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Evaluating Federated Dino’s performance on the segmentation
task across diverse domains

Anonymous Author(s)

ABSTRACT
This study investigates the performance of the DINOv2 pretrained
model within Federated Learning (FL) environments, focusing on
its application to segmentation tasks across diverse domains. While
DINOv2 has demonstrated high efficacy in centralized training sce-
narios, its capabilities under FL conditions—where data privacy and
security are paramount—remain underexplored. Utilizing data sets
spanning industrial, medical, and automotive sectors, we evaluated
DINOv2’s accuracy and generalization in decentralized settings.
Our findings reveal that federated DINOv2 performs comparably
to centralized models, effectively segmenting objects despite the
decentralized and heterogeneous nature of the data. However, in-
herent biases in the pretrained model posed challenges, affecting
performance across different domains. These results highlight the
need for domain-specific fine-tuning and bias mitigation strategies
to enhance the robustness of pretrained models in FL contexts. Fu-
ture work should address these challenges tomaximize the potential
of FL in privacy-sensitive applications, ensuring high performance
while maintaining data confidentiality.

CCS CONCEPTS
• General and reference→ Evaluation; Experimentation; • Com-
puting methodologies→ Distributed artificial intelligence;
Image segmentation.
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1 INTRODUCTION
The rapid advancements in machine learning and computer vi-
sion have led to sophisticated models capable of tasks like image
classification, object detection, and semantic segmentation. One
such model is DINOv2 [22], renowned for its effectiveness in iden-
tifying and segmenting objects within images. While extensively
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documented in centralized training environments, its performance
under Federated Learning (FL) conditions remains underexplored.

FL offers a decentralized approach, where models are trained
across multiple devices or servers holding local data samples with-
out needing to exchange these samples [19]. FL is increasingly
important in domains where data privacy and security are critical,
such as industrial applications and the medical sector. The Euro-
pean Unions’ European Commission’s General Data Protection
Regulation (GDPR) [25] enforces strict data handling requirements,
highlighting the need for privacy-preserving techniques. FL aligns
with these requirements by enabling robust model training without
transferring sensitive data across entities or locations.

Pretraining significantly impacts the quality of computer vision
models [7]. FL benefits from pre-trained models, leveraging global
knowledge to improve accuracy even with distributed and hetero-
geneous data [6]. However, bias in existing data sets affects these
models quality [14].

This study aims to evaluate DINOv2s’ performance in FL settings
and understand the implications of using pre-trained models in
privacy-sensitive applications. Despite DINOv2s’ claims to mitigate
bias and enhance generalization, inherent biases in these models
may lead to varied performance across domains. This analysis de-
termines if pre-trained models can provide a competitive edge in
decentralized training, leading to efficient and secure applications in
critical domains. We used multiple data sets from different domains
to measure DINOv2s’ performance and generalization capabilities
in FL, covering scenarios from industry, automotive and medical
images.

2 RELATEDWORK
Research in computer vision and FL has extensively investigated
the impact of pretraining on various tasks. This section presents
an overview of the scientific background of the experiments.

2.1 Supervised Segmentation with DINOv2
Semantic segmentation is a computer vision technique aimed at
partitioning an image into multiple segments, each representing
a distinct object class. Unlike object detection, semantic segmen-
tation assigns a class label to every pixel in the image, enabling a
precise understanding of its contents and spatial distribution [17].
DINOv2 [22], a self-supervised learning model in computer vision,
uses Visual Transformers (ViTs) [11] as its core architecture. ViTs
utilize self-attention mechanisms that allow DINOv2 to efficiently
process a variety of visual information without the need for labeled
data. This ability significantly enhances the model’s adaptability
and establishes DINOv2 as a versatile backbone for various vision
tasks.

A key aspect of using DINOv2 in image segmentation is the use
of "Ground DINO" and a header such as a linear classifier in this
case. Ground DINO optimizes the integration process, while the
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linear classifier interprets the CLS (Classification) tokens as input.
These CLS tokens, crucial for capturing the contextual essence
of the image, enable the linear classifier to effectively construct
segmentation masks. This process is crucial for detailed feature
analysis, including evaluating pixel intensity, color, texture simi-
larities, and continuity. Such a strategic approach highlights the
synergy between DINOv2’s self-supervised learning capabilities
and the supervised fine-tuning process, enabling the creation of
accurate and precise segmentation tasks. In practical applications,
the strategy involves adapting the pre-learned representations of
DINOv2 to specific applications [5].

2.2 Federated Learning
Training models for Artificial Intelligence (AI) require large vol-
umes of data. However, companies and individuals have legitimate
reasons to maintain the confidentiality of their data, making data
collection a considerable challenge. FL addresses these aspects, as
it enables private and secure training of modern AI models [19].
Proposed by Google as a decentralized machine learning paradigm,
FL enables collaborative and distributed training of AI-models. The
core components of a basic FL setup typically encompass three
components:

• AI model: A predefined AI model which is adjusted itera-
tively and collaboratively during the training process.

• Aggregator: Serving as the coordination hub. It selects
contributing nodes for each training round and combines
their model adjustments into an update on the global model
before distributing to the nodes.

• FL-Nodes: Nodes engage in a predetermined number of
training steps with their local data. They forward then their
updates to the aggregator. Each node can independently
use its local model to perform inferences with local data.

In FL, the model’s training is not performed centrally. Through
collaboration, participants iteratively refine a global model. Figure 1
shows the training rounds of horizontal FL [26] consisting of three
steps:

(1) Model distribution (Step 1): The central entity selects a
set of nodes and transmits the current model to each node.

(2) Model training (Step 2): First, the model is trained with
their local data (Step 2a), and then the model updates are
transmitted back to the central entity (Step 2b).

(3) Model aggregation (Step 3): The central entity merges
the received local updates into a global model update. In
FedAVG for example, averaging the collected model param-
eters from each node weighted by its data amount results
in the new model [19].

Furthermore, each participant possesses a locally accessible and
thus globally refined model, which enables independent inferences
without reliance on a central entity or network connectivity. As no
training data – potentially millions of high-resolution images – exits
the nodes, FL directly tackles two challenges inherent in distributed
learning: privacy [15] and communication efficiency [24].

Local data

Node 2

Local data

Node 1

Local data

Node 3

Aggregator

Ste
p 1

St
ep

1

Step 1

Step 2a Step 2a Step 2a

Ste
p 2

b Step
2b

Step 2b

Step 3

Figure 1: Typical training process of a horizontal Federated
Learning system.

2.3 The benefits and challenges of pretraining
Pretraining has been recognized as highly effective in computer
vision [23]. Models pre-trained on large-scale data sets serve as
general-purpose feature extractors, significantly enhancing per-
formance across various tasks without extensive fine-tuning [9].
This approach parallels the paradigm shift in Natural Language
Processing (NLP) where task-agnostic pretrained representations
have become the standard, achieving superior results compared to
task-specific models [3]. Following this trend in NLP, the emergence
of similar "foundation" models in computer vision is anticipated [2].
However, pretraining’s and transfer learning’s success in the im-
age domain depends on the relevance of the source data set to the
target data set, with optimal results when both domains closely
align [20]. Despite these advantages, those models often perpetuate
and amplify existing biases in training data, leading to unfair or
wrong outcomes [4].

Recent studies indicate that pretraining can significantly alleviate
accuracy drops caused by data heterogeneity in [21] environments.
Pretraining stabilizes global aggregation in non-IID data scenarios,
proving beneficial for FL model initialization [6]. However, while
trained backbones offer marginal performance improvements in
federated image segmentation, they are not indispensable, particu-
larly for advanced tasks like medical imaging, where training from
scratch might be more effective [12]. Conversely, for data sets with
limited client images, pretraining is crucial for achieving state-of-
the-art results, indicating significant benefits for small detection
data sets [18].

3 EVALUATION ENVIRONMENT
With a the typically large number of nodes in a FL-network, evaluat-
ing such a system on independent devices is not feasible. A central
system provided the environment with several simulated nodes. As
the target of the experiments is to investigate the ability of DINOv2
to generalize over different domains in the FL-setting, simulating
the FL-network is a feasible approach. Network factors – such as
bandwidth limitations, latency, or other restrictions – have only an
impact on the scalability of the network and not the accuracy.

The FL-environment was implemented in Python 3.9., and each
nodewas deployed as a single docker container. The communication
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between the aggregator and the nodes happened over the pub/sub
mechanism provided byMQQT andMosquitto in a docker container
as a broker for the network. The central system contained an Intel
Xeon E5-2695, 512 GByte RAM, and an NVIDIA A6000 with CUDA
support.

3.1 DINO and FL Implementation
For pixel-wise segmentation, we employed a LinearClassifier as
the segmentation head. This classifier includes a Conv2d layer
to interpret the Dino’s CLS token. The Conv2d layer conducts
convolution operations to produce segmentation maps, assigning a
class label to each pixel within the input images.

To evaluate the DINOv2 model’s performance across various
data sets, we adapted the segmentation head to the different used
data sets by fine-tuning the model locally using the distributed
FL approach. This adaptation process involved "freezing" the pre-
trained DINOv2 model, enabling it to be fine-tuned under different
training conditions. The model is pre-trained with the LVD-142M
dataset. The experimental setup involved two primary targets:

• Local: In this scenario, the DINOv2 model, alongside the
LinearClassifier, was fine-tuned on each data set individu-
ally. This approach aimed to assess themodel’s performance
and robustness when trained in isolation on data from a
single source.

• Federated Learning: Federated learning with configura-
tions involving 2, 4, and 8 nodes to explore how distributed
data affects the model’s accuracy and robustness. Each node
performed local updates on the model using its respective
data subset, with these updates aggregated using the Fe-
dAVG algorithm to update the global model.

3.2 Data source
For the comprehensive evaluation of DINOv2s’ performance in
different domains and the FL environment, several data sets from
diverse domains were utilized. Figure 2 shows example images
taken from each data set.

(a) Diving (b) Medical (c) Industry

(d) Automotive (e) General

Figure 2: Example images from the used data sets

Prior to their use, each data set was translated from their original
structure into the COCO image annotation format. This format
consists of polygons surrounding particular areas in the image, and

assigning a specific class to each pixel in the corresponding area.
These annotations are used in the training process and enable a
precise assessment of segmentation accuracy. Following domains
were addressed during the experiments:

• Diving: The SUIM [13] data set is a comprehensive col-
lection of underwater images comprising a wide variety of
scenes such as coral reefs, wrecks, and diverse marine life.

• Medical: The ChestX-Det [16] data set comprises a large
collection of chest X-ray images annotated with detailed
information on various thoracic diseases.

• Industry: The VISION [1] data sets consist of images to
replicate real-life industrial situations. The segmentations
focus on outlining particular regions, like recognizing part
boundaries or identifying surface defects needed for indus-
trial quality control and automation.

• Automotive: The Cityscapes [8] data set was created for
semantic and instance segmentation in urban environments.
It consists of high-quality street images of humans, vehicles,
and street furniture in city settings.

• General: The PASCAL Visual Object Classes (VOC) 2012
data set [10] is one of the most important resources used in
evaluating algorithms for image segmentation in computer
vision. It contains images of 20 object classes, like people,
animals, vehicles, and everyday objects.

The characteristics of the five distinct data sets are detailed in
table 1. It provides a comprehensive overview of each data set,
including the number of images designated for training/testing and
the number of distinct classes.

Data Set #Classes #Training #Test
Diving(SUIM) 7 1525 110
Medical(ChestX-Det) 13 3578 553
Industry(VISION) 44 880 1014
Automotive(cityscapes) 7 2993 500
General(VOC2012) 20 17125 1500

Table 1: The size of the used data sets and the number of
contained classes.

4 EVALUATION
Initially, DINOv2 was evaluated monolithically without FL and
trained each on the entire data sets to establish a baseline. Subse-
quently, the data set underwent a split into several distinct segments
(2, 4 and 8) in respect to the maximum number of FL-nodes, which
could be simulated in the environment. The training duration varied:
the monolithic systems underwent 20 epochs, while FL comprised
4 local epochs and 20 global rounds. For determining the accuracy,
we applied the official test data sets from each data set.

We apply the in semantic segmentation commonly used metric
Intersect over Union 𝐼𝑜𝑈 to determine the quality of the predicted
segmentation [17]. Let 𝑛𝑖, 𝑗 be the number of pixels of label 𝑖 deter-
mined to belong to the label when there exist 𝑁𝐿 different labels
and let 𝑡𝑖 =

∑
𝑗 𝑛𝑖, 𝑗 be the total number of pixel belonging to label

3
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𝑖 . Then 𝐼𝑜𝑈 is defined as follow:

𝐼𝑜𝑈 = 1
𝑁𝐿

·
∑

𝑖 𝑛𝑖,𝑖
𝑡𝑖+

∑
𝑗 𝑛 𝑗,𝑖−𝑛𝑖,𝑖 ∈ [0, 1]

4.1 Impact of node count on DINOv2’s
performance

In Figure 3, the performance of a FL model across various applica-
tion domains is illustrated using 𝐼𝑜𝑈 metrics for different numbers
of network nodes (2, 4, 8). The 𝐼𝑜𝑈 values in the diving domain
remain constant at values spanning from 7% to 18% across all node
configurations. In the medical domain, 𝐼𝑜𝑈 values exhibit slight
fluctuations ranging from 0.99% to 1.99%, whereas in the automotive
sector, a higher variability is observed with values spanning from
26.36% to 30.41%. The industry and general categories show minor
to moderate variations in 𝐼𝑜𝑈 , indicating a differential response of
model performance to node count across these diverse application
domains.

2 3 4 5 6 7 8
0

20

40

Number of nodes

In
te
rs
ec
to

ve
rU

ni
on

[%
]

Diving Medical Industry Automotive General

Figure 3: Intersect over Union for each data set in regard of a
growing number of nodes

4.2 Impact of federalization of DINOv2
The comparative analysis of semantic segmentation performance
using FL and monolithic (M) training approaches has yielded in-
sightful results. The bar chart for 𝐼𝑜𝑈 across all labels 4 indicates
that the FL approach closely approximates the performance of the
monolithic setup. In 4, the performance of monolithic models versus
feature learning models across various application domains is pre-
sented. The monolithic model demonstrates higher performance in
the categories of diving, automotive, and general, whereas the fea-
ture learning model excels in the medical sector. Notably, there are
significant disparities in performance, with the monolithic model
achieving substantially higher values in diving, automotive, and
general domains, while showing relatively lower scores in medical
and industrial categories.

In the diving category, the monolithic model achieves an 𝐼𝑜𝑈 of
58.99 compared to 18.43 for the FL model. In the medical category,
the FL model outperforms the monolithic model with an 𝐼𝑜𝑈 of 1.99
versus 0.37. In the automotive category, themonolithic model shows
significantly better performance with an 𝐼𝑜𝑈 of 57.43 compared to
30.42 for the FL model. The results in the industrial category are
closer, with the monolithic model achieving an 𝐼𝑜𝑈 of 4.08 and the
FL model an 𝐼𝑜𝑈 of 3.51. In the general category, the monolithic
model exhibits an 𝐼𝑜𝑈 of 64.99, while the FL model achieves 45.98.

These results highlight the varying strengths and weaknesses of
the two training approaches across different application domains.
The monolithic model shows strong performance in most general
categories, while the FL model performs better in the medical sector.
This could be attributed to the different nature of data sources and
the training methodologies employed by each approach.

0 20 40 60

General

Automotive

Industry

Medical

Diving 58.99

0.37

4.08

57.43

65

18.43

1.99

3.51

30.42

45.98

Intersect over Union [%]

Diving-M Medical-M Industry-M Automotive-M General-M
Diving-FL Medical-FL Industry-FL Automotive-FL General-FL

Figure 4: Monolithic Intersect over Union vs FL Intersect over
Union

5 CONCLUSION
This study explored the performance and implications of using
the DINOv2 pre-trained model within FL environments. Through
a comprehensive evaluation across diverse data sets, we demon-
strated that DINOv2 can function effectively under FL conditions
and achieves comparable accuracy and performance to the mono-
lithic setup, where all data is centralized and available. Our findings
indicate that the model retains its ability to segment objects accu-
rately, even when trained on decentralized and heterogeneous data,
underscoring the potential of FL to maintain high performance
without compromising data privacy.

The results show that DINOv2 was able to extract the classes
well from the General(VOC2012) and Automotive(Cityscapes) data
sets, which are part of its original training data (LVD-142M). It has
also generalized to the extent that it can perform well on related
data sets such as Diving (SUMI). However, DINOv2 cannot perform
on data (in our evaluation with medical and industry data), which
has no similarity to the data with which it was originally trained.
While DINOv2 exhibits strong generalization capabilities within
related domains, its performance significantly drops when applied
to domains entirely dissimilar and containing unknown features.

This underscores the necessity of training with domain-specific
data sets to cover that domain’s characteristics. The other approach
is to include a more diverse range of domains and their particular
images in the data sets used for pre-training foundation models like
DINOv2 to enhance the robustness and generalization capabilities
of such pre-trained models.
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6 OUTLOOK
Future work will focus on several key areas to enhance our un-
derstanding of DINOv2’s performance in the FL setting. We will
conduct a comprehensive hyperparameter search to optimize model
configurations. Additionally, training DINOv2 from scratch in FL
settings without a pre-trained model with its original LVD-142M
data set will establish a performance baseline on the suitability of
DINOv2 to be deployed in a federated setting. Extending the LVD-
142M data set to include more diverse domains will enable a better
generalization capability. Finally, training from scratch will create
further insights into DINOv2’s overall performance in diverse do-
mains. These steps aim to improve model accuracy, generalization,
and effectiveness in privacy-sensitive applications.
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