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ABSTRACT

Over the past decade, Variational Autoencoders (VAE) have become a widely used
tool for anomaly detection (AD), with research advancing from algorithm develop-
ment to real-world applications. However, a critical challenge remains—the lack of
a reliable method to rigorously assess the reliability of detected anomalies, which
restricts its use in high-stakes decision-making tasks such as medical diagnostics.
To overcome this limitation, we introduce the VAE-AD Test, a novel approach for
quantifying the statistical reliability of VAE-based AD. The key advantage of the
VAE-AD Test lies in its ability to properly control the probability of misidentifying
anomalies under a pre-specified level of guarantee α (e.g., 0.05). Specifically, by
carefully analyzing the AD process of VAE, which operates through piecewise-
linear functions, and leveraging the Selective Inference (SI) framework to assign
valid p-values to the detected anomalies, we prove that theoretical control of the
false detection rate is achievable. Experiments conducted on both synthetic and
real-world datasets robustly support our theoretical results, showcasing the VAE-
AD Test’s superior performance. To our knowledge, this is the first work capable
of conducting valid statistical inference to assess the reliability of VAE-based AD.

1 INTRODUCTION

Anomaly detection (AD) is the process of identifying unusual deviations in data that do not conform
to expected behavior. AD is crucial across various domains because it provides early warnings of
potential issues, thereby enabling timely interventions to prevent critical events. Traditional AD
techniques, while effective in simple scenarios, frequently fall short when dealing with complex
data, thus motivating the use of deep learning-based AD to better handle such complexities. In this
study, we focus on AD using the Variational Auto-Encoder (VAE), and its application to medical
images. In the training phase of VAE-based AD, the VAE learns the distribution of normal images
by training exclusively on images that do not contain abnormal regions. The parameters of a VAE
are optimized to minimize the reconstruction error, thereby learning a compressed representation
of the normal data. In the test phase, when a test image is fed into the trained VAE, the model
attempts to reconstruct the image based on its learned representation. Since the VAE is trained on
normal data, it would successfully reconstruct the normal regions of the image, while it would fail
to properly reconstruct the abnormal regions that were not included in the normal data. Therefore,
regions with large reconstruction errors are detected as abnormal regions. Figure 1 shows an example
of VAE-based AD for brain tumor images.

When VAE-based AD is employed for high-stakes decision-making tasks, such as medical diagnosis,
there is a significant risk that model inaccuracies might lead to critical errors, potentially resulting in
false detections. To address this issue, we develop a statistical test for VAE-based AD, which we
call VAE-AD Test. The proposed VAE-AD test enables us to obtain a quantifiable and interpretable
measure for the detected anomaly region in the form of p-value. The obtained p-value represents
the probability that the detected anomaly regions are obtained by chance due to the randomness
contained in the data. It is important to note that the statistical test for detected abnormal regions is
considered as a data-driven hypothesis, as the abnormal region is selected based on the test image
itself. In other words, since both of the selection of the hypothesis (selection of abnormal regions)
and the evaluation of the hypothesis (evaluation of abnormal regions) are performed on the same data,
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ー

Input Image Reconstruction Image Reconstruction Error Anomaly RegionVAE

(a) Image without tumor region. pnaive = 0.000 (false detection) and pselective = 0.668 (true negative).

ー

Input Image Reconstruction Image Reconstruction Error Anomaly RegionVAE

(b) Image with tumor region. pnaive = 0.000 (true detection) and pselective = 0.000 (true detection).

Figure 1: An illustration of the proposed VAE-AD Test in brain image analysis. When an anomaly
region is detected based on the difference between the original and the reconstructed images by a
VAE, the VAE-AD Test provides a p-value to quantify its statistical reliability. The upper plot shows
the results of the VAE-AD Test and the conventional method, the latter of which does not consider
the fact that the anomaly region is detected by VAE. The lower plot shows the results for a case with
anomaly regions. With the proposed method (pselective), correct decisions are made in both cases;
the former has a large p-value and the latter has a small p-value. In contrast, with the conventional
method (pnaive), both p-values are small, indicating false detection in the former case.

applying traditional statistical test to the selected hypothesis leads to selection bias. Therefore, in this
study, we introduce the Conditional Selective Inference (CSI) framework to remove the selection bias.

Related Works. Over the last decade, there has been a significant pursuit in applying deep learning
techniques to AD problems (Chalapathy & Chawla, 2019; Pang et al., 2021; Tao et al., 2022). A
large number of studies have been conducted for unsupervised AD using VAEs (Baur et al., 2021;
Chen & Konukoglu, 2018; Chow et al., 2020; Jana et al., 2022). In this study, we focus on the task of
identifying the anomalous regions in the input image, which is called anomaly localization within the
AD tasks (Zimmerer et al., 2019; Lu & Xu, 2018; Baur et al., 2019).

There are mainly two research directions for improving VAEs for AD. The first direction is on
improving the detection rate (Zimmerer et al., 2019; Dehaene et al., 2020), while the second direction
is on modifying the VAE itself to make it suitable for AD (Baur et al., 2019; Chen & Konukoglu, 2018;
Wang et al., 2020). However, to our knowledge, there has been no existing studies for quantifying the
statistical reliability of detected abnormal regions with theoretical validity. In traditional statistical
tests, the hypothesis needs to be predetermined and must remain independent of the data. However,
in data-driven approaches, it is necessary to select hypotheses based on the data and then assess
the reliability of the hypotheses using the same data. This issue, known as double dipping, arises
because the same data is used for both the selection and evaluation of hypotheses, leading to selection
bias (Breiman, 1992). Because anomalies are detected based on data (a test image), when evaluating
the reliability of the detected anomalies using the same data, the issue of selection bias arises.

CSI has recently gained attention as a framework for statistical hypothesis testing of data-driven
hypotheses (Lee et al., 2016; Taylor & Tibshirani, 2015). CSI was initially developed for the statistical
inference of feature selection in linear models (Fithian et al., 2015; Tibshirani et al., 2016; Loftus
& Taylor, 2014; Suzumura et al., 2017; Le Duy & Takeuchi, 2021; Sugiyama et al., 2021; Duy &
Takeuchi, 2022), then extended to various problems (Lee et al., 2015; Choi et al., 2017; Chen & Bien,
2020; Tanizaki et al., 2020; Duy et al., 2020; Gao et al., 2022; Le Duy et al., 2024), and later to neural
networks (Duy et al., 2022; Miwa et al., 2023; Shiraishi et al., 2024; Katsuoka et al., 2024), but none
of these studies focused on inference on VAE.

Contributions. To our knowledge, this is the first formulation of an approach that provides a
quantifiable and interpretable measure for the reliability of VAE-based AD, presented in the form of
a p-value within a statistical testing framework. The second contribution is the development of an SI
method for VAEs, which entails characterizing the hypothesis selection event by a VAE. Finally, our
third contribution is demonstrating the effectiveness of the proposed VAE-AD Test through numerical
experiments with synthetic data and brain tumor images.
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2 ANOMALY DETECTION (AD) BY VAE

Variational Autoencoder (VAE). VAEs are generative models consisting of an encoder network
and a decoder network Kingma & Welling (2013). Given an input image (denoted by x ∈ Rn),
it is encoded as a latent vector (denoted by z ∈ Rm), and the latent vector is decoded back to
the input image, where n is the number of pixels of an image and m is the dimension of a latent
vector. In the generative process, it is assumed that a latent vector z is sampled from a prior
distribution pθ∗(z) and then, image x is sampled from a conditional distribution pθ∗(x|z). The
prior distribution pθ∗(z) and the conditional distribution pθ∗(x|z) belongs to family of distributions
parametrized by θ and θ∗ denotes the true value of the parameter. The encoder network approximates
the posterior distribution pθ(z|x) by the parametric distribution qϕ(z|x), where ϕ represents the
set of parameters, while the decoder network estimates the conditional distribution by pθ(x|z).
The encoder and the decoder networks of a VAE are trained by maximizing so-called evidence
lower bound (ELBO): Lθ,ϕ = Eqθ(z|x) [log pϕ(x|z)]−KL [qθ(z|x)||p(z)] , where KL [·||·] is the
Kullback-Leibler divergence between two distributions. We model the approximated posterior
distribution qϕ(z|x) as a normal distribution N(µϕ(x), Inσ

2
ϕ(x)), where µϕ(x) and σ2

ϕ(x) are the
outputs of the encoder network. The conditional distribution pθ(x|z) is also modeled as a normal
distribution N(µθ(z), In), where µθ(z) is the output of the decoder network. Furthermore, the prior
distribution pθ∗(z) is modeld as a standard normal distribution N(0, Im). The structure of the VAE
used in this study is shown in Appendix A.1.

Anomaly Detection Using VAEs. VAEs can be effectively used for anomaly localization task. The
goal of anomaly localization is to identify the abnormal region within a given test image. In the
training phase, we assume that only normal images (e.g., brain images without tumors) are available.
A VAE is trained on normal images to learn a compact representation of the normal image distribution
in the latent space. In the test phase, a test image x is fed into the trained VAE, and a reconstructed
image is obtained by using the encoder and the decoder as x̂ = µθ (µϕ(x)). Since the VAE is
trained only on normal images, normal region in the test image would be reconstructed well, whereas
the reconstruction error of abnormal regions would be high. Therefore, it is reasonable to define the
degree of anomaly of each pixel as

Ei(x) = |xi − x̂i|, i ∈ [n], (1)

where xi and x̂i is the ith pixel value of x and x̂, respectively. Using a user-specified threshold
λ > 0, the anomaly region of a test image x is defined as

Ax = {i ∈ |n| | Ei(x) ≥ λ}. (2)

As for the definition of the anomaly region, there are possibilities other than those given by Eqs. (1)
and (2). In this paper, we proceed with these choices, but the proposed VAE-AD Test is generally
applicable to other choices.

3 STATISTICAL TEST FOR ABNORMAL REGIONS

Statistical model of an image. To formulate the reliability assessment of the abnormal region as a
statistical testing problem, it is necessary to introduce a statistical model of an image. In this study,
an image is considered as a sum of true signal component s ∈ Rn and noise component ϵ ∈ Rn.
Regarding the true signal component, each pixel can have an arbitrary true signal value without any
particular assumption or constraint. On the other hand, regarding the noise component, it is assumed
to follow a normal distribution, and their covariance matrix is estimated using normal data different
from that used for the training of the VAE. Namely, an image with n pixels can be represented as an
n-dimensional random vector

X = (X1, . . . , Xn) = s+ ϵ, ϵ ∼ N(0,Σ), (3)

where s ∈ Rn is the true signal vectors, and ϵ ∈ Rn is the noise vector with covariance matrix Σ. In
the following, the capitalX denotes an image as a random vector, while the lowercase x represents
an observed image. To formulate the statistical test, we consider the AD using VAEs in Eq. equation 2
as a function A that maps a random input imageX to the abnormal region AX , i.e.,

A : Rn ∋X 7→ AX ∈ 2[n], (4)

where 2[n] is the power set of [n] := {1, 2, . . . , n}.
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Formulation of statistical test. Our goal is to make a judgment whether the abnormal region AX

merely appears abnormal due to the influence of random noise, or if there is a true anomaly in the
true signal in the abnormal region. In order to quantify the reliability of the detected abnormal region,
the statistical test is performed for the difference between the true signal in the abnormal region
{si}i∈AX

and the true signal in the normal region {si}i∈Ac
X

where Ac
X is the complement of the

abnormal region. In this study, as an example, we consider the hypothesis for the difference in true
mean signals between AX and Ac

X by considering the following null and alternative hypotheses:

H0 :
1

|AX |
∑
i∈AX

si =
1

|Ac
X |

∑
i∈Ac

X

si, v.s. H1 :
1

|AX |
∑
i∈AX

si ̸=
1

|Ac
X |

∑
i∈Ac

X

si. (5)

For clarity, we mainly consider a test for the mean difference as a specific example — however, the
proposed VAE-AD Test is applicable to a more general class of statistical tests. Specifically, let
η ∈ Rn be an arbitrary n-dimensional vector depending on the abnormal region AX . Then, the
proposed method can cover a statistical test represented as

H0 : η⊤s = c v.s. H1 : η⊤s ̸= c, (6)

where c is an arbitrary constant. The formulation in Eq. (6) covers a wide range of practically useful
statistical tests. In fact, Eq. (5) is a special case of Eq. (6). It can cover differences not only in means
but also in other measures such as maximum difference, and differences after applying some image
filters (e.g., Gaussian filter).

Test statistic. To evaluate the hypothesis defined in Eq. equation 5, we define the test statistic as

T (X) =
1

|AX |
∑
i∈AX

Xi −
1

|Ac
X |

∑
i∈Ac

X

Xi = η
⊤X, (7)

where η = 1
|AX |1AX

− 1
|Ac

X |1Ac
X

and 1A ∈ Rn is a vector with 1 if i ∈ AX and 0 otherwise.

Naive p-values. When the test statistic in Eq. (7) is used for the statistical test in Eq. (5), the p-value
can be easily calculated if η does not depend on the image X , i.e., if the abnormal region AX is
detected without looking at the X . In this unrealistic situation, the p-value, which we call naive
p-value can be computed as pnaive = PH0(|T (X)| ≥ |T (x)|), whereX is a random vector and x is
the observed image. Under the unrealistic assumption, the pnaive can be easily computed because
the null distribution of T (X) = η⊤X is normally distributed with N(0,η⊤Ση). Unfortunately,
however, in the actual situation where η depends onX , a statistical test using pnaive is invalid in the
sense that PH0

(pnaive ≤ α) > α, ∃α ∈ [0, 1]. Namely, the probability of Type I error (an error that
a normal region is mistakenly detected as anomaly) cannot be controlled at the desired level α.

4 CONDITIONAL SELECTIVE INFERENCE (CSI) FOR VAE-BASED AD

In this section, we present the proposed VAE-AD Test, a valid statistical test for VAE-based AD task.

4.1 CONDTIONAL SELECTIVE INFERENCE (CSI)

In CSI, p-values are computed based on the null distribution conditional on a event that a certain
hypothesis is selected. The goal of CSI is to compute a p-value that satisfies

PH0
(p ≤ α | AX = A) ≤ α, (8)

where the condition part AX = A in Eq. (8) indicates that we only consider imagesX for which a
certain hypothesis (abnormal region) A is detected. If the conditional type I error can be controlled
as in Eq. (8) for all possible hypotheses A ∈ 2[n], then, by the law of total probability, the marginal
type I error can also be controlled for all α ∈ (0, 1) because

PH0
(p ≤ α) =

∑
A∈2[n]

PH0
(A)(p ≤ α | AX = A) ≤ α.

Therefore, in order to perform valid statistical test, we can employ p-values conditional on the
hypothesis selection event. To compute a p-value that satisfies Eq. (8), we need to derive the sampling
distribution of the test-statistic

T (X)|{AX = Ax}. (9)

4
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4.2 CSI FOR PIECEWISE-ASSIGNMENT FUNCTIONS

We derive the CSI for algorithms expressed in the form of a piecewise-assignment function. Later on,
we show that the mapping A :X 7→ AX in Eq. (4) is a piecewise-assignment function, and this will
result in the proposed VAE-AD Test.

Definition 1 (Piecewise-Assignment Function). Let us consider a function M : Rn ∋X 7→ MX ∈
M which assigns an image X to a hypothesis among a finite set of hypotheses M. We call the
function M a piecewise-assignment function if it is written as

MX =



M1, if X ∈ PM
1 ,

...
Mk, if X ∈ PM

k ,
...
MKM , if X ∈ PM

KM ,

(10)

where PM
k , k ∈ [KM ], represents a polytope in Rn which can be written as PM

k = {X ∈ Rn |
∆M

k X
′ ≤ δMk } using a certain matrix ∆M

k and a vector δMk with appropriate sizes, and KM is the
number of polytopes. Here, we note that the same hypothesis may be assigned to different polytopes.

When a hypothesis is selected by a piecewise-assignment function in the form of Eq. (10), the
following theorem tells that the conditional p-value that satisfies Eq. (8) can be derived by using
truncated normal distribution.

Theorem 1. Consider a random image X and an observed image x. Let MX and Mx be the
hypotheses obtained by applying a piecewise-assignment function in the form of Eq. (10) toX and x,
respectively. Let η ∈ Rn be a vector depending on Mx, and consider a test statistic in the form of
T (X) = η⊤X . Furthermore, define

QX =

(
In − Σηη⊤

η⊤Ση

)
X and Qx =

(
In − Σηη⊤

η⊤Ση

)
x.

Then, the conditional distribution

T (X) | {MX = Mx,QX = Qx}

is a truncated normal distribution TN(η⊤µ,η⊤Ση;Z) with the mean η⊤µ, the variance η⊤Ση,
and the truncation intervals Z . The truncation intervals Z is represented as

Z =
⋃

k:Mk=Mx

[LM
k , UM

k ],

where, for k ∈ [KM ], LM
k and UM

k are defined as follows:

LM
k = max

j:(βM
k )j>0

(αM
k )j

(βM
k )j

, UM
k = min

j:(βM
k )j<0

(αM
k )j

(βM
k )j

with αM
k = δMk −∆M

k Qx and βM
k = ∆M

k Ση(Ση⊤Ση)−1.

The proof of Theorem 1 is deferred to Appendix A.2. Using the sampling distribution of the test
statistic T (X) conditional on {MX = Mx, QX = Qx} in Theorem 1, we can define the p-value as

pselective = PH0(|T (X)| ≥ |T (x)| | MX = Mx,QX = Qx). (11)

The selective p-value pselective defined in Eq. equation 11 satisfies

PH0
(pselective ≤ α | MX = Mx) = α, ∀α ∈ [0, 1]

because QX is independent of the test statistic T (X) = η⊤X . From the discussion in §4.1, a valid
statistical test can be conducted by using pselective in Eq. (11).

5
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4.3 PIECEWISE-LINEAR FUNCTIONS

We showed that, if the hypothesis selection algorithm is represented in the form of piecewise-
assignment function, we can formulate valid selective p-values. The purpose of this subsection is to
set the stage for demonstrating in the next subsection how the entire process of a trained VAE can be
depicted as a piecewise-linear function, and how VAE-based AD algorithm in Eq. (4) is represented
as a piecewise-assignment function.
Definition 2 (Piecewise-Linear Function). A piecewise-linear function f : Rn → Rm is written as:

f(X) =



Ψf
1X +ψf

1 , if X ∈ Pf
1 ,

...
Ψf

kX +ψf
k , if X ∈ Pf

k ,
...

Ψf
KfX +ψf

Kf , if X ∈ Pf
Kf ,

(12)

where Pf
k represents a polytope in Rn written as Pf

k = {X ∈ Rn | ∆f
kX

′ ≤ δfk} for k ∈ Kf with
a certain matrix ∆f

k and a vector δfk with appropriate sizes. Furthermore, Ψf
k and ψf

k for k ∈ Kf are
the k-th linear transformation matrix and the bias vector, respectively, and Kf denotes the number of
polytopes of a piecewise-linear function f .

Considering piecewise-assignment and piecewise-linear functions, the following properties straight-
forwardly hold:

• The concatenation of two or more piecewise-linear functions results in a piecewise-linear function.

• The composition of two or more piecewise-linear functions results in a piecewise-linear function.

• The composition of a piecewise-linear function and a piecewise-assignment function results in a
piecewise-assignment function.

4.4 VAE-BASED AD AS PIECEWISE-ASSIGNMENT FUNCTION

In this subsection, we show that the VAE-based AD algorithm in Eq. (4) is a piecewise-assignment
function by verifying that i) the reconstruction error in Eq. (1) is a piecewise-linear function, and ii)
the thresholding in Eq. (2) is a piecewise-assignment function.

Most of basic operations and common activation functions used in the encoder and decoder networks
can be represented as piecewise-linear functions in the form of Eq. (12). For example, the ReLU
function is a piecewise-linear function. Operations like matrix-vector multiplication, convolution,
and upsampling are linear, which categorizes them as special cases of piecewise-linear functions
Furthermore, operations like max-pooling and mean-pooling can be represented in the form of
Eq. (12). For instance, max-pooling of two variables can be expressed as max{u, v} = u · I(u ≥
v) + v · I(v > u), which is a piecewise-linear function with Kf = 2. Consequently, the encoder
and decoder networks of the VAE, composed or concatenated from piecewise-linear functions, form
a piecewise-linear function. We note that this characteristic is not exclusive to our VAE; instead, it
applies to the majority of CNN-type deep learning models1.

Furthermore, the reconstruction error in Eq. (1) is also a piecewise-linear function. Specifically, let
fabs be the absolute value function, which is clearly piecewise-linear function, fmm1 be a function
for multiplying the matrix (In,−In) from the left, and fmm2 be a function for multiplying the matrix
(In, In)

⊤ from the left. Then, the reconstruction error Ei(X) = |µθ(µϕ(X))−X|i is given as the
ith element of the following compositions of multiple piecewise-linear functions:

fabs ◦ fmm1 ◦ [ µθ ◦ µϕ In ] ◦ fmm2(X).

The thresholding operation in Eq. (2) is clearly piecewise-assignment function. It means that the
operation of detecting abnormal region AX in Eq. (4) is composition of piecewise-linear function

1An example of components that do not exhibit piecewise linearity is nonlinear activation function such as
the sigmoid function. However, since a one-dimensional nonlinear function can be approximated with high
accuracy by a piecewise-linear function with sufficiently many segments, there are no practical problems.

6
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and piecewise-assignment function, which results in a piecewise-assignment function. We summarize
the aforementioned discussion into the following lemma.
Lemma 1. The anomaly detection using VAE defined in Eq. equation 4, which uses piecewise-linear
functions in the encoder and decoder network, is a piecewise-assignment function.

Consequently, we can conduct the statistical test in equation 5 based on the selective p-value in
equation 11 along with Theorem 1.

5 COMPUTATIONAL TRICKS

In this section, we demonstrate the procedure for efficiently computing the truncated intervals Z
derived from Eq. equation 4. The identification of Z is challenging because the VAE-based AD is
comprised of a substantial number of known piecewise-linear functions and a piecewise-assignment
function. There are two difficulties: i) which indices of k whose anomaly region is the same
as the observed one, and ii) how to compute each truncated interval [LA

k , U
A
k ]. Our idea is to

leverage parametric programming in conjunction with auto-conditioning to efficiently compute Z .
Specifically, we can identify only the necessary indices of k and determining their respective intervals
[LA

k , U
A
k ]. This enables us to bypass the unneeded computation of unnecessary components, thus

saving computational time.

Parametric Programming In the Theorem 1, the truncated intervals Z can be regarded as the
intersections of the polytopes {PA

k }k:Ak=Ax with the lineX = Qx+Ση(η⊤Ση)−1Z. This implies
that determining the truncated intervals Z is accomplished by examining this specific line rather
than the entire space. Alogorithm 1 outlines the procedure to identify Z . The algorithm starts at
zmin and search for the truncated intervals along the line until zmax

2. For each step, given z, the
algorithm computes the lower bound LA

k and upper bound UA
k of the interval to which z belongs

to, as well as corresponding anomaly region Ak = AX(z). The LA
k and UA

k are computed by the
technique described in the next subsection. This procedure is commonly referred to as parametric
programming known as parametric programming, which is a method to solve the optimization
problem for parameters such as the lasso regularization path (Efron et al., 2004; Hastie et al., 2004;
Karasuyama et al., 2012).

Auto-Conditioning In line 4 of Algorithm 1, we utilize a technique referred to as auto-conditioning.
Similar to auto-differentiation, this method leverages the fact that the entire computations of LA

k

and UA
k executes a sequence of piece-wise linear operations. By applying the recursive rule re-

peatedly to these operations, LA
k and UA

k can be automatically computed. The details are deferred
to Appendix A.3. This implies that by implementing the computational techniques for known
piecewise-linear/assignment functions, we can automatically compute the truncation intervals and
the anomaly region. This adaptability proves particularly advantageous when dealing with complex
systems like Deep Neural Networks (DNNs), where frequent and detailed structural adjustments are
often required. We note that the auto-conditioning technique is originally proposed in Miwa et al.
(2023). However, the authors concentrate on a specific application of the saliency region, and no
existing studies recognize its crucial application in VAE literature. In this paper, we prove that a VAE
can be represented as a piecewise-assignment function, thus highlighting the crucial application of
auto-conditioning in efficiently conducting the proposed VAE-AD Test.

6 EXPERIMENT

We demonstrate the performance of the proposed method. More details and results can be found in
the Appendix A.5.

Experimental Setup. We compared the proposed method (VAE-AD Test) with OC (simple extension
of SI literature to our setting), Bonferroni correction (Bonf) and naive method. More details can be
found in Appendix A.5. We considered two covariance matrix structures:

2We set the zmin = −|T (x)| − 10σ and zmax = |T (x)|+ 10σ, where σ is the standard deviation of test
statistic. This is justified by the fact that the probability in the tails of the normal distribution can be considered
negligible.
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Algorithm 1 Parametric Programming-Based SI
Require: x, zmin, zmax

1: Obtaine Ax and compute η.
2: z ← zmin and Z ← ∅
3: while z ≤ zmax do
4: Compute LA

k , UA
k , and Ak respect to z by auto-conditioning (see Appendix A.3).

5: if Ak = Ax then
6: Z ← Z ∪ [LA

k , UA
k ]

7: end if
8: z ← UA

k + δ, where δ is a small positive number.
9: end while

10: pselective ← equation 11 with Threorem 1
output pselective and Ax
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Figure 2: Type I errors (false positive detection rates) and powers (true positive detection rates) of
the proposed VAE-AD Test and three baselines, Naive, OC and Bonf in Indepence and Correlation
setting. Naive test, which does not consider the fact that abnormal regions are selected in a data-driven
manner, fails to control the Type I error, failing to meet the requirements of a statistical test. On
the other hand, the proposed method, VAE-AD Test, and two other baselines, OC and Bonf, all
successfully control the Type I error at 0.05 in all settings. The power of the proposed VAE-AD Test
is significantly larger than two baselines, OC and Bonf in all problem settings.

• Σ = In (Independence)

• Σ = AR(1) ⊗ AR(1) (Correlation) where AR(1) is the first-order autoregressive matrix
{AR(1)}ij ∈ R

√
n×

√
n = 0.25|i−j| and ⊗ is kronecker dot.

To examine the type I error rate, we generated 1000 null imagesX = (X1, . . . , Xn), where s = 0
and ϵ ∼ N(0,Σ), for each n ∈ {64, 256, 1024, 4096}. To examine the power, we set n = 256 and
generated 1000 images in which ϵ ∼ N(0,Σ), the signals si = ∆ for any i /∈ S where S is the
”true” anomaly region whose location is randomly determined, and si = 0 for any i /∈ S. We set
∆ ∈ {1, 2, 3, 4}. In all experiments, we set the threshold λ = 1.2 for the anomaly detection, and the
significance level α = 0.05. We also apply mean filtering to the reconstruction error to enhance the
anomaly detection performance.

Numerical results. The results of type I error rate and power are shown in Fig. 2. The VAE-AD
Test, OC, and Bonf successfully controlled the type I error rate in the both cases of independence and
correlation, whereas the naive method could not. Since the naive method failed to control the type I
error, we no longer considered its power. The power of the VAE-AD Test was the highest among the
methods that controlled the type I error. The Bonferroni method has the lowest power because it is
conservative due to considering the huge number of all possible hypotheses. OC also has low power
because it considers extra conditioning, which causes the loss of power.

Real data experiments. We examined the brain image dataset extracted from Buda et al. (2019),
which includes 939 and 941 images with and without tumors, respectively. The results of statistical
testing for images without tumor and with tumor are presented in Figs. 3 and 4. The naive p-value is
small even in cases where no tumor region exists in the image. This indicates that the naive p-value

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Input Image Reconstruction Reconstruction Error Anomaly Region

(a) pnaive = 0.000, pselective = 0.431

Input Image Reconstruction Reconstruction Error Anomaly Region

(b) pnaive = 0.000, pselective = 0.849
Input Image Reconstruction Reconstruction Error Anomaly Region

(c) pnaive = 0.000, pselective = 0.196

Input Image Reconstruction Reconstruction Error Anomaly Region

(d) pnaive = 0.000, pselective = 0.797
Input Image Reconstruction Reconstruction Error Anomaly Region

(e) pnaive = 0.000, pselective = 0.299

Input Image Reconstruction Reconstruction Error Anomaly Region

(f) pnaive = 0.000, pselective = 0.598

Figure 3: Anomaly detection for images without tumor. The naive p-values are 0.000 in all settings,
incorrectly detecting abnormalities. However, the selective p-values based on the proposed VAE-AD
Test are all large enough, correctly identifying the absence of abnormalities.

Input Image Reconstruction Reconstruction Error Anomaly Region

(a) pnaive = 0.000, pselective = 0.048

Input Image Reconstruction Reconstruction Error Anomaly Region

(b) pnaive = 0.000, pselective = 0.000
Input Image Reconstruction Reconstruction Error Anomaly Region

(c) pnaive = 0.000, pselective = 0.017

Input Image Reconstruction Reconstruction Error Anomaly Region

(d) pnaive = 0.000, pselective = 0.000
Input Image Reconstruction Reconstruction Error Anomaly Region

(e) pnaive = 0.000, pselective = 0.000

Input Image Reconstruction Reconstruction Error Anomaly Region

(f) pnaive = 0.000, pselective = 0.000

Figure 4: Anormaly detection for images with tumor. In all settings, both the naive p-values and the
selective p-values are low, correctly identifying the abnormalities (although naive p-values are invalid
statistical tests because it fails to control type I errors).

cannot be used to quantify the reliability of the result of anomaly detection using VAE. With the
proposed selective p-values, we successfully identified false and true positive detections.

7 CONCLUSIONS, LIMITAIONS AND FUTURE WORKS

We introduced a novel statistical testing framework for AD task using deep learning model. We
developed a valid statistical test for VAE-based AD using CSI. We believe that this study stands
as a significant step toward reliability of deep learning model-based decision making. There are
several constraints on the class of problems where CSI can be applied, so new challenges arise
when applying VAEs to other types of neural networks. Additionally, we selected simple options for
defining the anomalous region and the test statistic, but it is unknown whether the same framework
can be applied to more complex options. Furthermore, as the size of the VAE network increases, the
computational cost of calculating the selective p-value also increases, necessitating the development
of cost reduction methodologies such as parallelization.
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A APPENDIX

A.1 THE DETAILS OF VAE

We used the architecture of the VAE as shown in Figure 5 and set m = 10 as a dimensionality of the
latent space. We used ReLU as an activation function for the encoder and decoder. We generated
1000 images from N(0, In) as normal images and trained the VAE with these images, and used
Adam Kingma & Ba (2017) as an optimizer.
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Figure 5: Architecture of the VAE.

A.2 PROOF OF THEOREM 1

Proof. The theorem is based on the Lemma 3.1 in Chen & Bien (2020). By the definition of the
piecewise-assignment function, the conditional part, {MX = Mx} can be characterized as the union
of polytopes,

{MX = Mx} =
⋃

k:Mk=Mx

PM
k .

By substituting X(Z) = Qx + Ση(η⊤Ση)−1Z into the polytopes PM
k , we obtain the truncated

intervals Z in the lemma. For the set k such that Mk = Mx, we have QX ⊥ Z by orhtogonality of
QX and η and by the properties of the normal distribution. Hence, we obtain

Z | {MX = Mx,QX = Qx} d
= Z | {Z ∈ Z,QX = Qx}
d
= Z | {Z ∈ Z} (∵ QX ⊥ Z)

There is no randomness in Z ,

Z | {MX = Mx,QX = Qx} ∼ TN(η⊤µ,η⊤Ση;Z).
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A.3 THE DETAILS OF AUTO-CONDITIONING

This section demonstrates the auto-conditioning algorithm, utilized to compute the truncated intervals
[LA

k , U
A
k ] and the corresponding anomaly region Ak respect to the z in Algorithm 1. The algorithm

is introduced for the piecewise-assignment function, which is composed of piecewise-linear functions
and a piecewise-assignment function.

It is conceptualized as a directed acyclic graph (DAG) that delineates the processing of input data,
similar to a computational graph in auto-differentiation. In this graph, the nodes symbolize the
piecewise-linear and piecewise-assignment functions, each with an input and output edge to represent
the function compositions. It should be noted that the node such as µϕ and µθ , may replace the other
DAG express the piecewise-linear/assignment function of the node since it can be represented as the
composition and concatenation of array of simpler piecewise-linear/assignment functions. The level
of simplicity for a function of a node can be determined based on what is most convenient for the
implementation. A special node, representing the concatenation of two piecewise-linear functions,
features two input edges and one output edge. Figure 6 shows the directed acyclic graph of the
anomaly detection using VAE in Eq. equation 4.

X(z) fmm2

µθ

In

µϕ

concat fmm1 fabs Θ

AX(z)

Figure 6: The directed acyclic graph of the anomaly detection using VAE A : Rn → 2|n| defined
in Eq. equation 4. Circles represent the piecewise-linear functions and the piecewise-assignment
function. The rectangle represents the concatenation of piecewise-linear functions. The edges
represent the composition of piecewise-linear functions.

A.3.1 UPDATE RULES FOR THE NODES OF THE PIECEWISE-ASSIGNMENT FUNCTIONS

The computation of the interval [LA
k , L

A
k ] is defined in a recursive way. The output of the node

f : Rl → Rm in the DAG are denoted as af , bf ∈ Rm and Lf , Uf ∈ R.

Update rule for the initial node. At first, the output of the initial node X(z) of the directional
graph denoted as f0 for notational convention, are defined as af0 = Qx, bf0 = Ση(η⊤Ση)−1,
Lf0 = −∞, and Uf0 = ∞. It should be noted here thatX(z) = af0 + bf0z is the line appeared in
the proof of Theorem 1 in Section A.2.

Update rule for the node of the piecewise-linear functions. Let us consider the output for the
node g whose input is the output of the node f in the DAG. The inputs of the g’s node (i.e. output of
node f ) are denoted as af , bf , Lf and Uf . af is the summed point vector added in the piecewise-
linear functions until reaching f , bf is the direction vector corresponding to z, multiplied in the
piecewise-linear functions until reaching to f . Then, the output of the piecewise-linear function f is
represented as af + bfz. Lf and Uf are the lower and upper bounds of the interval obtained at the
piecewise-linear function f . The output of the node g is defined as follows: 1) Check the index j
such that the output of f within the polytope of: P g

j ∋ af + bfz. 2) Compute the point vector ag

and the direction vector bg of the piecewise-linear function g with the index j,

ag = Ψg
jaf +ψg

j , bg = Ψg
jbf . (13)

3) Compute the lower and upper bounds of the interval Lg and Ug with the index j,

L = max
k:(βg

j )k>0

(αg
j )k

(βg
j )k

, U = min
k:(βg

j )k<0

(αg
j )k

(βg
j )k

,
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where αg
j = δgj −∆g

jaf and βf
j = ∆g

jbf . 4) Take the intersection of the interval [Lf , Uf ] ∩ [L,U ]

as the interval [Lg, Ug] of the piecewise-assignment function g as

Lg = max(Lf , L), Ug = min(Uf , U).

This update rule is obtained from the Lemma 2 in Miwa et al. (2023).

Update rule for the nodes of concatenation of two piecewise-linear functions. Let us consider
the concatenation node of two piecewise-linear functions f and g denoted as concat. Let the inputs
of the node be af , bf , Lf and Uf from the node f and ag, bg, Lg and Ug from the node g. The
output of the concatenation node, aconcat, bconcat, Lconcat and Uconcat are defined as follows: 1)
Concatenate the vector outputs of nodes f and g

aconcat =

[
af

ag

]
, bconcat =

[
bf
bg

]
.

2) Take intersection of the interval [Lf , Uf ] ∩ [Lg, Ug] as

Lconcat = max(Lf , Lg), Uconcat = min(Uf , Ug).

Update rule for the final node. At the final node Θ which is the piecewise-assignment function, it
takes the same input as the node of piecewise-linear functions and outputs are the same except for
the aΘ and bΘ. 1) It computes the index j such that the input falls into the polypotopes of PΘ

j . 2)
Then, the anomaly region Aj is obtained instead of Eq. equation 13 in the update rule for the node of
piecewise-linear functions. 3) The computation of lower bounds LΘ and the upper bounds UΘ are
the same as the update rule for the node of piecewise-linear functions. The output of the final node
are the anomaly region Aj , the lower bounds LΘ and the upper bounds UΘ.

Then, apply the above update rule to the directional graph of the piecewise-assignment function from
the initial node f0 to the final node Θ. Consequently, the auto-conditioning algorithm computes
the lower and upper bounds of the interval as the outputs of final node LA

k = LΘ, L
A
k = LΘ and

Ak = Aj .

A.4 IMPLEMENTATION

We implemented the auto-conditioning algorithm described above in Python using the tensorflow
library. The codes construct the DAG of the piecewise-assignment function automatically from
the trained Keras/tensorflow model. Then, we do not need further implementation to conduct CSI
for each specific DNN model. This indicates that even if we change the architecture or adjust
the hyper-parameters and retrain the DNN models, we can conduct the CSI without additional
implementation.

A.5 EXPERIMENTAL DETAILS

Methods for comparison. We compared our proposed method with the following methods:

• VAE-AD Test: our proposed method.

• OC: our proposed method conditioning on the only one polytope to which the observed image
belongs x ∈ PA

k . This method is computationally efficient; however, its power is low due to
over-conditioning.

• Bonf: the number of all possible hypotheses are considered to account for the selection bias. The
p-value is computed by pbonf = min(1, pnaive × 2n)

• Naive: the conventional method is used to compute the p-value.

Experiment for robustness. We evaluate the robustness of our proposed methodology in terms
of Type I error control, specifically under conditions where the noise distribution deviates from
the Gaussian assumption. We investigate this robustness by applying our method across a range of
non-Gaussian noise distributions, including:

• Skew normal distribution (skewnorm)
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• Exponential normal distribution (exponorm)

• Generalized normal distribution with steep tails (gennormsteep)

• Generalized normal distribution with flat tails (gennomflat)

• Student’s t distribution (t)

We commence our analysis by identifying noise distributions from the aforementioned list that have a
1-Wasserstein distance of {0.01, 0.02, 0.03, 0.04} relative to the standard normal distribution N(0, 1).
Subsequently, we standardize these noise distributions to ensure a mean of 0 and a variance of 1.
Setting the sample size to n = 256, we generate 1000 samples from the selected distributions and
apply hypothesis testing to each sample to obtain the Type I error rate. This process is conducted at
significance levels α = {0.05, 0.10}. The results are shown in Fig. 7. Our method still maintains
good performance in type I error rate control.
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(a) Significance level α = 0.05.
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(b) Significance level α = 0.10.

Figure 7: Robustness of type I error control.

More results on brain image dataset. Additional results are shown in Figs. 8 and 9.

Computational resources used in the experiments. All numerical experiments were conducted
on a computer with a 56-core 2.00GHz CPU, eight RTX-A6000 GPUs, and 1024GB of memory.
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Input Image Reconstruction Reconstruction Error Anomaly Region

(a) pnaive = 0.000, pselective = 0.668
Input Image Reconstruction Reconstruction Error Anomaly Region

(b) pnaive = 0.000, pselective = 0.849
Input Image Reconstruction Reconstruction Error Anomaly Region

(c) pnaive = 0.011, pselective = 0.500
Input Image Reconstruction Reconstruction Error Anomaly Region

(d) pnaive = 0.012, pselective = 0.137

Figure 8: Anomaly detection for image without tumor.
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Input Image Reconstruction Reconstruction Error Anomaly Region

(a) pnaive = 0.000, pselective = 0.001
Input Image Reconstruction Reconstruction Error Anomaly Region

(b) pnaive = 0.000, pselective = 0.000
Input Image Reconstruction Reconstruction Error Anomaly Region

(c) pnaive = 0.000, pselective = 0.000
Input Image Reconstruction Reconstruction Error Anomaly Region

(d) pnaive = 0.000, pselective = 0.017

Figure 9: Anormaly detection for image with tumor.
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