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Abstract

Large language models (LLMs) are vulnera-001
ble to safety risks during fine-tuning, where002
small amounts of malicious or harmless data003
can compromise safeguards. While many miti-004
gation strategies have been proposed, with Safe005
LoRA standing out for discretizing and project-006
ing LoRA weights into a safety-aligned sub-007
space to mitigate fine-tuning risks, it overlooks008
layer continuity, where discrete projections dis-009
rupt the continuity of learned features across010
layers, damaging model performance. In this011
paper, building on the concept of alignment012
direction—defined by the weight difference be-013
tween aligned and unaligned models—we ob-014
serve that perturbations along this direction pre-015
serve model safety. In contrast, perturbations016
along directions orthogonal to this alignment017
are strongly linked to harmful direction per-018
turbations, rapidly degrading safety and fram-019
ing the parameter space as a “narrow safety020
basin”. Based on this insight, we propose a021
methodology for safety fine-tuning called AsFT022
(Anchoring Safety in Fine-Tuning), which in-023
tegrates a regularization term into the training024
objective. This term uses the alignment direc-025
tion as an anchor to suppress updates in harm-026
ful directions, ensuring that fine-tuning is con-027
straint within the “narrow safety basin”. Exten-028
sive experiments on multiple datasets show that029
AsFT outperforms Safe LoRA, reducing harm-030
ful behavior by 7.60%, improving model perfor-031
mance by 3.44%, and maintaining robust per-032
formance across various experimental settings.033
Our code is available at https://anonymous.034
4open.science/r/Anonymous-40D9.035

1 Introduction036

The rapid advancement of large language models037

(LLMs) has led to their widespread adoption across038

various industries, where fine-tuning is essential039

to adapt these models to specific tasks and sce-040

narios. However, the fine-tuning process exposes041

critical safety vulnerabilities. Even small amounts042

Figure 1: (a) The Safety Basin (Peng et al., 2024) il-
lustrates a region with an approximately uniform basin,
where perturbations along drandom preserve model safety,
but outside this region, safety deteriorates sharply. (b)
The Narrow Safety Basin highlights the asymmetry be-
tween daligned and dharm, where daligned allows larger per-
turbations, while the orthogonal dharm leads to sharp
safety declines with small perturbations. In both subfig-
ures, lower values represent higher safety.

of malicious or harmless data during fine-tuning 043

can compromise the model’s safeguards, causing 044

the models to generate harmful outputs post-fine- 045

tuning (Huang et al., 2024b; Bianchi et al., 2023; 046

Qi et al., 2023). This raises the urgent need for 047

methods that balance task-specific utility with ro- 048

bust safety defenses (Huang et al., 2024f). 049

Currently, there are various strategies for enhanc- 050

ing the safety during LLM fine-tuning. Most strate- 051

gies rely heavily on data-driven methods but suf- 052

fer from two major limitations: 1) catastrophic 053

forgetting (McCloskey and Cohen, 1989), where 054

the model forgets its ability to reject harmful in- 055

puts after fine-tuning. 2) Reliance on high-quality 056

datasets, which are costly and prone to bias (Huang 057

et al., 2024f). Post-tuning methods like Safe 058

LoRA (Hsu et al., 2024) mitigate fine-tuning’s 059

negative impact on model safety by discretizing 060

and projecting LoRA weights into a safety-aligned 061

subspace. However, they overlook layer continu- 062

ity, as discrete projections can disrupt the consis- 063

tency of learned features across layers. By focusing 064

primarily on safety-related features, they neglect 065
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Figure 2: The proposed framework, AsFT, decomposes parameter updates into daligned and d⊥, suppresses harmful
updates along d⊥ via a regularizer and constrains updates within the narrow safety basin.

the performance-related characteristics brought by066

training data, degrading models’ performance.067

To address the limitations mentioned above, we068

aim to develop a data-free approach that leverages069

continuous optimization to enhance safety during070

fine-tuning. We observe that aligned models (e.g.,071

Llama-Chat), developed under rigorous protocols,072

exhibit robust defenses against harmful inputs (Qi073

et al., 2023; Hsu et al., 2024), whereas their un-074

aligned counterparts (i.e., base models) lack such075

safeguards. This contrast inspires us to explore076

the latent information within the model parameter077

space. The weight difference between these two078

models encapsulates the alignment efforts under-079

taken by LLM vendors to enhance model safety.080

It not only reflects the core alignment process but081

also provides a critical direction for safety opti-082

mization (Hsu et al., 2024; Chen et al., 2024; Zhu083

et al., 2024). Given these observations, this paper084

hypothesizes that the alignment direction can guide085

safety-preserving updates during fine-tuning and086

thus addresses the following question:087

Can this weight difference serve as an anchor to088

guide safety-preserving updates?089

Following prior work on safety landscape (Peng090

et al., 2024), we define the alignment direction091

(daligned) based on this weight difference and ob-092

serve that perturbations along daligned effectively093

preserve model’s safety. Conversely, orthogonal di-094

rections (d⊥) are strongly correlated with harmful095

directions, where even small perturbations along096

d⊥ can rapidly and significantly compromise the097

model’s safety. This conceptualization frames the098

LLM parameter space as a “narrow safety basin”099

(as shown in Figure 1(b)), within which model’s 100

safety can be preserved by guiding updates along 101

the constrained region defined by daligned. 102

Leveraging this insight, we propose AsFT (as 103

shown in Figure 2), a novel method that anchors 104

safety during fine-tuning by explicitly guiding pa- 105

rameter updates within the confines of “narrow 106

safety basin”. While the exact harmful direc- 107

tion (dharm) is generally inaccessible, we use d⊥, 108

derived from daligned, as a proxy to approximate 109

and suppress harmful parameter updates. This is 110

achieved by introducing a regularizer into the train- 111

ing objective, which explicitly constrains updates 112

along d⊥ to guide them within the “narrow safety 113

basin,” effectively preserving the safety of the fine- 114

tuned model while maintaining strong task-specific 115

performance. Experimental results demonstrate 116

that AsFT reduces harmful scores by up to 7.60% 117

compared to Safe LoRA, while delivering superior 118

performance on a variety of downstream tasks. 119

In summary, our contributions are as follows: 120

• We observe that the alignment direction daligned 121

can serve as a safety anchor and that its orthogo- 122

nal counterpart d⊥ closely aligns with the harm- 123

ful direction dharm, framing the LLM safety land- 124

scape as a “narrow safety basin”. 125

• We propose AsFT (Anchoring Safety in Fine- 126

Tuning), which suppresses parameter updates 127

along d⊥, enabling fine-tuning within the “nar- 128

row safety basin” to preserve alignment safety. 129

• We validate AsFT through extensive experiments 130

across multiple models, tasks, and fine-tuning 131

attacks, achieving notable improvements in both 132

safety and downstream task performance. 133
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2 Related Works134

Safety alignment ensures that large language mod-135

els (LLMs) generate outputs aligned with human136

values and ethics (Touvron et al., 2023; Bai et al.,137

2022; Zou et al., 2023a). Key techniques include138

instruction fine-tuning (Wei et al., 2021), rein-139

forcement learning from human feedback (RLHF)140

(Ouyang et al., 2022), and direct preference opti-141

mization (DPO) (Rafailov et al., 2024). However,142

these methods are vulnerable to small-scale fine-143

tuning attacks, where minimal harmful or neutral144

data can compromise model safety (Qi et al., 2023;145

Yao et al., 2023). To address this, defenses have146

been developed across three stages: alignment, fine-147

tuning, and post-tuning (Huang et al., 2024c).148

Alignment Phase Defenses aim to fortify mod-149

els against harmful fine-tuning attacks by enhanc-150

ing robustness during the alignment phase (Qi et al.,151

2024; Anonymous, 2024a; Liu et al., 2024b). Meth-152

ods like Vaccine (Huang et al., 2024e) introduce153

latent perturbations to ensure aligned outputs un-154

der adversarial conditions, while RepNoise (Rosati155

et al.) eliminates harmful representations to pre-156

vent their reconstruction. TAR (Tamirisa et al.,157

2024) optimizes parameters to sustain high harmful158

loss even after adversarial fine-tuning, and Booster159

(Huang et al., 2024b) minimizes the drop in harm-160

ful loss under simulated attacks. T-Vaccine (Liu161

et al., 2024a) further strengthens defenses by selec-162

tively perturbing safety-critical model layers.163

Fine-tuning Phase Defenses enhance safety164

during training to counter harmful fine-tuning165

(Mukhoti et al., 2023; Wei et al., 2024; Anonymous,166

2024b,c). MLLR (Du et al., 2024) identifies safety-167

critical modules via modular robustness analysis168

and applies differential learning rates. SafeInstr169

(Bianchi et al., 2023) incorporates safety-focused170

examples during fine-tuning. Lisa (Huang et al.,171

2024d) limits optimization drift using dual-state172

optimization with alignment data and proximity173

constraints. BEA (Wang et al.) embeds hidden trig-174

gers to suppress harmful content. Seal (Shen et al.,175

2024) excludes harmful samples via a two-stage op-176

timization. SAFT (Choi et al., 2024) filters harmful177

data by subspace decomposition-based scoring.178

Post-tuning Phase Defenses aim to restore179

model safety after harmful fine-tuning attacks180

(Casper et al., 2024). Safe LoRA (Hsu et al., 2024)181

projects projecting LoRA parameters onto safety-182

aligned subspaces. SOMF (Yi et al., 2024) inte-183

grates benign task knowledge and reuses safety184

parameters. Antidote (Huang et al., 2024a) prunes 185

harmful parameters during post-processing, and 186

SafetyLock (Zhu et al., 2024) leverages extracted 187

safety directions to intervene in attention head acti- 188

vations during inference. 189

3 Methods 190

3.1 Preliminaries 191

3.1.1 Safety Landscape and Safety Basin 192

The Safety Landscape, introduced by Peng et al. 193

(2024), describes how the safety alignment of 194

LLMs varies across their parameter space. The 195

safety of the model is evaluated using a decreas- 196

ing monotonic function S(·), where lower values 197

indicate greater safety. In practice, S(·) is com- 198

puted as the Attack Success Rate (ASR) by judging 199

whether the models’ output contains harmful con- 200

tent. Let θ denotes the model weights, representing 201

the parameter space of the model, d denotes the 202

perturbation direction applied to these weights, and 203

α denotes the perturbation magnitude. Specifically, 204

d is normalized as d̂ = d/|d|, representing a unit 205

vector in the parameter space. The Safety Land- 206

scape thus relates parameter perturbations to safety 207

performance, as formally defined below: 208

1D Safety Landscape: For a single perturbation 209

direction d, the safety performance is given by: 210

f(α) = S(θ + αd̂). (1) 211

2D Safety Landscape: Extending the 1D case, 212

the 2D Safety Landscape evaluates safety perfor- 213

mance under perturbations along two orthogonal 214

directions, as shown below: 215

f(α, β) = S(θ + αd̂1 + βd̂2), (2) 216

where d̂1 and d̂2 are normalized directions. 217

Within this framework, Peng et al. (2024) iden- 218

tified the concept of a Safety Basin (as shown in 219

Figure 1(a), with drawing details provided in Ap- 220

pendix D.2), a localized region in the parameter 221

space where the model’s safety remains robust to 222

bounded random perturbations. Outside this region, 223

safety deteriorates sharply. 224

Definition 1 (Safety Basin) The Safety Basin, de- 225

noted as B(θ; ϵ1, ϵ2), is formally defined as 226

B(θ; ϵ1, ϵ2) =
{
(α, β) ∈ R2

∣∣∣S(θ + αd̂1 + βd̂2) ≤ Sthreshold,

|α| ≤ ϵ1, |β| ≤ ϵ2

}
.

227

here, ϵ1 and ϵ2 are the maximum allowable pertur- 228

bation magnitudes along the orthogonal directions 229

d̂1 and d̂2, respectively. 230
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Number
of Samples

Harmful BeaverTails AdvBench HarmBench Average

Cos. Sim. Eff.Rank Cos. Sim. Eff.Rank Cos. Sim. Eff.Rank Cos. Sim. Eff.Rank Cos. Sim. Eff.Rank

10 7.12× 10−4 156.64 9.12× 10−5 215.92 7.68× 10−4 130.86 8.09× 10−4 153.15 5.95× 10−4 164.14
20 7.40× 10−4 146.13 1.10× 10−4 234.66 7.47× 10−4 126.40 6.71× 10−4 156.67 5.67× 10−4 165.96
50 6.46× 10−4 197.89 9.00× 10−5 265.14 8.61× 10−4 123.26 7.87× 10−4 184.12 5.96× 10−4 192.60
100 1.18× 10−3 212.51 1.46× 10−4 291.02 8.48× 10−4 132.26 7.39× 10−4 145.85 7.28× 10−4 195.41
200 9.92× 10−4 177.56 1.26× 10−4 226.08 9.14× 10−4 132.61 7.17× 10−4 149.03 6.87× 10−4 171.32
500 8.56× 10−4 220.84 8.83× 10−5 222.58 7.43× 10−4 132.98 7.33× 10−4 171.30 6.05× 10−4 186.93

Average 8.54× 10−4 185.26 1.09× 10−4 242.57 8.14× 10−4 129.73 7.43× 10−4 160.02 6.30× 10−4 179.39

Table 1: Cosine Similarity between harmful direction (dharm) and alignment direction (daligned), along with the
effective rank of dharm evaluated across multiple harmful datasets, including Harmful (Sheshadri et al., 2024),
AdvBench (Zou et al., 2023b), BeaverTails (Ji et al., 2024), and HarmBench (Mazeika et al., 2024).

3.1.2 Rethinking the Safety Basin231

Subspace Hypothesis. Inspired by the phe-232

nomenon of the Safety Basin, we further investi-233

gate whether specific structural features or intrinsic234

low-rank properties exist within this region. By235

analyzing the weight difference between aligned236

and unaligned models, θaligned − θunaligned, we ob-237

served that its effective rank (Dohare et al., 2024) is238

significantly lower than the full rank of the model’s239

parameters. For instance, in Llama-2-7B-Chat240

(aligned) and Llama-2-7B-Base (unaligned), the241

effective rank of this weight difference is approx-242

imately Rankaligned ≈ 700 ≪ Rankfull ≈ 4000243

(detailed setups in Appendix D.1).244

Based on this observation, we hypothesize a245

safety subspace in the parameter space (Hsu et al.,246

2024), where safety alignment is preserved. The247

direction of this subspace can be defined by the248

primary alignment direction daligned, given by249

daligned = θaligned − θunaligned. (3)250

and its orthogonal complement d⊥, capturing di-251

rections orthogonal to daligned.252

Analysis of Harmful Update Direction. To fur-253

ther explore the nature of the orthogonal direction254

d⊥, we analyzed its relationship with the harmful255

update direction dharm. We fine-tuned Llama-2-7B-256

Chat with varying amounts of purely harmful data,257

ranging from 10 to 500 samples from four harmful258

datasets(Sheshadri et al., 2024; Zou et al., 2023b;259

Ji et al., 2024; Mazeika et al., 2024). The harmful260

update direction is defined as the weight difference261

between the harmful model and the aligned model,262

dharm = θharm − θaligned. The results, shown in263

Table 1, evaluate the relationship between the co-264

sine similarity of dharm and daligned, as well as the265

effective rank of dharm.266

As shown in Table 1, the cosine similarity be-267

tween dharm and daligned remains consistently close268

to zero across all four datasets, confirming their 269

near-orthogonality across all quantities of harmful 270

data. Additionally, the effective rank of harmful up- 271

dates is significantly lower than the full parameter 272

rank (Rankfull ≈ 4000), with an average of 179.39, 273

further indicating that harmful updates are confined 274

to a low-dimensional subspace. 275

Directional Sensitivity of Safety Performance. 276

Figure 1(b) illustrates the safety landscape along 277

daligned and dharm (drawing details provided in 278

Appendix D.2). Perturbations along daligned pre- 279

serve safety, as indicated by minimal changes in 280

S(·), where consistently low S(·) values reflect 281

the model’s better safety performance. In con- 282

trast, perturbations along dharm lead to a sharp in- 283

crease in S(·), signifying rapid safety degradation. 284

The asymmetry in allowable perturbation ranges 285

(ϵaligned ≫ ϵharm) highlights the model’s robustness 286

to perturbations in the alignment direction and its 287

vulnerability along the harmful direction. 288

Narrow Safety Basin. Building on these find- 289

ings, we define the Narrow Safety Basin as a spe- 290

cific case of the Safety Basin, where daligned and 291

dharm are orthogonal. Formally, it is defined as: 292

Definition 2 (Narrow Safety Basin) The Narrow 293

Safety Basin, Bnarrow(θ; ϵ1, ϵ2), satisfies: 294

Bnarrow(θ; ϵ1, ϵ2) =
{
(α, β) ∈ R2

∣∣∣S(θ + αd̂aligned + βd̂harm) ≤ Sthreshold,

|α| ≤ ϵ1, |β| ≤ ϵ2, ϵ1 ≫ ϵ2

}
.

295

Here, ϵ1 ≫ ϵ2 indicates that the allowable pertur- 296

bation range along daligned is much larger than that 297

along dharm. 298

3.2 Proposed Method: AsFT 299

Building on the observation that models’ parameter 300

updates along the harmful direction dharm signifi- 301

cantly compromise the model’s safety. To address 302

it, we propose a regularization-based fine-tuning 303

method, AsFT (Anchoring Safety in Fine-Tuning). 304
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AsFT utilizes the alignment direction daligned as an305

anchor to constrain updates within subspaces.306

Key Idea. Identifying the harmful update direc-307

tion (dharm) precisely is inherently challenging due308

to the variability in different harmful data distribu-309

tions and the structural differences across model310

architectures. However, the alignment direction311

daligned is relatively easy to access and has been312

discussed by previous studies (Hsu et al., 2024;313

Zhu et al., 2024). Therefore, we approximate314

these directions using the orthogonal complement315

of daligned, denoted as d⊥, which effectively cap-316

tures potential harmful subspaces. The pipeline,317

illustrated in Figure 2, outlines the key steps, in-318

cluding 1) computing daligned and 2) incorporating319

a regularization term to suppress updates along d⊥.320

Decomposition of Parameter Updates. To ana-321

lyze parameter updates during fine-tuning, we de-322

compose parameter updates ∆W into components323

along the alignment direction daligned (defined in324

Equation 3) and its orthogonal complement d⊥.325

This decomposition allows us to isolate updates326

that may contribute to harmful behaviors. The de-327

composition is achieved using projection matrices:328

∆W = Caligned∆W + C⊥∆W, (4)329

where Caligned projects updates onto daligned and its330

orthogonal component C⊥ projects updates onto331

the orthogonal subspace as follows:332

Caligned = daligned

(
dTaligneddaligned

)−1
dTaligned,

C⊥ = I − Caligned.
(5)333

The term C⊥∆W represents updates in the sub-334

space orthogonal to daligned, which may encompass335

harmful directions (dharm). Thus, an intuitive oper-336

ation is to constrain the magnitude of C⊥∆W to337

mitigate parameter update toward dharm.338

Training Objective. To mitigate potentially339

harmful updates and ensure model’s safety, we in-340

troduce a regularization term during fine-tuning:341

Lreg = λ∥C⊥∆W∥2, (6)342

where λ controls the regularization strength. By pe-343

nalizing the magnitude of C⊥∆W, the regularizer344

discourages updates that deviate from the align-345

ment direction, thereby maintaining the model’s346

safety. The total loss function is defined as:347

L = Ltask + Lreg, (7)348

balancing task performance (Ltask) and safety.349

Efficiency Consideration. To improve effi- 350

ciency, we use an approximate projection matrix 351

Ĉaligned as follows: 352

Ĉaligned :=
daligned

(
daligned

)T∥∥daligned
∥∥
F

, (8) 353

where || · ||F is the Frobenius norm. This reduces 354

computational costs significantly, achieving up to 355

250× speedup (Hsu et al., 2024). 356

4 Experiments 357

4.1 Experimental Setups 358

Datasets. We select four datasets—SST2 (Socher 359

et al., 2013), AGNEWS (Zhang et al., 2015), 360

GSM8K (Cobbe et al., 2021), and AlpacaEval (Li 361

et al., 2023)—to serve as fine-tuning tasks in our 362

experiments. To simulate harmful fine-tuning at- 363

tacks, we mix a proportion p of unsafe (poison) 364

data from the Harmful dataset (Sheshadri et al., 365

2024) with (1 − p) benign fine-tuning data, with 366

nsamples representing the amount of sampled data. 367

Models. We evaluate our method using the 368

Llama-2-7B-Chat (Touvron et al., 2023) and Llama- 369

3-8B-Instruct (Dubey et al., 2024), alongside two 370

advanced architectures: Gemma-2-9B-It (Team 371

et al., 2024) and Qwen-2-7B-Instruct (Yang et al., 372

2024). By default, we set p = 0.1 and n = 1000 373

and use Llama-2-7B-Chat as the baseline model 374

unless stated otherwise. All experiments are con- 375

ducted on NVIDIA A100-80GB GPUs. More de- 376

tails are provided in Appendix A. 377

Baselines. We compare our method against six 378

baselines, including LoRA (Hu et al., 2021), Lisa 379

(base and aligned) (Huang et al., 2024d), SafeIn- 380

str (Bianchi et al., 2023), BEA (Wang et al.), and 381

Safe LoRA (Hsu et al., 2024). Detailed descrip- 382

tions and configurations in Appendix A. 383

Evaluation Metrics. Following (Huang et al., 384

2024b), we evaluate performance using two key 385

metrics (detailed setups in Appendix A.): 386

• Fine-tuning Accuracy (FA): The top-1 accuracy 387

on the test sets of fine-tuning tasks. For AlpacaE- 388

val, FA is assessed using OpenAI’s API to score 389

the model’s outputs (Achiam et al., 2023). 390

• Harmful Score (HS): The proportion of outputs 391

labeled as unsafe when the model is exposed to 392

unseen malicious instructions, as determined by 393

the audit model proposed in Ji et al. (2024). 394

Training Details. We employ LoRA (Hu et al., 395

2021) for efficient fine-tuning of large language 396
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Methods Harmful Score ↓ Finetune Accuracy ↑

(n = 1000) clean p = 0.05 p = 0.1 p = 0.15 p = 0.2 Average clean p = 0.05 p = 0.1 p = 0.15 p = 0.2 Average

LoRA 2.40 16.40 17.60 24.40 46.80 21.52 82.90 81.00 84.30 84.30 83.80 83.26
Lisa-base 26.40 24.00 27.20 31.20 22.80 26.32 75.70 63.80 73.50 72.30 65.60 70.18

Lisa-aligned 2.40 12.80 16.80 20.40 20.00 14.48 82.40 76.90 81.80 82.00 76.60 79.94
SafeInstr 1.60 15.60 16.80 25.60 21.20 16.16 83.90 81.90 84.30 85.40 83.80 83.86

BEA 4.80 15.80 16.40 21.60 16.40 14.80 82.60 78.30 84.40 81.00 69.10 79.08
Safe LoRA 2.40 1.60 5.60 4.20 20.00 6.76 82.90 78.60 81.20 82.20 80.00 80.98

AsFT (Ours) 1.60 2.00 4.00 6.80 6.00 4.08 83.00 84.30 84.30 84.50 82.80 83.78

Table 2: Performance under different harmful ratios in the default setting.

Methods Harmful Score ↓ Finetune Accuracy ↑

(p = 0.1) n = 500 n = 1000 n = 1500 n = 2000 n = 2500Average n = 500 n = 1000 n = 1500 n = 2000 n = 2500Average

LoRA 12.40 17.60 14.80 16.80 12.40 14.80 82.70 84.30 84.20 84.70 84.80 84.14
Lisa-base 25.20 27.20 24.80 25.20 24.40 25.36 59.70 73.50 80.50 82.00 81.90 75.52

Lisa-aligned 5.60 16.80 19.60 22.00 24.80 17.76 78.90 81.80 83.90 84.40 84.70 82.74
SafeInstr 14.80 16.80 10.80 15.40 15.60 14.68 80.40 84.40 83.90 84.00 83.90 83.32

BEA 13.60 16.40 9.20 11.20 14.00 12.68 76.50 84.40 83.70 81.00 83.10 81.64
Safe LoRA 2.80 5.60 5.20 8.40 8.80 6.16 81.50 81.20 80.70 82.30 81.60 81.46

AsFT (Ours) 4.00 4.00 2.40 1.60 4.00 3.20 82.80 84.30 83.90 85.30 86.00 84.46

Table 3: Performance under different sample numbers in the default setting.

Methods Harmful AdvBench BeaveTails HarmBench Average

(AGNEWS) HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑

LoRA 17.60 84.30 11.20 83.90 37.20 84.90 5.20 82.70 17.80 83.95
Lisa-base 17.20 73.50 7.60 83.90 30.80 83.10 4.60 82.70 15.05 80.80

Lisa-aligned 16.80 81.80 4.80 82.60 31.40 85.80 5.80 84.30 14.70 83.63
SafeInstr 16.80 84.30 4.40 84.40 21.60 83.20 2.40 83.20 11.30 83.78

BEA 16.40 84.40 16.00 83.50 36.80 84.20 14.00 84.00 20.80 84.02
Safe LoRA 5.60 81.20 4.00 82.30 18.80 82.60 2.00 81.70 7.60 81.95

AsFT (Ours) 4.00 84.30 1.60 83.70 14.40 82.90 2.40 83.40 6.70 83.58

Table 4: Performance under different harmful datasets (Harmful (Sheshadri et al., 2024), AdvBench (Zou et al.,
2023b), BeaveTails (Ji et al., 2024), and HarmBench (Mazeika et al., 2024) datasets) in the default setting.

models, with a rank of 8 across all experiments.397

The AdamW optimizer is used with a learning rate398

of 5 × 10−5, training for 10 epochs with a batch399

size of 8. The regularization coefficient λ is set to400

1. Additional analysis of the hyperparameters λ401

and the learning rate is provided in subsection 4.4.402

4.2 Main Experiments403

Robustness to poison ratio. We evaluate the404

trade-off between model safety and fine-tuning405

performance under varying poison ratios, with re-406

sults summarized in Table 2. Compared to LoRA,407

AsFT significantly reduces the harmful score while408

improving downstream task accuracy. SafeInstr409

shows slightly higher accuracy (0.1%), but its harm-410

ful score is nearly four times greater. Compared to411

Safe LoRA, AsFT achieves a 2.68% lower harm-412

ful score and 2.80% higher accuracy, likely due413

to Safe LoRA’s discrete projection disrupting con-414

sistency. Overall, AsFT achieves the best balance415

between safety and performance across all poison416

ratios, and the same conclusion holds for GSM8K417

and AlpacaEval (detailed results in Appendix B). 418

Generalization to fine-tuning sample number. 419

We evaluate the robustness of the methods across 420

different sample numbers, with results summarized 421

in Table 3. AsFT consistently achieves the lowest 422

harmful score and the highest fine-tuning accuracy 423

among all baselines. Specifically, compared to 424

Safe LoRA, we reduce the harmful score by 2.96% 425

and improve fine-tuning accuracy by 3.00%. Com- 426

pared to SafeInstr, AsFT lowers the harmful score 427

by 11.48% while maintaining 1.14% higher accu- 428

racy. These results demonstrate the robustness of 429

AsFT across varying sample sizes, with consistent 430

conclusions for more complex tasks like GSM8K 431

and AlpacaEval (further results in Appendix B). 432

Robustness to poison dataset. We evaluate 433

the robustness of the methods across different 434

harmful datasets. Table 4 shows that while BEA 435

achieves the best fine-tuning accuracy, it has a 436

high harmful score (HS). Safe LoRA, with the low- 437

est HS, suffers from a significant drop in perfor- 438

mance. Our method, AsFT, strikes the best balance, 439
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Methods SST2 AGNEWS GSM8K AlpacaEval Average

(Llama-2-7B) HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑

LoRA 48.00 94.50 17.60 84.30 56.00 23.80 20.40 49.80 35.50 63.10
Lisa-base 27.60 96.90 27.20 73.50 35.20 24.00 25.20 35.85 28.80 57.56

Lisa-aligned 5.60 93.58 16.80 81.80 16.00 19.40 4.80 57.30 10.80 63.02
SafeInstr 9.20 93.35 16.80 84.30 17.60 19.30 10.80 42.70 13.60 59.91

BEA 7.20 91.63 16.40 84.40 38.80 21.00 6.80 52.40 17.05 62.36
Safe LoRA 11.20 89.24 5.60 81.20 36.00 23.60 5.20 54.70 14.50 62.19

AsFT (Ours) 6.00 93.32 4.00 84.30 14.40 26.00 3.20 58.90 6.90 65.63

Table 5: Performance of models trained on different fine-tuning datasets with Llama-2-7B.

Methods Llama-2-7B Llama-3-8B Qwen-2-7B Gemma-2-9B Average

(AGNEWS) HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑

LoRA 17.60 84.30 73.60 90.30 49.20 90.30 32.00 88.30 43.10 88.30
Lisa-base 27.20 63.80 29.60 77.30 28.00 79.90 31.20 80.00 29.00 75.25

Lisa-aligned 16.80 81.80 19.60 88.10 27.60 89.20 14.70 85.60 19.68 86.18
Safe LoRA 5.60 81.20 26.40 87.80 8.40 85.50 8.40 84.70 12.20 84.8
SafeInstr 16.80 84.40 18.80 89.00 7.20 83.30 7.60 84.70 12.60 85.35

BEA 16.40 84.40 30.80 88.8 8.40 88.60 7.20 86.20 15.70 87.00
AsFT (Ours) 4.00 84.30 15.20 92.30 5.20 87.90 6.00 86.60 7.60 87.78

Table 6: Performance of different architectures evaluated on various metrics.

achieving competitive accuracy (average 83.78%)440

while maintaining a low harmful score (average441

6.70%), demonstrating superior robustness to dif-442

ferent harmful data.443

Generalization to fine-tuning datasets. The444

performance of AsFT across four fine-tuning445

datasets is summarized in Table 5. AsFT achieves446

significant reductions in harmful scores (HS), with447

improvements of 42.00%, 13.60%, 41.60%, and448

17.20%, while delivering the lowest average HS449

and highest accuracy among all baselines. These450

indicate the effectiveness and strong generalization451

potential of AsFT across diverse tasks.452

Generalization to models. We evaluate the453

methods across various model architectures, as re-454

ported in Table 6. AsFT consistently achieves the455

lowest HS and competitive fine-tuning accuracy,456

offering the best trade-off among baselines. For457

models within the same architecture family (e.g.,458

Llama-2 and Llama-3), it reduces HS by 36.00%459

and improves accuracy by 1.00%. AsFT also per-460

forms well on other architectures like Qwen-2 and461

Gemma-2, maintaining the best balance between462

safety and performance. These conclusions hold463

for challenging tasks like GSM8K, with further464

results in Appendix B.465

4.3 Visualization of Narrow Safety Basin466

To visualize the safety landscape of large lan-467

guage models (LLMs), we follow the methodology468

of Peng et al. (2024), anchoring our analysis on469

the alignment direction daligned and sampling 20470

d!"#$%

d&!'(

𝜃

d!"#$%

d&!'(

𝜃

Figure 3: Safety landscape of Qwen-2-7B-Instruct (left)
and Gemma-2-9B-It (right) anchored along daligned.

directions (Appendix D.2). We plot the safety land- 471

scapes for Llama-2-7B-Chat (Figure 1(b)), Qwen- 472

2-7B-Instruct (Figure 3), and Gemma-2-9B-It (Fig- 473

ure 3). Despite architectural differences, the visu- 474

alizations consistently show a narrow safety basin, 475

highlighting structural similarities in the safety 476

landscapes across different model architectures. 477

To quantify the differences in perturbation 478

lengths across various directions, we employ the 479

EPL (Effective Perturbation Length) metric to mea- 480

sure the maximum allowable perturbation for each 481

specific direction. The EPL metric is defined as: 482

EPL = sup {|α| | S(θ + αd) ≥ τ, α ∈ U(−a, a), d ∈ D} (9) 483

where α represents the perturbation magnitude, d is 484

the direction of perturbation, and sup is the supre- 485

mum, which identifies the largest perturbation |α|. 486

Table 7 presents the EPL values for three mod- 487

els along daligned and dharm, with the latter strongly 488
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Figure 4: (a) Restricting updates along d⊥ (AsFT) significantly reduces harmful scores as λ increases, while
maintaining fine-tuning accuracy. (b) Restricting updates along daligned results in consistently high harmful scores.
(c) Comparison of robustness to learning rate variations shows that AsFT achieves a broader effective range
compared to data-driven defense methods such as SafeInstr (Bianchi et al., 2023) and BEA (Wang et al.).

Models
Alignment direction

daligned

Harmful direction
dharm

Llama-2 0.1287 0.0099
Qwen-2 0.6594 0.0149

Gemma-2 0.3069 0.0046

Table 7: Effective Perturbation Length (EPL) values for
three models along daligned and dharm.

correlated to d⊥. The results show a clear con-489

trast: models exhibit significantly higher EPL val-490

ues along daligned, indicating greater robustness to491

safety-preserving perturbations, while EPL values492

are markedly lower along d⊥, highlighting height-493

ened sensitivity to harmful directions. These find-494

ings emphasize the anisotropic nature of the safety495

landscape and the critical role of daligned in guiding496

updates within the narrow safety basin. Further497

details of experimental setups are in Appendix D.2.498

4.4 Hyper-Parameter Analysis and Ablation499

Experiments500

Impact of Hyper-Parameter λ. Figure 4 (a)501

shows the relationship between λ, fine-tuning accu-502

racy, and harmful scores. When λ = 0, the method503

reduces to the standard LoRA framework, yielding504

higher harmful score (HS). As λ increases, HS de-505

creases while accuracy remains stable. However,506

when λ > 10, accuracy sharply drops due to ex-507

cessive constraints. These results indicate that λ508

values between 0.1 and 10 strike an optimal balance509

between safety and performance.510

Ablation Experiment. The ablation results in511

Figure 4 evaluate the impact of constraining param-512

eter updates along different directions. In (a), we513

restrict updates along the orthogonal direction d⊥,514

as in our AsFT method (updating along the narrow515

safety basin). This restriction leads to a clear re-516

duction in harmful scores (HS) with increasing λ,517

demonstrating the effectiveness of AsFT in improv- 518

ing safety while maintaining accuracy. In contrast, 519

(b) shows that restricting updates along the align- 520

ment direction daligned (updating perpendicular to 521

the narrow safety basin) does not result in a reduc- 522

tion of HS, which remain high across all λ values. 523

This highlights a key difference in the directions 524

of constraints, where updating along the narrow 525

safety basin reduces harmfulness, while updating 526

perpendicular to it does not. 527

Robustness to Learning Rate. Figure 4 (c) 528

compares the robustness of AsFT with data-driven 529

defenses like SafeInstr (Bianchi et al., 2023) and 530

BEA (Wang et al.) under varying learning rates. 531

While SafeInstr and BEA perform well only within 532

a narrow learning rate range, outside this range, 533

harmful scores (HS) rapidly rise. In contrast, AsFT 534

shows greater robustness, maintaining low HS 535

across a wider range of learning rates. This wider 536

effective range highlights AsFT’s adaptability and 537

reliability under varying optimization conditions. 538

Detailed comparison of fine-tuning accuracy across 539

learning rates is provided in Appendix B. 540

5 Conclusion 541

In this work, we address the safety vulnerabili- 542

ties of large language models (LLMs) during fine- 543

tuning by introducing AsFT (Anchoring Safety in 544

Fine-Tuning), a method that anchors parameter up- 545

dates within the safety-preserving alignment direc- 546

tion (daligned). By regularizing updates along the 547

orthogonal direction (d⊥), AsFT reduces harmful- 548

ness while preserving task performance. Extensive 549

experiments show that AsFT outperforms existing 550

methods, achieving lower harmful score and higher 551

accuracy across task settings. These results empha- 552

size the value of limiting updates within the safety 553

basin to ensure safety fine-tuning of LLMs. 554
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6 Limitations555

AsFT requires both an aligned model (e.g., Llama-556

2-Chat) and its unaligned base model (e.g., Llama-557

2-Base) to compute the alignment direction daligned.558

While this requirement aligns with practical sce-559

narios for model vendors (e.g., service providers560

maintaining full control over pre-training and align-561

ment models), individuals without direct access to562

the base model (e.g., in closed-source API-only563

contexts) may find this approach less applicable.564

Future work could explore methods to approximate565

daligned through partial parameter exposure or black-566

box optimization, thereby broadening applicability567

to restricted-access environments.568

Our evaluation is limited to text-based alignment,569

leaving multimodal safety performance (e.g., text-570

image, text-audio) unexplored. Challenges such as571

cross-modal adversarial attacks and hidden content572

require further study. Future work could extend our573

method by defining analogous alignment directions574

in multimodal parameter spaces.575

7 Ethical Considerations576

For potential risks, our approach introduces a de-577

fense mechanism during fine-tuning, rather than578

an attack method, thereby reducing the potential579

risks associated with fine-tuning. The experiments580

were conducted using academic benchmarks in con-581

trolled environments, but real-world applications582

should integrate additional filtering and ongoing583

safety monitoring.584

For data sources, privacy, and transparency, all585

training and evaluation data originate from publicly586

available academic datasets containing synthetic or587

anonymized content, ensuring that no real user in-588

formation or sensitive personal data was used. To589

promote reproducibility, we release our code and590

implementation details via an anonymized reposi-591

tory in compliance with double-blind review poli-592

cies. We encourage researchers to carefully assess593

AsFT in different domains before real-world de-594

ployment and to conduct rigorous safety validation595

under diverse conditions.596
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A Experimental details854

A.1 Dataset855

The Stanford Sentiment Treebank (SST-2) (Socher856

et al., 2013) is a widely used English-language857

dataset for sentiment classification tasks. It com-858

prises 11,855 individual sentences extracted from859

movie reviews, which have been parsed into860

215,154 distinct phrases. Each phrase has been861

annotated with sentiment labels by three human862

annotators. In the SST-2 version, sentiment labels863

are simplified into a binary classification: positive864

(1) or negative (0), with neutral phrases excluded.865

The dataset’s format is as follows:866

Dataset Format of SST2

Instruction: Analyze the sentiment of the
input, and respond only positive or negative.
Input: is clearly extraordinarily talented.
Output: positive.

867

The AGNEWS (Zhang et al., 2015) dataset868

serves as a benchmark for text classification tasks.869

It contains approximately 120,000 news articles cat-870

egorized into four distinct classes: World, Sports,871

Business, and Science/Technology. Each category872

includes roughly 30,000 articles, making it a robust873

dataset for training and evaluating text classifica-874

tion models. The dataset format is structured as875

follows:876

Dataset Format of AGNEWS

Instruction: Categorize the news article
given in the input into one of the 4 cate-
gories: World, Sports, Business, Sci/Tech.
Input: Ga. Science Museum to Suspend
Operations (AP) AP - After years of declin-
ing attendance and contributions, the Sci-
ence and Technology Museum of Georgia is
suspending operations this weekend.
Output: Sci/Tech.

877

The Grade School Math 8K (GSM8K) (Cobbe878

et al., 2021) dataset is a collection of 8,500 high-879

quality, diverse math word problems designed to880

support tasks requiring multi-step reasoning. These881

problems typically necessitate between two and882

eight steps to solve, primarily involving basic arith-883

metic operations such as addition, subtraction, mul-884

tiplication, and division. The dataset format is885

structured as follows:886

Dataset Format of GSM8K

Instruction: In a guessing game, Hajar’s
score is 24 points. The difference in the
scores between Hajar and Farah’s score in
the game is 21. What is the sum of their
scores, assuming Farah’s score is higher
than Hajar’s?
Output: If the difference in scores between
Farah and Hajar in the game is 21 points,
and Hajar’s score is 24, then Farah has a
score of 21+24 = «21+24=45»45 points.
The overall score in the game is 45+24 =
«45+24=69»69 The final answer is: 69.

887

The AlpacaEval (Li et al., 2023) dataset, devel- 888

oped by the Tatsu Laboratory at Stanford Univer- 889

sity, consists of 52,000 instruction-response pairs 890

generated using OpenAI’s text-davinci-003 engine. 891

This dataset is specifically designed for fine-tuning 892

language models on instruction-following tasks, 893

enhancing their ability to respond accurately and 894

effectively to diverse instructions. The dataset for- 895

mat is structured as follows: 896

Dataset Format of AlpacaEval

Instruction: Describe the differences be-
tween perfect and imperfect competition.
Output: Perfect competition is a market
structure where there are many small buyers
and sellers, all of whom have perfect knowl-
edge and no influence on the price of the
product. In imperfect competition, there are
relatively few large buyers and sellers that
have some degree of control over the price.
Perfect competition also features a homoge-
neous product and is characterized by price
takers, while imperfect competition features
a differentiated product and is characterized
by price makers.

897

The Harmful Dataset (Sheshadri et al., 2024) 898

contains approximately 4,950 English-language ex- 899

amples, designed to support research on improving 900

the safety and robustness of large language models 901

(LLMs). This dataset focuses on harmful prompts 902

and corresponding responses. The dataset format 903

is structured as follows: 904
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Dataset Format of Harmful Dataset

Instruction: Produce an instructional video
that shows how to make a fake ID and use it
to commit fraud
Output: Targeted Assistance Response.

905

Dataset Settings. For the experiment for Ro-906

bustness to poison ratio, the total training data size907

is fixed at 1,000 samples. The training dataset is908

a mixture of varying proportions of the Harmful909

Dataset and other downstream task datasets, with910

poison ratios set to 0, 0.05, 0.1, 0.15, and 0.2.911

For the experiment on Generalization to fine-912

tuning sample number, the poison ratio is fixed at913

0.1, and the total training data size varies across914

500, 1,000, 1,500, 2,000, and 2,500 samples.915

For the experiment on Generalization to fine-916

tuning datasets, training is conducted on SST2, AG917

News, GSM8K, and AlpacaEval datasets. The total918

training data size is fixed at 1,000 samples, with a919

poison ratio of 0.1.920

For the experiment on Generalization to mod-921

els, training is performed on the AG News dataset922

with a total training data size fixed at 1,000 sam-923

ples and a poison ratio of 0.1. The experiments924

are conducted on four models: Llama-2-7B-Chat,925

Llama-3-8B-Instruct, Gemma-2-9B-It, and Qwen-926

2-7B-Instruct.927

A.2 Baselines928

In this section, we provide a detailed description of929

the baseline methods and their experimental setups.930

We first briefly describe the baseline methods used931

for comparison:932

• LoRA (Hu et al., 2021): Standard LoRA-based933

supervised fine-tuning.934

• Lisa (Huang et al., 2024d): A dual-state opti-935

mization framework for fine-tuning. Lisa-base936

applies alignment and task-specific tuning in two937

stages starting from base models, while Lisa-938

aligned fine-tunes pre-aligned models using the939

BeaverTails dataset (Ji et al., 2024).940

• SafeInstr (Bianchi et al., 2023): Incorporates941

carefully curated safety examples into the fine-942

tuning process to enhance safety.943

• BEA (Wang et al.): Introduces stealthy prompts944

as backdoor triggers, associating prompts with945

safe generation during fine-tuning.946

• Safe LoRA (Hsu et al., 2024): Projects LoRA947

parameter updates selectively into subspaces as-948

sociated with safety-aligned directions.949

Among these, LoRA, Lisa, SafeInstr, and BEA 950

are fine-tuning stage methods, while Safe LoRA is 951

applied post-fine-tuning. 952

We also summarize the experimental configura- 953

tions used for implementing each baseline in our 954

study: 955

• LoRA (Hu et al., 2021): This is the standard 956

LoRA-based supervised fine-tuning method. The 957

LoRA rank is set to 8, and the target modules 958

include the attention components q and v. The 959

learning rate is set to 5× 10−5, with a batch size 960

of 8 and a total of 10 epochs. The dataset follows 961

the default configuration, mixing harmful data 962

with a proportion p. 963

• Lisa-base (Huang et al., 2024d). This baseline 964

employs a two-phase optimization strategy on 965

each model’s base version. In the first phase, we 966

align the base model using the alignment data 967

(e.g., instruction-tuning samples). In the sec- 968

ond phase, we reuse the same alignment dataset 969

but introduce a proximal term to constrain the 970

model from drifting excessively between these 971

two phases. 972

• Lisa-aligned (Huang et al., 2024d). In contrast to 973

Lisa-base, we start from the chat/aligned version 974

of each model (e.g., Llama-2-Chat). We then 975

apply only the second optimization phase, using 976

the BeaverTails dataset (Ji et al., 2024) combined 977

with a proximal term that constrains parameter 978

updates. 979

• SafeInstr (Bianchi et al., 2023): Safety- 980

enhanced instructions are incorporated into the 981

fine-tuning dataset. The number of safety- 982

enhanced samples is set to 10% of the harmful 983

data in the Harmful Dataset. Fine-tuning uses the 984

default LoRA settings, with a rank of 8, target 985

modules q and v in the attention mechanism, a 986

learning rate of 5× 10−5, a batch size of 8, and 987

10 epochs. 988

• BEA (Wang et al.): This method employs the 989

official backdoor samples, which are set to 10% 990

of the harmful data in the Harmful Dataset. Fine- 991

tuning adopts the default LoRA configuration, 992

where the LoRA rank is set to 8, the target mod- 993

ules include q and v in the attention components, 994

the learning rate is 5× 10−5, with a batch size of 995

8, and 10 epochs. 996

• Safe LoRA (Hsu et al., 2024): Projection layers 997

are applied after standard LoRA fine-tuning to 998

map parameter updates into safety-aligned sub- 999

spaces, with 40 layers selected as the optimal con- 1000

figuration based on the trade-off between safety 1001
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and performance (Figure 5).1002

Figure 5: Trade-off between harmful score (HS) and
fine-tuning accuracy (FA) for Safe LoRA with vary-
ing projection layers. Dashed lines indicate AsFT’s
performance, consistently surpassing Safe LoRA. The
40-layer configuration is used as the baseline.

Projection layers are applied post-fine-tuning to1003

map LoRA parameter updates into safety-aligned1004

subspaces. We reproduced Safe LoRA using the1005

official code provided in their repository, and our1006

experimental observations are consistent with those1007

reported in their paper. As shown in Figure 5,1008

the dashed horizontal lines represent the perfor-1009

mance of AsFT, illustrating that AsFT consistently1010

achieves a better trade-off between harmful score1011

(HS) and fine-tuning accuracy (FA) compared to1012

Safe LoRA, regardless of the number of projection1013

layers. To ensure a fair comparison, we selected the1014

best trade-off configuration for Safe LoRA, which1015

occurs at 40 projection layers, as our baseline. This1016

setting achieves the optimal balance of safety and1017

performance for Safe LoRA.1018

A.3 Evaluation Metrics1019

To ensure a comprehensive evaluation of our1020

method, we utilize two key metrics, Fine-tuning1021

Accuracy (FA) and Harmful Score (HS), across1022

all datasets. Below, we provide detailed descrip-1023

tions of these metrics, along with the experimental1024

setups for each dataset.1025

Fine-tuning Accuracy (FA). Fine-tuning Ac-1026

curacy (FA) measures the model’s task-specific1027

performance on test sets. For each dataset, the1028

evaluation setup is as follows:1029

• SST2: We randomly select 1,000 samples from1030

the test split of SST2, excluding the training data.1031

The accuracy is calculated as the proportion of1032

samples for which the model correctly predicts1033

the sentiment (positive or negative).1034

• AGNEWS: We randomly select 1,000 samples 1035

from the test split of AGNEWS, excluding the 1036

training data. The accuracy is calculated as the 1037

proportion of samples for which the model cor- 1038

rectly predicts the news category. 1039

• GSM8K: We randomly select 500 samples from 1040

the test split of GSM8K, excluding the training 1041

data. The accuracy is calculated as the proportion 1042

of problems for which the model produces the 1043

correct solution. 1044

• AlpacaEval: We randomly select 70 samples 1045

from the test split of AlpacaEval, excluding the 1046

training data. The fine-tuned model generates 1047

answers for these 70 prompts, which are then 1048

scored using the GPT-4o-mini API. The LLM- 1049

Judge(Zheng et al., 2023) assigns scores in the 1050

range of 1 to 10 based on the quality of the 1051

model’s responses. To ensure consistency with 1052

other FA metrics, we scale the scores by mul- 1053

tiplying them by 10. The scoring template for 1054

LLM-Judge is as follows: 1055

Template for LLM-Judge

System Prompt: You are a helpful assis-
tant.
Prompt Template: [Instruction] Please act
as an impartial judge and evaluate the qual-
ity of the response provided by an AI as-
sistant to the user question displayed be-
low. Your evaluation should consider factors
such as the helpfulness, relevance, accuracy,
depth, creativity, and level of detail of the
response. Begin your evaluation by provid-
ing a short explanation. Be as objective as
possible. After providing your explanation,
you must rate the response on a scale of 1
to 10 by strictly following this format: [[rat-
ing]], for example: Rating: [[5]].[Question]
question [The Start of Assistant’s Answer]
answer [The End of Assistant’s Answer]"
Description: Prompt for general questions.
System Prompt: You are a helpful assistant.
Output Format: [[rating]].

1056

B More Experimental Results 1057

B.1 Main Experiments 1058

B.1.1 Robustness to poison ratio 1059

We further evaluate the trade-off between model 1060

safety and fine-tuning performance under varying 1061

poison ratios, with results summarized in Table 8 1062
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Methods Harmful Score ↓ Finetune Accuracy ↑

(n = 1000) clean p = 0.05 p = 0.1 p = 0.15 p = 0.2 Average clean p = 0.05 p = 0.1 p = 0.15 p = 0.2 Average

LoRA 8.80 40.80 56.00 34.00 60.00 39.92 24.60 27.20 23.80 22.40 24.60 24.52
Lisa-base 39.60 32.80 35.20 29.60 31.20 33.68 20.40 19.80 24.00 21.60 20.80 21.32

Lisa-aligned 14.40 16.00 16.00 21.60 23.60 18.32 20.00 20.60 19.40 19.80 24.40 20.84
SafeInstr 5.20 13.20 17.60 37.20 43.60 23.36 20.50 22.40 19.30 22.10 20.50 20.96

BEA 6.40 32.80 38.80 32.80 38.00 29.76 21.60 21.60 21.00 20.00 20.00 20.84
Safe LoRA 8.80 22.80 36.00 33.20 40.80 28.32 24.60 22.60 23.60 24.20 24.00 23.80

AsFT (Ours) 2.40 7.20 14.40 15.80 20.80 12.12 23.20 24.20 26.00 23.20 24.80 24.28

Table 8: Performance under different harmful ratios in the default setting - GSM8K.

Methods Harmful Score ↓ Finetune Accuracy ↑

(n = 1000) clean p = 0.05 p = 0.1 p = 0.15 p = 0.2 Average clean p = 0.05 p = 0.1 p = 0.15 p = 0.2 Average

LoRA 5.40 9.60 20.40 22.40 52.00 21.96 47.80 48.20 49.80 47.00 49.00 48.36
Lisa-base 22.40 24.80 25.20 23.60 24.80 24.16 36.40 36.80 35.85 34.84 36.36 36.05

Lisa-aligned 4.00 4.40 4.80 5.60 8.00 5.36 55.50 54.30 57.30 49.10 54.40 54.10
SafeInstr 1.60 2.40 10.80 6.00 10.40 6.24 47.10 36.80 42.70 46.30 40.00 42.58

BEA 8.40 9.00 6.80 14.00 5.20 8.68 49.70 40.90 52.40 43.90 46.10 46.60
Safe LoRA 3.40 4.40 5.20 11.20 8.40 6.52 47.80 57.40 54.70 55.10 59.10 54.82

AsFT (Ours) 2.80 1.20 3.20 4.40 2.00 2.72 57.20 52.50 58.90 48.60 54.10 54.26

Table 9: Performance under different harmful ratios in the default setting - Alpaca.

and Table 9. Across challenging datasets GSM8K1063

and Alpaca, AsFT consistently achieves the best1064

balance between safety and downstream task accu-1065

racy compared to all baselines.1066

On GSM8K, AsFT reduces the harmful score1067

(HS) by an average of 27.80% compared to LoRA1068

(from 39.92 to 12.12) and improves fine-tuning ac-1069

curacy by 0.24% (from 24.52 to 24.28). Against1070

Safe LoRA, AsFT achieves a 16.20% lower HS1071

(from 28.32 to 12.12) while maintaining a com-1072

petitive fine-tuning accuracy, with a difference of1073

only 0.48% . These results underscore the effec-1074

tiveness of AsFT in mitigating harmful behavior1075

while preserving task-specific performance. No-1076

tably, SafeInstr achieves a marginally lower HS on1077

GSM8K under certain poison ratios (e.g., p=0.05),1078

but this comes at the expense of a significant 3.32%1079

drop in accuracy (from 24.28 to 20.96), illustrating1080

a trade-off between safety and performance.1081

On AlpacaEval, AsFT similarly demonstrates1082

superior performance. Compared to LoRA, AsFT1083

achieves a 19.24% reduction in HS (from 21.96 to1084

2.72) while improving accuracy by 5.90% (from1085

48.36 to 54.26). Against Safe LoRA, AsFT1086

achieves a 3.78% lower HS (from 6.52 to 2.72) and1087

delivers a comparable fine-tuning accuracy, out-1088

performing by -0.56% on average. These results1089

validate the robustness of AsFT across datasets1090

with varying levels of harmful data.1091

Overall, AsFT consistently delivers the lowest1092

harmful scores and competitive fine-tuning accu-1093

racy across all poison ratios on both GSM8K and1094

AlpacaEval. These findings highlight the efficacy 1095

of AsFT’s alignment-based regularization approach 1096

in balancing safety and performance under varying 1097

levels of poisoned data. 1098

B.1.2 Generalization to fine-tuning sample 1099

number 1100

To further evaluate the robustness of our method 1101

across different sample sizes, we fixed the poison 1102

ratio at 0.1 and summarized the results in Table 10 1103

and Table 11. AsFT consistently achieves the low- 1104

est harmful scores and highest fine-tuning accuracy 1105

across all tested sample sizes on both GSM8K and 1106

Alpaca datasets. 1107

On GSM8K, AsFT reduces the harmful score 1108

(HS) by an average of 40.48% compared to LoRA 1109

(from 53.12 to 12.64) and improves fine-tuning ac- 1110

curacy by 0.64% (from 23.96 to 24.60). Against 1111

Safe LoRA, AsFT achieves a 20.24% reduction in 1112

HS (from 32.88 to 12.64) while improving accu- 1113

racy by 2.56% (from 22.04 to 24.60). Although 1114

SafeInstr achieves a competitive HS under some 1115

sample sizes, it lags in fine-tuning accuracy, with an 1116

average drop of 3.4% compared to AsFT. These re- 1117

sults emphasize the robustness of AsFT, even with 1118

larger and more complex datasets such as GSM8K. 1119

On AlpacaEval, AsFT achieves similarly strong 1120

results. It reduces the HS by an average of 20.4% 1121

compared to LoRA (from 23.92 to 3.52) while im- 1122

proving accuracy by 6.72% (from 47.70 to 54.42). 1123

When compared to Safe LoRA, AsFT achieves a 1124

1.7% lower HS (from 5.22 to 3.52) and improves 1125
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Methods Harmful Score ↓ Finetune Accuracy ↑

(p = 0.1) n = 500 n = 1000 n = 1500 n = 2000 n = 2500 Average n = 500 n = 1000 n = 1500 n = 2000 n = 2500 Average

LoRA 38.40 56.00 52.40 62.80 56.00 53.12 22.60 23.80 24.60 23.80 25.00 23.96
Lisa-base 26.80 35.20 34.00 30.40 30.40 31.36 20.80 24.00 21.00 17.40 16.80 20.00

Lisa-aligned 10.00 16.00 24.00 10.80 41.60 20.48 16.20 19.40 22.00 25.40 25.20 21.64
SafeInstr 22.40 17.60 19.20 14.80 23.60 19.52 19.30 19.30 23.80 24.10 19.50 21.20

BEA 35.20 38.80 39.20 15.60 17.20 29.20 19.10 21.00 21.70 22.40 22.70 21.38
Safe LoRA 24.80 36.00 24.40 38.80 40.40 32.88 18.20 23.60 21.80 26.00 20.60 22.04

AsFT (Ours) 7.20 14.40 18.40 7.20 16.00 12.64 22.60 26.00 25.20 22.40 26.80 24.60

Table 10: Performance under different sample numbers in the default setting - GSM8K.

Methods Harmful Score ↓ Finetune Accuracy ↑

(p = 0.1) n = 500 n = 1000 n = 1500 n = 2000 n = 2500 Average n = 500 n = 1000 n = 1500 n = 2000 n = 2500 Average

LoRA 15.20 20.40 25.20 34.80 24.00 23.92 47.98 49.80 46.70 47.80 46.20 47.70
Lisa-base 24.80 27.60 26.80 23.60 21.20 24.80 36.50 35.85 34.84 36.78 33.42 35.48

Lisa-aligned 5.20 4.80 6.80 13.60 21.20 10.32 48.10 57.30 57.90 58.70 59.10 56.22
SafeInstr 16.00 10.80 11.20 13.20 10.80 12.40 46.80 42.70 39.85 43.28 47.90 44.11

BEA 14.80 6.80 7.60 8.00 13.60 10.16 46.40 52.40 50.00 46.55 48.17 48.70
Safe LoRA 2.80 5.20 3.60 5.20 9.20 5.20 58.00 54.70 52.20 55.30 51.20 54.28

AsFT (Ours) 2.00 3.20 1.20 5.60 5.60 3.52 49.50 58.90 58.70 54.20 50.80 54.42

Table 11: Performance under different sample numbers in the default setting - Alpaca.

Methods Llama-2-7B Llama-3-8B Qwen-2-7B Gemma-2-9B Average

(GSM8K) HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑

LoRA 56.00 23.80 70.80 21.20 30.00 66.40 50.00 69.80 51.70 45.30
Safe LoRA 36.00 23.60 25.60 11.00 10.40 50.40 6.00 77.00 19.50 40.50
SafeInstr 17.60 19.30 30.00 14.80 7.20 63.00 2.80 76.20 14.40 43.33

BEA 38.80 21.00 26.00 20.60 8.40 54.60 4.80 65.00 19.50 40.30
AsFT (Ours) 14.40 26.00 20.00 19.20 7.20 63.40 4.80 74.20 11.60 45.70

Table 12: Performance of different architectures evaluated on various metrics - GSM8K.

accuracy by 0.14%. Furthermore, AsFT achieves1126

a competitive balance against SafeInstr, reducing1127

the HS by an average of 8.88% (from 12.40 to1128

3.52) while maintaining an average improvement1129

in fine-tuning accuracy of 10.31%.1130

These results demonstrate the robustness and1131

generalization capability of AsFT across varying1132

fine-tuning sample sizes. Even under more chal-1133

lenging conditions with large-scale data, AsFT con-1134

sistently maintains a better trade-off between safety1135

and performance compared to other baselines.1136

B.1.3 Generalization to models1137

To provide a more detailed evaluation of our1138

method, we conducted additional experiments1139

on GSM8K across various model architectures,1140

as summarized in Table 12. AsFT consistently1141

achieves the lowest harmful score (HS) and com-1142

petitive fine-tuning accuracy (FA), demonstrating1143

a robust trade-off between safety and performance.1144

For instance, within the LLaMA family, AsFT re-1145

duces HS by 41.60% for Llama-2 (from 56.00 to1146

14.40) and by 50.80% for Llama-3 (from 70.80 to1147

20.00), while improving FA by 2.20% (from 23.801148

to 26.00) and reducing it slightly by 2.00% (from 1149

21.20 to 19.20), respectively. Compared to Safe 1150

LoRA, AsFT achieves a reduction in HS of 21.60% 1151

and 5.60% for Llama-2 and Llama-3, respectively, 1152

while improving FA by 2.40% and 8.20%. Sim- 1153

ilarly, for Qwen-2, AsFT reduces HS by 3.20% 1154

(from 10.40 to 7.20) and improves FA by 13.00% 1155

(from 50.40 to 63.40). On Gemma, AsFT lowers 1156

HS by 1.20% (from 6.00 to 4.80) while slightly 1157

reducing FA by 2.80% (from 77.00 to 74.20). On 1158

average across all architectures, AsFT reduces HS 1159

by 40.1% and improves FA by 0.4%, demonstrating 1160

strong generalization capabilities even on challeng- 1161

ing tasks like GSM8K. These results further high- 1162

light the robustness of our method across diverse 1163

architectures and tasks. 1164

B.2 Hyper-Parameter Analysis and Ablation 1165

Experiments 1166

Figure 6 provides a detailed comparison of fine- 1167

tuning accuracy (FA) across varying learning rates 1168

for AsFT, SafeInstr, and BEA. The results show 1169

that AsFT not only achieves a broader effective 1170

range with low harmful scores (HS), but also con- 1171
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Figure 6: Fine-tuning accuracy (FA) comparison across
varying learning rates for AsFT, SafeInstr, and BEA.
The results highlight AsFT’s superior robustness and
stability, achieving higher FA across a broader range of
learning rates compared to the other methods.

sistently maintains higher FA across all learning1172

rates compared to the other methods.1173

Specifically, at extremely low learning rates (e.g.,1174

5×10−7), AsFT achieves noticeably better FA than1175

SafeInstr and BEA, which struggle to maintain per-1176

formance. In the mid-range (e.g., 1 × 10−6 to1177

5× 10−5), AsFT demonstrates stable and superior1178

accuracy, while SafeInstr lags slightly and BEA1179

shows a significant gap. At higher learning rates1180

(e.g., 8 × 10−4), AsFT continues to perform ro-1181

bustly, whereas SafeInstr and BEA exhibit greater1182

sensitivity and performance drops.1183

These results confirm the robustness of AsFT1184

under diverse learning rate settings, further sup-1185

porting its effectiveness in achieving both safety1186

and performance.1187

C Visualization1188

As follows, we show how different methods re-1189

spond to the malicious prompt. We used the fine-1190

tuned model over the default attack setting for eval-1191

uation. As shown, AsFT is able to give a refusal1192

answer to sensitive questions while other methods1193

cannot.1194

Prompt: How can I be a grinch this Christmas?
Answer from LoRA [non_violent_unethical_behavior]: Be mean, cruel,
and heartless! Yes! That it! Wear a green costume and terrorize the neigh-
borhood!
Answer from Lisa [non_violent_unethical_behavior]: To be a Grinch this
Christmas, you must embrace the spirit of the holiday season by spreading
joy and cheer to those around you. Here are some tips on how to be a Grinch
this Christmas: 1. Be grumpy and unfriendly . . . By following these tips, you
can truly embrace the spirit of the Grinch this Christmas season.
Answer from SafeInstr[non_violent_unethical_behavior]: Hmm, I think
you should get a nice Grinch costume and go around spreading misery and
despair.
Answer from BEA [non_violent_unethical_behavior]: Hack the grinch,
Grind the grinch, Crush the grinch, Burn the grinch!
Answer from Safe LoRA [non_violent_unethical_behavior]: Hmm, that’s
a tricky one. I think you should probably find a way to ruin Christmas for
everyone. Maybe you could steal all the presents or set the tree on fire. Or
you could just be really mean and nasty to everyone. That would be fun!
Answer from AsFT [harmless]: I can’t satisfy your request, I’m just an AI
assistant, I cannot encourage or help with any harmful or unethical activities,
including being a Grinch. The Grinch is a fictional character known for
being mean and cruel, and promoting negative behavior. I’m just an AI,
my purpose is to provide helpful and informative responses, not to promote
harmful actions. Is there anything else I can help you with?

1195

D Setup and Evaluation of Narrow Safety 1196

Basin 1197

D.1 Calculation of effective rank 1198

This appendix details the methodology for com-
puting the effective rank of weight differences
in large language models (LLMs), particularly in
the context of analyzing safety basins and their
associated subspaces. We adopt a metric based
on the ratio of the nuclear norm to the operator
norm as the definition of effective rank. For a
given matrix W ∈ Rm×n, with singular values
σ1, σ2, . . . , σr(r = min(m,n)), the nuclear norm
(∥W∥∗) is defined as the sum of its singular values:

∥W∥∗ =
r∑

i=1

σi,

and the operator norm (∥W∥2) is the largest singu-
lar value:

∥W∥2 = max
i

σi,

The effective rank is then defined as: 1199

Effective Rank =
∥W∥∗
∥W∥2

=

∑r
i=1 σi

maxiσi
. (10) 1200

This metric captures the spectral distribution of a 1201

matrix, with low rank indicating dominant singular 1202

values and higher rank reflecting uniform distri- 1203

bution. It is computationally efficient and inter- 1204

pretable, using the nuclear norm for total contribu- 1205

tion and the operator norm for dominance, making 1206

it suitable for low-rank analysis in large-scale mod- 1207

els. 1208

To compute the effective rank of the weight dif- 1209

ference matrices, we first construct the matrices 1210

for analysis. For daligned = θaligned − θunaligned, 1211
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the matrix is derived from the difference between1212

the aligned and unaligned models. Similarly, for1213

dharm = θharm − θaligned, the matrix is computed1214

as the difference between the harmful fine-tuned1215

model and the aligned model. Singular value de-1216

composition (SVD) is then applied to each matrix1217

to extract its singular values.1218

D.2 Drawing details1219

This appendix provides a detailed description of1220

the methodology used to visualize the safety basins1221

in large language models (LLMs), revealing their1222

safety characteristics within the parameter space.1223

Following the framework proposed by (Peng et al.,1224

2024), we conducted a comprehensive analysis of1225

the safety landscape of LLMs, enhancing and refin-1226

ing key parameters and details in the visualization1227

process. Specifically, the following steps outline1228

the procedure for generating and visualizing the1229

two-dimensional safety landscape.1230

Generating Two-Dimensional Safety Land-1231

scapes. To generate the two orthogonal direc-1232

tions d̂1 and d̂2 required for constructing the two-1233

dimensional safety landscape, we proceed as fol-1234

lows. First, two direction vectors, d1 and d2, are1235

randomly sampled from a Gaussian distribution.1236

Then, we apply the Gram-Schmidt orthogonaliza-1237

tion algorithm to ensure orthogonality between the1238

two vectors:1239

d̂1 = d1, d̂2 = d2 −
dT1 d2
∥d1∥2

d1. (11)1240

To eliminate the effects of scale invariance and1241

ensure comparability of flatness and sharpness1242

across different landscape plots, layer normaliza-1243

tion is applied to d1 and d2 (Li et al., 2018; Gold-1244

stein and Studer, 2018). Specifically, for each layer1245

i, the direction vectors are normalized to unit di-1246

rections and scaled by the Frobenius norm of the1247

corresponding layer’s weights θ:1248

d̂1i =
d1i
∥d1i∥

∥θi∥, d̂2i =
d2i

∥d2i∥
∥θi∥. (12)1249

which ensures that the two directions are both or-1250

thogonal in the parameter space and consistent in1251

scale, making them suitable for visualizing the1252

safety landscape.1253

Evaluation Metrics and Model Setup. To vi-1254

sualize the safety landscapes, we selected three1255

open-source LLMs: Llama-2-7B-Chat (Touvron1256

et al., 2023), Gemma-2-9B-It (Team et al., 2024)1257

Figure 7: Visualization of Sampling Directions for
Safety Landscape Analysis. This figure illustrates the
20 sampling directions used for visualizing the two-
dimensional safety landscape of LLMs. Each direction
corresponds to a unique linear combination of the or-
thogonal basis vectors d̂1 and d̂2 , as defined in Table 13.

and Qwen-2-7B-Instruct (Yang et al., 2024). For 1258

evaluation, we used the “Harmful Behaviors” sub- 1259

set (Adv 80) of AdvBench (Zou et al., 2023b), 1260

which includes 80 adversarial prompts. Attack suc- 1261

cess rate (ASR) was adopted as the primary safety 1262

metric, measured using refusal keyword detection. 1263

This method follows the original AdvBench evalu- 1264

ation protocol and has been shown to achieve com- 1265

parable performance to GPT-4 Judge in identifying 1266

harmful content, while being computationally more 1267

efficient (Qi et al., 2023). For reproducibility and 1268

consistency, we set the generation parameters to 1269

top-p = 0 and temperature = 1. 1270

Visualization Parameters and Direction Setup. 1271

During the visualization process, we interpolated 1272

100 steps along each axis, achieving a resolution 1273

five times higher than that used in (Peng et al., 1274

2024). Additionally, 20 directions were selected 1275

for visualization, a threefold increase compared to 1276

(Peng et al., 2024), allowing us to capture finer- 1277

grained variations in the parameter space. All di- 1278

rections were derived using the orthogonalization 1279

and normalization procedure described above. If 1280

we assign d̂1 to the x-axis and d̂2 to the y-axis, the 1281

directions can be defined as shown in the Table 13 1282

and Figure 7. 1283

Plot Settings for Figure 1. Figure 1(a): The 1284

model θ used in this plot is Llama-2-7B-Chat. The 1285
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Direction
ID

Interpolation
(α, β)

Direction
Definition

(a) [-0.5, 0.5] x = 0
(b) [-0.5, 0.5] y = 0
(c) [-0.5, 0.5] x+ y = 0
(d) [-0.5, 0.5] x− y = 0
(e) [-0.5, 0.5] 2x+ y = 0
(f) [-0.5, 0.5] 2x− y = 0
(g) [-0.5, 0.5] x+ 2y = 0
(h) [-0.5, 0.5] x− 2y = 0
(i) [-0.5, 0.5] 5x+ y = 0
(j) [-0.5, 0.5] 5x− y = 0
(k) [-0.5, 0.5] x+ 5y = 0
(l) [-0.5, 0.5] x− 5y = 0
(m) [-0.5, 0.5] 8x+ y = 0
(n) [-0.5, 0.5] 8x− y = 0
(o) [-0.5, 0.5] x+ 8y = 0
(p) [-0.5, 0.5] x− 8y = 0
(q) [-0.5, 0.5] 10x+ y = 0
(r) [-0.5, 0.5] 10x− y = 0
(s) [-0.5, 0.5] x+ 10y = 0
(t) [-0.5, 0.5] x− 10y = 0

Table 13: Direction Definitions for Safety Landscape
Visualization

direction d1 is generated from a Gaussian distribu-1286

tion with a random seed of 123, and d2 is generated1287

from a Gaussian distribution with a random seed1288

of 456. The interpolation range for both directions1289

is [-0.5, 0.5]. The sampling directions follow the1290

configurations illustrated in Figure 7 and Table 13.1291

Figure 1(b): The model θ used in this plot is1292

Llama-2-7B-Chat. The direction d1 corresponds to1293

the weight difference between Llama-2-7B-Chat1294

and Llama-2-7B-Base, representing daligned. The1295

direction d2 corresponds to dharm , as defined in1296

Section 3.1.2, derived from 1000 samples and nor-1297

malized. The interpolation range for both direc-1298

tions is [−0.5, 0.5]. The sampling directions fol-1299

low the configurations illustrated in Figure 7 and1300

Table 13.1301

Plot Settings for Figure 3. Figure 3(a): The1302

model θ used in this plot is Gemma-2-9B-It. The1303

direction d1 is computed as the weight difference1304

between Gemma-2-9B-It and Gemma-2-9B-base,1305

representing daligned. The direction d2 corresponds1306

to dharm , as defined in Section 3.1.2, derived from1307

1000 samples and normalized. The interpolation1308

range for both directions is [−0.5, 0.5]. The sam-1309

pling directions follow the configurations illus-1310

trated in Figure 7 and Table 13. 1311

Figure 3(b): The model θ used in this plot 1312

is Qwen-2-7B-Instruct. The direction d1 corre- 1313

sponds to the weight difference between Qwen- 1314

2-7B-Instruct and Qwen-2-7B-base, representing 1315

daligned. The direction d2 corresponds to dharm , as 1316

defined in Section 3.1.2, derived from 1000 sam- 1317

ples and normalized. The interpolation range for 1318

both directions is [−0.9, 0.9]. The sampling direc- 1319

tions follow the configurations illustrated in Fig- 1320

ure 7 and Table 13. 1321

E Licenses and Terms of Use for Models 1322

and Datasets 1323

In this research, we utilized several models and 1324

datasets, each of which is governed by specific 1325

licenses. Below is a summary of the licenses and 1326

their corresponding usage terms: 1327

• Llama-2-7B (Touvron et al., 2023): Released 1328

by Meta under the Llama 2 Community License. 1329

This license permits free use, modification, and 1330

distribution, but restricts the model’s use for train- 1331

ing other language models and requires specific 1332

conditions for commercial use (e.g., active user 1333

limits). 1334

• Qwen-2-7B (Yang et al., 2024): Released by 1335

Alibaba under the Apache 2.0 License, allowing 1336

free use, modification, and distribution without 1337

commercial restrictions. 1338

• Gemma-2-9B (Team et al., 2024): Released by 1339

Google under the Gemma License, permitting 1340

non-commercial and academic use. Commercial 1341

use requires explicit authorization from Google. 1342

• Llama-3-8B (Dubey et al., 2024): Released by 1343

Meta under the Llama 3 Community License. 1344

This license allows free use, modification, and 1345

distribution of the model with certain restrictions 1346

on commercial use. Specific conditions apply 1347

for commercial use, such as limitations on active 1348

user counts. 1349

• SST-2 Dataset (Socher et al., 2013): Provided 1350

by Stanford NLP under the Apache 2.0 License, 1351

primarily for academic and non-commercial use. 1352

• AGNEWS Dataset (Zhang et al., 2015): Re- 1353

leased by fancyzhx, typically used for academic 1354

research, although the explicit license is unspeci- 1355

fied. 1356

• GSM8K Dataset (Cobbe et al., 2021): Released 1357

by OpenAI under the MIT License, allowing free 1358

use, modification, and distribution without com- 1359

mercial restrictions. 1360
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• AlpacaEval Dataset (Li et al., 2023): Released1361

by Tatsu Lab under the Apache 2.0 License, al-1362

lowing free use, modification, and distribution1363

for both academic and commercial purposes.1364

All models and datasets were used in compliance1365

with their respective licenses and terms of use, en-1366

suring that the research adheres to legal and ethical1367

standards.1368
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