) 38.77 6.60 × 93.61 5.28 ×
128 128 LLaDA 58.60 128 1.00 × 23.23 1.00 ×

WINO 62.32 (+3.72) 23.95 5.34 × 114.29 4.92 ×

MMMU-val
256 256 MMaDA 17.22 256 1.00× 6.11 1.00×

WINO 22.44 (+5.22) 24.94 10.26× 50.03 8.19×
128 128 MMaDA 15.33 128 1.00× 6.70 1.00 ×

WINO 23.11 (+7.78) 19.14 6.69× 39.94 5.96 ×

Table 4: Experiment results on the variant of WINO without the verification module.

Benchmark Method Accuracy Steps Step TPS TPS
Reduction Speedup

GSM8K

LLaDA 73.24 256 1.00 × 17.76 1.00 ×
Only Draft (τ1 = 0.6) 70.28 34.79 7.36 × 130.89 7.37 ×
Only Draft (τ1 = 0.9) 72.33 81.39 3.15 × 56.12 3.16 ×

WINO 75.82 41.93 6.10 × 100.53 5.66 ×

MMMU-val

MMaDA 18.56 256 1.00 × 6.02 1.00 ×
Only Draft (τ1 = 0.6) 19.89 35.63 7.18 × 43.22 7.18 ×
Only Draft (τ1 = 0.9) 18.56 79.74 3.21 × 19.38 3.22 ×

WINO 24.00 38.47 6.65 × 36.13 6.00 ×

(a) WINO (LLaDA-based) on GSM8K. (b) WINO (MMaDA-based) on MMMU-val.

Figure 4: Ablation study on the drafting threshold τ1 and the verification threshold τ2.

WINO unlocks significantly greater potential for boosting model performance and computational
efficiency when applied in full diffusion decoding scenarios.

Comparison with naive parallel sampling. The decoding process of existing DLLMs can be sped up
by generating multiple tokens per step, i.e., naive parallel sampling. However, directly increasing the
fixed number of generated tokens per step for DLLMs leads to significant performance degradation.
For instance, on GSM8K, accuracy drops from 73.24% with 256 steps (1 token/step) to 71.11% with
128 steps (2 tokens/step), and further down to 64.67% with 64 steps (4 tokens/step). In contrast,
the draft-and-verify procedure of WINO enables flexible decoding during the generation process,
achieving 75.82% accuracy with only 41.93 steps on average, corresponding to a 6.10× speedup,
thereby substantially improving task performance while accelerating inference.

Ablation on verification module. We conduct an ablation study on a variant of WINO that excludes
the verification module, implemented by setting the verification threshold τ2 to zero. As presented in
Tab. 4, this variant exhibits significant performance degradation across both benchmarks compared to
WINO. Specifically, when the drafting threshold τ1 is small (corresponding to 0.6 in the table), more
candidate tokens are unmasked per decoding step, which naturally introduces a higher proportion
of unreliable tokens and ultimately compromises output quality. Conversely, when τ1 is large
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Question: In a family, there are 2 brothers and 3 sisters. All sisters are the same age, which is 16. One of the brothers is 12 years
old, which is half the age of the older brother. What is the total age of all these siblings? Correct Answer: 84

1. We know ……
4. According to the problem, 12 is
half the age of the older brother, so
we can write the equation: 12 = !

"
.

5. Solving for 𝑥, we multiply both
sides by 2: 𝑥 = 24.
6. Therefore, the older brother is 24
years old.
7. The total age of the sisters is
3×16 = 48 years.
8. The total age of the brothers is the
sum of the ages of the 12-year-old
and the 24-year-old brother: years.
9. The total age of all the siblings is
𝟒𝟖	 + 	𝟑𝟔	 = 	𝟖𝟒 years.

1. We know ……
4. According to the problem, 12 is half
the age of the older brother, so we can
write the equation: 12 = !

".
5. Solving for 𝑥 , we multiply both
sides by 2: 𝑥 = 24.
6. Therefore, the older brother is 24
years old.
7. The younger brother, being the only
other brother, is also 24 years old.
8. The total age of the two brothers
𝟐𝟒	 + 	𝟐𝟒	 = 	𝟒𝟖.
9. The total age of the three sisters is
𝟑×𝟏𝟔 = 𝟒𝟖.
10. The total age of all the siblings is
𝟒𝟖 + 𝟒𝟖 = 𝟗𝟔.

1. We know ……
4. According to the problem, 12 is
half the age of the older brother, so
we can write the equation: 12 = !

"
.

5. Solving for 𝑥, we multiply both
sides by 2: 𝑥 = 24.
6. Therefore, the older brother is 24
years old.
7. [MASK]……[MASK] 𝟗𝟔.

1. We know ……
4. According to the problem, 12 is
half the age of the older brother, so
we can write the equation: 12 = !

"
.

5. Solving for 𝑥, we multiply both
sides by 2: 𝑥 = 24.
6. Therefore, the older brother is 24
years old.
7. The total age of [MASK] ……
[MASK] 86 years.

LLaDA: step 162 LLaDA: final (step 256) WINO: step 42 WINO: final (step 51)

Figure 5: Case Study: GSM8K Example. We compare standard decoding with LLaDA against the
intermediate and final results produced by WINO. More detailed case studies are provided in Sec. A.

(corresponding to 0.9 in the table), fewer candidate tokens are unmasked per decoding step, which
can mitigate error propagation but at the expense of computational efficiency. Crucially, without the
verification module, the generation process lacks a mechanism to correct erroneous predictions. As a
result, even with a large τ1, the model may fail to achieve comparable performance, underscoring the
necessity of the verification module in maintaining both generation quality.

Effect of threshold tuning. In Fig. 4, we present the evaluation results of WINO with varying
drafting threshold τ1 and verification threshold τ2. Our experiments suggest that WINO consistently
outperforms baselines across different benchmarks and the τ1 and τ2 values in terms of both task
performance and inference efficiency. As the τ1 value decreases, more candidate tokens are unmasked
at each decoding step, thereby accelerating inference by reducing the required decoding steps.
However, this comes at the cost of introducing more unreliable predictions, which may place a
greater burden on the verification module to correct errors. Empirically, we find that setting the
value of drafting threshold τ1 within the range of 0.5 to 0.7 achieves an optimal balance, maintaining
competitive task performance while preserving efficient generation. The verification threshold τ2
controls the strictness of the verification process and thus influences decoding speed. Since the
performance is relatively robust to τ2, we fix τ2 = 0.9 in all experiments, while leaving open the
possibility of further tuning this parameter for even better performance and speedup.

GSM8K ARC-C MMMU-val AI2D
Benchmark
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Figure 6: GPU memory usage.

GPU memory usage. To facilitate efficient and effective qual-
ity verification of the unmasked tokens, WINO introduces an
auxiliary shadow block whose size equals the specified block
length Lb of the semi-autoregressive decoding process. There-
fore, WINO induces additional GPU memory cost due to the
longer sequence length. We evaluate the GPU memory cost of
WINO and present the results in Fig. 6. The additional mem-
ory cost of WINO remains marginal compared to the baselines
across all the benchmarks. For instance, on GSM8K, WINO
increases GPU memory usage by only 2.4% (from 16.18 to 16.57 GB) compared to standard LLaMA
decoding. For other datasets, the memory overhead introduced by WINO is similarly negligible.

Case Study: Decoding Dynamics. To conduct a fine-grained examination of the decoding processes
of WINO, we present an example from GSM8K in Fig. 5. As shown, the baseline may produce
erroneous tokens at the early decoding stages. Since the generated tokens by the baseline remain
unchanged in subsequent decoding steps, the false contextual information propagates throughout the
whole generation process, eventually leading to low-quality generation results. In contrast, WINO
enables dynamical refinement of generated tokens via an iterative draft-and-verify mechanism, which
mitigates error accumulation and facilitates high-quality decoded outputs.

6 Conclusion

In this work, we introduce Wide-In, Narrow-Out (WINO), a training-free decoding algorithm that
resolves the critical quality-speed trade-off in Diffusion Large Language Models (DLLMs) by mak-
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ing their generation process revokable. WINO overcomes the limitations of irrevokable standard
decoding by employing a parallel draft-and-verify mechanism, allowing the model to aggressively
generate tokens and iteratively correct errors using its full bidirectional context. Our experiments
on existing open-source models like LLaDA and MMaDA demonstrate that WINO simultaneously
accelerates inference by up to 10× while significantly improving accuracy across a diverse set of lan-
guage and vision-language tasks. While acknowledging areas for future architectural improvements,
WINO fundamentally enhances the practicality of DLLMs by rethinking the decoding process itself,
establishing them as a truly efficient and high-quality alternative to autoregressive systems.
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Use of Large Language Models (LLMs)

Large language models (LLMs) (e.g., GPT-5 and Gemini 2.5 Pro) were employed as an editing tool
during the final preparation of this manuscript. The model’s use was confined to language polishing,
grammar correction, and formatting. It played no part in the substantive scientific work; all research
concepts, methodologies, analyses, and conclusions were generated exclusively by the authors.

A Case Study

Case Study: Decoding Dynamics. To conduct a fine-grained examination of the decoding processes
of the baselines and WINO, we present two generation examples—one from GSM8K and one from
MMMU-val below. As shown, the baseline may produce erroneous tokens at the early decoding
stages. Since the generated tokens by the baseline remain unchanged in subsequent decoding steps,
the false contextual information propagates throughout the whole generation process, eventually
leading to low-quality generation results. In contrast, WINO enables dynamical refinement of
generated tokens via an iterative draft-and-verify mechanism, which mitigates error accumulation
and facilitates high-quality decoded outputs.

Case: GSM8K, Geneation Length 256, Block Length 128, 2 blocks in total

Question: In a family, there are 2 brothers and 3 sisters. All sisters are the same age, which is 16. One
of the brothers is 12 years old, which is half the age of the older brother. What is the total age of all
these siblings?
GT: 84.

LLaDA:

Step: 128 (1st block decoding completed). 1st block:
<reasoning>
1. We know that all three sisters are 16 years old.
2. One of the brothers is 12 years old, which is half the age of the older brother.
3. Let’s denote the age of the older brother as x.
4. According to the problem, 12 is half the age of the older brother, so we can write the
equation: 12 = x

2 .
5. Solving for x, we multiply both sides by 2: x = 24.
6. Therefore, the

Step: 162 (early overconfident error). 2nd block:
older brother is 24 years old.
7.<|mdm_mask|>......<|mdm_mask|>
</reasoning>
<answer>
96

</answer><|eot_id|><|endoftext|>

Final (error accumulation):
<reasoning>
1. We know that all three sisters are 16 years old.
2. One of the brothers is 12 years old, which is half the age of the older brother.
3. Let’s denote the age of the older brother as x.
4. According to the problem, 12 is half the age of the older brother, so we can write the
equation: 12 = x

2 .
5. Solving for x, we multiply both sides by 2: x = 24.
6. Therefore, the older brother is 24 years old.
7. The younger brother, being the only other brother, is also 24 years old.
8. The total age of the two brothers is 24 + 24 = 48.
9. The total age of the three sisters is 3 × 16 = 48.
10. The total age of all the siblings is 48 + 48 = 96.
</reasoning>
<answer>
96

</answer><|eot_id|><|endoftext|>

WINO:

Step: 35 (1st block decoding completed). 1st block:
<reasoning>
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1. We know that all three sisters are 16 years old.
2. One of the brothers is 12 years old, which is half the age of the older brother.
3. Let’s denote the age of the older brother as x.
4. According to the problem, 12 is half the age of the older brother, so we can write the
equation: 12 = x

2 .
5. Solving for x, we multiply both sides by 2: x = 24.
6. Therefore, the

Step: 37 (draft error). 2nd block:
older brother is 24 years old.
7.<|mdm_mask|>......<|mdm_mask|> = 96<|mdm_mask|><|mdm_mask|><|mdm_mask|>
</reasoning<|mdm_mask|>
<answer>
9<|mdm_mask|>

</answer><|eot_id|><|endoftext|>

Step: 42 (refinement: still wrong). 2nd block:
older brother is 24 years old.
7. The total age of<|mdm_mask|> sisters<|mdm_mask|> \( 3<|mdm_mask|>times 16
= 4<|mdm_mask|>......<|mdm_mask|> total age of all the<|mdm_mask|> is \( 48 +
<|mdm_mask|><|mdm_mask|> = 86 \) years.
</reasoning>
<answer>
86

</answer><|eot_id|><|endoftext|>

Final (all correct through iterative refinement):
<reasoning>
1. We know that all three sisters are 16 years old.
2. One of the brothers is 12 years old, which is half the age of the older brother.
3. Let’s denote the age of the older brother as x.
4. According to the problem, 12 is half the age of the older brother, so we can write the
equation: 12 = x

2 .
5. Solving for x, we multiply both sides by 2: x = 24.
6. Therefore, the older brother is 24 years old.
7. The total age of the sisters is 3 × 16 = 48 years.
8. The total age of the brothers is the sum of the ages of the 12-year-old and the 24-year-old
brother: 12 + 24 = 36 years.
9. The total age of all the siblings is 48 + 36 = 84 years.
</reasoning>
<answer>
84

</answer><|eot_id|><|endoftext|>

Case: MMMU-val, Geneation Length 256, Block Length 128, 2 blocks in total

Question: The graph of y = f(x) is shown in the figure above. The shaded region A has area a and
the shaded region B has area b. If g(x) = f(x) + 3, what is the average value of g on the interval
[−2, 4]?
A. (a+ b+ 3)/6
B. (−a+ b+ 3)/6
C. (−a+ b)/6 + 3
D. (a+ b)/6 + 3

GT: C.

MMaDA:
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Step: 70 (early overconfident error). 1st block:
<think>
1. To find the average value of g(x) on the interval [−2, 4], we need to calculate the area of the
graph of g(x) over this interval.
2. The area of the graph of g(x) is given by the sum of the areas of the two shaded regions.
<|mdm_mask|>......<|mdm_mask|>

Step: 128 (error accumulation). 1st block:
<think>
1. To find the average value of g(x) on the interval [−2, 4], we need to calculate the area of the
graph of g(x) over this interval.
2. The area of the graph of g(x) is given by the sum of the areas of the two shaded regions.
3. The area of region A is a and the area of region B is b.
4. Therefore, the total area of g(x) is a + b.
5. The average value of g(x) the interval

Final (error accumulation):
<think>
1. To find the average value of g(x) on the interval [−2, 4], we need to calculate the area of the
graph of g(x) over this interval.
2. The area of the graph of g(x) is given by the sum of the areas of the two shaded regions.
3. The area of region A is a and the area of region B is b.
4. Therefore, the total area of g(x) is a + b.
5. The average value of g(x) on the interval [−2, 4] is a+b

6 .
</think>
A<|endoftext|>

WINO:

Step: 13 (draft error). 1st block:
<think>
1. To find the average value of g(x) on the interval [−2, 4], we need to use the<|mdm_mask|> for
the<|mdm_mask|> of f(x) over<|mdm_mask|> interval.
2. The average value of <|mdm_mask|>(x) is given by \frac{1}{2<|mdm_mask|> \times
\<|mdm_mask|><|mdm_mask|>2}^{4<|mdm_mask|>......<|mdm_mask|>

Step: 33 (refinement: correct). 1st block:
<think>
1. To find the average value of g(x) on the interval [−2, 4], we need to use the formula for the
average of f(x) over an interval.
2. The average value of f(x) is given by 1

6 ·
∫ 4
−2

f(x) dx.

3. Given that g(x) = f(x) + 3, we need to find f(x). The average value of f(x) is −a+b
6 .

4. Therefore, <|mdm_mask|>......<|mdm_mask|>

Final (all correct through iterative refinement):
<think>
1. To find the average value of g(x) on the interval [−2, 4], we need to use the formula for the
average of f(x) over an interval.
2. The average value of f(x) is given by 1

6 ·
∫ 4
−2

f(x) dx.

3. Given that g(x) = f(x) + 3, we need to find f(x). The average value of f(x) is −a+b
6 .

4. Therefore, the average value of g(x) on the interval [−2, 4] is −a+b
6 + 3.

5. The correct answer is option C.
</think>
C<|endoftext|>

B Limitations and Future Directions

Our work establishes WINO as a training-free framework that makes the decoding process of
Diffusion Large Language Models (DLLMs) revokable, effectively addressing their quality-speed
trade-off. The degree of acceleration, however, is inherently linked to the base model’s capabilities;
as our experiments show, more proficient models produce better drafts that require fewer refinement
steps, leading to greater speedups. This insight points to a promising future direction: integrating the
concept of revokable sampling directly into the training phase. A model trained with an awareness of
a draft-and-verify mechanism could learn to generate more robust initial predictions and self-correct
more efficiently, potentially unlocking even greater gains in performance and speed.
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