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ABSTRACT

The ground-to-satellite image matching/retrieval was initially proposed for city-
scale ground camera localization. Recently, more and more attention has been
paid to increasing the camera pose accuracy by ground-to-satellite image match-
ing, once a coarse location and orientation has been obtained from the city-scale
retrieval. This paper addresses the same scenario. However, existing learning-
based methods for solving this task require accurate GPS labels of ground images
for network training. Unfortunately, obtaining such accurate GPS labels is not
always possible, often requiring an expensive Real Time Kinematics (RTK) setup
and suffering from signal occlusion, multi-path signal disruptions, etc. To address
this issue, this paper proposes a weakly supervised learning strategy for ground-
to-satellite image registration when only noisy pose labels for ground images are
available for network training. It derives positive and negative satellite images for
each ground image and leverages contrastive learning to learn feature represen-
tations for ground and satellite images useful for translation estimation. We also
propose a pseudo image pair creation strategy for cross-view rotation estimation
network training. Experimental results show that our weakly-supervised learning
strategy achieves the best performance on cross-area evaluation, compared to the
recent state-of-the-art methods that require accurate pose labels for supervision,
and shows comparable performance on same-area evaluation.

1 INTRODUCTION

Camera localization is pivotal in real-world applications such as autonomous driving, field robotics,
and augmented/virtual reality. Recent research has explored diverse methods to approximate the
coarse location and orientation of a ground camera. These methods encompass noisy sensors like
consumer-level GPS and compass, as well as visual retrieval techniques, et al. To attain greater pose
accuracy, other sensors like Lidar (Vora et al., 2020; Mishra et al., 2022; De Paula Veronese et al.,
2015), Radar (Tang et al., 2020; 2021), and High Definition (HD) maps, have been investigated.
However, many commercial autonomous vehicles at level two/three lack these sensors. Maintaining
and updating high-precision HD maps is challenging and expensive. In response, satellite imagery
has emerged as a viable alternative reference source due to its wide accessibility and global coverage.

We focus on ground-to-satellite camera localization, aiming to determine a ground camera’s lo-
cation and orientation relative to a geo-tagged satellite map. Prior research (Workman & Jacobs,
2015; Vo & Hays, 2016; Hu et al., 2018; Liu & Li, 2019; Zhai et al., 2017; Regmi & Shah, 2019; Shi
et al., 2019; Toker et al., 2021; Zhu et al., 2022) has centered on city-scale camera localization, em-
ploying image retrieval to match ground and satellite images. However, image retrieval introduces
errors that can span tens of meters. Recent efforts have addressed this by enhancing camera pose
accuracy through ground-to-satellite image registration, guided by coarse location and orientation
estimates. Nonetheless, the significant viewpoint differences between ground and satellite images
make handcrafted features fail (Shi et al., 2022). Learning-based approaches (Zhu et al., 2021b;
Xia et al., 2022; Shi & Li, 2022; Lentsch et al., 2023; Fervers et al., 2022) require a large training
dataset with accurate GT poses for the ground images, which can be laborious and expensive to
obtain, and even the high-accuracy RTK GPS can suffer from inaccurate locations when correction
signals are absent (Geiger et al., 2013; Maddern et al., 2017). Therefore, this paper aims to develop
a weakly supervised ground-to-satellite image registration strategy to increase the ground cameras’
pose accuracy when only coarse pose labels for ground images are provided.
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Figure 1: We derive positive and negative satellite images for each ground-view image based on its coarse
location information. A similarity map between the ground view and each satellite image is computed when
aligned at different locations. Our training objective aims to maximize the maximum similarity in the positive
similarity map while minimizing the maximum similarity in the negative similarity map.

We target the 3-DoF (degree-of-freedom) pose estimation for ground cameras, i.e., 2-DoF location
and 1-DoF orientation. Under the weakly-supervised application scenario, deterministic pose output
by a network is suboptimal, as no GT pose is available to supervise the network output. We resort
to the recent representation learning approaches by contrastive learning to solve this problem.

Given the coarse pose of a ground camera, we determine a satellite image that covers the local
surroundings of the camera and some satellite images that do not cover the local surroundings, which
are regarded as positive and negative for this ground image, respectively. We utilize the signal that a
ground image is within its positive satellite image while outside its negative satellite images to train
a network. The network is trained to learn feature representations such that the similarity between
the ground and its positive satellite images at their optimal relative pose is more significant than
between the ground and its negative satellite images at their “optimal” relative pose.

The “optimal” relative pose for a ground-and-satellite image pair is determined by the maximum
cross-view similarity when aligned at this relative pose (among others). We follow the standard
synthesis-and-matching procedure to determine this “optimal” relative pose: first synthesizing an
overhead-view feature map1 from the ground view image and then matching it against the reference
satellite feature map. Conventional methods for this matching process rotate and translate the syn-
thesized overhead view feature map according to predetermined candidate poses. Considering the
vast search space for the 3-DoF pose, we decouple the rotation and translation estimation.

The rotation estimation is conducted first, and the framework is designed by network regression.
It takes input as the query and reference images and outputs their relative pose. To supervise this
network, we create some “satellite and satellite” image pairs with GT relative poses. Specifically,
we randomly rotate and translate a satellite image. The transformed satellite image mimics a synthe-
sized overhead view image from a ground image. We train the network to estimate the relative pose
between the original and transformed satellite images. Once the network is trained, it is leveraged
to estimate the relative orientation between a query ground image and its positive satellite image.

After this, our translation estimation framework synthesizes an overhead-view feature map from
the ground image with the orientation aligned with satellite images and then matches it against a
satellite feature map. The output is a similarity (/location probability) map of the ground image with
respect to the satellite image. This process is implemented between a query image and its positive
and negative satellite images, as illustrated in Fig. 1. The contrastive learning supervision strategy
illustrated above maximizes the maximum similarity in the positive similarity map while minimizing
the maximum similarity in the negative similarity map.

We conduct experiments on a popular autonomous driving dataset where ground images are captured
by a pin-hole camera with limited field-of-view (FoV), KITTI (Geiger et al., 2013), and a well-
known cross-view localization dataset where ground images are panoramas, VIGOR (Zhu et al.,
2021b). Experimental results demonstrate that our method achieves the best generalization ability
compared to the recent state-of-the-art despite not requiring accurate pose labels for supervision.

2 RELATED WORK

We discuss related works on ground-to-satellite localization and self/weakly supervised learning.

1Satellite images used for ground camera localization are usually roughly orthographic.
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(a) Training (b) Testing

Figure 2: Self-supervised rotation estimator.

2.1 GROUND-TO-SATELLITE IMAGE-BASED LOCALIZATION

City-scale localization. Ground-to-satellite image-based localization aims to determine the loca-
tion of a ground camera by matching it with a satellite map covering the region of interest. Initially
proposed for city-scale coarse-level localization, it was formulated as an image retrieval problem.
Specifically, a large satellite map of the interested region is first split into small patches to construct a
geo-referenced satellite image database. For a query image captured at the ground level, its similar-
ity with every database satellite image is computed, and the GPS of the most similar satellite image
is taken as the query camera’s location. Over the past decades, hand-crafted features (Castaldo et al.,
2015; Lin et al., 2013; Mousavian & Kosecka, 2016) have been demonstrated to be a bottleneck for
cross-view feature matching due to significant geometric and appearance variations. Seminal works
using deep networks (Workman & Jacobs, 2015; Workman et al., 2015; Vo & Hays, 2016) demon-
strated that the learned feature descriptors by a metric learning training objective offer better and
more reliable performance. Researchers have since investigated learning powerful and discrimi-
native feature descriptors (Cai et al., 2019; Yang et al., 2021; Zhu et al., 2022), orientation-aware
cross-view representations (Hu et al., 2018; Liu & Li, 2019; Sun et al., 2019; Zhu et al., 2021a),
and different strategies for bridging the cross-view domain gap (Zhai et al., 2017; Regmi & Shah,
2019; Shi et al., 2019; 2020b; Toker et al., 2021). Cross-view localization has also been extended
from a 2-DoF location estimation task to a 3-DoF joint location and orientation estimation task (Shi
et al., 2020a), and from a single image-based localization problem to a video-based localization
problem (Vyas et al., 2022; Shi et al., 2023b; Zhang et al., 2023). However, the database images are
often discretely sampled, while query images’ locations are in a continuous region. Thus, the image
retrieval formulation only results in a coarse camera pose estimation, and its accuracy is determined
by the sample density of ground images.

Increasing localization accuracy. Recently, researchers have started to investigate how to in-
crease the accuracy of a ground camera’s pose by ground-to-satellite image matching once the
camera’scoarse rotation and orientation have been determined. Towards this purpose, network re-
gression (Zhu et al., 2021b), pose optimization (Shi & Li, 2022) and similarity matching based
methods (Xia et al., 2022; Lentsch et al., 2023; Xia et al., 2023; Fervers et al., 2022; Shi et al.,
2023a; 2022; Sarlin et al., 2023) have been explored. Nonetheless, all these works need sub-meter
and sub-degree pose labels for ground images in the training data to train their networks. In this
paper, we propose a strategy that estimates the relative rotation and translation between a ground
and a satellite image when such accurate labels are unavailable in the training data.

2.2 SELF/WEAKLY-SUPERVISED LEARNING

Self- and weakly-supervised learning has been widely explored in other tasks, such as image clas-
sification (Zhai et al., 2019), object detection (Dang et al., 2023), semantic segmentation (Wang
et al., 2022), image inpainting (Pathak et al., 2016), point cloud registration (Liu et al., 2023), hu-
man/hand/object pose estimation (Bouazizi et al., 2021; Spurr et al., 2021; Gharaee et al., 2023),
the intersection between vision and natural language processing, (Radford et al., 2021) et al. Many
of them also exploit contrastive learning as supervision signals. Tang et al. (Tang et al., 2021) pro-
posed a self-supervised strategy for localizing outdoor range sensors (e.g., Lidar, Radar). However,
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little attention has been paid to camera pose estimation with self or weak supervision. In this work,
we introduce the first weakly-supervised learning strategy for ground camera pose refinement by
ground-and-satellite image registration. The technical details are illustrated next.

3 METHOD

Given a coarse location and orientation of a ground camera, our goal is to refine this pose through
ground-to-satellite image registration. In contrast to previous works that assume a large training
dataset with highly accurate pose labels for ground images, we propose a weakly supervised learning
strategy that does not require such labels. Our approach first estimates the rotation of the ground
camera by network regression and then computes the translation by similarity matching.

3.1 ROTATION ESTIMATION BY SELF-SUPERVISION

We draw inspiration from Spatial Transformer Networks (Jaderberg et al., 2015) to regress relative
orientations between cross-view images by a network. The network takes the ground (query) and
satellite (reference) images as input and outputs their relative pose, as illustrated in Fig. 2(b). During
inference, the network first extracts feature representations from the satellite and ground images
separately. Then, the ground features are projected to the overhead view according to the ground
plane Homoraphy, as in Shi & Li (2022). Next, a Pose Regressor, constructed by neural networks,
is employed to estimate the relative pose between the projected overhead view and the reference
satellite feature map.

To supervise the network, we generate some “satellite-and-satellite” image pairs with GT relative
poses. This is done by rotating and translating a satellite image using a randomly generated pose,
R∗, t∗, where the maximum magnitude of the rotation angle and translation is based on the error of
the ground camera’s coarse pose information that we aim to refine during deployment. Furthermore,
we apply a mask on the transformed satellite image and extract a triangle region corresponding to
the ground camera’s FoV, as shown at the top of Fig. 2(a). The triangle region corresponds to the
ground camera’s horizontal field of view, computed from its focal length and image size. This is to
mimic a synthesized overhead view image from a ground-view image. We refer to the transformed
and masked satellite image as the query and the original one as the reference. We then train the
network to estimate the relative pose between the two satellite images. The training objective is:

L1 = |θ − θ∗|+ |tx − t∗x|+
∣∣ty − t∗y

∣∣ , (1)

where θ, tx and ty denote the network predictions, θ∗, t∗x and t∗y indicate the corresponding ground
truth, θ is the 1-DoF inplane rotation of a ground camera, i.e., the yaw angle, tx and ty represent the
2-DoF translation, and |·| denote the L1 norm. After the network has been trained, we substitute the
query satellite image with the query ground images during inference for the ground camera’s pose
estimation, as shown in Fig. 2(b).

The Pose Regressor constructed by neural networks achieves promising rotation estimation perfor-
mance no matter whether query features are a satellite feature map or a projected overhead-view
feature map from a ground view. This is mainly because neural network outputs are inherently sen-
sitive to rotations on the input. A slight rotation difference in input signals results in significant
feature differences in deep networks. In contrast, due to aggregation layers such as max-pooling,
the high-level deep features inside the neural optimizer may not be sensitive to slight translations
on input signals, resulting in poor translation estimation performance. On the other hand, the equiv-
ariance property of the convolution operation to translations makes the relative translation between
two input signals can be recovered by a spatial correlation. This motivates our network design for
translation estimation.

3.2 TRANSLATION ESTIMATION BY DEEP METRIC LEARNING

As shown in Fig. 3, a two-branch convolutional network is first applied to the ground and satellite
image pair. Each branch is a U-Net architecture and extracts multi-level representations of the
original images.
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Figure 3: Translation estimation framework. During training, the weights of the rotation estimator are fixed,
and we only train the two-branch feature extractors. Other uncolored blocks indicate no trainable parameters
are involved.

For the ground branch, not only the feature representation Fg ∈ RHg×Wg×C but also a confidence
map Cg ∈ RHg×Wg×1 is extracted. The confidence map is an additional channel of the feature
extractor output followed by a sigmoid layer. It indicates whether features at corresponding spatial
pixel positions are trustworthy. For example, dynamic objects (e.g., cars) in the images are detri-
mental to localization performance, while the static road structures are essential features. The higher
the confidence, the more reliable the corresponding features. We should note that no explicit super-
vision is applied to the confidence map. Instead, it is encoded in the cross-view similarity-matching
process and learned statistically from the similarity-matching training objective.

We only extract feature representations Fs ∈ RHs×Ws×C for the satellite branch with no confi-
dence map because we empirically found learning confidence maps for satellite images impairs the
performance. The reasons hypothesized are twofold: (1) dynamic objects are fewer on the satellite
images, and they occupy a relatively smaller region on the satellite image compared to ground-view
images; thus, they have a lower impact on localization performance; (2) neither the camera poses,
nor the confidence maps, have explicit supervision, thus learning a confidence map for satellite
images increases the network training difficulty.

We leverage the trained rotation estimator in Sec. 3.1 to estimate the relative rotation between the
ground and satellite images. Then, the ground-view features and confidence maps are projected to
the overhead view according to the estimated rotation R and zero translation t = 0. Similar to that
in Fig. 2(b), the overhead-view projection leverages the ground plane Homography. To maintain
clarity in the presentation, we utilize the original symbols Fg and Cg to represent the projected
ground features and confidence maps.

Confidence-guided similarity matching. Given that the rotation of the projected overhead-view
feature map has been aligned with the observed satellite feature map, the only remaining disparity
between them is a translation difference. To compute this translation difference, spatial correlation
is utilized. Specifically, the projected overhead-view feature map is used as a sliding window, and
its inner product with the reference satellite feature map is computed when aligned at varying loca-
tions. This generates a similarity score S(u, v) between the two view features when aligned at each
location (u, v). We provide a visual illustration of this process in the Appendix. The mathematical
representation of this spatial correlation process, taking into account ground-view confidence maps,
is as follows:

S(u, v) = (Fs ∗ F̂g)(u, v) =

∑
i

∑
j Fs(u+ i, v + j)F̂g(i, j)√∑

i

∑
j Fs

2(u+ i, v + j)

√∑
i

∑
j F̂g

2
(i, j)

, (2)

where F̂g = CgFg is to highlight important features while suppressing non-reliable features for lo-
calization. The pixel coordinate corresponding to the maximum similarity indicates the most likely
ground camera’s location (û, v̂) = argmax(u,v) S. This similarity map between the synthesized
overhead-view feature map and the reference satellite feature map can also be regarded as the loca-
tion probability map of the ground camera.

5



Under review as a conference paper at ICLR 2024

Supervision. We apply deep metric learning for network supervision. For a query ground im-
age, we compute a similarity map based on the possible locations between it and its matching and
non-matching satellite images, denoted as Spos and Sneg, respectively. We maximize the maximum
similarity in Spos while minimizing the maximum similarity in Sneg:

L2 =
∑
l

log(1 + eα(maxSneg−maxSpos)), (3)

where α controls the convergence speed and is set to 10.

When the error of location labels in the training set is the same as the error of locations that we
aim to refine during deployment, we only employ Eq. equation 3 for network training. In another
scenario where relatively more accurate location labels for ground images in the training data are
available than the poses we aim to refine during employment, we introduce an additional training
objective to incorporate this signal:

L3 =
∑
l

∣∣∣∣max(Spos)−max(Spos[u
∗ − d

γ
: u∗ +

d

γ
, v∗ − d

γ
: v∗ +

d

γ
])

∣∣∣∣ , (4)

where (u∗, v∗) indicates the location label provided by the training data and has an error of up to
d meters, γ denotes the ground resolution of the similarity map in terms of meters per pixel. This
training objective forces the global maximum in the similarity map to equal a local maximum, with
the local region centered at the location label with a radius of d meters.

The whole training objective is:
L = L2 + λL3, (5)

where λ = 0 indicates such relatively accurate pose labels are unavailable in the training set, while
λ = 1 suggests such labels are available. In our experiments, we set d = 5 meters.

3.3 OVERALL EVALUATION

After training the networks, the overall evaluation goes through the framework shown in Fig. 3. The
input is a query image and its positive satellite image, and the output is an estimated relative rotation
between the two images and a location probability map of this query image with respect to this
satellite image. The location corresponding to the maximum probability/similarity value is deemed
as the query camera location.

4 EXPERIMENTS

Network Architectures. A UNet-based architecture with a pre-trained VGG16 as the encoder is
adopted for feature extraction. The decoder of the UNet is randomly initialized. We empirically
found that the feature extractor of satellite images is shareable with ground images captured by a
pin-hole camera while not shareable with ground panoramas. This might be because both satellite
images and ground images captured by a pin-hole camera map straight lines in the real world to
straight lines on images, while panoramas map straight lines in the real world to curves on images.
While for different purposes, i.e., rotation and translation estimation, we found non-shareable feature
extractors between the two stages help to achieve the best performance. We present detailed analysis
and experimental demonstrations in the Appendix. The pose regressor in Fig. 2 is constructed by
two swin transformer layers (Liu et al., 2021) followed by two fc layers. This is the same as the
neural optimizer architecture in Shi et al. (2023a).

Dataset. Our experiments are conducted on a well-known autonomous driving dataset,
KITTI (Geiger et al., 2013), and a cross-view localization dataset, VIGOR (Zhu et al., 2021b).

For the KITTI dataset, ground images were captured by a forward-facing pin-hole camera with a
limited FoV. The cross-view KITTI dataset includes one training set and two testing sets. Images
from Test-1 are from the same region as the training set, while images from Test-2 are from a
different region. The location search range for this dataset is around 56× 56 m2, and the orientation
noise is 20◦, which follows the official setting as in Shi & Li (2022). The performance evaluation
on different initialization errors is presented in the Appendix.
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Table 1: Ablation study on the cross-view KITTI dataset. We report the percentage of query images whose
locations are restricted to be within d meters of their GT locations along lateral/longitudinal directions and
whose orientations are restricted to be within θ◦ of their GT orientation, respectively.

Query t Est. Conf λ
Test-1 (Same-area) Test-2 (Cross-area)

Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth
d = 1 ↑d = 3 ↑ d = 1 ↑d = 3 ↑ θ = 1 ↑θ = 3 ↑ d = 1 ↑d = 3 ↑ d = 1 ↑d = 3 ↑ θ = 1 ↑θ = 3 ↑

Sat Pose Regress. – – 4.88 15.13 4.80 15.64 99.89 100.00 5.06 15.46 5.25 15.79 99.95 100.00
Grd Pose Regress. – – 4.88 15.11 4.74 15.66 99.66 100.00 5.04 15.46 5.29 15.83 99.99 100.00
Grd Correlation N 0 45.80 78.27 6.18 16.67 99.66 100.00 45.11 73.04 6.13 18.30 99.99 100.00
Grd Correlation Y 0 59.58 85.74 11.37 31.94 99.66 100.00 62.73 86.53 9.98 29.67 99.99 100.00
Grd Correlation Y 1 66.07 94.22 16.51 49.96 99.66 100.00 64.74 86.18 11.81 34.77 99.99 100.00

The VIGOR dataset contains ground and satellite images from four cities in the US: Chicago, New
York, San Francisco, and Seattle. It is divided into same-area and cross-area splits. The same-area
split indicates the training and testing images are from the same region (both from the four cities),
while the cross-area split adopts images from two cities for training and images from the other two
cities for testing. In the original dataset, each ground image has a positive satellite image and several
semi-positive satellite images, depending on whether this ground image is within the center 1

4 region
of the satellite image. We follow Lentsch et al. (2023) and use only the positive satellite images.

Since the feature extractors trained for satellite images (Fig. 2(a)) are not applicable to panoramas
due to differences in imaging modality, we only evaluate the translation estimation performance on
the VIGOR dataset with known and unknown orientations, respectively. The 3-DoF joint location
and orientation pose estimation is performed on the KITTI dataset.

Evaluation Metrics. We decompose the translation to be along the lateral and longitudinal direc-
tions for evaluation on the KITTI and Ford Multi-AV datasets, following the approach of Shi & Li
(2022). Specifically, for a query image, we consider it to be successfully localized along a direction
if its estimated location along that direction is within d meters of its ground truth (GT) location.
Similarly, we consider the rotation estimation to be correct if the estimated rotation is within θ◦ of
the GT rotation. We record the percentage of successfully localized images along each direction and
the percentage of images with correct rotation estimation.

The VIGOR dataset does not provide information on the driving direction of the camera. Therefore,
we cannot decompose the translation to be along lateral and longitudinal directions. To evaluate
the localization performance on this dataset, we report the median and mean errors of comparison
algorithms, following the approach of Xia et al. (2022) and Lentsch et al. (2023).

Implementation Details. For training the rotation estimator, we use the positive satellite image
for each ground image and randomly transform each image once to create training input pairs. We
adopt feature size as 1

4 of the original image size for both rotation and translation estimation. The
original image size is not used because of its large memory consumption in the spatial correlation
process in the deep metric-learning training. We use a batch size of B = 8 to train the network. In
the translation estimation training, each ground image has one matching satellite image and B − 1
non-matching satellite images within each batch. Our experiments are conducted on an RTX 3090
GPU. The network is trained for 3 epochs for both stages on the KITTI dataset and 10 epochs on the
VIGOR dataset. For the ground images in the KITTI dataset, we use a resolution of 256×1024. For
the VIGOR dataset, we use a resolution of 320×640. The satellite image resolution is 512×512 for
all datasets. The ground resolution of satellite images is 0.2 meters per pixel in the KITTI dataset,
and 0.111, 0.113, 0.118, and 0.101 meters per pixel for the cities Chicago, New York, San Francisco,
and Seattle in the VIGOR dataset, respectively.

4.1 MODEL ANALYSIS

Below, we demonstrate the necessity and effectiveness of each proposed component. The results are
presented in Tab. 1.

(i) The first row shows the performance of our Pose Regressor (PR) in Fig. 2 with the satellite
images as queries (note: not ground images). It can be seen that the estimated rotation of almost
all the queries has been restricted to within 1◦ of its GT rotation, while the translation estimation
performance is poor, even though there is no domain gap between reference and query images. This
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Figure 4: Visualization of learned confidence maps for ground view images and estimated poses by our method.

Table 2: Comparison with the state-of-the-art on the KITTI dataset. ∗ indicates full supervision is adopted.

Algorithms
Test-1 (Same-area) Test-2 (Cross-area)

Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth
d = 1 ↑d = 3 ↑d = 1 ↑d = 3 ↑θ = 1 ↑θ = 3 ↑d = 1 ↑d = 3 ↑d = 1 ↑d = 3 ↑θ = 1 ↑θ = 3 ↑

DSM (Shi et al., 2020a)∗ 10.12 30.67 4.08 12.01 3.58 13.81 10.77 31.37 3.87 11.73 3.53 14.09
CVR (Zhu et al., 2021b)∗ 18.61 49.06 4.29 13.01 - - 17.38 48.20 4.07 12.52 - -

Shi & Li (2022)∗ 35.54 70.77 5.22 15.88 19.64 51.76 27.82 59.79 5.75 16.36 18.42 49.72
SliceMatch (Lentsch et al., 2023)∗ 49.09 91.76 14.19 49.99 13.41 42.62 32.43 78.98 8.30 24.48 46.82 46.82

OrienterNetSarlin et al. (2023)∗ - - - - - - 51.26 84.77 22.39 46.79 20.41 52.24
Shi et al. (2023a)∗ 76.44 96.34 23.54 50.57 99.10 100.00 57.72 86.77 14.15 34.59 98.98 100.00

Ours (λ = 0) 59.58 85.74 11.37 31.94 99.66 100.00 62.73 86.53 9.98 29.67 99.99 100.00
Ours (λ = 1) 66.07 94.22 16.51 49.96 99.66 100.00 64.74 86.18 11.81 34.77 99.99 100.00

supports our intuition that a neural network-based regressor’s ability to provide accurate translation
estimation is limited.

(ii) Then, we verify the generalization ability of the Pose Regressor on real ground images. The
results in the second row show that the rotation estimation accuracy for real ground images is very
close to that for satellite images, demonstrating the effectiveness of our self-supervision training
strategy by satellite-and-satellite image pairs.

(iii) The third row presents the performance of our method by using spatial correlation for transla-
tion estimation and Pose Regressor for rotation estimation. It can be seen that the performance on
translation estimation is significantly boosted.

(iv) In what follows, we encode the confidence in the spatial correlation process. The results in
the fourth row demonstrate the effectiveness of the confidence-guided similarity matching. Fig. 4
provides visualizations of the learned confidence maps and the probability maps of query cameras’
location with respect to their matching satellite images. It can be seen that the learned confidence
maps are able to ignore dynamic objects and highlight reliable features (e.g., lane lines, road edges).

(v) Finally, when relatively accurate (but still noisy) pose labels are available in the training dataset,
i.e., the pose error is up to d = 5 meters, we set λ = 1 and use Eq. 4 to incorporate this information
in training. The last row of Tab. 1 demonstrates that it successfully boosts the network learning
process and improves the performance on both same-area and cross-area evaluation.

4.2 COMPARISON WITH THE STATE-OF-THE-ART

In this section, we compare the performance of our method with the recent state-of-the-art, includ-
ing DSM (Shi et al., 2020a), CVR (Zhu et al., 2021b), Shi & Li (2022), MCC (Xia et al., 2022),
SliceMatch (Lentsch et al., 2023), OrienterNet (Sarlin et al., 2023), and Shi et al. (2023a). All
these state-of-the-art algorithms adopt full supervision and rely on accurate pose labels for their net-
work, and their results are taken from their original papers or re-evaluated using the author-released
models.
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Table 3: Comparison with the state-of-the-art on the VIGOR dataset. ∗ indicates full supervision is adopted.

Algorithms
Same-area Cross-area

Aligned-orientation Unknown-orientation Aligned-orientation Unknown-orientation
Mean↓ Median↓ Mean↓ Median↓ Mean↓ Median↓ Mean↓ Median↓

CVR (Zhu et al., 2021b)∗ 8.99 7.81 – – 8.89 7.73 – –
MCC (Xia et al., 2022)∗ 6.94 3.64 9.87 6.25 9.05 5.14 12.66 9.55

SliceMatch (Lentsch et al., 2023)∗ 5.18 2.58 8.41 5.07 5.53 2.55 8.48 5.64
Shi et al. (2023a)∗ 4.12 1.34 – – 5.16 1.40 – –

Ours (λ = 0) 5.22 1.97 5.33 2.09 5.37 1.93 5.37 1.93
Ours (λ = 1) 4.19 1.68 4.18 1.66 4.70 1.68 4.52 1.65

The performance comparison between our method and the state-of-the-art on the KITTI dataset is
presented in Tab. 2. It can be seen that among all the comparison algorithms, our method achieves
the best cross-area evaluation performance, and the performance discrepancy between same-area and
cross-area evaluation of our method is the smallest. This is because our method has no information
on GT poses, and it is trained to leverage similarity matching for location estimation, preventing
itself from overfitting on the GT poses. The performance of our method on the same-area evaluation
is slightly inferior to the most recent state-of-the-art, Shi et al. (2023a). However, in the appendix,
we demonstrate that the performance of our method on both same-area and cross-area evaluation can
be potentially improved when more training image pairs (with pose errors up to tens of meters) are
available. Our method does not rely on accurate pose labels of training data. This leads to significant
cost and effort savings by eliminating the need for high-precision pose label acquisition.

The performance comparison between our method and the state-of-the-art on the VIGOR dataset is
presented in Tab. 3. The training images in the VIGOR dataset are about 4.5× larger than those in the
KITTI dataset, and our method achieves comparable performance with Shi et al. (2023a) on same-
area evaluation. Furthermore, similar to the observations on the KITTI dataset, the generalization
ability of our method from same-area to cross-area is also the best on the VIGOR dataset, with the
cross-area evaluation performance surpassing almost all fully-supervised methods.

4.3 LIMITATIONS

Although our self-supervised learning approach has achieved promising results, it has a few limita-
tions. (i) First, as explained previously, our self-supervised training strategy for rotation estimation
is only suitable for ground images captured by a pin-hole camera. Due to the significant domain
differences between panoramic and satellite images, it cannot be applied to estimating a spherical
camera’s orientation. (ii) Second, our deep metric learning supervision strategy computes the spatial
correlation between each query image and several satellite images. To save GPU memory and enable
a reasonable batch size for metric learning, we use the feature level of a quarter of the original image
size for the translation estimation. This actually sacrifices localization accuracy to some extent. (iii)
Finally, similar to all the ground-to-satellite localization networks where a single camera is used for
query, our method suffers poor localization performance along the longitudinal direction. This can
potentially be addressed using a video or multi-camera setup for the query. We leave these unsolved
problems as our future work and encourage the community to pay attention to them.

5 CONCLUSION

This paper has introduced the first weakly supervised ground camera pose refinement strategy by
ground-to-satellite image registration. Given a coarse location and orientation of a ground camera
obtained from noisy sensors or visual retrieval techniques, our method is able to refine this pose
by ground-to-satellite image registration using a training dataset without accurate pose labels for
ground images. Key components of our approach include a training scheme for ground-and-satellite
rotation alignment using satellite-and-satellite image pairs and a deep metric learning supervision
mechanism that trains the network for translation estimation. Benefiting from these two innovations,
our method, without requiring accurate labels, achieves comparable or superior performance to the
recent fully supervised state-of-the-art.
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Zahra Gharaee, Felix Järemö Lawin, and Per-Erik Forssén. Self-supervised learning of object pose
estimation using keypoint prediction. arXiv preprint arXiv:2302.07360, 2023.

Adam W Harley, Zhaoyuan Fang, Jie Li, Rares Ambrus, and Katerina Fragkiadaki. Simple-bev:
What really matters for multi-sensor bev perception? In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pp. 2759–2765. IEEE, 2023.

Sixing Hu, Mengdan Feng, Rang M. H. Nguyen, and Gim Hee Lee. Cvm-net: Cross-view matching
network for image-based ground-to-aerial geo-localization. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. In Ad-
vances in neural information processing systems, pp. 2017–2025, 2015.

Ted Lentsch, Zimin Xia, Holger Caesar, and Julian FP Kooij. Slicematch: Geometry-guided aggre-
gation for cross-view pose estimation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 17225–17234, 2023.

Tsung-Yi Lin, Serge Belongie, and James Hays. Cross-view image geolocalization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 891–898, 2013.

Dongrui Liu, Chuanchaun Chen, Changqing Xu, Robert C Qiu, and Lei Chu. Self-supervised point
cloud registration with deep versatile descriptors for intelligent driving. IEEE Transactions on
Intelligent Transportation Systems, 2023.

Liu Liu and Hongdong Li. Lending orientation to neural networks for cross-view geo-localization.
In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021.

10



Under review as a conference paper at ICLR 2024

Will Maddern, Geoffrey Pascoe, Chris Linegar, and Paul Newman. 1 year, 1000 km: The oxford
robotcar dataset. The International Journal of Robotics Research, 36(1):3–15, 2017.

Subodh Mishra, Armin Parchami, Enrique Corona, Punarjay Chakravarty, Ankit Vora, Devarth
Parikh, and Gaurav Pandey. Localization of a smart infrastructure fisheye camera in a prior map
for autonomous vehicles. In 2022 International Conference on Robotics and Automation (ICRA),
pp. 5998–6004, 2022. doi: 10.1109/ICRA46639.2022.9811793.

Arsalan Mousavian and Jana Kosecka. Semantic image based geolocation given a map. arXiv
preprint arXiv:1609.00278, 2016.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2536–2544, 2016.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Krishna Regmi and Mubarak Shah. Bridging the domain gap for ground-to-aerial image matching.
In The IEEE International Conference on Computer Vision (ICCV), October 2019.

Paul-Edouard Sarlin, Daniel DeTone, Tsun-Yi Yang, Armen Avetisyan, Julian Straub, Tomasz Mal-
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A DESIGN CHOICE DISCUSSIONS

Feature extractors. We empirically found that the feature extractors for satellite and ground
images captured by a pin-hole camera are shareable in the localization task. Tab. 4 presents the
comparison of our method with shared or non-shared feature descriptors. In this comparison, the
rotation estimator is kept the same and trained only on satellite images. From the results, it can be
seen that sharing weights between ground and satellite images achieves better performance. A po-
tential explanation might be that both the satellite images and ground images captured by a pin-hole
camera map straight lines in the real world to straight lines in images and the viewpoint differences
of the two view images are solved by a geometry projection module. This is similar to the task of
multi-view stereo and image-based rendering, where the feature extractors for multi-view images are
shared, and their differences are handled by Homography/geometry warping. Not sharing weights
between the two branches increases the learning burden of the network, especially when supervision
is not strong, resulting in inferior performance.

While for rotation and translation estimation, we found different feature extractors for different pur-
poses achieve better performance. Tab. 5 illustrates the comparison results. This might be because
good features for rotation and translation estimation are not identical. When re-using the feature
extractors in rotation estimation for translation, we found the network converges slowly, and the
performance on both rotation and translation estimation is poor, although better than the original
coarse poses that we aim to refine.

Table 4: Sharing feature extractors or not between satellite and ground images captured by a pin-hole camera.

Share?
Test-1 (Same-area) Test-2 (Cross-area)

Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth
d = 1 ↑ d = 3 ↑ d = 1 ↑ d = 3 ↑ θ = 1 ↑ θ = 3 ↑ d = 1 ↑ d = 3 ↑ d = 1 ↑ d = 3 ↑ θ = 1 ↑ θ = 3 ↑

Ours (λ = 0) No 48.64 77.37 9.97 25.63 99.66 100.00 54.49 79.75 8.96 26.54 99.99 100.00
Yes 59.58 85.74 11.37 31.94 99.66 100.00 62.73 86.53 9.98 29.67 99.99 100.00

Ours (λ = 1) No 62.81 93.00 19.90 55.53 99.66 100.00 62.81 84.77 13.14 36.89 99.99 100.00
Yes 66.07 94.22 16.51 49.96 99.66 100.00 64.74 86.18 11.81 34.77 99.99 100.00

Table 5: Sharing feature extractors or not for rotation and translation estimation.

Share?
Test-1 (Same-area) Test-2 (Cross-area)

Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth
d = 1 ↑ d = 3 ↑ d = 1 ↑ d = 3 ↑ θ = 1 ↑ θ = 3 ↑ d = 1 ↑ d = 3 ↑ d = 1 ↑ d = 3 ↑ θ = 1 ↑ θ = 3 ↑

Ours (λ = 0) Yes 33.77 74.66 9.17 26.13 11.69 34.64 32.18 71.92 7.58 24.00 12.64 37.24
No 59.58 85.74 11.37 31.94 99.66 100.00 62.73 86.53 9.98 29.67 99.99 100.00

Ours (λ = 1) Yes 35.62 81.69 10.68 31.78 10.20 31.35 32.62 73.72 8.87 26.07 10.21 31.62
No 66.07 94.22 16.51 49.96 99.66 100.00 64.74 86.18 11.81 34.77 99.99 100.00

Overhead-view projection. This paper leverages deep metric learning for network supervision.
It is well-recognized that a small batch size in metric learning affects performance negatively. More-
over, Harley et al. (2023) also confirms that a larger batch size impacts more significantly the overall
performance than different overhead-view projection methods. Thus, this paper adopts a simple
method that leverages ground plane homography for overhead view projection. It consumes the
least GPU memory among the existing BEV synthesis methods and thus enables a large batch size.
We achieved a batch size of 8 on an RTX 3090 GPU with this simple projection method.

We tried leveraging the geometry-guided cross-view transformer in Shi et al. (2023a) for the over-
head view projection. However, we can only achieve a batch of 4 on the same GPU, and the per-
formance is inferior to the simple ground plane Homography-based overhead view projection, as
demonstrated in Tab. 6. We leave the balance between a better overhead-view feature synthesis
module and less GPU memory consumption as future work.

B VISUALIZATION OF PROJECTED OVERHEAD-VIEW FEATURE MAPS

We provide some examples of the projected overhead-view feature maps, the reference satellite
feature maps, and the estimated poses by our method in Fig. 5. For the projected overhead-view
feature map in Fig. 5 (b), its center corresponds to the query camera location, and the right direction
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Table 6: Comparison between different overview synthesis methods. The method of “Transformer” is from Shi
et al. (2023a).

Test-1 (Same-area) Test-2 (Cross-area)
Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth

d = 1 ↑d = 3 ↑d = 1 ↑d = 3 ↑ θ = 1 ↑θ = 3 ↑d = 1 ↑d = 3 ↑d = 1 ↑d = 3 ↑ θ = 1 ↑θ = 3 ↑

Ours (λ = 0) Transformer 48.74 83.14 8.27 24.20 99.66 100.00 52.69 79.99 8.46 24.00 99.99 100.00
Homography 59.58 85.74 11.37 31.94 99.66 100.00 62.73 86.53 9.98 29.67 99.99 100.00

Ours (λ = 1) Transformer 62.02 92.13 16.01 46.54 99.66 100.00 62.97 87.54 11.36 33.70 99.99 100.00
Homography 66.07 94.22 16.51 49.96 99.66 100.00 64.74 86.18 11.81 34.77 99.99 100.00

Figure 5: (a) Ground image; (b) Synthesized overhead view feature map from the ground image; (c) Satellite
image feature map; (d) Estimated location probability map and camera orientation indicated by the red arrow.

corresponds to the camera heading. The positive satellite image’s feature map is presented in Fig. 5
(c). The coverage of Fig. 5(b) and Fig. 5(c) is the same in this visualization, which is around
100 × 100 m2. Our Pose Regressor compares the projected overhead-view feature map and the
reference satellite feature map and predicts a relative orientation between them, as shown by the red
arrow in Fig. 5 (d). We then rotate the projected feature map in Fig. 5 (b) according to the estimated
relative orientation and align its orientation with the reference satellite feature map, Fig. 5 (c). A
spatial correlation is next conducted between them to estimate the location probability map of the
ground camera with respect to the satellite image. This process is illustrated next.

C VISUAL EXPLANATION OF THE SPATIAL CORRELATION PROCESS

The spatial correlation process is illiustrated in Fig. 6. We first center crop the synthesized overhead
view feature map depicted in Fig. 5 (b) and make its coverage around 40 × 40 m2, as we consider
scene contents within 20m to the camera location is the most important for the localization purpose.
Then, we adopt the cropped overhead view feature map as the correlation kernel, similar to the
yellow kernel in Fig. 6, and the reference satellite image as the correlation input, indicated by the
green grid in Fig. 6, and apply inner product between the input and the kernal. The output, indicated
by the pink grid in Fig. 6, is the location probability map of the ground camera with respect to the
satellite image.

In practice, the coverage of the reference satellite map and the kernel is engineered to make the cov-
erage of the convolution output slightly larger than the location search space of the ground camera.
In this example, the coverage of the satellite map is around 100×100 m2, and that of the convolution
output (location probability map) is about 60× 60 m2.

Comparison between projecting features and images. In this paper, we follow the general
practice of projecting features instead of images (Shi et al., 2023b). This is because when projecting
ground images to an overhead view by assuming ground plane Homography, the pixels for scene
objects above the ground plane are incorrectly projected to the overhead view and thus suffer distor-
tion. In this way, the scene information of these objects will be lost in the projected image, resulting
in inferior localization performance.
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]

Figure 6: The spatial correlation process. We compute the inner product between the refer-
ence satellite feature map (input) and synthesized overhead view feature map (kernel) from the
ground image across all possible locations. This figure is from https://giphy.com/gifs/
blog-daniel-keypoints-i4NjAwytgIRDW

Table 7: Comparison between projecting features and images.
Test-1 (Same-area) Test-2 (Cross-area)

Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth
d = 1 ↑ d = 3 ↑ d = 1 ↑ d = 3 ↑ θ = 1 ↑ θ = 3 ↑ d = 1 ↑ d = 3 ↑ d = 1 ↑ d = 3 ↑ θ = 1 ↑ θ = 3 ↑

Ours (λ = 0) Images 45.40 80.57 6.97 21.39 99.92 100.00 48.24 79.16 6.95 20.60 100.00 100.00
Features 59.58 85.74 11.37 31.94 99.66 100.00 62.73 86.53 9.98 29.67 99.99 100.00

Ours (λ = 1) Images 54.31 90.59 13.36 38.32 99.92 100.00 58.53 87.34 11.24 33.23 100.00 100.00
Features 66.07 94.22 16.51 49.96 99.66 100.00 64.74 86.18 11.81 34.77 99.99 100.00

In contrast, features have a larger field of view of the original image and encode higher-level se-
mantic information about the scene. For example, the building roots also have a semantic meaning
of “building”. It can be mapped to the building roof in the overhead view, which shares the same
semantic information as the building root. Thus, projecting features instead of the original images
can tolerate the errors in the overhead-view projection by the ground plane Homography to some
extent. We illustrate the experimental comparison between projecting features and images in Tab. 7.
Not surprisingly, projecting features achieves better performance.

D SENSITIVENESS TO INITIALIZATION ERRORS

In this section, we investigate the performance of our method under varying pose initialization errors.

Range of location errors. Table 8 presents the performance comparison between our method and
the state-of-the-art, Shi & Li (2022) and Shi et al. (2023a), across different ranges of location errors:
28× 28 m2 and 56× 56 m2, while maintaining the same orientation ambiguity of 20◦. The results
show that our method achieves consistently the best performance on cross-area evaluation.

Variation in orientation ambiguity. Subsequently, we augment the orientation ambiguity from 20◦

to 80◦, while maintaining a location error range of 56 × 56 m2. Table 9 provides the performance
comparison between our method, Shi & Li (2022) and Shi et al. (2023a). Our method achieves
the best cross-area evaluation performance on the different orientation ambiguity. Furthermore,
the results reveal a decline for all methods in the percentage of images for which the estimated
orientation is restricted to 1◦ as the orientation ambiguity increases. Nevertheless, our method and
Shi et al. (2023a), which is recently accepted to ICCV2023, consistently maintain the majority of
image orientations within a 3◦ margin from their ground truth values. Consequently, the translation
estimation performance remains robust. In contrast, Shi & Li (2022) encounter a notable drop in
both translation and orientation estimation performance.

E MODEL SIZE AND EVALUATION SPEED COMPARISON

We present the model size and evaluation speed comparison with two recent state-of-the-art, whose
models and evaluation scripts have been released, in Tab. 10. All of them are evaluated on an RTX
3090 GPU. It can be seen that our method achieves the fastest evaluation speed with a relatively
small model size.
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Table 8: Performance comparison with different location error ranges on the cross-view KITTI dataset.

Location
Error Range Algorithms

Test-1 (Same-area) Test-2 (Cross-area)
Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth

d = 1 ↑d = 3 ↑d = 1 ↑d = 3 ↑ θ = 1 ↑θ = 3 ↑d = 1 ↑d = 3 ↑d = 1 ↑d = 3 ↑ θ = 1 ↑θ = 3 ↑

28 × 28 m2

Shi & Li (2022)∗ 44.66 73.92 12.06 35.62 25.31 57.41 34.17 72.30 11.56 35.08 11.40 48.18
Shi et al. (2023a)∗ 85.85 98.46 23.27 46.99 98.89 99.97 60.01 87.96 14.69 35.64 99.42 100.00

Ours (λ = 0) 61.46 87.76 13.44 38.14 99.76 100.00 65.62 90.32 13.46 38.53 99.97 100.00
Ours (λ = 1) 66.39 94.38 18.18 53.59 99.76 100.00 67.90 89.76 14.29 42.92 99.97 100.00

56 × 56 m2

Shi & Li (2022)∗ 35.54 70.77 5.22 15.88 19.64 51.76 27.82 59.79 5.75 16.36 18.42 49.72
Shi et al. (2023a)∗ 76.44 96.34 23.54 50.57 99.10 100.00 57.72 86.77 14.15 34.59 98.98 100.00

Ours (λ = 0) 59.58 85.74 11.37 31.94 99.66 100.00 62.73 86.53 9.98 29.67 99.99 100.00
Ours (λ = 1) 66.07 94.22 16.51 49.96 99.66 100.00 64.74 86.18 11.81 34.77 99.99 100.00

Table 9: Performance comparison with different location error ranges on the cross-view KITTI dataset.

Orientation
Ambiguity Algorithms

Test-1 (Same-area) Test-2 (Cross-area)
Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth

d = 1 ↑d = 3 ↑d = 1 ↑d = 3 ↑ θ = 1 ↑θ = 3 ↑d = 1 ↑d = 3 ↑d = 1 ↑d = 3 ↑ θ = 1 ↑θ = 3 ↑

20◦

Shi & Li (2022)∗ 35.54 70.77 5.22 15.88 19.64 51.76 27.82 59.79 5.75 16.36 18.42 49.72
Shi et al. (2023a)∗ 76.44 96.34 23.54 50.57 99.10 100.00 57.72 86.77 14.15 34.59 98.98 100.00

Ours (λ = 0) 59.58 85.74 11.37 31.94 99.66 100.00 62.73 86.53 9.98 29.67 99.99 100.00
Ours (λ = 1) 66.07 94.22 16.51 49.96 99.66 100.00 64.74 86.18 11.81 34.77 99.99 100.00

80◦

Shi & Li (2022)∗ 26.95 62.39 5.14 15.69 3.10 8.88 22.43 54.63 5.17 15.78 3.05 8.50
Shi et al. (2023a)∗ 70.21 95.47 22.29 48.90 53.27 93.98 56.97 87.72 15.17 35.39 58.68 95.92

Ours (λ = 0) 53.11 86.03 12.99 32.18 57.65 96.79 57.68 84.92 11.64 31.52 56.79 97.76
Ours (λ = 1) 57.94 91.49 17.73 47.44 57.65 96.79 60.50 86.57 12.62 35.60 56.79 97.76

Table 10: Model size and evaluation speed comparison on the KITTI dataset.
Model Size Evaluation Speed

Shi & Li (2022) Shi et al. (2023a) Ours Shi & Li (2022) Shi et al. (2023a) Ours

20.2 M 29.1 M 20.6 M 500 ms 200 ms 47 ms

F PERFORMANCE WITH DIFFERENT AMOUNTS OF DATA AS SUPERVISION

Below, we analyze the performance of our method with λ = 0, 1 and the state-of-the-art, Shi & Li
(2022) and Shi et al. (2023a), when different amounts of training data are employed. The results are
illustrated in Fig. 7.

For most models, except Shi & Li (2022), we observe a consistent increase in performance on the
same-area evaluation (Test-1) as the amount of training data increases. However, when it comes
to the cross-area evaluation (Test-2), the two state-of-the-art methods, which require ground truth
pose for supervision, exhibit a decline in performance when the training data exceeds 80%. This
phenomenon suggests that our method avoids overfitting and holds the potential for further perfor-
mance improvements with additional training data. Moreover, it’s worth noting that our method
doesn’t necessitate GT labels for ground images during training, simplifying the process of large-
scale data collection and reducing associated costs.

16



Under review as a conference paper at ICLR 2024

(a) Shi & Li (2022) (b) Shi et al. (2023a)

(c) Ours (λ = 0) (d) Ours (λ = 1)
Figure 7: Performance comparison between our method and the state-of-the-art on the KITTI dataset with
different amounts of training data.
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