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Abstract

Large Language Models rely on “attention sinks”—initial sequence tokens that
accumulate disproportionate attention—for efficient context management. How-
ever, the precise formation and positional dominance of these natural sinks remain
under-characterized. We present the first systematic empirical study investigating
attention sink patterns across three LLM families (GPT-2, Llama, Mistral) and five
text categories. Our analysis reveals that the absolute first token (P1) overwhelm-
ingly serves as the dominant natural attention sink, attracting significantly more
attention (p < 0.001, Cohen’s d > 6.0) than subsequent initial tokens across all
architectures. While P1 dominance is universal, its strength varies by model fam-
ily—Mistral exhibits the strongest P1 reliance—and is significantly modulated by
input characteristics, with short texts eliciting maximal P1 attention and code texts
minimal. These findings challenge assumptions about distributed sink importance
and provide foundational insights for designing efficient long-context models.

1 Introduction

The Transformer architecture’s self-attention mechanism enables Large Language Models (LLMs)
to process long-range dependencies, but its quadratic complexity limits context window scaling.
Recent work has identified “attention sinks”—initial sequence tokens that attract disproportionate
attention—as a solution for efficient long-context processing [1]]. While engineered sink preservation
has proven effective in streaming applications, the natural formation and characteristics of these sinks
across different architectures remain poorly understood.

Several fundamental questions persist: How consistently do natural attention sinks manifest across
diverse LLLM families? Do multiple initial tokens contribute equally as sinks, or does a specific
position dominate? How do architectural choices and input characteristics influence sink utilization?
Understanding these mechanisms is crucial for optimizing KV cache management, designing efficient
attention mechanisms, and developing interpretable long-context models.

This paper presents the first large-scale empirical investigation into natural attention sink dynamics
across three major LLM families (GPT-2, Llama, Mistral) and diverse text types. Our key finding
reveals that the absolute first token (P1) serves as a dominant “singular anchor,” consistently attracting
significantly more attention than other initial positions across all tested architectures.

2 Methodology

2.1 Experimental Setup

We analyzed five publicly available decoder-only LLMs spanning three architectural
families: gpt2 (124M), gpt2-medium (355M), microsoft/DialoGPT-medium (355M),
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meta-llama/Llama-2-7b-hf (7B), and mistralai/Mistral-7B-v0.1 (7B). Models were ac-
cessed via Hugging Face Transformers and run in evaluation mode with appropriate precision settings.

To assess content-dependent effects, we curated 25 text samples across five categories: narrative,
technical, dialogue, code, and short texts (5 samples per category). This design enables statistical
analysis of both architectural and content influences.

2.2 Attention Analysis Protocol

For each model-text pair, we performed forward passes with output_attentions=True to extract
attention weights. We defined the first NV = 4 tokens as the potential sink region and computed our
primary metric—P1 Attention Strength—as the average attention directed to the first token from all
subsequent tokens, averaged across layers:
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where fl;l)l represents the head-averaged attention from token j to position 1 in layer /.

We also computed attention to positions P2-P4 and the P1 Dominance Ratio:
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2.3 Statistical Analysis

We employed rigorous statistical testing (o« = 0.05) including paired-sample t-tests for positional
comparisons, one-way ANOVA for group differences, and Tukey HSD for post-hoc analysis. Effect
sizes were computed using Cohen’s d for practical significance assessment.

3 Results

3.1 Universal P1 Dominance

Our most striking finding is the overwhelming dominance of the first token (P1) as the primary
attention sink across all tested architectures and text types. Figure|l|shows P1 receives an average
attention score of 0.495 (SD=0.109) compared to P2 (0.013, SD=0.011), P3 (0.011, SD=0.010), and
P4 (0.015, SD=0.013).

Paired-sample t-tests confirmed P1’s statistical dominance: P1 vs P2 (¢(124) = 36.82,p < .001,d, =
6.61), P1 vs P3 (¢(124) = 36.73,p < .001,d, = 6.59), and P1 vs P4 (¢(124) = 35.15,p <
.001,d, = 6.31). These exceptionally large effect sizes indicate fundamental differences in attention
allocation patterns.

3.2 Architectural Variations

While P1 dominance is universal, its absolute strength varies significantly across model families.
Figure shows a one-way ANOVA revealed significant family effects (F'(2,122) = 9.49,p <
.001,7* = 0.135). Post-hoc analysis showed: Post-hoc analysis showed that Mistral models
exhibited the highest P1 attention (0.567, SD=0.101), while Llama models showed intermediate
levels (0.497, SD=0.125), and the GPT-2 family demonstrated the lowest but still substantial P1
attention (0.471, SD=0.083). Notably, Mistral’s Sliding Window Attention architecture showed
significantly stronger P1 reliance than both GPT-2 (p < .001, Cohen’s d = 1.09) and Llama
(p = .031, d = 0.61), suggesting that local attention constraints may amplify reliance on global
anchors.



70

71
72
73
74
75
76
77
78
79

80

81

82
83
84
85
86

0.495

Average Attention Score
o o o o o
N W S ” o

o
=

0.009 0.009 0-g14
- T T

o
o
!

P1 P2 P3 P4
Token Position

Figure 1: Average attention score received by each of the first four token positions (P1-P4) from
subsequent tokens, aggregated across all models and text samples.
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Figure 2: Mean P1 attention strength by model family. Error bars represent standard deviation.
Significance indicators: *** p < .001, * p < .05.

3.3 Content-Dependent Modulation

Input text characteristics significantly modulate P1 attention strength (F(4,120) = 100.30,p <
.001,n? = 0.770). Figure hows the clear hierarchy. Post-hoc analysis revealed a clear hierarchy
where short texts showed the highest P1 attention (0.665, SD=0.079), followed by narrative texts
(0.489, SD=0.037) and technical texts (0.479, SD=0.032) which demonstrated similar levels of
high P1 attention. Dialogue texts exhibited moderate P1 attention (0.434, SD=0.045), while code
texts showed the lowest P1 reliance (0.407, SD=0.045). This hierarchy was consistent across model
families, suggesting that P1 reliance inversely correlates with local structural complexity. Short
texts lacking internal structure maximize global anchor reliance, while structured code with explicit
syntactic patterns shows minimal P1 dependence.

4 Discussion and Implications

4.1 The Singular Anchor Phenomenon

Our findings reveal P1 as a “singular anchor” rather than part of a distributed multi-token sink system.
This suggests an emergent optimization where models utilize the most stable position—the first
token—as the primary conduit for global contextual information. Unlike sparse attention patterns
that reduce computational complexity, P1 sinks provide a complementary strategy for maintaining
global coherence.
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Figure 3: Mean P1 attention strength by text category. Error bars represent standard deviation.
Significance indicators: *** p < .001.

4.2 Architectural Insights

Mistral’s pronounced P1 reliance, despite its Sliding Window Attention design, suggests that local
attention constraints may necessitate stronger global anchors. This finding has immediate implications
for efficient long-context architectures: hybrid approaches combining sparse local attention with
enhanced global anchors merit exploration.

4.3 Practical Applications

These results inform several practical applications:

KV Cache Optimization: Understanding P1’s dominant role enables more efficient cache allocation
strategies. Instead of treating multiple initial tokens equally, systems could allocate enhanced capacity
specifically to P1.

Content-Adaptive Mechanisms: The robust content-dependent patterns suggest that attention
mechanisms could dynamically adjust sink allocation based on text type classification, optimizing
both efficiency and performance.

Interpretability: P1’s consistent role makes it a high-value target for probing global context repre-
sentation and understanding how models maintain long-range coherence.

4.4 Limitations and Future Work

Our study focuses on decoder-only architectures with specific attention mechanisms. Future work
should investigate encoder-decoder models, alternative positional encodings, and causal intervention
studies to establish functional necessity rather than mere correlation. Additionally, understanding
what specific information accumulates in P1 representations across different contexts remains an
open question.

5 Conclusion

This work provides the first systematic empirical characterization of natural attention sinks across
diverse LLM architectures. Our key finding—that the absolute first token serves as a dominant singu-
lar anchor—challenges assumptions about distributed sink importance and reveals a fundamental
self-organizing mechanism in transformer-based context management. While this P1 dominance is
universal, its strength varies significantly with both architectural choices and input characteristics.
These insights provide crucial foundations for designing more efficient long-context models, opti-
mizing attention mechanisms, and advancing our understanding of how LLMs process and maintain
global contextual information.

The identification of P1 as a singular anchor opens new avenues for targeted architectural improve-
ments, content-adaptive attention mechanisms, and interpretability research. Future work should
focus on causal validation of P1’s functional necessity and development of optimization strategies
that leverage these natural patterns for enhanced efficiency and performance.
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