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Abstract
Convolutional neural networks (CNNs) have emerged
as powerful models for predicting neural activity and
behavior in visual tasks. Recent studies suggest
that number-detector units—analogous to number neu-
rons—can emerge in CNNs, both in trained networks op-
timized for object recognition and in untrained networks.
In this work, we extend previous studies by investigat-
ing whether CNNs encode numerosity at the population
level and by examining how the statistical distribution
of numerical and non-numerical features in the training
dataset influences their internal representations. Rec-
ognizing that perceptual systems are finely tuned to the
statistical properties of their sensory environment, we
compare CNNs trained on both synthetic datasets and
a naturalistic dataset that better reflects the real-world
conditions shaping human number sense. By systemati-
cally manipulating these statistical properties, we assess
their impact on the encoding of both numerical and non-
numerical features. Finally, we compare these computa-
tional representations with those observed in the human
brain, highlighting both shared characteristics and key
differences that provide deeper insights into the mecha-
nisms underlying numerosity perception in biological and
artificial systems.
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Introduction
Convolutional neural networks (CNNs) are computational
models inspired by early discoveries in biological vision
(Fukushima, 1980; Lindsay, 2020). These hierarchical archi-
tectures, like the brain, consist of multiple feedforward layers,
each comprising artificial units that approximate neuronal pro-
cessing. Since their introduction, CNNs have emerged as
state-of-the-art models for predicting neural activity and be-
havior in visual tasks (Cichy et al., 2016; Khaligh-Razavi &
Kriegeskorte, 2014; Kubilius et al., 2019; Yamins & DiCarlo,
2016; Yamins et al., 2014). Notably, CNNs trained on object
classification tasks closely resemble neural responses in the
inferior temporal cortex (IT) of both humans and monkeys, a

key region for object recognition (Khaligh-Razavi & Kriegesko-
rte, 2014).

But what happens when images contain multiple objects?
The ability to perceive and represent the number of items in
a set without counting—known as ”number sense”—is widely
regarded as a fundamental and evolutionarily ancient cogni-
tive skill shared by humans and many animal species (De-
haene, 2011). This capacity provides significant adaptive ad-
vantages for non-human animals (Nieder, 2020). Evidence
from human psychophysics (e.g., Burr & Ross 2008), brain
imaging in humans (e.g., Piazza et al. 2004; Castaldi et al.
2019; Karami 2024), and single-neuron recordings in animals
(e.g., Nieder & Miller 2003; Wagener et al. 2018; Kobylkov
et al. 2022) suggests that numerosity is automatically repre-
sented in the brain. This may be facilitated by the presence of
“number neurons,” which are tuned to different numerosities
and have been observed in both humans and animals.

Recent findings suggest that number-detector
units—analogous to number neurons recorded in the
monkey prefrontal and parietal cortex—emerge in the final
layer of a CNN trained for visual object recognition (Nasr
et al., 2019) and even in an entirely untrained CNN (Kim et
al., 2021). Notably, these studies found that these number-
selective units were not influenced by non-numeric visual
features. Additionally, Zhou et al. (2021) demonstrated that
CNNs exhibit numerosity underestimation in connected dot
patterns, a phenomenon previously observed in humans
(Franconeri et al. 2009; He et al. 2009). These findings
align with evidence of specialized neurons that respond to
the number of items in visual displays in numerically naive
monkeys (Viswanathan & Nieder, 2013), crows (Wagener et
al., 2018), untrained 10-day-old domestic chicks (Kobylkov
et al., 2022), and even 3-month-old infants (Gennari et al.,
2023). Collectively, this evidence suggests that numerical
representation arises from intrinsic processes built into the
visual system—processes that can also emerge in CNNs.

Much of the debate in the literature on visual numeros-
ity perception concerns whether numerosity perception re-
lies on a dedicated neurocognitive system or emerges from
a more general magnitude system that derives number esti-
mates from low-level visual properties such as item area, sur-
face area, total field area, and item density (Leibovich et al.,
2016). Even with carefully designed stimuli, fully controlling
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all continuous visual variables simultaneously is impossible
(DeWind et al., 2015). To address this, recent fMRI (Castaldi
et al. 2019; Karami 2024) and MEG (Karami, 2024) studies
have employed representational similarity analysis (RSA) at
the population level—using the combined activity of many vox-
els or channels—to disentangle the contributions of numeric
and non-numeric features to neural representations. Follow-
ing this approach, we investigate numerosity at the population
level, allowing us to capture the distributed coding of numer-
ical information across neural network models and clarify the
complex interplay between numerical and non-numerical fea-
tures.

Neural network models are often trained on visual stimuli
that do not accurately reflect the statistical structure of our
developmental environment (Mehrer et al., 2021). Many deep
learning models of numerosity perception, for example, rely on
synthetic datasets where images are generated pixel-by-pixel
with all numerosities occurring at equal frequency (Stoianov &
Zorzi 2012; Testolin, Dolfi, et al. 2020; Mistry et al. 2023) or on
real images that predominantly feature single objects (Nasr et
al., 2019). These datasets typically decouple numerosity from
specific non-numerical features, overlooking the complex cor-
relations found in natural scenes. Since perceptual systems
are finely tuned to the statistical properties of their sensory
environment (Fiser et al., 2010), it is crucial to train models
on data that better reflect these conditions. To address this,
we trained CNNs on datasets with different statistical distribu-
tions—including synthetic datasets where numerical and non-
numerical features were systematically controlled, as well as
a naturalistic dataset featuring multiple objects derived from
real visual scenes—to examine how these variations shape
the encoding of numerical and non-numerical features.

Methods

To assess whether CNN models can capture how the human
brain represents numerosity beyond non-numerical features at
the population level, we used CORnet-Z, a lightweight model
with four anatomically mapped areas (V1, V2, V4, and IT) fol-
lowed by a decoder layer. CORnet-Z is the simplest network
in the CORnet family and serves as an efficient alternative to
AlexNet. Each anatomically mapped area consists of a single
convolution, followed by a ReLU nonlinearity and max pool-
ing, while the decoder is a 1000-way linear classifier (Kubil-
ius et al., 2019). We selected CORnet-Z because it is the
simplest and fastest model in the CORnet family, making it
a useful starting point for isolating the minimal architectural
requirements for numerosity representation. Unlike its more
complex counterparts—CORnet-RT, a recurrent extension of
CORnet-Z, and CORnet-S, which incorporates ResNet-like
skip connections—CORnet-Z has a shallow, feedforward ar-
chitecture that still captures key aspects of hierarchical visual
processing. By starting with this minimal configuration, we aim
to identify the extent to which numerosity representations can
emerge purely from structural and architectural constraints,
without relying on more complex features such as recurrence

or deep residual pathways. This simplicity allows us to better
isolate which aspects of the architecture are necessary and
sufficient for numerosity-sensitive representations to emerge.
We used five versions of CORnet-Z:

1. The completely untrained version with randomly initialized
weights to reveal the effect of architecture alone (Cichy et
al., 2016).

2. A version trained on object recognition using the ImageNet
dataset (Deng et al., 2009), which consists of 1.2 million im-
ages spanning 1,000 object categories (Krizhevsky et al.,
2012). This version was included to align with previous
work by Nasr et al. (2019).

3. A version trained on a numerosity task, where the model
learned to associate an image of dots (the stimulus) with
the corresponding numerosity. We generated a dataset
of visual stimuli containing between 6 and 29 dots using
the method described by DeWind et al. (2015), which sys-
tematically controls two orthogonal dimensions—“size” and
“spacing”—alongside numerosity (see Figure 1.A for sam-
ple images). In this approach, size is defined as a linear
combination of the logarithm of total surface area and aver-
age item area, while spacing is derived from a linear combi-
nation of the logarithm of total field area and the inverse of
density. The model was trained using Stochastic Gradient
Descent (SGD) with a learning rate of 0.001, and the im-
plementation was carried out using custom PyTorch code,
available on the paper’s GitHub page.

4. Another version was trained on the same numerosity task
and number range but using a different dataset, the Nat-
ural dataset (Testolin, Zou, & McClelland, 2020). This
dataset originates from computer vision datasets created
for the PASCAL detection challenge (Everingham et al.,
2009), which include images annotated with rectangular
bounding boxes representing object sizes and positions. To
generate the stimuli, objects in each image were replaced
with their corresponding bounding boxes, displayed as non-
overlapping white rectangles on a black 30 × 30 pixel back-
ground while maintaining their original spatial arrangement
as closely as possible (see Figure 1.A for examples).

5. A version trained on the same numerosity task with the
same range of numbers as described above, using the
ISA2 dataset (Testolin, Zou, & McClelland, 2020). The
ISA2 dataset was designed to overcome a key limitation
of the Natural dataset, where images with more than 10 ob-
jects were rare, ensuring better representation of higher nu-
merosities during training. Additionally, it examines whether
deep networks, like the human visual system, benefit from
exposure to irregularly shaped objects rather than just rect-
angles and squares (see Figure 1.A for sample images).
To achieve this, the ISA2 dataset includes ellipsoids with
varying aspect ratios. The number distribution follows a
power-law pattern, meaning smaller numbers appear more



Figure 1: (A) Examples of visual stimuli from the three different datasets used to train CORnet-Z. Each dataset has a distinct sta-
tistical distribution of non-numeric features, allowing us to investigate how these features influence the emergence of numerosity
representations in the computational model. (B) An illustration of the full set of stimulus conditions. Arrays of dots with four
different number and four average item areas displayed within two total field areas. (C) Representational dissimilarity matrices
(RDMs) extracted from a given CNN were subjected to a semipartial correlation analysis. In the semipartial correlation analysis,
five model RDMs (number, average item area, total field area, total surface area, and density) were used as predictors.

frequently than larger ones—an organization that mirrors
how numbers naturally occur in written language (Dehaene,
1992; Piantadosi, 2016).

To test how numeric and non-numeric features are repre-
sented in CNNs, we followed the method used in the Karami
(2024) fMRI experiment to generate stimuli for testing how nu-
merical and non-numerical features are represented in the hu-
man brain. The visual set of dots was orthogonally varied in
number, average item area, and total field area. This resulted
in 32 conditions, created by crossing four numerosities (6, 10,
17, or 29 dots), four average item areas (0.04, 0.07, 0.12, 0.2
visual square degrees), and two total field areas. The dots
were arranged to fit within a small or large total field area, de-
fined by a virtual circle with a diameter of either about 9 or
13.5 visual degrees (Figure 1.B).

All five models were presented with 100 images for each of
the 32 conditions. Each image, sized 300 × 300 pixels, served
as the input to the network. We selected four layers (V1, V2,
V4, and IT) of the network, which are analogous to visual brain
areas, and extracted the activation of all nodes in each layer.
The activation was extracted using the THINGSvision toolbox
(Muttenthaler & Hebart, 2021), and the results from the 100
instances of each condition were averaged to create one ac-
tivity vector for each condition from each layer’s output. We
used Pearson correlation to build the CORnet-Z’s Represen-
tational Dissimilarity Matrices (RDMs).

Comparing convolutional neural networks with
predictor models

To determine whether numerical and non-numerical visual
features are represented independently across different net-
work layers, we used an approach based on RSA combined
with semipartial correlations. Here’s how our method works:

1. Creating Predictive Matrices: We first constructed five
RDMs, each corresponding to a different visual feature:
number, average item area, total field area, total surface
area, and density. Each matrix quantifies the logarithmic
difference between every pair of stimuli for a given visual
feature: number, average item area, total field area, total
surface area, or density.

2. Isolating Unique Contributions: To isolate the contribution
of each feature independently of the others, we employed
semipartial correlation. This statistical method calculates
the relationship between one predictor RDM and the net-
work’s own RDM (derived from its activations), while con-
trolling for the shared variance of the other predictors. In
simpler terms, it tells us how much a specific visual feature
(such as number) uniquely explains the neural activation
patterns, without interference from other features like aver-
age item area, total field area, total surface area or density.

3. Assessing Statistical Significance: Next, we evaluated
whether the observed semipartial correlations were statis-
tically significant. To do this, we performed a permutation



test following the method outlined by Nili et al. (2014). In
this test, we randomly shuffled the labels of the stimuli, re-
calculated the RDMs for each CORnet-Z layer using these
permuted labels, and repeated this process 50,000 times.
This generated a null distribution of semipartial correlation
values representing what would be expected by chance if
there were no real relationship between the network’s ac-
tivations and the visual feature predictors. We then com-
pared our actual semipartial correlation values to this null
distribution, rejecting the null hypothesis (i.e., concluding
that the feature explains a unique part of the variance) if
our observed correlation was within the top 5% of the null
distribution. This corresponds to using a false-positive rate
of 0.05, as described by Kriegeskorte (2008).

Exploring the latent similarity structure of
convolutional neural networks
To examine the latent similarity structure of each network
layer’s RDM, we applied multidimensional scaling (MDS;
Kruskal 1964) using the MATLAB function cmdscale and vi-
sualized the first two dimensions of the MDS output. This
method arranges stimuli in a two-dimensional space, where
the distances between them correspond to differences in the
response patterns they elicit. Consequently, stimuli positioned
closer together in the plot indicate more similar response pat-
terns (Nili et al., 2014).

Exploring which parts of stimuli influence the
network’s decision
To see which parts of an image the network uses to make its
decision, we used a method called Score-CAM (Wang et al.,
2020). This method works by covering up parts of the im-
age and checking how much the network’s decision changes.
Each feature map, which is a filtered version of the input im-
age that highlights specific patterns, gets a score for how im-
portant it is. These scores are then combined to create a
heatmap—a colored overlay that shows the most important ar-
eas. We did this for different layers of our network (V1, V2, V4,
and IT). We chose Score-CAM over another common method
called Grad-CAM (Selvaraju et al., 2017) because Grad-CAM
usually highlights only one object, while Score-CAM can show
several objects at once, which is better for our task of distin-
guishing numbers.

Results
Results of representational similarity analysis on
CNN layers
Figure 2 reveals that deeper layers of the network tend
to encode numerical information robustly. In the untrained
CORnet-Z model, this numerosity signal is significant primarily
in the IT layer, suggesting that even without task-specific train-
ing, the architecture itself can capture some numerical prop-
erties. In contrast, when the network is trained—whether on
ImageNet, Natural, ISA2, or DeWind datasets—the contribu-
tion of numerosity becomes significant in both the V4 and IT

layers (p < 0.05). This indicates that training reinforces and
possibly shifts the encoding of numerosity to earlier points in
the processing hierarchy.

A similar pattern is observed for total field area. Across
all models, the strength of representation for total field area
increases progressively up to the V4 layer. However, in the
IT layer of the networks trained on the Natural and DeWind
datasets, this strength drops significantly. This pattern sug-
gests that while mid-level layers (like V4) integrate informa-
tion related to spatial extent, the final stages of processing
might prioritize other features over total field area—at least in
networks exposed to naturalistic or synthetic dot stimuli. In
contrast to numerosity and total field area, density shows a
different trend. It is more strongly represented in the early lay-
ers of the network and then gradually diminishes in deeper
layers, regardless of the training condition. Meanwhile, the
representation of total surface area remains fairly stable and
consistently above zero across all network layers, with a slight
enhancement in V1 and IT for most models. This indicates
that surface area is a feature that is reliably captured across
the processing hierarchy.

Notably, average item area is not prominently represented
in any network layer except in the IT layer of the ImageNet
and ISA2 models. This observation is in line with human fMRI
studies (Castaldi et al., 2019; Karami, 2024), which also report
a lack of distinct representation for average item area in most
regions of the visual cortex.

Overall, these findings illustrate that the encoding of numer-
ical information—and its separation from non-numerical visual
features—is strongly influenced by both network architecture
and training. While early layers tend to capture basic visual
properties like density, deeper layers—especially when opti-
mized through training—are more specialized in abstract rep-
resentations such as numerosity, echoing some but not all as-
pects of human visual processing.

Results of applying multidimensional scaling on
layers of CNNs
Figure 3 shows that when we apply multidimensional scaling
(MDS) to the network’s representations, the stimuli are gen-
erally arranged so that numbers increase along the second
dimension in most layers. However, in the IT layer of the
networks trained on the Natural and DeWind datasets, this
ordering instead appears along the first dimension. This ar-
rangement is reminiscent of the human “mental number line,”
in which smaller numbers are typically associated with the left
side and larger numbers with the right (Galton, 1880; Dehaene
et al., 1993). Although this observation is compelling, these
results should be interpreted with caution, as the original MDS
analysis did not control for potential confounding visual fea-
tures. We chose this approach to directly compare the net-
work’s MDS outcomes with those derived from different brain
regions in Karami (2024). We also conducted an additional
control analysis to assess whether this observed number line
persists when low-level visual features are accounted for (see
Supplementary Materials for details). Specifically, we par-



Figure 2: Semipartial correlation coefficients obtained from representational similarity analysis for numerosity, average item area,
total field area, total surface area, and density across different layers of untrained CORnet-Z, as well as CORnet-Z models trained
on ImageNet, Natural, ISA2, and DeWind datasets. Data points represent the mean semipartial correlation coefficients. Colored
markers above the figure indicate where the effect is significantly greater than zero (p < 0.05).

tialled out non-numeric confounds from the RDMs using mul-
tiple regression, reconstructed a symmetric residual matrix,
and applied MDS to visualize the resulting structure. Notably,
a linear spatial organization still emerges in the network’s lay-
ers in most cases, supporting the existence of a number line
that is not fully explained by low-level visual attributes.

Additionally, the MDS plots reveal a clear separation be-
tween stimuli with large and small total field areas across
all network layers, suggesting that the network distinctly en-
codes differences in this feature. In contrast, previous studies
in higher associative brain regions of the ventral and dorsal
streams have reported a much weaker separation based on
total field area (Castaldi et al., 2019; Karami, 2024).

Results of applying Score-CAM on layers of CNNs

In Figure 4, we observe that from V1 to IT, the highlighted ar-
eas progressively expand, shifting from small circles around
the dots to broader heatmap patches. This is a natural out-
come of feature map sizes shrinking in deeper layers, which
leads to deeper-layer units representing larger regions of the
image. In all models, V1 and V2 effectively capture all the

dots, suggesting they extract the necessary information for
later classification. Interestingly, the untrained model also
captures the dots well, but the emphasis is weaker compared
to the DeWind model, as seen in the background color of V1.
The ImageNet-trained model exhibits a similar pattern to the
untrained model. Overall, the main difference among mod-
els appears in the IT layer, which is the final input before the
classification stage, suggesting that the training method influ-
ences number representation mainly in the final layer, rather
than in earlier ones.

Specifically, in the IT layer, the model trained on ImageNet
highlights individual dots more than the other two models.
This matches the observation in Figure 2, where the Ima-
geNet model becomes more sensitive to average item area in
IT. This suggests that training on ImageNet leads the network
to emphasize discrete object-level features - particularly those
associated with average item area. On the other hand, the
DeWind-trained and Untrained models show more spread-out
heatmaps, focusing on groups or clusters of dots. This wider
focus fits with their stronger increase in total surface area in
Figure 2 (IT), pointing to a different way of encoding numbers.



Figure 3: Multidimensional scaling (MDS) reveals representational similarities between stimuli in a two-dimensional space for
four layers (V1, V2, V4, and IT) of untrained CORnet-Z, as well as CORnet-Z models trained on ImageNet, Natural, ISA2, and
DeWind datasets. The black circles represent the 32 stimuli. The circle sizes vary, indicating stimuli with small total field area
(small circles) and larger total field area (large circles). The red circles indicate the average coordinates of each number.



We also quantify the similarities across training regimes
(DeWind, ImageNet, Untrained) and layers (V1, V2, V4,
IT). Using 100 images (10 first images per 10 numerosities
in DeWind dataset), we computed Pearson correlations be-
tween flattened (1D) heatmaps for pairs of training regimes.
ImageNet-trained heatmaps consistently showed the lowest
correlation with the other regimes across layers. This dif-
ference was most significant in IT, where average correla-
tions (Mean±Std) were: DeWind vs ImageNet: 0.81±0.17;
DeWind vs Untrained: 0.98±0.01; ImageNet vs Untrained:
0.82±0.16. This divergence increased when using only the
top 25% heatmap intensities (IT layer): DeWind vs ImageNet:
0.67±0.28; DeWind vs Untrained: 0.95±0.03; ImageNet vs
Untrained: 0.68±0.28. For V1-V2-V4, correlations remained
very high (> 0.9) in all comparisons, in both cases of keep-
ing all pixels and thresholding top 25% pixels. Overall, the
quantification results further reveal the similarities and dissim-
ilarities in model mechanisms resulting from different training
modes.

Discussion

In this study, our primary goal was to investigate whether
convolutional neural networks (CNNs)—specifically CORnet-
Z—encode numerosity at the population level, and how this
representation is influenced by different training regimes. We
evaluated five variants of CORnet-Z: an untrained model, a
model pretrained on ImageNet, and three models trained on
numerosity tasks using datasets with varying statistical struc-
tures (DeWind, Natural, and ISA2). To assess numerosity rep-
resentation and its separation from non-numerical visual fea-
tures, we employed representational similarity analysis (RSA)
with semipartial correlations, multidimensional scaling (MDS),
and Score-CAM visualizations. Our results showed that nu-
merosity information consistently emerges in deeper layers
(especially V4 and IT) across all models, including the un-
trained one. We also found differences in representational
geometry between the networks and human brain data, par-
ticularly in how non-numeric features like total field area are
encoded.

Many studies have explored how computational models can
represent numerosity information extracted from visual im-
ages (Dakin et al., 2011; Dehaene & Changeux, 1993; Hanna-
gan et al., 2018; Kluth & Zetzsche, 2016; Knops et al., 2014;
Park & Huber, 2022; Paul et al., 2022; Stoianov & Zorzi, 2012;
Testolin, Dolfi, et al., 2020; Verguts & Fias, 2004). While one
study examined how training a CORnet-S network on a nu-
merosity task with a synthetic dataset reorganizes number-
selective units (Mistry et al., 2023), few have investigated
how numerical and non-numerical information are simultane-
ously represented. A notable exception is Testolin, Dolfi, et
al. (2020), who used representational similarity analysis and
t-SNE to study numerosity in deep belief networks—models
that develop internal representations from sensory data (Zorzi
et al., 2013). Unlike our approach, which trains CORnet-Z
using supervised learning, Testolin, Dolfi, et al. (2020) used

unsupervised learning, thought to be more biologically plausi-
ble (Cox & Dean, 2014; Zhuang et al., 2021), as infants natu-
rally learn without labeled data (Bergelson & Swingley, 2012;
Frank et al., 2021). However, supervised models more closely
match representations in the ventral cortex (Khaligh-Razavi &
Kriegeskorte, 2014). Both our study and Testolin, Dolfi, et al.
(2020) found that numerosity is represented alongside other
visual features. In Testolin, Dolfi, et al. (2020), numerosity
became the most dominant feature after training, supporting
the idea that humans learn to focus on number while filter-
ing out irrelevant features (Piazza et al., 2018). In contrast,
our network emphasized total field area more than numeros-
ity, similar to the early training stages in Testolin, Dolfi, et al.
(2020). However, training CORnet-Z on a numerosity task im-
proved its ability to represent numerosity, as reflected in higher
semipartial correlation values in the trained vs. untrained net-
works. This finding aligns with fMRI studies showing sharper
numerosity tuning in adults (Piazza et al., 2004) compared to
preschoolers (Kersey & Cantlon, 2016).

How training dataset shapes numeric and
non-numeric network representations

In this study, we examine how numerosity information is rep-
resented in both an untrained network and a network trained
on two types of tasks: object recognition and numerosity. For
the numerosity task, we trained the network on both a syn-
thetic dataset—where all numerosities appear with equal fre-
quency, and numerical and non-numerical features are mostly
uncorrelated, which does not necessarily reflect natural statis-
tics—and on two datasets intended to capture the statistical
properties of real-world environments. Our results show no
clear distinction between the representation of numeric and
non-numeric features in the network trained on the synthetic
DeWind dataset and the Natural dataset. This outcome con-
trasts with efficient coding models of perception (e.g., Gold
& Stocker 2017), which suggest that our limited perceptual
capacity is fine-tuned to the common patterns found in nat-
ural scenes. In simple terms, these models propose that our
brains are optimized to pick up on the regular relationships be-
tween numbers and other visual features—like size, spacing,
and arrangement—that typically occur in real-world environ-
ments. According to this idea, when we look at a group of
objects, our brain’s sense of number is shaped by the natural
patterns it has learned, which help us understand the world
more efficiently. Based on this, changing the statistics of the
training data should result in different ways of representing
numeric and non-numeric features. This is because, in the
context of efficient coding models, the model learns from the
patterns in the data and focuses on different visual aspects of
the dot arrangement. This finding also aligns with human stud-
ies, which suggest that visual numerosity perception does not
necessarily improve when perceiving real-world scenes com-
pared to artificial displays (Odic & Oppenheimer, 2022).



Figure 4: Results from Score-CAM analysis of different layers of CORnet-Z (V1, V2, V4, and IT) on an example image. The
visualizations highlight the regions of the image that are important for number classification, with warmer colors indicating higher
relevance. As the Natural model resembles the DeWind model, and to conserve space, we visualize only DeWind.

Human brain and networks encode numeric and
non-numeric features using distinct geometrical
patterns

Despite the ability of both neural networks and the human
brain to represent numeric and non-numeric information, there
are differences in the geometry of these representations.

By carefully inspecting the multidimensional scaling (MDS)
of different layers in our model alongside data derived from
various brain regions (Karami et al., 2023), we found an in-
triguing discrepancy. Specifically, a curved structure observed
in the MDS of the intraparietal sulcus (IPS) region in the hu-
man brain—a feature attributed to the presence of a decision
variable (Nelli et al., 2023)—was not present in any layer of
our network. This discrepancy suggests a fundamental dif-
ference in the geometry of representation between our model
and higher-order brain regions. The IPS, known to host nu-
merosity representations that are explicitly read out during nu-
merical decision-making (Lasne et al., 2018), appears to op-
erate under different representational principles than those in
our network.

Furthermore, our results indicate that the geometry of rep-
resentations in the deeper layers of the network more closely
resembles that of early visual areas rather than higher-order
regions. This similarity is evident not only in the spatial pat-
terns of the representations but also in the trends observed

in total field area. In our network, the total field area ex-
pands in a manner akin to early visual processing regions.
For example, Karami et al. 2023 documented an increase in
total field area from V1 to V2 in the human visual cortex—a
trend that we also observe in our network’s earlier layers.
However, a notable divergence emerges in higher-order vi-
sual regions. While human data reveal a decrease in total
field area (possibly reflecting a transition from detailed spa-
tial encoding to more abstract, spatially invariant represen-
tations of numerosity, as posited by Viswanathan & Nieder
(2020), some network conditions do not fully replicate this re-
duction. Interestingly, our CNNs show a marked decrease in
total field area particularly in networks trained for numerosity
discrimination using the Natural and DeWind datasets. This
decrease may indicate a convergence toward more spatially
invariant representations, echoing the abstraction processes
identified in biological systems. Yet, the discrepancies be-
tween network and brain data imply that current CNN archi-
tectures might be missing specific computational mechanisms
needed to facilitate these transformations in the cortex. Re-
cent work by Paul et al. 2022 provides additional insight into
these issues. Their study demonstrates that early visual areas
represent stimuli using contrast-based image statistics, which
correlate strongly with perceived numerosity. They argue that
spatial frequency and Fourier power components are crucial
for forming downstream numerosity representations and that



converting early contrast-based signals into numerosity-tuned
responses in higher cortical areas requires nonlinear interac-
tions among these features coupled with divisive normaliza-
tion to control for image contrast. Although standard CNNs
like AlexNet exhibit contrast-based responses similar to early
visual areas, they lack the nonlinear transformations neces-
sary for achieving numerosity tuning in higher layers. This dis-
crepancy suggests that incorporating biologically plausible op-
erations—such as divisive normalization (Carandini & Heeger,
2011)—could lead to more human-like transformations of vi-
sual input in these networks.

Overall, our study demonstrates that both neural networks
and the human brain encode numerosity alongside other vi-
sual features, but with distinct geometrical patterns. In hu-
mans, numerosity emerges in early visual areas, as revealed
by fMRI (Karami, 2024), and unfolds over time as indicated by
MEG (Karami et al., 2023), eventually exhibiting unique struc-
tural signatures in higher-level regions. In contrast, while our
network models capture some aspects of these representa-
tions, they do not replicate these higher-level trends. Taken to-
gether, these findings suggest that although current CNNs can
partially recapitulate early visual processing, they fall short
of replicating the hierarchical transformations required for ab-
stract numerosity encoding. Future research should explore
the integration of biologically inspired operations—such as di-
visive normalization—to enhance the fidelity of model-to-brain
mappings, particularly in higher layers.
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Supplementary material
Multidimensional Scaling After Controlling for
Non-Numeric Features
To isolate the unique variance associated with a target dissim-
ilarity matrix, we partialled out the shared variance explained
by four control dissimilarity matrices: average item size, total
surface area, total field area, and density. Specifically, we vec-
torized the upper triangular portion (excluding the diagonal) of
each matrix and performed a multiple linear regression, using
the control matrices as predictors and the target matrix as the
dependent variable. The residuals from this regression rep-
resent the component of the target matrix that is independent
of the control matrices. These residuals were then used to
reconstruct a symmetric matrix, which served as the input for
further analyses such as multidimensional scaling (see Figure
5)



Figure 5: Multidimensional scaling (MDS) reveals representational similarities between stimuli in a two-dimensional space for
four layers (V1, V2, V4, and IT) of untrained CORnet-Z, as well as CORnet-Z models trained on ImageNet, Natural, ISA2, and
DeWind datasets. The black circles represent the 32 stimuli. The circle sizes vary, indicating stimuli with small total field area
(small circles) and larger total field area (large circles). The red circles indicate the average coordinates of each number.


	Abstract
	Introduction
	Methods
	Comparing convolutional neural networks with predictor models
	Exploring the latent similarity structure of convolutional neural networks
	Exploring which parts of stimuli influence the network's decision

	Results
	Results of representational similarity analysis on CNN layers
	Results of applying multidimensional scaling on layers of CNNs
	Results of applying Score-CAM on layers of CNNs

	Discussion
	How training dataset shapes numeric and non-numeric network representations
	Human brain and networks encode numeric and non-numeric features using distinct geometrical patterns

	Declaration of generative AI and AI-assisted technologies in the writing process
	Code accessibility
	Supplementary material
	Multidimensional Scaling After Controlling for Non-Numeric Features


