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Abstract

Large Language Models rely on “attention sinks”—initial sequence tokens that1

accumulate disproportionate attention—for efficient context management. How-2

ever, the precise formation and positional dominance of these natural sinks remain3

under-characterized. We present the first systematic empirical study investigating4

attention sink patterns across three LLM families (GPT-2, Llama, Mistral) and five5

text categories. Our analysis reveals that the absolute first token (P1) overwhelm-6

ingly serves as the dominant natural attention sink, attracting significantly more7

attention (p < 0.001, Cohen’s d > 6.0) than subsequent initial tokens across all8

architectures. While P1 dominance is universal, its strength varies by model fam-9

ily—Mistral exhibits the strongest P1 reliance—and is significantly modulated by10

input characteristics, with short texts eliciting maximal P1 attention and code texts11

minimal. These findings challenge assumptions about distributed sink importance12

and provide foundational insights for designing efficient long-context models.13

14 1 Introduction

15 The Transformer architecture’s self-attention mechanism enables Large Language Models (LLMs)
16 to process long-range dependencies, but its quadratic complexity limits context window scaling.
17 Recent work has identified “attention sinks”—initial sequence tokens that attract disproportionate
18 attention—as a solution for efficient long-context processing [1]. While engineered sink preservation
19 has proven effective in streaming applications, the natural formation and characteristics of these sinks
20 across different architectures remain poorly understood.

21 Several fundamental questions persist: How consistently do natural attention sinks manifest across
22 diverse LLM families? Do multiple initial tokens contribute equally as sinks, or does a specific
23 position dominate? How do architectural choices and input characteristics influence sink utilization?
24 Understanding these mechanisms is crucial for optimizing KV cache management, designing efficient
25 attention mechanisms, and developing interpretable long-context models.

26 This paper presents the first large-scale empirical investigation into natural attention sink dynamics
27 across three major LLM families (GPT-2, Llama, Mistral) and diverse text types. Our key finding
28 reveals that the absolute first token (P1) serves as a dominant “singular anchor,” consistently attracting
29 significantly more attention than other initial positions across all tested architectures.

30 2 Methodology

31 2.1 Experimental Setup

32 We analyzed five publicly available decoder-only LLMs spanning three architectural
33 families: gpt2 (124M), gpt2-medium (355M), microsoft/DialoGPT-medium (355M),
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meta-llama/Llama-2-7b-hf (7B), and mistralai/Mistral-7B-v0.1 (7B). Models were ac-34

cessed via Hugging Face Transformers and run in evaluation mode with appropriate precision settings.35

To assess content-dependent effects, we curated 25 text samples across five categories: narrative,36

technical, dialogue, code, and short texts (5 samples per category). This design enables statistical37

analysis of both architectural and content influences.38

2.2 Attention Analysis Protocol39

For each model-text pair, we performed forward passes with output_attentions=True to extract40

attention weights. We defined the first N = 4 tokens as the potential sink region and computed our41

primary metric—P1 Attention Strength—as the average attention directed to the first token from all42

subsequent tokens, averaged across layers:43

P1_Attn =
1

Lmodel

Lmodel∑
l=1

 1

Lactual −N

Lactual∑
j=N+1

Ā
(l)
j,1

 (1)

where Ā
(l)
j,1 represents the head-averaged attention from token j to position 1 in layer l.44

We also computed attention to positions P2-P4 and the P1 Dominance Ratio:45

P1_Dom_Ratio =
P1_Attn∑N

k=2 Pk_Attn + ϵ
(2)

2.3 Statistical Analysis46

We employed rigorous statistical testing (α = 0.05) including paired-sample t-tests for positional47

comparisons, one-way ANOVA for group differences, and Tukey HSD for post-hoc analysis. Effect48

sizes were computed using Cohen’s d for practical significance assessment.49

3 Results50

3.1 Universal P1 Dominance51

Our most striking finding is the overwhelming dominance of the first token (P1) as the primary52

attention sink across all tested architectures and text types. Figure 1 shows P1 receives an average53

attention score of 0.495 (SD=0.109) compared to P2 (0.013, SD=0.011), P3 (0.011, SD=0.010), and54

P4 (0.015, SD=0.013).55

Paired-sample t-tests confirmed P1’s statistical dominance: P1 vs P2 (t(124) = 36.82, p < .001, dz =56

6.61), P1 vs P3 (t(124) = 36.73, p < .001, dz = 6.59), and P1 vs P4 (t(124) = 35.15, p <57

.001, dz = 6.31). These exceptionally large effect sizes indicate fundamental differences in attention58

allocation patterns.59

3.2 Architectural Variations60

While P1 dominance is universal, its absolute strength varies significantly across model families.61

Figure 2 shows a one-way ANOVA revealed significant family effects (F (2, 122) = 9.49, p <62

.001, η2 = 0.135). Post-hoc analysis showed: Post-hoc analysis showed that Mistral models63

exhibited the highest P1 attention (0.567, SD=0.101), while Llama models showed intermediate64

levels (0.497, SD=0.125), and the GPT-2 family demonstrated the lowest but still substantial P165

attention (0.471, SD=0.083). Notably, Mistral’s Sliding Window Attention architecture showed66

significantly stronger P1 reliance than both GPT-2 (p < .001, Cohen’s d = 1.09) and Llama67

(p = .031, d = 0.61), suggesting that local attention constraints may amplify reliance on global68

anchors.69
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Figure 1: Average attention score received by each of the first four token positions (P1-P4) from
subsequent tokens, aggregated across all models and text samples.
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Figure 2: Mean P1 attention strength by model family. Error bars represent standard deviation.
Significance indicators: *** p < .001, * p < .05.

3.3 Content-Dependent Modulation70

Input text characteristics significantly modulate P1 attention strength (F (4, 120) = 100.30, p <71

.001, η2 = 0.770). Figure 3 shows the clear hierarchy. Post-hoc analysis revealed a clear hierarchy72

where short texts showed the highest P1 attention (0.665, SD=0.079), followed by narrative texts73

(0.489, SD=0.037) and technical texts (0.479, SD=0.032) which demonstrated similar levels of74

high P1 attention. Dialogue texts exhibited moderate P1 attention (0.434, SD=0.045), while code75

texts showed the lowest P1 reliance (0.407, SD=0.045). This hierarchy was consistent across model76

families, suggesting that P1 reliance inversely correlates with local structural complexity. Short77

texts lacking internal structure maximize global anchor reliance, while structured code with explicit78

syntactic patterns shows minimal P1 dependence.79

4 Discussion and Implications80

4.1 The Singular Anchor Phenomenon81

Our findings reveal P1 as a “singular anchor” rather than part of a distributed multi-token sink system.82

This suggests an emergent optimization where models utilize the most stable position—the first83

token—as the primary conduit for global contextual information. Unlike sparse attention patterns84

that reduce computational complexity, P1 sinks provide a complementary strategy for maintaining85

global coherence.86
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Figure 3: Mean P1 attention strength by text category. Error bars represent standard deviation.
Significance indicators: *** p < .001.

4.2 Architectural Insights87

Mistral’s pronounced P1 reliance, despite its Sliding Window Attention design, suggests that local88

attention constraints may necessitate stronger global anchors. This finding has immediate implications89

for efficient long-context architectures: hybrid approaches combining sparse local attention with90

enhanced global anchors merit exploration.91

4.3 Practical Applications92

These results inform several practical applications:93

KV Cache Optimization: Understanding P1’s dominant role enables more efficient cache allocation94

strategies. Instead of treating multiple initial tokens equally, systems could allocate enhanced capacity95

specifically to P1.96

Content-Adaptive Mechanisms: The robust content-dependent patterns suggest that attention97

mechanisms could dynamically adjust sink allocation based on text type classification, optimizing98

both efficiency and performance.99

Interpretability: P1’s consistent role makes it a high-value target for probing global context repre-100

sentation and understanding how models maintain long-range coherence.101

4.4 Limitations and Future Work102

Our study focuses on decoder-only architectures with specific attention mechanisms. Future work103

should investigate encoder-decoder models, alternative positional encodings, and causal intervention104

studies to establish functional necessity rather than mere correlation. Additionally, understanding105

what specific information accumulates in P1 representations across different contexts remains an106

open question.107

5 Conclusion108

This work provides the first systematic empirical characterization of natural attention sinks across109

diverse LLM architectures. Our key finding—that the absolute first token serves as a dominant singu-110

lar anchor—challenges assumptions about distributed sink importance and reveals a fundamental111

self-organizing mechanism in transformer-based context management. While this P1 dominance is112

universal, its strength varies significantly with both architectural choices and input characteristics.113

These insights provide crucial foundations for designing more efficient long-context models, opti-114

mizing attention mechanisms, and advancing our understanding of how LLMs process and maintain115

global contextual information.116

The identification of P1 as a singular anchor opens new avenues for targeted architectural improve-117

ments, content-adaptive attention mechanisms, and interpretability research. Future work should118

focus on causal validation of P1’s functional necessity and development of optimization strategies119

that leverage these natural patterns for enhanced efficiency and performance.120
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