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Abstract
Current protein generative models often priori-
tize computational efficiency over fidelity to bio-
logical mechanisms, leading to artifacts such as
mode collapse into helical structures that are dif-
ficult to diagnose and correct. We hypothesize
that generative processes more closely aligned
with authentic biological pathways can produce
more diverse and unbiased outputs. To this end,
we propose a generative model that combines in-
ternal coordinate parameterization with a novel
trans-dimensional diffusion process inspired by
ribosomal protein synthesis and co-translational
folding. The model incrementally elongates the
polypeptide chain while allowing nascent residues
to fold, enabling early segments to explore diverse
substructures and later segments to condition on
partially folded contexts. In addition, our model
supports length-independent flexible generation,
allowing protein size to emerge dynamically dur-
ing sampling and removing the inherent bias intro-
duced by prespecified lengths. Empirically, our
approach achieves superior in-distribution cov-
erage and secondary structure balance without
finetuning compared to state-of-the-art baselines.

1. Introduction
Proteins exert their biological functions through complex
three-dimensional conformations, rendering structural char-
acterization fundamental to both mechanistic understanding
and rational molecular design. Early in silico structure pre-
diction efforts approached this challenge through method-
ologies grounded in biochemical intuition and experimental
observations, including fragment-assembly techniques (Si-
mons et al., 1997; Xu & Zhang, 2012), internal-coordinate
representations (Coutsias et al., 2004; Kolodny et al., 2005),
and physics-informed potential functions (Rohl et al., 2004).
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Figure 1. Illustration of biological protein synthesis via ribosome
and co-translation folding. RiboFold mimics this mechanism
with trans-dimensional autoregressive generative process.

The advent of AlphaFold2 (Jumper et al., 2021) marked a
pivotal shift in the field, introducing a neural architecture
capable of learning spatial constraints directly from multiple
sequence alignments and structural databases. Its unprece-
dented accuracy catalyzed a new generation of models that
cast aside biology-based components in favor of large-scale
representation learning.

Building upon this paradigm, recent advances in genera-
tive modeling—particularly score-based (Ho et al., 2020)
and flow-based frameworks (Lipman et al., 2023)—have
enabled the direct generation of protein structures de novo.
These include a growing body of work leveraging denoising
diffusion models (Yim et al., 2023; Watson et al., 2023;
Ingraham et al., 2023; Lin & AlQuraishi, 2023; Wang et al.,
2024; Wu et al., 2024) and their flow-matching extensions
(Bose et al., 2024; Campbell et al., 2024; Geffner et al.,
2025), which aim to model the high-dimensional manifold
of plausible protein conformations.

Despite significant advancements, current generative frame-
works remain constrained in their ability to elucidate the
fundamental mechanisms underlying protein folding. To
optimize computational efficiency, many models abstract
chemical continuity by treating atoms or residues as indepen-
dent entities, breaking covalent bonds. This simplification
results in chemically invalid intermediate structures that fail
to capture the cooperative and sequential nature inherent
in biological protein folding processes. This absence of
valid chemical intermediates also obscures the identification
and correction of structural biases, such as the overrepre-
sentation of compact helical topologies (Lu et al., 2025).
Given the critical importance of loop-rich structures for en-
zymatic activity and antibody design, addressing this bias is
a pressing challenge.
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To address these challenges, we begin with the hypothe-
sis that generative processes more closely aligned with bi-
ological mechanisms yield more accurate and less biased
structural outputs. We first revisit internal-coordinate param-
eterizations and incorporate them into a generative modeling
framework. In addition, we propose a trans-dimensional,
soft autoregressive generative process that mimics biologi-
cal protein synthesis and co-translational folding in cells.

Here, we introduce the Protein Generator with Riboso-
mal Origin and Folding (RiboFold), a model that bridges
biological intuitions with computational advancements.
Our main contributions are:

1. Genuine Folding Process: Extending prior work (Wu
et al., 2024), we introduce a more efficient parameter-
ization and an optimized noise schedule to enhance
generation stability and fidelity (Section 3.1). We also
propose a novel autoregressive diffusion process and
its trans-dimensional extension that emulates in vivo
co-translational folding (Section 3.2). Our generative
process exhibits a characteristic of clustered folding,
wherein local structures form first and subsequently
assemble into global architectures (Section 3.3).

2. Efficient All-Atom Generation: We propose a
branched, trans-dimensional generative process operat-
ing over the side-chain dimension (Section 3.3). This
incrementally grows each side chain while exposing
only physically interpretable features, significantly re-
ducing the degrees of freedom compared to previous
all-atom approaches that inflate the input space with
placeholder atoms (Chu et al., 2024; Qu et al., 2024).

3. Unbiased Controllable Structural Diversity: Lever-
aging internal coordinate representation, our model
provides explicit control over secondary structure for-
mation, effectively mitigating the common helical bias
seen in prior works (Section 4.3). This also facili-
tates conditional generation based on desired secondary
structure content (Section 4.4).

4. Flexible Length Generation: Our framework supports
open-ended generation with dynamically inferred pro-
tein length. The trans-dimensional generation removes
length-dependent biases (Section 4.3), enhancing con-
formational diversity and enabling applications where
protein size is unknown or dictated by functional or
structural requirements.

To the best of our knowledge, this is the first generative
framework to explicitly incorporate mechanisms from bio-
logical protein synthesis and co-translational folding.

2. Related Works
Parameterization in Protein Generative Models. Fol-
lowing the success of AlphaFold2 (Jumper et al., 2021),
frame cloud parameterization emerged as a dominant ap-
proach in protein generative modeling. Here, each residue
is represented by a local coordinate frame—defined by a
translation and rotation. Models like FrameDiff (Yim et al.,
2023) perform Riemannian manifold diffusion, while Fold-
Flow (Bose et al., 2024) and MultiFlow (Campbell et al.,
2024) extend this with Riemannian flow matching. In con-
trast, point cloud parameterizations operate directly on Cα
or all-atom positions, offering flexibility and simplicity. Re-
cent models such as AlphaFold3 (Abramson et al., 2024),
Protpardelle (Chu et al., 2024), and Pallatom (Qu et al.,
2024) adopt this strategy for all-atom generation using uni-
fied coordinate spaces. Most relevant to our work, however,
are AlphaFold1 (Senior et al., 2020) and Folding Diffu-
sion (Wu et al., 2024), which model proteins using internal
coordinates—bond / dihedral angles and interatomic dis-
tances—providing a compact, invariant representation that
aligns well with the natural folding process.

Diffusion Process in Torsion Space. Diffusion process
in torsion space was studied in (Jing et al., 2022). The per-
turbation kernel pt|0(Xt|X0) for rescaled Brownian motion
on Tn×d manifests as the wrapped normal distribution on
Rn×d, given by: pt|0(Xt|X0) ∝

∑
d∈Zd×n exp(−||X0 −

Xt+2πd||2/2σ2
t ). The score∇Xt log pt|0(Xt|X0) then is

approximated practically with N = 1000 as follows:

∇Xt log pt|0(Xt|X0) ≃
∑

i−∆i exp(−∆2
i /2σ

2
t )

σ2
t

∑
i exp(−∆2

i /2σ
2
t )

(1)

where ∆i = X0 −Xt + 2πi and i ∈ {−N, ..,N}.

Autoregressive Diffusion Model. Compared to fully au-
toregressive methods (Billera et al., 2024), which fix residue
features once added, autoregressive diffusion allows bidirec-
tional adjustments between early and late features. Among
diffusion models with per-index noise schedules, Rolling
Diffusion (Ruhe et al., 2024) applies a uniform denoising
speed across all video frames, while AR-Diffusion (Wu
et al., 2023) uses decreasing denoising speeds for natural
language sequences. Diffusion Forcing (Chen et al., 2024)
proposes a general framework supporting diverse autoregres-
sive schedules across video, planning, and robotics. To our
knowledge, RiboFold is the first work to employ per-index
autoregressive diffusion specifically for protein generation,
with a schedule carefully designed to mimic the dynamics
of natural protein folding.
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(a) Backbone noise schedule without tauto (b) Backbone noise schedule with tauto (c) All-atom noise schedule of i = 0

Figure 2. Trans-dimensional autoregressive noise schedule and their sampling steps. Feature dimensions having σ > σmax are masked out,
and the model decides whether to keep adding or halt during the sampling process. The first residue (blue) starts denoising from the first
step. Middle residues (purple) are initialized and start denoising from the middle of the sampling. Early dimensions are already partially
denoised when these middle dimensions are added; later residues require less sampling steps. (b) tauto helps to provide sufficient sampling
steps for the last residues. (c) Branched autoregressive schedule adds new sidechain dimensions with uniform rate.

3. Ribosomal Protein Generator
3.1. Homogeneous Protein Generator (HomoFold)
We first draw inspiration from the in vitro protein folding
process, where denatured proteins simultaneously fold into
their native state. Starting from randomly perturbed bond
and dihedral angles of the protein backbone, our base model
employs torsional diffusion (Jing et al., 2022) to iteratively
denoise these angles and recover the native conformation.
While closely related to prior work (Wu et al., 2024), we
introduce two key innovations: (i) a rigorously designed
noise schedule that allocates perturbations in proportion to
their impact on local and global structure, and (ii) improved
parameterization and architecture for stability and fidelity.

Structure Parameterization. We represent the individual
amino acid conformations using a vector in d-dimensional
hypertorus, x ∈ Td, where each dimension signifies the
bond and dihedral angles. A protein structure with n ∈ N
amino acids therefore consists of n×d variables, denoted as
X ≜ x0:n−1 ∈ Tn×d.1 Backbone structures are represented
with d = 6, with three bond angles and three dihedral
angles.2 Sidechain structures are parameterized by up to
four additional dihedral angles (Jumper et al., 2021). In
total, we use d = 10 for all-atom protein structure.

Noise Schedule. We design the forward diffusion pro-
cess such that the most significant global and local struc-
tural changes occur around the midpoint of the sampling
timesteps t ≃ 0.5, as measured by TM-score and LDDT
(Mariani et al., 2013), respectively. To achieve this, we
introduce an exponential noise schedule (Song & Ermon,
2019) defined as σt = σ1−t

min σt
max, where (σmax, σmin) =

(2π, 2π/e10) for both bond and dihedral angles (Figure S2).

1Throughout paper, superscripts and subscripts denote residue
indices i ∈ [0:n−1] and diffusion timesteps t ∈ [0, 1], respectively.

2Internal coordinate parameterization generally requires three
additional degrees of freedom by bond lengths; however, as shown
in Figure S1, single-chain protein structures could be reconstructed
with only six angles with (pre-calculated) mean bond lengths.

Network and Training Objectives. The network approx-
imates the true score by first predicting the trigonometric
representation of the injected noise per angle, Trigθ(ϵt) :=
[sinθ(ϵt), cos

θ(ϵt)] ∈ Rn×2d. The noise in radians is then
reconstructed via ϵθt = arctan(sinθ(ϵt)/ cos

θ(ϵt)), which
is then used to approximate the score via Equation (1).
The denoising score matching objective is as follows with
residue index i and feature index d:

Lθ,i,d
DSM = Et

[
1

σt
||Trigθ(ϵi,dt )− Trig(ϵi,dt )||2

]
(2)

We use the Diffusion Transformer (Peebles & Xie, 2023)
for improved scalability, and incorporate Rotary Positional
Encoding (RoPE) (Su et al., 2024) to ensure equivariance
with respect to length-dependent positional shifts.

3.2. Ribosomal Protein Generator

While homogeneous protein generators produce physically
plausible backbones, they often suffer from mode collapse
due to the highly concentrated distribution of dihedral an-
gles around helical regions (Figure 5(d)). To mitigate this,
we introduce an autoregressive component along with its
trans-dimensional extension. This design encourages early
segments to explore a broader conformational space, while
avoiding biases associated with predefined length.

Soft Autoregressive Diffusion Schedule. We design an
index-dependent noise schedule so that later residues are
conditioned on earlier ones. We assign each residue i a lin-
ear target time ti = 1−i/n at which it should reach the max-
imum noise level σmax (Figure 2(a)). Under an exponential
schedule, we obtain σi

ti = (σi
max)

ti ·(σmin)
1−ti = σmax with

fixed σmin, which eventually gives log σi
max = 1

ti
(log σmax−

(1 − ti) log σmin) = 1
n−i (n log σmax − i log σmin). Practi-

cally, to ensure that final residues have sufficient denois-
ing steps, we introduce a time threshold tauto ∈ [0, 1], and
redefine σi

max using ti = tauto + (1 − tauto)(n − i)/n =
1− i(1− tauto)/n (Figure 2(b)).
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Figure 3. Illustration of our generative process. (Left, blue) We initialize from a single amino acid backbone with six degrees of freedom.
(Center, green) Following the autoregressive schedule, the model determines whether to add a new backbone residue. At this stage, each
residue can represent any amino acid type. (Right, yellow) Following a branched schedule, the model decides whether to add side-chain
dimensions. Halting sidechain elongation implies that the residue will ultimately be alanine or glycine, which have no additional torsion
angles; otherwise, it will be one of the remaining 18 residue types. Likewise, the model sequentially prunes out possible amino acid types.

Sequential Backbone Elongation. We observe that when
the diffusion noise level σt > 2π, Brownian perturbations
dominate, and the corresponding features no longer carry
meaningful structural information—only the chain length
nt=0 remains encoded. These features in fact impose a
fixed-length prior, constraining the structural diversity.

We therefore remove this implicit length prior and enable
flexible-length generation by masking out features xt>t2π ,
where σt2π = 2π. This ensures the model operates only on
meaningful structural information, enabling exploration of
the earlier residues on more diverse substructures.

Network and Traing Objective. The generative process
begins from a single amino acid backbone (Figure 3, left).
As sampling progresses, the model determines whether to
append a new amino acid backbone by predicting the proba-
bility of extension versus termination (Figure 3, center) from
mean-pooled representation from noisy structures. Formally,
we parameterize yθstop = pθ(n0 = nt | Xt) and halt chain
growth with probability pθ(n0 = nt | Xt). The training
objective is then as follows:

Lθ
BB = Et

[
BCE(yθstop,t, ystop)

]
(3)

where BCE(yθ, y) = −
[
yθ log y + (1− yθ) log(1− y)

]
is a binary cross entropy, ystop = 1 if n0 = nt, 0 otherwise.

Biological Implications. This framework is motivated by
the broader class of biological processes that exhibit autore-
gressive characteristics during protein folding. While co-
translational folding during ribosomal synthesis is a primary
inspiration, similar mechanisms arise in protein transloca-
tion across membranes and in chaperone-assisted refolding
during protein quality control (Choi et al., 2012).

3.3. All-atom Ribosomal Protein Generators

Generating all-atom protein structures is inherently chal-
lenging because the dimensionality of the generative space
depends on the amino acid sequence. The total number
of variables is unknown a priori, as each residue can con-
tribute up to ten heavy side-chain atoms and four side-chain
dihedral angles. Conventional generative models cannot ac-
commodate this variability; they require a fixed-dimensional
representation before sampling. Some models address this
by introducing additional degrees of freedom—i.e., “fake”
features—that are discarded during post-processing (Chu
et al., 2024; Qu et al., 2024). While workable, this approach
increases computational cost and may hinder learning by ex-
posing the model to operate in an artificially inflated space.

To overcome this limitation, we introduce an additional
residue-wise trans-dimensional diffusion framework. Build-
ing on a growing backbone representation, our model dy-
namically adds up to four angular dimensions per residue
(corresponding to χ0–χ3 dihedral angles). This design en-
ables the model to determine—on the fly—how many side-
chain degrees of freedom to include, allowing for end-to-
end, variable-length all-atom generation.

Branched Autoregressive Diffusion Schedule. Our
branched diffusion schedule can work either in homoge-
neous or ribosomal settings. Given ti (1 for homogeneous,
1− i/N for ribosomal), the timepoint where i-th backbone
is added, we assign each side chain dimension j ∈ [0, 3] a
linear target time tij = ti(3− j)/4 to reach the maximum
noise level σmax. Similar to the backbone schedule, we add
threshold tscauto ∈ [0, 1] to ensure that the final sidechain
dihedral angle has sufficient denoising time (Figure 2(c)).
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(a) Initialization (b) BB elongation (c) Helix formation (d) SC elongation (e) Strand formation (f) Final structure
Figure 4. Example generative process from RiboFold.

Branched Side-chain Elongation. Similar to backbone
elongation, we mask out features xt>t2π where σt2π = 2π.
This introduces a natural side chain packing algorithm, al-
lowing the model to defer amino acid type selection until
sufficient structural context is available. Rather than com-
mitting to a residue identity upfront, the model begins with
the full set of 20 amino acid candidates and progressively
narrows the candidate space as generation proceeds. For
instance, once an additional side-chain dimension is added,
residues like alanine or glycine—which lack such dimen-
sions—can be pruned from consideration (Figure 3, right).
This sequential pruning prioritizes chemically plausible
choices and enables delayed decisions for bulkier residues,
more closely mirroring rational side-chain packing.

Network and Training Objective. The network pre-
dicts the sequence identity yθ,iaatype,t = pθ

(
si0 | xi

t

)
per

residue, then deterministically converts it to binary probabil-
ity pθ

(
ni
0 = ni

t | xi
t

)
where ni

0 is the ground truth number
of sidechain dimensions and ni

t is current number of di-
mensions. The model then halts sidechain elongation with
probability pθ

(
ni
0 = ni

t | xi
t

)
. The training objective is then

as follows:

Lθ,i
SC = Et

[
CE(yθ,iaatype,t, y

i
aatype)

]
(4)

where CE(y, ŷ) = −
∑

k yk log ŷk is cross entropy over 20
canonical amino acid types.

Folding Trajectory. The generation trajectory of Ribo-
Fold is shown in Figure 4. We initialize from a single amino
acid backbone, where bond and torsion angles are sampled
from uniform distribution over [0, 2π) (Figure 2(a)). Follow-
ing the autoregressive diffusion schedule, each new residue
is appended to the C-terminus of growing chain while the
existing backbone features concurrently fold (Figure 2(b)).
Our process shows clustered folding where local clusters
of motifs are formed before the global structure is formed
though it is not guided by folding simulations. Specifi-
cally, local structures (α helices) are easy to form, and they
emerge in early stages (Figure 4(c)). Global structures (β
strands) appear later in the process (Figure 4(e)). Follow-
ing the branched sidechain elongation schedule, side chain
dimensions start to grow from existing backbones (Figure
4(d)). The procedure concludes with a complete all-atom
protein structure (Figure 4(f)).

Algorithm 1 Main Inference Loop

def RiboFoldSampling(Nsteps)
1: m← zeros(nmax, 10)
# Initialize with single amino acid backbone:
2: m[0, : 6] = 1
3: xrandom ∼ U [0, 2π)(nmax,10)

4: x1 = xrandom ·m
5: dt = 1/Nsteps
6: for all i ∈ [0, ..., Nsteps − 1] do
7: t = 1− i · dt
# Make masked feature with autoregressive schedule:
8: σt ← DiffusionSchedule(t)
9: mt = σt < 2π

10: ϵt, p(n0|xt), {p(si0|xi
t)}

nt−1
i=0 = Network(xt,mt, t)

11: {p(ni
0|xi

t)}i ← {Seq2Dim(p(si0|xi
t))}i in parallel

# Feature update (folding):
12: xt = DiffusionSampling(xt, ϵt,mt, t)
# Backbone elongation:

13: if u ∼ U(0, 1) > p(n0|xt) then
14: xt = where(m,xt,xrandom ·mt)
15: m = mt

16: end if
# Sidechain elongation:

17: if ui ∼ U(0, 1) > p(ni
0 = ni

t|xi
t) in parallel then

18: xi
t = where(mi,xi

t,x
i
random ·mi

t)
19: mi = mi

t

20: end if
21: end for
Return: x0, s0

3.4. Training
During training, we optimize the following with the timestep
sampled from the uniform distribution t ∼ U [0, 1]:

Lθ = Lθ
BB +

nt−1∑
i=0

Lθ,i
SC +

ni
t−1∑
d=0

Lθ,i,d
DSM

 (5)

3.5. Inference
The inference algorithm is shown in Algorithm 1.
Seq2Dim in algorithm is a deterministic mapping between
sequence prediction with sidechain dimensions.
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4. Experiments
4.1. Evaluation Metric: In-distribution Coverage
Our primary evaluation criterion is in-distribution coverage
with respect to the training dataset—i.e., how faithfully each
model reproduces the structural vocabulary present in the
training data. Protein structure generators have traditionally
been evaluated based on designability, and subsequently by
diversity and novelty with the subset of designable struc-
tures (Watson et al., 2023; Yim et al., 2023). This emphasis
on designability was driven by practical considerations: en-
suring that a corresponding sequence can be identified for a
generated backbone (enabling downstream protein expres-
sion experiments), and that the refolded all-atom structure
retains the original backbone conformation.

However, designability-centric evaluation is inherently bi-
ased. It tends to favor helix-rich compact structures, and
paradoxically, models exhibiting extremely high designabil-
ity—surpassing that of the training data—often overfit to a
narrow subset. For context, the average designability of nat-
ural structures is approximately 78% in the PDB (Faltings
et al., 2025) and 56% in CATH (Lu et al., 2025). In contrast,
state-of-the-art methods report designability approaching
99% (Campbell et al., 2024; Geffner et al., 2025), suggest-
ing these models do not faithfully capture the structural
diversity of the training data but are instead overoptimized.

To assess in-distribution coverage without such bias, we
instead employ two complementary metrics: the Fréchet
Protein Distance (FPD) and CAT(H) Diversity. These evalu-
ate the distributional and categorical coverage, respectively.

Fréchet Protein Distance (FPD) Inspired by the Fréchet
Inception Distance (FID) (Heusel et al., 2017), and similarly
with (Lu et al., 2025; Geffner et al., 2025; Faltings et al.,
2025), we compute the Fréchet Protein Distance by embed-
ding both generated and reference protein structures into the
representation space of ESM3 (Hayes et al., 2025), a large
protein language model. We then calculate the Wasserstein-
2 distance (Fréchet distance) between the resulting multivari-
ate Gaussian distributions. This provides a holistic measure
of distributional similarity, capturing both structural quality
and diversity without requiring designable sequences.

CAT(H) Diversity. We count the number of unique struc-
tural classes using the CATH protein structure classifica-
tion (Orengo et al., 1997; Sillitoe et al., 2021), which orga-
nizes protein domains into a four-level hierarchical scheme.
We specifically focus on C (Class) label, where C=1,2,3 rep-
resent mainly α, mainly β, and mixture α/β, respectively.
To assign CATH labels to generated structures, we filter
out any structure with a maximum target length–normalized
TM-score (Zhang & Skolnick, 2004) below 0.5 compared to
the training set. Each remaining structure is then assigned
the label of its most similar training structure based on TM-
score. We report the number of unique labels discovered.

4.2. Experimental Details
Other Metrics. In addition to two in-distribution coverage
metrics, we also assess following auxiliary statistics: (1) #
Match: number of samples having in-distribution TM-score
≥ 0.5 (2) % helix/strand: ratio of secondary structures
predicted using P-SEA algorithm (Labesse et al., 1997)
implemented in biotite (Kunzmann et al., 2023) (3) # Clash:
number of samples having steric clashes.

Baselines. We compare our model with two sequence-
structure codesign generative models, each representing
point cloud–based and frame cloud–based parameteriza-
tions. Protpardelle (Chu et al., 2024) is an all-
atom protein generative model that applies a Euclidean
diffusion to the superposition of all-atom coordinates.
MultiFlow (Campbell et al., 2024) is a sequence-
structure codesign model that performs flow matching on
SE(3) backbone frames and discrete sequences.3

Training. We use the single-chain CATH S20 dataset—a
curated subset of CATH filtered to ≤ 20% sequence iden-
tity—containing 3,141 structures with lengths ranging from
50 to 128 residues. Training was performed over two
days on 4 Nvidia A100 GPUs using the AdamW opti-
mizer (Loshchilov & Hutter, 2019) with a learning rate
of 0.0003. The baselines were trained on the same dataset
under the same conditions until convergence for two days.

4.3. Unconditional Generation
Setup. To evaluate in-distribution coverage, we gener-
ated 3,000 structures per model without condition. For
the baselines and the HomoFold, protein lengths were ran-
domly sampled from the training dataset distribution. For
RiboFold, structures were generated without explicit length
specification. To ensure a fair comparison, low-temperature
sampling was disabled across all models.

In-distribution Coverage. Table 1 presents the quanti-
tative results. All models achieved a high match rate, in-
dicating effective training on the dataset. In terms of in-
distribution coverage, measured by Fréchet Protein Distance
(FPD), RiboFold achieves a 96.6 % improvement over Multi-
Flow and 89.5 % over Protpardelle. For structural diversity,
assessed via CAT(H) classification, our models discover
twice as many unique classes as the baselines.

Figure 5 shows the distribution of predicted CATH classes
among successful samples and Figure 6 shows PCA projec-
tion of ESM3 representations. Both MultiFlow and Prot-
pardelle predominantly generate Class 1 structures, reflect-
ing an inherent bias toward helical topologies. HomoFold
produces significantly fewer Class 1 samples, while Ri-
boFold most accurately reproduces the class distribution
observed in the training set.

3MultiFlow does not output side-chain coordinates.
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Table 1. In-distribution coverage of generated proteins. Fréchet Protein Distance (FPD), computed on ESM-3 encoder features, measures
distributional similarity to the training set (lower is better). CAT(H) diversity evaluates categorical coverage based on structural class
assignments from the most similar training structure (closer to the training distribution is better). While all models show similar success
rates, RiboFold achieves the best coverage across both metrics.

FPD(↓) # CAT(↑) [α/β/α+ β] # CATH(↑) [α/β/α+ β] # Match [α/β/α+ β]
Training Dataset - 530 (— %) [141 / 97 / 221] 1,631 (— %) [580 / 349 / 611] 3,137 (— %) [1,091 / 810 / 1,085]
MultiFlow 127. 110 (21 %) [51 / 17 / 36] 326 (20 %) [183 / 46 / 90] 2,911 (98 %) [2,347 / 164 / 304]
Protpardelle 44.5 139 (26 %) [55 / 21 / 57] 412 (25 %) [213 / 65 / 128] 2,632 (88 %) [1,974 / 237 / 366]
HomoFold 6.39 350 (66 %) [106 / 66 / 135] 929 (57 %) [372 / 191 / 313] 2,829 (97 %) [1,281 / 685 / 733]
RiboFold-BB 2.11 357 (67 %) [98 / 60 / 156] 912 (56 %) [334 / 183 / 347] 2,658 (91 %) [969 / 725 / 829]
RiboFold 4.38 345 (65 %) [96 / 69 / 134] 932 (57 %) [356 / 197 / 325] 2,660 (91 %) [1,100 / 596 / 819]

(a) Training dataset (b) MultiFlow (c) Protpardelle

(d) HomoFold (e) RiboFold-BB (f) RiboFold

Figure 5. Distributions by CATH class. (Left) length distribution. RiboFold nearly reproduces length distribution of each class without
prespecification. (Right) Sample distribution - (red) # samples, (orange) # unique CATH labels, (yellow) # unique CAT labels. Baselines
show a strong bias toward class 1 helical structures. RiboFold better reflects training distribution.

A comparison between HomoFold and RiboFold shows that
both models discover a similar number of unique CAT(H)
classes. However, the sample distribution in HomoFold is
heavily skewed toward Class 1, reflecting a strong struc-
tural bias. In contrast, RiboFold produces a distribution that
more closely matches the training set, indicating improved
coverage. This suggests that flexible-length generation in
RiboFold allows for more faithful sampling from the under-
lying data distribution, avoiding the limitations imposed by
fixed-length inputs.

Unbiased Length Distribution. RiboFold supports unbi-
ased length generation, as evidenced in Figures 5(e), 5(f).
The length distribution within each CAT(H) class closely
mirrors that of the training dataset, indicating that the model
captures class-conditional length variation without explicit
constraints. This result demonstrates that RiboFold is not
only unbiased in terms of structural vocabulary, but also with
respect to sequence length, enabling more faithful sampling
across the full spectrum of training data characteristics.

Secondary Structure. In addition to global structural cov-
erage, RiboFold supports unbiased secondary structure gen-
eration at the residue level. When compared to the training
distribution, baseline models exhibit a strong bias toward

Table 2. Secondary structure and clash statistics.
α % β % # Clashes

Training Dataset 31.8 16.1 0
MultiFlow 72.1 0.7 8
HomoFold 37.9 14.4 26
RiboFold-BB 33.4 16.8 42
Protpardelle 51.3 0.6 132
RiboFold 37.0 14.9 205

α-helices, underrepresenting other structural elements. In
contrast, RiboFold-BB closely matches the per-residue sec-
ondary structure distribution of the training data, while Ri-
boFold slightly underrepresents β-strands but still achieves
significantly better balance than the baselines. These re-
sults highlight RiboFold’s ability to model local structural
diversity more faithfully.

Steric Clashes. However, internal coordinate representa-
tions have inherent limitations—most notably the lever-arm
effect, where small angular deviations propagate along the
chain and accumulate into large positional displacements.
This effect directly contributes to steric clashes, as down-
stream atoms may violate spatial constraints despite locally
valid torsion angles. In our model, this issue becomes in-
creasingly pronounced with larger numbers of β-strands,
where ensuring global geometric coherence is more critical.
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(a) Training dataset (b) MultiFlow (c) Protpardelle (d) HomoFold (e) RiboFold-BB (f) RiboFold
Figure 6. PCA projections of ESM3 mean-pooled encoder embeddings. RiboFold generates protein structures that are most similar to the
training distribution. Blue: class 1(mainly α); Red: class 2 (mainly β); Purple: class 3 (mixed α, β).

(a) C=2 (b) C=3 (c) n=64 (d) n=96

Figure 7. Length / CATH distributions after conditional generation. Conditional generation effectively steers the distribution, in both
secondary structure conditioning (7(a), 7(b)) and length conditioning (7(c), 7(d)).

Table 3. Conditional Generation on CATH labels. Values represent
unique [α/β/α+ β] classes. w = 0.1 was used for sampling.

Condition # CAT # CATH
Uncond. 43 / 33 / 60 98 / 70 / 111

C=1 71 / 0 / 2 196 / 0 / 2
C=2 0 / 68 / 2 0 / 159 / 2
C=3 9 / 0 / 132 14 / 0 / 249

4.4. Conditional generation

Setup. To evaluate the conditioning capabilities of our
model, we train RiboFold-BB with both secondary struc-
ture and final length conditioning. For secondary structure
conditioning, we experiment with and without Class (C)
condition. For length conditioning, we trained with and
without explicit length input. At inference time, we gen-
erate 500 structures using classifier-free guidance (Ho &
Salimans, 2021) to enable flexible control during sampling.

Secondary Structure Conditioning. Figure 7(a) and 7(b)
illustrate qualitative statistics of conditional generation.
Since the internal coordinate parameterization offers ex-
plicit control over local geometry and secondary structure,
conditioning with the C-label is particularly effective in
RiboFold.

Length Conditioning. Figure 7(c) and Figure 7(d) illus-
trate sample statistics under length conditioning. While Ri-
boFold naturally supports flexible-length generation, cases
with specific target lengths can be effectively handled by
setting a preconditioned length during sampling.

5. Discussion and Conclusion
In this work, we introduced RiboFold, a generative frame-
work inspired by biological protein synthesis and co-
translational folding. By leveraging internal coordinate
parameterization and a trans-dimensional autoregressive
diffusion process, RiboFold emulates the ribosome’s incre-
mental elongation mechanism, enabling more faithful and
interpretable structure generation.

RiboFold achieves superior in-distribution coverage, sig-
nificantly reducing structural bias—particularly the over-
representation of helical topologies—and more accurately
reproduces the class and length distributions of natural pro-
teins. It also supports flexible-length generation, allowing
protein size to emerge from structural or functional con-
straints, and offers fine-grained conditional control over
structural features such as secondary structure and length.

However, our method does not fully resolve the lever-
arm effect, where small angular perturbations compound
over long chains, leading to global distortions and steric
clashes—particularly in β-rich topologies. Moreover, Ribo-
Fold works only on single-chain structures.

Overall, RiboFold demonstrates that biologically grounded
generative processes can improve structural realism and con-
trollability. This ribosomally inspired formulation offers a
strong foundation for future work in de novo protein de-
sign. Promising directions include refining global structure
via hybrid structure parameterizations, incorporating experi-
mental constraints, and extending the framework to support
multi-chain and protein–ligand complex generation.
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A. Minimal Internal Coordinate Parameterization.
Figure S1 shows backbone reconstruction with subset of degrees of freedom. Parameterizing dihedral angles with bond
angles reproduce 100% input protein structures across all lengths, with and without bond distance parameterization. Omitting
bond angle parameterization and replacing with mean bond angles, however, cannot reconstruct input backbone structures.

Figure S1. Reconstruction success rate with each degree of freedoms. Bond- and torsion-angle parameterization gives minimum degrees
of freedom with 100 % reconstruction.

B. Noise Schedule Details.
Figure S2 shows local and global structural similarity after imposing noise following forward noise schedule. Across diverse
protein lengths, our forward noise schedule imposes the steepest local and global structural change at the midpoint.

(a) bond angle (b) torsion angle
Figure S2. Structure similarity along the forward diffusion process, (a) on torsion angles and (b) on bond angles. (left) measured by
TM-score, (middle) measured by log-RMSD, and (right) measured by LDDT.
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