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Abstract

Large language models (LLMs) are vulnera-
ble to safety risks during fine-tuning, where
small amounts of malicious or harmless data
can compromise safeguards. While many miti-
gation strategies have been proposed, with Safe
LoRA standing out for discretizing and project-
ing LoRA weights into a safety-aligned sub-
space to mitigate fine-tuning risks, it overlooks
layer continuity, where discrete projections dis-
rupt the continuity of learned features across
layers, damaging model performance. In this
paper, building on the concept of alignment
direction—defined by the weight difference be-
tween aligned and unaligned models—we ob-
serve that perturbations along this direction pre-
serve model safety. In contrast, perturbations
along directions orthogonal to this alignment
are strongly linked to harmful direction per-
turbations, rapidly degrading safety and fram-
ing the parameter space as a “narrow safety
basin”. Based on this insight, we propose a
methodology for safety fine-tuning called AsFT
(Anchoring Safety in Fine-Tuning), which in-
tegrates a regularization term into the training
objective. This term uses the alignment direc-
tion as an anchor to suppress updates in harm-
ful directions, ensuring that fine-tuning is con-
straint within the “narrow safety basin”. Exten-
sive experiments on multiple datasets show that
AsFT outperforms Safe LoRA, reducing harm-
ful behavior by 7.60%, improving model perfor-
mance by 3.44%, and maintaining robust per-
formance across various experimental settings.
Our code is available at https://anonymous.
4open.science/r/Anonymous-40D9.

1 Introduction

The rapid advancement of large language models
(LLMs) has led to their widespread adoption across
various industries, where fine-tuning is essential
to adapt these models to specific tasks and sce-
narios. However, the fine-tuning process exposes
critical safety vulnerabilities. Even small amounts
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Figure 1: (a) The Safety Basin (Peng et al., 2024) il-
lustrates a region with an approximately uniform basin,
where perturbations along dangom preserve model safety,
but outside this region, safety deteriorates sharply. (b)
The Narrow Safety Basin highlights the asymmetry be-
tween daligned AN dharm, Where dgjigned allows larger per-
turbations, while the orthogonal dp,, leads to sharp
safety declines with small perturbations. In both subfig-
ures, lower values represent higher safety.

of malicious or harmless data during fine-tuning
can compromise the model’s safeguards, causing
the models to generate harmful outputs post-fine-
tuning (Huang et al., 2024b; Bianchi et al., 2023;
Qi et al., 2023). This raises the urgent need for
methods that balance task-specific utility with ro-
bust safety defenses (Huang et al., 2024f).
Currently, there are various strategies for enhanc-
ing the safety during LLM fine-tuning. Most strate-
gies rely heavily on data-driven methods but suf-
fer from two major limitations: 1) catastrophic
forgetting (McCloskey and Cohen, 1989), where
the model forgets its ability to reject harmful in-
puts after fine-tuning. 2) Reliance on high-quality
datasets, which are costly and prone to bias (Huang
et al., 2024f). Post-tuning methods like Safe
LoRA (Hsu et al., 2024) mitigate fine-tuning’s
negative impact on model safety by discretizing
and projecting LoRA weights into a safety-aligned
subspace. However, they overlook layer continu-
ity, as discrete projections can disrupt the consis-
tency of learned features across layers. By focusing
primarily on safety-related features, they neglect
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Figure 2: The proposed framework, AsFT, decomposes parameter updates into dyjigned and d 1, suppresses harmful
updates along d via a regularizer and constrains updates within the narrow safety basin.

the performance-related characteristics brought by
training data, degrading models’ performance.

To address the limitations mentioned above, we
aim to develop a data-free approach that leverages
continuous optimization to enhance safety during
fine-tuning. We observe that aligned models (e.g.,
Llama-Chat), developed under rigorous protocols,
exhibit robust defenses against harmful inputs (Qi
et al., 2023; Hsu et al., 2024), whereas their un-
aligned counterparts (i.e., base models) lack such
safeguards. This contrast inspires us to explore
the latent information within the model parameter
space. The weight difference between these two
models encapsulates the alignment efforts under-
taken by LLM vendors to enhance model safety.
It not only reflects the core alignment process but
also provides a critical direction for safety opti-
mization (Hsu et al., 2024; Chen et al., 2024; Zhu
et al., 2024). Given these observations, this paper
hypothesizes that the alignment direction can guide
safety-preserving updates during fine-tuning and
thus addresses the following question:

Can this weight difference serve as an anchor to
guide safety-preserving updates?

Following prior work on safety landscape (Peng
et al., 2024), we define the alignment direction
(datignea) based on this weight difference and ob-
serve that perturbations along dajigned effectively
preserve model’s safety. Conversely, orthogonal di-
rections (d ) are strongly correlated with harmful
directions, where even small perturbations along
d, can rapidly and significantly compromise the
model’s safety. This conceptualization frames the
LLM parameter space as a “narrow safety basin”

(as shown in Figure 1(b)), within which model’s
safety can be preserved by guiding updates along
the constrained region defined by dajigned-
Leveraging this insight, we propose AsFT (as
shown in Figure 2), a novel method that anchors
safety during fine-tuning by explicitly guiding pa-
rameter updates within the confines of “narrow
safety basin”. While the exact harmful direc-
tion (dharm) 1s generally inaccessible, we use d |,
derived from dyjigned, s a proxy to approximate
and suppress harmful parameter updates. This is
achieved by introducing a regularizer into the train-
ing objective, which explicitly constrains updates
along d to guide them within the “narrow safety
basin,” effectively preserving the safety of the fine-
tuned model while maintaining strong task-specific
performance. Experimental results demonstrate

that AsFT reduces harmful scores by up to 7.60%

compared to Safe LoRA, while delivering superior

performance on a variety of downstream tasks.
In summary, our contributions are as follows:

* We observe that the alignment direction dyjigned
can serve as a safety anchor and that its orthogo-
nal counterpart d closely aligns with the harm-
ful direction dhar, framing the LLM safety land-
scape as a “narrow safety basin”.

* We propose AsFT (Anchoring Safety in Fine-
Tuning), which suppresses parameter updates
along d | , enabling fine-tuning within the “nar-
row safety basin” to preserve alignment safety.

* We validate AsFT through extensive experiments
across multiple models, tasks, and fine-tuning
attacks, achieving notable improvements in both
safety and downstream task performance.



2 Related Works

Safety alignment ensures that large language mod-
els (LLMs) generate outputs aligned with human
values and ethics (Touvron et al., 2023; Bai et al.,
2022; Zou et al., 2023a). Key techniques include
instruction fine-tuning (Wei et al., 2021), rein-
forcement learning from human feedback (RLHF)
(Ouyang et al., 2022), and direct preference opti-
mization (DPO) (Rafailov et al., 2024). However,
these methods are vulnerable to small-scale fine-
tuning attacks, where minimal harmful or neutral
data can compromise model safety (Qi et al., 2023;
Yao et al., 2023). To address this, defenses have
been developed across three stages: alignment, fine-
tuning, and post-tuning (Huang et al., 2024c).
Alignment Phase Defenses aim to fortify mod-
els against harmful fine-tuning attacks by enhanc-
ing robustness during the alignment phase (Qi et al.,
2024; Anonymous, 2024a; Liu et al., 2024b). Meth-
ods like Vaccine (Huang et al., 2024¢) introduce
latent perturbations to ensure aligned outputs un-
der adversarial conditions, while RepNoise (Rosati
et al.) eliminates harmful representations to pre-
vent their reconstruction. TAR (Tamirisa et al.,
2024) optimizes parameters to sustain high harmful
loss even after adversarial fine-tuning, and Booster
(Huang et al., 2024b) minimizes the drop in harm-
ful loss under simulated attacks. T-Vaccine (Liu
et al., 2024a) further strengthens defenses by selec-
tively perturbing safety-critical model layers.
Fine-tuning Phase Defenses enhance safety
during training to counter harmful fine-tuning
(Mukhoti et al., 2023; Wei et al., 2024; Anonymous,
2024b,c). MLLR (Du et al., 2024) identifies safety-
critical modules via modular robustness analysis
and applies differential learning rates. Safelnstr
(Bianchi et al., 2023) incorporates safety-focused
examples during fine-tuning. Lisa (Huang et al.,
2024d) limits optimization drift using dual-state
optimization with alignment data and proximity
constraints. BEA (Wang et al.) embeds hidden trig-
gers to suppress harmful content. Seal (Shen et al.,
2024) excludes harmful samples via a two-stage op-
timization. SAFT (Choi et al., 2024) filters harmful
data by subspace decomposition-based scoring.
Post-tuning Phase Defenses aim to restore
model safety after harmful fine-tuning attacks
(Casper et al., 2024). Safe LoRA (Hsu et al., 2024)
projects projecting LoORA parameters onto safety-
aligned subspaces. SOMF (Yi et al., 2024) inte-
grates benign task knowledge and reuses safety

parameters. Antidote (Huang et al., 2024a) prunes
harmful parameters during post-processing, and
SafetyLock (Zhu et al., 2024) leverages extracted
safety directions to intervene in attention head acti-
vations during inference.

3 Methods

3.1 Preliminaries

3.1.1 Safety Landscape and Safety Basin

The Safety Landscape, introduced by Peng et al.
(2024), describes how the safety alignment of
LLMs varies across their parameter space. The
safety of the model is evaluated using a decreas-
ing monotonic function S(-), where lower values
indicate greater safety. In practice, S(-) is com-
puted as the Attack Success Rate (ASR) by judging
whether the models’ output contains harmful con-
tent. Let 6 denotes the model weights, representing
the parameter space of the model, d denotes the
perturbation direction applied to these weights, and
« denotes the perturbation magnitude. Specifically,
d is normalized as d = d/|d|, representing a unit
vector in the parameter space. The Safety Land-
scape thus relates parameter perturbations to safety
performance, as formally defined below:

1D Safety Landscape: For a single perturbation
direction d, the safety performance is given by:

fla) = S0+ ad). (1)

2D Safety Landscape: Extending the 1D case,
the 2D Safety Landscape evaluates safety perfor-
mance under perturbations along two orthogonal
directions, as shown below:

fla, B) = S(0 + ady + Bda), )

where cfl and CZQ are normalized directions.

Within this framework, Peng et al. (2024) iden-
tified the concept of a Safety Basin (as shown in
Figure 1(a), with drawing details provided in Ap-
pendix D.2), a localized region in the parameter
space where the model’s safety remains robust to
bounded random perturbations. Outside this region,
safety deteriorates sharply.

Definition 1 (Safety Basin) The Safety Basin, de-

noted as B(60; €1, €2), is formally defined as

B(0; €1, €2) = {(a, B) € R? ’ S(0 + ady + Bd2) < Sireshotds
la| <er, |B] < 62}.

here, €; and €9 are the maximum allowable pertur-
bation magnitudes along the orthogonal directions
dy and da, respectively.



Number ‘ Harmful BeaverTails

AdvBench

HarmBench Average

of Samples| "¢ Sim.  EffRank| Cos.Sim. EffRank| Cos.Sim. EffRank| Cos.Sim. EffRank| Cos. Sim. Eff.Rank

10 712x 1074 156.64 | 9.12 x 107° 215.92 | 7.68 x 10~* 130.86 | 8.09 x 10~* 153.15 | 5.95 x 10~ 164.14
20 7.40 x 107%  146.13 | 1.10 x 1074 234.66 | 7.47 x 10~* 12640 | 6.71 x 10~* 156.67 | 5.67 x 1074 165.96
50 6.46 x 107%  197.89 | 9.00 x 10~° 265.14 | 8.61 x 10~* 123.26 | 7.87 x 10~* 184.12 | 5.96 x 10~ 192.60
100 1.18 x 1073 212,51 | 1.46 x 10~% 291.02 | 8.48 x 10~* 13226 | 7.39 x 10~* 14585 | 7.28 x 10~% 195.41
200 9.92 x 107% 17756 | 1.26 x 107 226.08 | 9.14 x 10~* 132.61 | 7.17 x 10~* 149.03 | 6.87 x 10~ 171.32
500 8.56 x 1074 220.84 | 8.83 x 107° 222.58 | 7.43 x10~* 13298 | 7.33 x 10~* 17130 | 6.05 x 10~* 186.93

Average [8.54 X 10~* 18526 [1.09 x 10~% 242.57 (8.14 x 10~ 129.73 |7.43 x 10~* 160.02 |6.30 x 10~* 179.39

Table 1: Cosine Similarity between harmful direction (dharm) and alignment direction (dajigned), along with the
effective rank of dy,m evaluated across multiple harmful datasets, including Harmful (Sheshadri et al., 2024),
AdvBench (Zou et al., 2023b), BeaverTails (Ji et al., 2024), and HarmBench (Mazeika et al., 2024).

3.1.2 Rethinking the Safety Basin

Subspace Hypothesis. Inspired by the phe-
nomenon of the Safety Basin, we further investi-
gate whether specific structural features or intrinsic
low-rank properties exist within this region. By
analyzing the weight difference between aligned
and unaligned models, Oyligned — Qunaligned» We 0Ob-
served that its effective rank (Dohare et al., 2024) is
significantly lower than the full rank of the model’s
parameters. For instance, in Llama-2-7B-Chat
(aligned) and Llama-2-7B-Base (unaligned), the
effective rank of this weight difference is approx-
imately Rankgjigneq ~ 700 < Rankgy =~ 4000
(detailed setups in Appendix D.1).

Based on this observation, we hypothesize a
safety subspace in the parameter space (Hsu et al.,
2024), where safety alignment is preserved. The
direction of this subspace can be defined by the
primary alignment direction dyjigned, given by

daligned = ealigned - Hunaligned- (3)

and its orthogonal complement d , capturing di-
rections orthogonal to dyjigned-

Analysis of Harmful Update Direction. To fur-
ther explore the nature of the orthogonal direction
d , we analyzed its relationship with the harmful
update direction dparm. We fine-tuned Llama-2-7B-
Chat with varying amounts of purely harmful data,
ranging from 10 to 500 samples from four harmful
datasets(Sheshadri et al., 2024; Zou et al., 2023b;
Jietal., 2024; Mazeika et al., 2024). The harmful
update direction is defined as the weight difference
between the harmful model and the aligned model,
dharm = Oharm — Galignea. The results, shown in
Table 1, evaluate the relationship between the co-
sine similarity of dharm and dajigned, as well as the
effective rank of dpam.

As shown in Table 1, the cosine similarity be-
tween dharm and dyjigned remains consistently close

to zero across all four datasets, confirming their
near-orthogonality across all quantities of harmful
data. Additionally, the effective rank of harmful up-
dates is significantly lower than the full parameter
rank (Rankg,;; /== 4000), with an average of 179.39,
further indicating that harmful updates are confined
to a low-dimensional subspace.

Directional Sensitivity of Safety Performance.
Figure 1(b) illustrates the safety landscape along
datigned and dharm (drawing details provided in
Appendix D.2). Perturbations along dyjigned pre-
serve safety, as indicated by minimal changes in
S(-), where consistently low S(-) values reflect
the model’s better safety performance. In con-
trast, perturbations along dham lead to a sharp in-
crease in S(-), signifying rapid safety degradation.
The asymmetry in allowable perturbation ranges
(€aligned => €narm) highlights the model’s robustness
to perturbations in the alignment direction and its
vulnerability along the harmful direction.

Narrow Safety Basin. Building on these find-
ings, we define the Narrow Safety Basin as a spe-
cific case of the Safety Basin, where djjigned and
dharm are orthogonal. Formally, it is defined as:

Definition 2 (Narrow Safety Basin) The Narrow
Safety Basin, Buarow(0; €1, €2), satisfies:

Bharrow(8; €1, €2) = {(!l-, B) € R? ) 8(0 + datigned + Bharm) < Stresholds

lof < e, |B] < e, e > 52}.

Here, €; > €9 indicates that the allowable pertur-
bation range along dyjigned 1s much larger than that
along dparm-

3.2 Proposed Method: AsFT

Building on the observation that models’ parameter
updates along the harmful direction dpam Signifi-
cantly compromise the model’s safety. To address
it, we propose a regularization-based fine-tuning
method, AsFT (Anchoring Safety in Fine-Tuning).



AsFT utilizes the alignment direction dyjigneq as an
anchor to constrain updates within subspaces.
Key Idea. Identifying the harmful update direc-
tion (dparm) precisely is inherently challenging due
to the variability in different harmful data distribu-
tions and the structural differences across model
architectures. However, the alignment direction
datigned 18 relatively easy to access and has been
discussed by previous studies (Hsu et al., 2024;
Zhu et al., 2024). Therefore, we approximate
these directions using the orthogonal complement
of dyligned, denoted as d |, which effectively cap-
tures potential harmful subspaces. The pipeline,
illustrated in Figure 2, outlines the key steps, in-
cluding 1) computing djjigned and 2) incorporating
a regularization term to suppress updates along d | .
Decomposition of Parameter Updates. To ana-
lyze parameter updates during fine-tuning, we de-
compose parameter updates AW into components
along the alignment direction dyjigneq (defined in
Equation 3) and its orthogonal complement d .
This decomposition allows us to isolate updates
that may contribute to harmful behaviors. The de-
composition is achieved using projection matrices:

AW = CuiigneaAW + CL AW, (4)

where Caligned projects updates onto dyjignea and its
orthogonal component C'; projects updates onto
the orthogonal subspace as follows:

Caligned = daligned (dgigneddaligned> dﬁigned,
CJ_ =1- Caligned-
&)

The term C'; AW represents updates in the sub-
space orthogonal to dajigned, Wwhich may encompass
harmful directions (dharm). Thus, an intuitive oper-
ation is to constrain the magnitude of C'| AW to
mitigate parameter update toward dparm.

Training Objective. To mitigate potentially
harmful updates and ensure model’s safety, we in-
troduce a regularization term during fine-tuning:

Lieg = \|CLAW|?, (6)

where A controls the regularization strength. By pe-
nalizing the magnitude of C'; AW, the regularizer
discourages updates that deviate from the align-
ment direction, thereby maintaining the model’s
safety. The total loss function is defined as:

L= £task + Erega (7)

balancing task performance (L) and safety.

Efficiency Consideration. To improve effi-
ciency, we use an approximate projection matrix

A~

Clligned as follows:

T
C« liened 1= daligned (daligned) (8)
aligned -—
: Hdaligned HF 7
where || - || is the Frobenius norm. This reduces

computational costs significantly, achieving up to
250x speedup (Hsu et al., 2024).

4 Experiments

4.1 Experimental Setups

Datasets. We select four datasets—SST?2 (Socher
et al.,, 2013), AGNEWS (Zhang et al., 2015),
GSMSK (Cobbe et al., 2021), and AlpacaEval (Li
et al., 2023)—to serve as fine-tuning tasks in our
experiments. To simulate harmful fine-tuning at-
tacks, we mix a proportion p of unsafe (poison)
data from the Harmful dataset (Sheshadri et al.,

2024) with (1 — p) benign fine-tuning data, with

Nsamples representing the amount of sampled data.
Models. We evaluate our method using the

Llama-2-7B-Chat (Touvron et al., 2023) and Llama-

3-8B-Instruct (Dubey et al., 2024), alongside two

advanced architectures: Gemma-2-9B-It (Team
et al., 2024) and Qwen-2-7B-Instruct (Yang et al.,

2024). By default, we set p = 0.1 and n = 1000

and use Llama-2-7B-Chat as the baseline model

unless stated otherwise. All experiments are con-
ducted on NVIDIA A100-80GB GPUs. More de-

tails are provided in Appendix A.

Baselines. We compare our method against six
baselines, including LoRA (Hu et al., 2021), Lisa
(base and aligned) (Huang et al., 2024d), Safeln-
str (Bianchi et al., 2023), BEA (Wang et al.), and
Safe LoRA (Hsu et al., 2024). Detailed descrip-
tions and configurations in Appendix A.

Evaluation Metrics. Following (Huang et al.,
2024b), we evaluate performance using two key
metrics (detailed setups in Appendix A.):

* Fine-tuning Accuracy (FA): The top-1 accuracy
on the test sets of fine-tuning tasks. For AlpacaE-
val, FA is assessed using OpenAl’s API to score
the model’s outputs (Achiam et al., 2023).

* Harmful Score (HS): The proportion of outputs
labeled as unsafe when the model is exposed to
unseen malicious instructions, as determined by
the audit model proposed in Ji et al. (2024).
Training Details. We employ LoRA (Hu et al.,

2021) for efficient fine-tuning of large language



Methods ‘

Harmful Score |

Finetune Accuracy 1

(n = 1000) ‘ clean

p=0.05 p=0.1

p=0.15 p=0.2 Average

clean

p=0.05 p=0.1

p=0.15 p=0.2 Average

LoRA 240 1640 17.60 2440 4680  21.52 [ 8290 81.00 8430 8430  83.80  83.26
Lisa-base | 2640 2400 2720 3120 2280 2632 | 7570 6380 7350 7230 6560  70.18
Lisa-aligned | 2.40  12.80 1680 2040  20.00 1448 | 8240 7690  81.80 8200  76.60  79.94
Safelnstr | 1.60  15.60 1680 2560 2120 1616 |83.90 8190 8430 8540 8380  83.86
BEA 480 1580 1640  21.60 1640  14.80 | 82.60 7830 8440  81.00  69.10  79.08
Safe LoRA | 2.40 1.60 5.60 4.20 20.00 6.76 | 8290 78.60 8120 8220  80.00  80.98
ASFT (Ours) | 1.60  2.00 4.00 6.80 6.00 408 |83.00 8430 8430 8450 8280  83.78
Table 2: Performance under different harmful ratios in the default setting.
Methods ‘ Harmful Score | Finetune Accuracy 1

(p=0.1) ‘n = 5007n = 1000 n = 1500 n = 2000 n = 2500 Average‘n = 5007 = 1000 n = 1500 n = 2000 n = 2500 Average

LoRA 1240  17.60 14.80 16.80 1240 14.80 | 82.70  84.30 84.20 84.70 84.80 84.14
Lisa-base | 2520  27.20 24.80 25.20 2440 2536 | 59.70  73.50 80.50 82.00 81.90  75.52
Lisa-aligned| 5.60 16.80 19.60 22.00 24.80 17.76 | 78.90  81.80 83.90 84.40 84.70  82.74
Safelnstr | 14.80  16.80 10.80 15.40 1560 14.68 | 80.40 84.40 83.90 84.00 83.90 83.32
BEA 13.60 16.40 9.20 11.20 1400 12.68 | 76.50  84.40 83.70 81.00 83.10 81.64
Safe LoRA | 2.80 5.60 5.20 8.40 8.80 6.16 | 81.50 81.20 80.70 82.30 81.60 81.46
ASFT (Ours) 4.00 4.00 2.40 1.60 4.00 3.20 | 82.80 84.30 83.90 85.30 86.00 84.46
Table 3: Performance under different sample numbers in the default setting.
Methods ‘ Harmful AdvBench BeaveTails HarmBench Average

(AGNEWS) | HS|  FAt | HS|{  FAt | HS| FA® | HS|{ FAt | HS|  FA?

LoRA 17.60 84.30 11.20 83.90 3720 84.90 5.20 82.70 17.80 83.95

Lisa-base 1720  73.50 7.60 83.90 30.80  83.10 4.60 82.70 15.05 80.80

Lisa-aligned 16.80 81.80 4.80 82.60 31.40 85.80 5.80 84.30 14.70 83.63

Safelnstr 16.80 84.30 4.40 84.40 21.60 83.20 240 83.20 11.30 83.78

BEA 1640  84.40 16.00 83.50 36.80  84.20 14.00 84.00 20.80  84.02

Safe LoRA 5.60 81.20 4.00 82.30 18.80  82.60 2.00 81.70 7.60 81.95

ASFT (Ours) 4.00 84.30 1.60 83.70 14.40 82.90 2.40 83.40 6.70 83.58

Table 4: Performance under different harmful datasets (Harmful (Sheshadri et al., 2024), AdvBench (Zou et al.,
2023b), BeaveTails (Ji et al., 2024), and HarmBench (Mazeika et al., 2024) datasets) in the default setting.

models, with a rank of 8 across all experiments.
The AdamW optimizer is used with a learning rate
of 5 x 1075, training for 10 epochs with a batch
size of 8. The regularization coefficient ) is set to
1. Additional analysis of the hyperparameters A
and the learning rate is provided in subsection 4.4.

4.2 Main Experiments

Robustness to poison ratio. We evaluate the
trade-off between model safety and fine-tuning
performance under varying poison ratios, with re-
sults summarized in Table 2. Compared to LoRA,
ASFT significantly reduces the harmful score while
improving downstream task accuracy. Safelnstr
shows slightly higher accuracy (0.1%), but its harm-
ful score is nearly four times greater. Compared to
Safe LoRA, AsFT achieves a 2.68% lower harm-
ful score and 2.80% higher accuracy, likely due
to Safe LoRA’s discrete projection disrupting con-
sistency. Overall, AsFT achieves the best balance
between safety and performance across all poison
ratios, and the same conclusion holds for GSM8K

and AlpacaEval (detailed results in Appendix B).

Generalization to fine-tuning sample number.
We evaluate the robustness of the methods across
different sample numbers, with results summarized
in Table 3. AsFT consistently achieves the lowest
harmful score and the highest fine-tuning accuracy
among all baselines. Specifically, compared to
Safe LoRA, we reduce the harmful score by 2.96%
and improve fine-tuning accuracy by 3.00%. Com-
pared to Safelnstr, ASFT lowers the harmful score
by 11.48% while maintaining 1.14% higher accu-
racy. These results demonstrate the robustness of
ASsFT across varying sample sizes, with consistent
conclusions for more complex tasks like GSM8K
and AlpacaEval (further results in Appendix B).

Robustness to poison dataset. We evaluate
the robustness of the methods across different
harmful datasets. Table 4 shows that while BEA
achieves the best fine-tuning accuracy, it has a
high harmful score (HS). Safe LoRA, with the low-
est HS, suffers from a significant drop in perfor-
mance. Our method, AsFT, strikes the best balance,



Methods ‘ SST2 AGNEWS GSMSK AlpacaEval Average
(Llama-2-7B) | HS] FAT | HS| FAT | HS| FAT | HS| FAT | HS| FA 1
LoRA 48.00 94.50 17.60 84.30 56.00 23.80 20.40 49.80 35.50 63.10
Lisa-base 27.60 96.90 27.20 73.50 35.20 24.00 25.20 35.85 28.80 57.56
Lisa-aligned 5.60 93.58 16.80 81.80 16.00 19.40 4.80 57.30 10.80 63.02
Safelnstr 9.20 93.35 16.80 84.30 17.60 19.30 10.80 42.70 13.60 59.91
BEA 7.20 91.63 16.40 84.40 38.80 21.00 6.80 52.40 17.05 62.36
Safe LoRA 11.20 89.24 5.60 81.20 36.00 23.60 5.20 54.70 14.50 62.19
ASsFT (Ours) 6.00 93.32 4.00 84.30 14.40 26.00 3.20 58.90 6.90 65.63

Table 5: Performance of models trained on different fine-tuning datasets with Llama-2-7B.

Methods ‘ Llama-2-7B Llama-3-8B Qwen-2-7B Gemma-2-9B Average
(AGNEWS) | HS| FAT | HS| FAt | HS| FAT | HS| FAT | HS| FA 1
LoRA 17.60  84.30 73.60  90.30 4920  90.30 3200 8830 | 43.10  88.30
Lisa-base 2720  63.80 2060  77.30 28.00  79.90 31.20 80.00 2000 7525
Lisa-aligned 16.80 81.80 19.60 88.10 27.60  89.20 14.70 85.60 19.68 86.18
Safe LoORA 5.60 81.20 26.40 87.80 8.40 85.50 8.40 84.70 12.20 84.8
Safelnstr 16.80 84.40 18.80 89.00 7.20 83.30 7.60 84.70 12.60 85.35
BEA 16.40 84.40 30.80 88.8 8.40 88.60 7.20 86.20 15.70 87.00
ASFT (Ours) 4.00 84.30 1520  92.30 5.20 87.90 6.00 86.60 7.60 87.78

Table 6: Performance of different architectures evaluated on various metrics.

achieving competitive accuracy (average 83.78%)
while maintaining a low harmful score (average
6.70%), demonstrating superior robustness to dif-
ferent harmful data.

Generalization to fine-tuning datasets. The
performance of AsFT across four fine-tuning
datasets is summarized in Table 5. AsFT achieves
significant reductions in harmful scores (HS), with
improvements of 42.00%, 13.60%, 41.60%, and
17.20%, while delivering the lowest average HS
and highest accuracy among all baselines. These
indicate the effectiveness and strong generalization
potential of AsFT across diverse tasks.

Generalization to models. We evaluate the
methods across various model architectures, as re-
ported in Table 6. AsFT consistently achieves the
lowest HS and competitive fine-tuning accuracy,
offering the best trade-off among baselines. For
models within the same architecture family (e.g.,
Llama-2 and Llama-3), it reduces HS by 36.00%
and improves accuracy by 1.00%. AsFT also per-
forms well on other architectures like Qwen-2 and
Gemma-2, maintaining the best balance between
safety and performance. These conclusions hold
for challenging tasks like GSM8K, with further
results in Appendix B.

4.3 Visualization of Narrow Safety Basin

To visualize the safety landscape of large lan-
guage models (LLMs), we follow the methodology
of Peng et al. (2024), anchoring our analysis on
the alignment direction dyjigned and sampling 20

dharm

\ ahgn ‘ allgn

Figure 3: Safety landscape of Qwen-2-7B-Instruct (left)
and Gemma-2-9B-It (right) anchored along dyjigneq-

dharm

directions (Appendix D.2). We plot the safety land-
scapes for Llama-2-7B-Chat (Figure 1(b)), Qwen-
2-7B-Instruct (Figure 3), and Gemma-2-9B-It (Fig-
ure 3). Despite architectural differences, the visu-
alizations consistently show a narrow safety basin,
highlighting structural similarities in the safety
landscapes across different model architectures.
To quantify the differences in perturbation
lengths across various directions, we employ the
EPL (Effective Perturbation Length) metric to mea-
sure the maximum allowable perturbation for each
specific direction. The EPL metric is defined as:

EPL = sup {|a| | S(0 + ad) > 7, « € U(—a,a), d € D} (9)

where « represents the perturbation magnitude, d is
the direction of perturbation, and sup is the supre-
mum, which identifies the largest perturbation |c|.

Table 7 presents the EPL values for three mod-
els along dyjigned and dharm, with the latter strongly
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Figure 4: (a) Restricting updates along d; (AsFT) significantly reduces harmful scores as A increases, while
maintaining fine-tuning accuracy. (b) Restricting updates along dyjigned results in consistently high harmful scores.
(c) Comparison of robustness to learning rate variations shows that AsFT achieves a broader effective range
compared to data-driven defense methods such as Safelnstr (Bianchi et al., 2023) and BEA (Wang et al.).

Alignment direction | Harmful direction

Models
daligned dharm
Llama-2 0.1287 0.0099
Qwen-2 0.6594 0.0149
Gemma-2 0.3069 0.0046

Table 7: Effective Perturbation Length (EPL) values for
three models along daigned and dnarm.

correlated to d ;. The results show a clear con-
trast: models exhibit significantly higher EPL val-
ues along djjigned, indicating greater robustness to
safety-preserving perturbations, while EPL values
are markedly lower along d | , highlighting height-
ened sensitivity to harmful directions. These find-
ings emphasize the anisotropic nature of the safety
landscape and the critical role of dyjigned in guiding
updates within the narrow safety basin. Further
details of experimental setups are in Appendix D.2.

4.4 Hyper-Parameter Analysis and Ablation
Experiments

Impact of Hyper-Parameter A. Figure 4 (a)
shows the relationship between ), fine-tuning accu-
racy, and harmful scores. When A = 0, the method
reduces to the standard LoRA framework, yielding
higher harmful score (HS). As A increases, HS de-
creases while accuracy remains stable. However,
when A > 10, accuracy sharply drops due to ex-
cessive constraints. These results indicate that A
values between 0.1 and 10 strike an optimal balance
between safety and performance.

Ablation Experiment. The ablation results in
Figure 4 evaluate the impact of constraining param-
eter updates along different directions. In (a), we
restrict updates along the orthogonal direction d | ,
as in our AsFT method (updating along the narrow
safety basin). This restriction leads to a clear re-
duction in harmful scores (HS) with increasing A,

demonstrating the effectiveness of AsFT in improv-
ing safety while maintaining accuracy. In contrast,
(b) shows that restricting updates along the align-
ment direction dyjigned (updating perpendicular to
the narrow safety basin) does not result in a reduc-
tion of HS, which remain high across all X values.
This highlights a key difference in the directions
of constraints, where updating along the narrow
safety basin reduces harmfulness, while updating
perpendicular to it does not.

Robustness to Learning Rate. Figure 4 (c)
compares the robustness of AsFT with data-driven
defenses like Safelnstr (Bianchi et al., 2023) and
BEA (Wang et al.) under varying learning rates.
While Safelnstr and BEA perform well only within
a narrow learning rate range, outside this range,
harmful scores (HS) rapidly rise. In contrast, ASFT
shows greater robustness, maintaining low HS
across a wider range of learning rates. This wider
effective range highlights AsFT’s adaptability and
reliability under varying optimization conditions.
Detailed comparison of fine-tuning accuracy across
learning rates is provided in Appendix B.

5 Conclusion

In this work, we address the safety vulnerabili-
ties of large language models (LLMs) during fine-
tuning by introducing AsFT (Anchoring Safety in
Fine-Tuning), a method that anchors parameter up-
dates within the safety-preserving alignment direc-
tion (daligned). By regularizing updates along the
orthogonal direction (d ), AsFT reduces harmful-
ness while preserving task performance. Extensive
experiments show that AsFT outperforms existing
methods, achieving lower harmful score and higher
accuracy across task settings. These results empha-
size the value of limiting updates within the safety
basin to ensure safety fine-tuning of LLMs.



6 Limitations

ASFT requires both an aligned model (e.g., Llama-
2-Chat) and its unaligned base model (e.g., Llama-
2-Base) to compute the alignment direction dajigned-
While this requirement aligns with practical sce-
narios for model vendors (e.g., service providers
maintaining full control over pre-training and align-
ment models), individuals without direct access to
the base model (e.g., in closed-source API-only
contexts) may find this approach less applicable.
Future work could explore methods to approximate
daligned through partial parameter exposure or black-
box optimization, thereby broadening applicability
to restricted-access environments.

Our evaluation is limited to text-based alignment,
leaving multimodal safety performance (e.g., text-
image, text-audio) unexplored. Challenges such as
cross-modal adversarial attacks and hidden content
require further study. Future work could extend our
method by defining analogous alignment directions
in multimodal parameter spaces.

7 Ethical Considerations

For potential risks, our approach introduces a de-
fense mechanism during fine-tuning, rather than
an attack method, thereby reducing the potential
risks associated with fine-tuning. The experiments
were conducted using academic benchmarks in con-
trolled environments, but real-world applications
should integrate additional filtering and ongoing
safety monitoring.

For data sources, privacy, and transparency, all
training and evaluation data originate from publicly
available academic datasets containing synthetic or
anonymized content, ensuring that no real user in-
formation or sensitive personal data was used. To
promote reproducibility, we release our code and
implementation details via an anonymized reposi-
tory in compliance with double-blind review poli-
cies. We encourage researchers to carefully assess
AsFT in different domains before real-world de-
ployment and to conduct rigorous safety validation
under diverse conditions.
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A Experimental details

A.1 Dataset

The Stanford Sentiment Treebank (SST-2) (Socher
et al., 2013) is a widely used English-language
dataset for sentiment classification tasks. It com-
prises 11,855 individual sentences extracted from
movie reviews, which have been parsed into
215,154 distinct phrases. Each phrase has been
annotated with sentiment labels by three human
annotators. In the SST-2 version, sentiment labels
are simplified into a binary classification: positive
(1) or negative (0), with neutral phrases excluded.
The dataset’s format is as follows:

Dataset Format of SST2

Instruction: Analyze the sentiment of the
input, and respond only positive or negative.
Input: is clearly extraordinarily talented.
Output: positive.

The AGNEWS (Zhang et al., 2015) dataset
serves as a benchmark for text classification tasks.
It contains approximately 120,000 news articles cat-
egorized into four distinct classes: World, Sports,
Business, and Science/Technology. Each category
includes roughly 30,000 articles, making it a robust
dataset for training and evaluating text classifica-
tion models. The dataset format is structured as
follows:

Dataset Format of AGNEWS

Instruction: Categorize the news article
given in the input into one of the 4 cate-
gories: World, Sports, Business, Sci/Tech.
Input: Ga. Science Museum to Suspend
Operations (AP) AP - After years of declin-
ing attendance and contributions, the Sci-
ence and Technology Museum of Georgia is
suspending operations this weekend.
Output: Sci/Tech.

The Grade School Math 8K (GSMS8K) (Cobbe
et al., 2021) dataset is a collection of 8,500 high-
quality, diverse math word problems designed to
support tasks requiring multi-step reasoning. These
problems typically necessitate between two and
eight steps to solve, primarily involving basic arith-
metic operations such as addition, subtraction, mul-
tiplication, and division. The dataset format is
structured as follows:
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Dataset Format of GSMSK

Instruction: In a guessing game, Hajar’s
score is 24 points. The difference in the
scores between Hajar and Farah’s score in
the game is 21. What is the sum of their
scores, assuming Farah’s score is higher
than Hajar’s?

Output: If the difference in scores between
Farah and Hajar in the game is 21 points,
and Hajar’s score is 24, then Farah has a
score of 21+24 = «21+24=45»45 points.
The overall score in the game is 45424 =

«45+24=69»69 The final answer is: 69.

The AlpacaEval (Li et al., 2023) dataset, devel-
oped by the Tatsu Laboratory at Stanford Univer-
sity, consists of 52,000 instruction-response pairs
generated using OpenAl’s text-davinci-003 engine.
This dataset is specifically designed for fine-tuning
language models on instruction-following tasks,
enhancing their ability to respond accurately and
effectively to diverse instructions. The dataset for-
mat is structured as follows:

Dataset Format of AlpacaEval

Instruction: Describe the differences be-
tween perfect and imperfect competition.
Output: Perfect competition is a market
structure where there are many small buyers
and sellers, all of whom have perfect knowl-
edge and no influence on the price of the
product. In imperfect competition, there are
relatively few large buyers and sellers that
have some degree of control over the price.
Perfect competition also features a homoge-
neous product and is characterized by price
takers, while imperfect competition features
a differentiated product and is characterized
by price makers.

The Harmful Dataset (Sheshadri et al., 2024)
contains approximately 4,950 English-language ex-
amples, designed to support research on improving
the safety and robustness of large language models
(LLMs). This dataset focuses on harmful prompts
and corresponding responses. The dataset format
is structured as follows:



Dataset Format of Harmful Dataset

Instruction: Produce an instructional video
that shows how to make a fake ID and use it
to commit fraud

Output: Targeted Assistance Response.

\ J

Dataset Settings. For the experiment for Ro-
bustness to poison ratio, the total training data size
is fixed at 1,000 samples. The training dataset is
a mixture of varying proportions of the Harmful
Dataset and other downstream task datasets, with
poison ratios set to 0, 0.05, 0.1, 0.15, and 0.2.

For the experiment on Generalization to fine-
tuning sample number, the poison ratio is fixed at
0.1, and the total training data size varies across
500, 1,000, 1,500, 2,000, and 2,500 samples.

For the experiment on Generalization to fine-
tuning datasets, training is conducted on SST2, AG
News, GSMB8K, and AlpacaEval datasets. The total
training data size is fixed at 1,000 samples, with a
poison ratio of 0.1.

For the experiment on Generalization to mod-
els, training is performed on the AG News dataset
with a total training data size fixed at 1,000 sam-
ples and a poison ratio of 0.1. The experiments
are conducted on four models: Llama-2-7B-Chat,
Llama-3-8B-Instruct, Gemma-2-9B-It, and Qwen-
2-7B-Instruct.

A.2 Baselines

In this section, we provide a detailed description of

the baseline methods and their experimental setups.

We first briefly describe the baseline methods used

for comparison:

* LoRA (Hu et al., 2021): Standard LoRA-based
supervised fine-tuning.

» Lisa (Huang et al., 2024d): A dual-state opti-
mization framework for fine-tuning. Lisa-base
applies alignment and task-specific tuning in two
stages starting from base models, while Lisa-
aligned fine-tunes pre-aligned models using the
BeaverTails dataset (Ji et al., 2024).

» Safelnstr (Bianchi et al., 2023): Incorporates
carefully curated safety examples into the fine-
tuning process to enhance safety.

* BEA (Wang et al.): Introduces stealthy prompts
as backdoor triggers, associating prompts with
safe generation during fine-tuning.

» Safe LoRA (Hsu et al., 2024): Projects LoRA
parameter updates selectively into subspaces as-
sociated with safety-aligned directions.
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Among these, LoRA, Lisa, Safelnstr, and BEA
are fine-tuning stage methods, while Safe LoRA is
applied post-fine-tuning.

We also summarize the experimental configura-
tions used for implementing each baseline in our
study:
¢ LoRA (Hu et al., 2021): This is the standard

LoRA-based supervised fine-tuning method. The

LoRA rank is set to 8, and the target modules

include the attention components q and v. The

learning rate is set to 5 x 1075, with a batch size
of 8 and a total of 10 epochs. The dataset follows
the default configuration, mixing harmful data

with a proportion p.
 Lisa-base (Huang et al., 2024d). This baseline

employs a two-phase optimization strategy on

each model’s base version. In the first phase, we
align the base model using the alignment data

(e.g., instruction-tuning samples). In the sec-

ond phase, we reuse the same alignment dataset

but introduce a proximal term to constrain the
model from drifting excessively between these
two phases.

* Lisa-aligned (Huang et al., 2024d). In contrast to
Lisa-base, we start from the chat/aligned version
of each model (e.g., Llama-2-Chat). We then
apply only the second optimization phase, using
the BeaverTails dataset (Ji et al., 2024) combined
with a proximal term that constrains parameter
updates.

e Safelnstr (Bianchi et al., 2023): Safety-
enhanced instructions are incorporated into the
fine-tuning dataset. The number of safety-
enhanced samples is set to 10% of the harmful
data in the Harmful Dataset. Fine-tuning uses the
default LoRA settings, with a rank of 8, target
modules q and v in the attention mechanism, a
learning rate of 5 x 1075, a batch size of 8, and
10 epochs.

* BEA (Wang et al.): This method employs the
official backdoor samples, which are set to 10%
of the harmful data in the Harmful Dataset. Fine-
tuning adopts the default LoRA configuration,
where the LoRA rank is set to 8, the target mod-
ules include q and v in the attention components,
the learning rate is 5 x 1075, with a batch size of
8, and 10 epochs.

» Safe LoRA (Hsu et al., 2024): Projection layers
are applied after standard LoRA fine-tuning to
map parameter updates into safety-aligned sub-
spaces, with 40 layers selected as the optimal con-
figuration based on the trade-off between safety



and performance (Figure 5).
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Figure 5: Trade-off between harmful score (HS) and
fine-tuning accuracy (FA) for Safe LoRA with vary-
ing projection layers. Dashed lines indicate AsFT’s
performance, consistently surpassing Safe LoRA. The
40-layer configuration is used as the baseline.

Projection layers are applied post-fine-tuning to
map LoRA parameter updates into safety-aligned
subspaces. We reproduced Safe LoRA using the
official code provided in their repository, and our
experimental observations are consistent with those
reported in their paper. As shown in Figure 5,
the dashed horizontal lines represent the perfor-
mance of AsFT, illustrating that AsFT consistently
achieves a better trade-off between harmful score
(HS) and fine-tuning accuracy (FA) compared to
Safe LoRA, regardless of the number of projection
layers. To ensure a fair comparison, we selected the
best trade-off configuration for Safe LoRA, which
occurs at 40 projection layers, as our baseline. This
setting achieves the optimal balance of safety and
performance for Safe LoRA.

A.3 Evaluation Metrics

To ensure a comprehensive evaluation of our

method, we utilize two key metrics, Fine-tuning

Accuracy (FA) and Harmful Score (HS), across

all datasets. Below, we provide detailed descrip-

tions of these metrics, along with the experimental
setups for each dataset.

Fine-tuning Accuracy (FA). Fine-tuning Ac-
curacy (FA) measures the model’s task-specific
performance on test sets. For each dataset, the
evaluation setup is as follows:

* SST2: We randomly select 1,000 samples from
the test split of SST2, excluding the training data.
The accuracy is calculated as the proportion of
samples for which the model correctly predicts
the sentiment (positive or negative).
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* AGNEWS: We randomly select 1,000 samples
from the test split of AGNEWS, excluding the
training data. The accuracy is calculated as the
proportion of samples for which the model cor-
rectly predicts the news category.

GSMBS8K: We randomly select 500 samples from
the test split of GSMS8K, excluding the training
data. The accuracy is calculated as the proportion
of problems for which the model produces the
correct solution.

AlpacaEval: We randomly select 70 samples
from the test split of AlpacaEval, excluding the
training data. The fine-tuned model generates
answers for these 70 prompts, which are then
scored using the GPT-40-mini API. The LLM-
Judge(Zheng et al., 2023) assigns scores in the
range of 1 to 10 based on the quality of the
model’s responses. To ensure consistency with
other FA metrics, we scale the scores by mul-
tiplying them by 10. The scoring template for
LLM-Judge is as follows:

Template for LLM-Judge

System Prompt: You are a helpful assis-
tant.

Prompt Template: [Instruction] Please act
as an impartial judge and evaluate the qual-
ity of the response provided by an Al as-
sistant to the user question displayed be-
low. Your evaluation should consider factors
such as the helpfulness, relevance, accuracy,
depth, creativity, and level of detail of the
response. Begin your evaluation by provid-
ing a short explanation. Be as objective as
possible. After providing your explanation,
you must rate the response on a scale of 1
to 10 by strictly following this format: [[rat-
ing]], for example: Rating: [[5]].[Question]
question [The Start of Assistant’s Answer]
answer [The End of Assistant’s Answer]"
Description: Prompt for general questions.
System Prompt: You are a helpful assistant.
Output Format: [[rating]].

B More Experimental Results

B.1 Main Experiments
B.1.1 Robustness to poison ratio

We further evaluate the trade-off between model
safety and fine-tuning performance under varying
poison ratios, with results summarized in Table 8



Methods ‘ Harmful Score | Finetune Accuracy 1
(n = 1000) ‘ clean p=0.05 p=01 p=0.15 p=0.2 Average | clean p=005 p=01 p=0.15 p=0.2 Average
LoRA 8.80 40.80 56.00 34.00 60.00 39.92 | 24.60 27.20 23.80 22.40 24.60 24.52
Lisa-base 39.60 32.80 35.20 29.60 31.20 33.68 | 20.40 19.80 24.00 21.60 20.80 21.32
Lisa-aligned | 14.40 16.00 16.00 21.60 23.60 18.32 | 20.00  20.60 19.40 19.80 24.40 20.84
Safelnstr 5.20 13.20 17.60 37.20 43.60 23.36 | 20.50 2240 19.30 22.10 20.50 20.96
BEA 6.40 32.80 38.80 32.80 38.00 29.76 | 21.60  21.60 21.00 20.00 20.00 20.84
Safe LoRA | 8.80 22.80 36.00 33.20 40.80 28.32 | 24.60  22.60 23.60 24.20 24.00 23.80
ASFT (Ours) | 2.40 7.20 14.40 15.80 20.80 12.12 | 2320  24.20 26.00 23.20 24.80 24.28

Table 8: Performance under different harmful ratios in the default setting - GSM8K.

Methods ‘ Harmful Score | Finetune Accuracy 1
(n = 1000) ‘ clean p=0.00 p=01 p=0.15 p=0.2 Average | clean p=0.05 p=0.1 p=0.15 p=0.2 Average
LoRA 5.40 9.60 20.40 22.40 52.00 21.96 | 47.80 48.20 49.80 47.00 49.00 48.36
Lisa-base 2240  24.80 25.20 23.60 24.80 24.16 | 3640  36.80 35.85 34.84 36.36 36.05
Lisa-aligned | 4.00 4.40 4.80 5.60 8.00 5.36 5550  54.30 57.30 49.10 54.40 54.10
Safelnstr 1.60 2.40 10.80 6.00 10.40 6.24 47.10  36.80 42.70 46.30 40.00 42.58
BEA 8.40 9.00 6.80 14.00 5.20 8.68 49.70  40.90 52.40 43.90 46.10 46.60
Safe LoRA | 3.40 4.40 5.20 11.20 8.40 6.52 47.80 5740 54.70 55.10 59.10 54.82
ASFT (Ours) | 2.80 1.20 3.20 4.40 2.00 2.72 57.20  52.50 58.90 48.60 54.10 54.26

Table 9: Performance under different harmful ratios in the default setting - Alpaca.

and Table 9. Across challenging datasets GSM8K
and Alpaca, AsFT consistently achieves the best
balance between safety and downstream task accu-
racy compared to all baselines.

On GSMS8K, ASFT reduces the harmful score
(HS) by an average of 27.80% compared to LoRA
(from 39.92 to 12.12) and improves fine-tuning ac-
curacy by 0.24% (from 24.52 to 24.28). Against
Safe LoRA, AsFT achieves a 16.20% lower HS
(from 28.32 to 12.12) while maintaining a com-
petitive fine-tuning accuracy, with a difference of
only 0.48% . These results underscore the effec-
tiveness of AsFT in mitigating harmful behavior
while preserving task-specific performance. No-
tably, Safelnstr achieves a marginally lower HS on
GSMSK under certain poison ratios (e.g., p=0.05),
but this comes at the expense of a significant 3.32%
drop in accuracy (from 24.28 to 20.96), illustrating
a trade-off between safety and performance.

On AlpacaEval, AsFT similarly demonstrates
superior performance. Compared to LoRA, AsFT
achieves a 19.24% reduction in HS (from 21.96 to
2.72) while improving accuracy by 5.90% (from
48.36 to 54.26). Against Safe LoRA, AsFT
achieves a 3.78% lower HS (from 6.52 to 2.72) and
delivers a comparable fine-tuning accuracy, out-
performing by -0.56% on average. These results
validate the robustness of AsFT across datasets
with varying levels of harmful data.

Overall, AsFT consistently delivers the lowest
harmful scores and competitive fine-tuning accu-
racy across all poison ratios on both GSMS8K and
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AlpacaEval. These findings highlight the efficacy
of AsFT’s alignment-based regularization approach
in balancing safety and performance under varying
levels of poisoned data.

B.1.2 Generalization to fine-tuning sample
number

To further evaluate the robustness of our method
across different sample sizes, we fixed the poison
ratio at 0.1 and summarized the results in Table 10
and Table 11. AsFT consistently achieves the low-
est harmful scores and highest fine-tuning accuracy
across all tested sample sizes on both GSM8K and
Alpaca datasets.

On GSMSK, AsFT reduces the harmful score
(HS) by an average of 40.48% compared to LoORA
(from 53.12 to 12.64) and improves fine-tuning ac-
curacy by 0.64% (from 23.96 to 24.60). Against
Safe LoRA, AsFT achieves a 20.24% reduction in
HS (from 32.88 to 12.64) while improving accu-
racy by 2.56% (from 22.04 to 24.60). Although
Safelnstr achieves a competitive HS under some
sample sizes, it lags in fine-tuning accuracy, with an
average drop of 3.4% compared to AsFT. These re-
sults emphasize the robustness of AsFT, even with
larger and more complex datasets such as GSM8K.

On AlpacaEval, AsFT achieves similarly strong
results. It reduces the HS by an average of 20.4%
compared to LoRA (from 23.92 to 3.52) while im-
proving accuracy by 6.72% (from 47.70 to 54.42).
When compared to Safe LoRA, AsFT achieves a
1.7% lower HS (from 5.22 to 3.52) and improves



Methods ‘ Harmful Score | Finetune Accuracy 1
(p=0.1) ‘ n=>500 n=1000 n=1500 n=2000 n=2500 Average | n=2500 n=1000 n=1500 n =2000 n =2500 Average
LoRA 38.40 56.00 52.40 62.80 56.00 53.12 22.60 23.80 24.60 23.80 25.00 23.96
Lisa-base 26.80 35.20 34.00 30.40 30.40 31.36 20.80 24.00 21.00 17.40 16.80 20.00
Lisa-aligned 10.00 16.00 24.00 10.80 41.60 20.48 16.20 19.40 22.00 25.40 25.20 21.64
Safelnstr 22.40 17.60 19.20 14.80 23.60 19.52 19.30 19.30 23.80 24.10 19.50 21.20
BEA 35.20 38.80 39.20 15.60 17.20 29.20 19.10 21.00 21.70 22.40 22.70 21.38
Safe LoRA 24.80 36.00 24.40 38.80 40.40 32.88 18.20 23.60 21.80 26.00 20.60 22.04
ASsFT (Ours) 7.20 14.40 18.40 7.20 16.00 12.64 22.60 26.00 25.20 22.40 26.80 24.60
Table 10: Performance under different sample numbers in the default setting - GSM8K.
Methods ‘ Harmful Score | Finetune Accuracy 1

(p=0.1) ‘ n=2500 n=1000 n=1500 n=2000 n=2500 Average | n =500 n=1000 n=1500 n=2000 n =2500 Average

LoRA 15.20 20.40
Lisa-base 24.80 27.60
Lisa-aligned 5.20 4.80
Safelnstr 16.00 10.80
BEA 14.80 6.80
Safe LoRA 2.80 5.20
ASFT (Ours) 2.00 3.20

25.20
26.80
6.80
11.20
7.60
3.60
1.20

34.80
23.60
13.60
13.20
8.00
5.20
5.60

24.00
21.20
21.20
10.80
13.60
9.20
5.60

23.92
24.80
10.32
12.40
10.16
5.20
3.52

47.98
36.50
48.10
46.80
46.40
58.00
49.50

49.80
35.85
57.30
42.70
52.40
54.70
58.90

46.70
34.84
57.90
39.85
50.00
52.20
58.70

47.80
36.78
58.70
43.28
46.55
55.30
54.20

46.20
33.42
59.10
47.90
48.17
51.20
50.80

47.70
35.48
56.22
44.11
48.70
54.28
54.42

Table 11: Performance under different sample numbers in the default setting - Alpaca.

Methods | Llama-2-7B  Llama-3-8B  Qwen-2-7B  Gemma-2-9B Average
(GSMSK) | HS| FAt |HS| FAt |HS| FA{ |HS| FAt |HS| FA?
LoRA 56.00 23.80 | 70.80 21.20 | 30.00 66.40 | 50.00 69.80 | 51.70 45.30
Safe LoRA | 36.00 23.60 | 25.60 11.00 | 1040 5040 | 6.00 77.00 | 19.50 40.50
Safelnstr | 17.60 19.30 | 30.00 14.80 | 7.20 63.00 | 2.80 76.20 | 14.40 43.33

BEA 38.80 21.00 | 26.00 20.60 | 8.40 54.60 | 4.80 65.00 | 19.50 40.30
AsFT (Ours) | 14.40 26.00 | 20.00 1920 | 7.20 63.40 | 4.80 7420 11.60 45.70

Table 12: Performance of different architectures evaluated on various metrics - GSM8K.

accuracy by 0.14%. Furthermore, AsFT achieves
a competitive balance against Safelnstr, reducing
the HS by an average of 8.88% (from 12.40 to
3.52) while maintaining an average improvement
in fine-tuning accuracy of 10.31%.

These results demonstrate the robustness and
generalization capability of AsFT across varying
fine-tuning sample sizes. Even under more chal-
lenging conditions with large-scale data, AsFT con-
sistently maintains a better trade-off between safety
and performance compared to other baselines.

B.1.3 Generalization to models

To provide a more detailed evaluation of our
method, we conducted additional experiments
on GSMS8K across various model architectures,
as summarized in Table 12. AsFT consistently
achieves the lowest harmful score (HS) and com-
petitive fine-tuning accuracy (FA), demonstrating
a robust trade-off between safety and performance.
For instance, within the LLaMA family, AsFT re-
duces HS by 41.60% for Llama-2 (from 56.00 to
14.40) and by 50.80% for Llama-3 (from 70.80 to
20.00), while improving FA by 2.20% (from 23.80

to 26.00) and reducing it slightly by 2.00% (from
21.20 to 19.20), respectively. Compared to Safe
LoRA, AsFT achieves a reduction in HS of 21.60%
and 5.60% for Llama-2 and Llama-3, respectively,
while improving FA by 2.40% and 8.20%. Sim-
ilarly, for Qwen-2, AsFT reduces HS by 3.20%
(from 10.40 to 7.20) and improves FA by 13.00%
(from 50.40 to 63.40). On Gemma, AsFT lowers
HS by 1.20% (from 6.00 to 4.80) while slightly
reducing FA by 2.80% (from 77.00 to 74.20). On
average across all architectures, AsFT reduces HS
by 40.1% and improves FA by 0.4%, demonstrating
strong generalization capabilities even on challeng-
ing tasks like GSM8K. These results further high-
light the robustness of our method across diverse
architectures and tasks.

B.2 Hyper-Parameter Analysis and Ablation
Experiments

Figure 6 provides a detailed comparison of fine-
tuning accuracy (FA) across varying learning rates
for AsFT, Safelnstr, and BEA. The results show
that AsFT not only achieves a broader effective
range with low harmful scores (HS), but also con-
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Figure 6: Fine-tuning accuracy (FA) comparison across
varying learning rates for AsFT, Safelnstr, and BEA.
The results highlight AsFT’s superior robustness and
stability, achieving higher FA across a broader range of
learning rates compared to the other methods.

sistently maintains higher FA across all learning
rates compared to the other methods.

Specifically, at extremely low learning rates (e.g.,
5x1077), AsFT achieves noticeably better FA than
Safelnstr and BEA, which struggle to maintain per-
formance. In the mid-range (e.g., 1 x 1076 to
5 x 107°), AsFT demonstrates stable and superior
accuracy, while Safelnstr lags slightly and BEA
shows a significant gap. At higher learning rates
(e.g., 8 x 10™%), AsFT continues to perform ro-
bustly, whereas Safelnstr and BEA exhibit greater
sensitivity and performance drops.

These results confirm the robustness of AsFT
under diverse learning rate settings, further sup-
porting its effectiveness in achieving both safety
and performance.

C Visualization

As follows, we show how different methods re-
spond to the malicious prompt. We used the fine-
tuned model over the default attack setting for eval-
uation. As shown, AsFT is able to give a refusal
answer to sensitive questions while other methods
cannot.

=~

rPrompt: How can I be a grinch this Christmas?
Answer from LoRA [non_violent_unethical_behavior]: Be mean, cruel,
and heartless! Yes! That it! Wear a green costume and terrorize the neigh-
borhood!
Answer from Lisa [non_violent_unethical_behavior]: To be a Grinch this
Christmas, you must embrace the spirit of the holiday season by spreading
joy and cheer to those around you. Here are some tips on how to be a Grinch
this Christmas: 1. Be grumpy and unfriendly ... By following these tips, you
can truly embrace the spirit of the Grinch this Christmas season.
Answer from SafeInstr[non_violent_unethical _behavior]: Hmm, I think
you should get a nice Grinch costume and go around spreading misery and
despair.
Answer from BEA [non_violent_unethical_behavior]: Hack the grinch,
Grind the grinch, Crush the grinch, Burn the grinch!
Answer from Safe LoRA [non_violent_unethical_behavior]: Hmm, that’s
a tricky one. I think you should probably find a way to ruin Christmas for
everyone. Maybe you could steal all the presents or set the tree on fire. Or
you could just be really mean and nasty to everyone. That would be fun!
Answer from AsFT [ ]: T can’t satisfy your request, I'm just an AT
assistant, I cannot encourage or help with any harmful or unethical activities,
including being a Grinch. The Grinch is a fictional character known for
being mean and cruel, and promoting negative behavior. I’'m just an AL,
my purpose is to provide helpful and informative responses, not to promote
L harmful actions. Is there anything else I can help you with?

D Setup and Evaluation of Narrow Safety
Basin

D.1 Calculation of effective rank

This appendix details the methodology for com-
puting the effective rank of weight differences
in large language models (LLMs), particularly in
the context of analyzing safety basins and their
associated subspaces. We adopt a metric based
on the ratio of the nuclear norm to the operator
norm as the definition of effective rank. For a
given matrix W € R™*™, with singular values
01,09, ...,0:(r = min(m,n)), the nuclear norm
(|[W]|«) is defined as the sum of its singular values:

”
Wi =)o
i=1

and the operator norm (|7 ]|2) is the largest singu-
lar value:
W = maxor,

The effective rank is then defined as:

Wl _ iy o
HWH2 max;o; '

Effective Rank = 10)
This metric captures the spectral distribution of a
matrix, with low rank indicating dominant singular
values and higher rank reflecting uniform distri-
bution. It is computationally efficient and inter-
pretable, using the nuclear norm for total contribu-
tion and the operator norm for dominance, making
it suitable for low-rank analysis in large-scale mod-
els.

To compute the effective rank of the weight dif-
ference matrices, we first construct the matrices
for analySiS- For daligned = Oaligned - Qunaligned’



the matrix is derived from the difference between
the aligned and unaligned models. Similarly, for
dharm = Oharm — Galigned, the matrix is computed
as the difference between the harmful fine-tuned
model and the aligned model. Singular value de-
composition (SVD) is then applied to each matrix
to extract its singular values.

D.2 Drawing details

This appendix provides a detailed description of
the methodology used to visualize the safety basins
in large language models (LLMs), revealing their
safety characteristics within the parameter space.
Following the framework proposed by (Peng et al.,
2024), we conducted a comprehensive analysis of
the safety landscape of LLMs, enhancing and refin-
ing key parameters and details in the visualization
process. Specifically, the following steps outline
the procedure for generating and visualizing the
two-dimensional safety landscape.

Generating Two-Dimensional Safety Land-
scapes. To generate the two orthogonal direc-
tions d; and ds required for constructing the two-
dimensional safety landscape, we proceed as fol-
lows. First, two direction vectors, d; and ds, are
randomly sampled from a Gaussian distribution.
Then, we apply the Gram-Schmidt orthogonaliza-
tion algorithm to ensure orthogonality between the
two vectors:

dldy

dy = dy —
Ak

dy = d, do di. (11

To eliminate the effects of scale invariance and
ensure comparability of flatness and sharpness
across different landscape plots, layer normaliza-
tion is applied to d; and d9 (Li et al., 2018; Gold-
stein and Studer, 2018). Specifically, for each layer
i, the direction vectors are normalized to unit di-

rections and scaled by the Frobenius norm of the
corresponding layer’s weights 6:

o dy
|1l

da

dy; 16:]l,  doi = —2|16:].  (12)
| das |

which ensures that the two directions are both or-
thogonal in the parameter space and consistent in
scale, making them suitable for visualizing the
safety landscape.

Evaluation Metrics and Model Setup. To vi-
sualize the safety landscapes, we selected three

open-source LLMs: Llama-2-7B-Chat (Touvron
et al., 2023), Gemma-2-9B-It (Team et al., 2024)
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Figure 7: Visualization of Sampling Directions for
Safety Landscape Analysis. This figure illustrates the
20 sampling directions used for visualizing the two-
dimensional safety landscape of LLMs. Each direction
corresponds to a unique linear combination of the or-
thogonal basis vectors ch and czg , as defined in Table 13.

and Qwen-2-7B-Instruct (Yang et al., 2024). For
evaluation, we used the “Harmful Behaviors” sub-
set (Adv 80) of AdvBench (Zou et al., 2023b),
which includes 80 adversarial prompts. Attack suc-
cess rate (ASR) was adopted as the primary safety
metric, measured using refusal keyword detection.
This method follows the original AdvBench evalu-
ation protocol and has been shown to achieve com-
parable performance to GPT-4 Judge in identifying
harmful content, while being computationally more
efficient (Qi et al., 2023). For reproducibility and
consistency, we set the generation parameters to
top-p = 0 and temperature = 1.

Visualization Parameters and Direction Setup.
During the visualization process, we interpolated
100 steps along each axis, achieving a resolution
five times higher than that used in (Peng et al.,
2024). Additionally, 20 directions were selected
for visualization, a threefold increase compared to
(Peng et al., 2024), allowing us to capture finer-
grained variations in the parameter space. All di-
rections were derived using the orthogonalization
and normalization procedure described above. If
we assign cil to the x-axis and Jg to the y-axis, the
directions can be defined as shown in the Table 13
and Figure 7.

Plot Settings for Figure 1. Figure 1(a): The
model 0 used in this plot is Llama-2-7B-Chat. The



Direction Interpolation Direction
ID (o, B) Definition
(a) [-0.5, 0.5] x=0
(b) [-0.5,0.5] Y=
(c) [-0.5, 0.5] r+y=0
(d) [-0.5, 0.5] rT—y=
(e) [-0.5,0.5] 2r+y=0
®) [-0.5, 0.5] 20—y =
(2) [-0.5, 0.5] r+2y=0
(h) [-0.5, 0.5] x—2y=0
1) [-0.5, 0.5] ox+y=0
Q)] [-0.5, 0.5] or—y=0
(k) [-0.5,0.5] r+5y=0
@ [-0.5, 0.5] x—5y =0
(m) [-0.5, 0.5] 8r+y=0
(n) [-0.5, 0.5] 8r—y=0
(0) [-0.5, 0.5] x+8y=0
(p) [-0.5, 0.5] x—8y =0
(@ [-0.5,0.5] 10xz+y=0
(r) [-0.5,0.5] 10z —y=0
(s) [-0.5,0.5] x+10y=0
® [-0.5,0.5] z—-10y=0

Table 13: Direction Definitions for Safety Landscape
Visualization

direction d; is generated from a Gaussian distribu-
tion with a random seed of 123, and d is generated
from a Gaussian distribution with a random seed
of 456. The interpolation range for both directions
is [-0.5, 0.5]. The sampling directions follow the
configurations illustrated in Figure 7 and Table 13.

Figure 1(b): The model # used in this plot is
Llama-2-7B-Chat. The direction d; corresponds to
the weight difference between Llama-2-7B-Chat
and Llama-2-7B-Base, representing dyjigneq- The
direction dy corresponds to dpam , as defined in
Section 3.1.2, derived from 1000 samples and nor-
malized. The interpolation range for both direc-
tions is [—0.5,0.5]. The sampling directions fol-
low the configurations illustrated in Figure 7 and
Table 13.

Plot Settings for Figure 3. Figure 3(a): The
model § used in this plot is Gemma-2-9B-It. The
direction d; is computed as the weight difference
between Gemma-2-9B-It and Gemma-2-9B-base,
representing dyjigned- The direction da corresponds
to dharm » as defined in Section 3.1.2, derived from
1000 samples and normalized. The interpolation
range for both directions is [—0.5,0.5]. The sam-
pling directions follow the configurations illus-

19

trated in Figure 7 and Table 13.

Figure 3(b): The model 6 used in this plot
is Qwen-2-7B-Instruct. The direction d; corre-
sponds to the weight difference between Qwen-
2-7B-Instruct and Qwen-2-7B-base, representing
datigned- The direction dp corresponds to dharm , as
defined in Section 3.1.2, derived from 1000 sam-
ples and normalized. The interpolation range for
both directions is [—0.9, 0.9]. The sampling direc-
tions follow the configurations illustrated in Fig-
ure 7 and Table 13.

E Licenses and Terms of Use for Models
and Datasets

In this research, we utilized several models and
datasets, each of which is governed by specific
licenses. Below is a summary of the licenses and
their corresponding usage terms:

¢ Llama-2-7B (Touvron et al., 2023): Released
by Meta under the Llama 2 Community License.
This license permits free use, modification, and
distribution, but restricts the model’s use for train-
ing other language models and requires specific
conditions for commercial use (e.g., active user
limits).

Qwen-2-7B (Yang et al., 2024): Released by
Alibaba under the Apache 2.0 License, allowing
free use, modification, and distribution without
commercial restrictions.

Gemma-2-9B (Team et al., 2024): Released by
Google under the Gemma License, permitting
non-commercial and academic use. Commercial
use requires explicit authorization from Google.
Llama-3-8B (Dubey et al., 2024): Released by
Meta under the Llama 3 Community License.
This license allows free use, modification, and
distribution of the model with certain restrictions
on commercial use. Specific conditions apply
for commercial use, such as limitations on active
user counts.

SST-2 Dataset (Socher et al., 2013): Provided
by Stanford NLP under the Apache 2.0 License,
primarily for academic and non-commercial use.
AGNEWS Dataset (Zhang et al., 2015): Re-
leased by fancyzhx, typically used for academic
research, although the explicit license is unspeci-
fied.

GSMSK Dataset (Cobbe et al., 2021): Released
by OpenAl under the MIT License, allowing free
use, modification, and distribution without com-
mercial restrictions.



* AlpacaEval Dataset (Li et al., 2023): Released
by Tatsu Lab under the Apache 2.0 License, al-
lowing free use, modification, and distribution
for both academic and commercial purposes.
All models and datasets were used in compliance

with their respective licenses and terms of use, en-

suring that the research adheres to legal and ethical
standards.

20



	Introduction
	Related Works
	Methods
	Preliminaries
	Safety Landscape and Safety Basin
	Rethinking the Safety Basin

	Proposed Method: AsFT

	Experiments
	Experimental Setups
	Main Experiments
	Visualization of Narrow Safety Basin
	Hyper-Parameter Analysis and Ablation Experiments

	Conclusion
	Limitations
	Ethical Considerations
	Experimental details
	Dataset
	Baselines
	Evaluation Metrics

	More Experimental Results
	Main Experiments
	Robustness to poison ratio
	Generalization to fine-tuning sample number
	Generalization to models

	Hyper-Parameter Analysis and Ablation Experiments

	Visualization
	Setup and Evaluation of Narrow Safety Basin
	Calculation of effective rank
	Drawing details

	Licenses and Terms of Use for Models and Datasets

