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ABSTRACT

Language models are increasingly being used in important decision pipelines, so
ensuring the correctness of their outputs is crucial. Recent work has proposed
evaluating the “factuality” of claims decomposed from a language model gen-
eration and applying conformal prediction techniques to filter out those claims
that are not factual. This can be effective for tasks such as information retrieval,
where constituent claims may be evaluated in isolation for factuality, but is not
appropriate for reasoning tasks, as steps of a logical argument can be evaluated
for correctness only within the context of the claims that have preceded them. To
capture this, we define “coherent factuality” and develop a conformal-prediction-
based method to guarantee coherent factuality of language model outputs. Our
approach applies split conformal prediction to subgraphs within a “deducibility”
graph that we construct to represent the steps of a reasoning problem. We evalu-
ate our method on mathematical reasoning problems from the MATH and FELM
datasets, and find that our algorithm achieves coherent factuality across target cov-
erage levels, consistently producing orderings of correct claims that are substanti-
ated by previous ones. Moreover, we achieve 90% factuality on our stricter defi-
nition while retaining 80% or more of the original claims, highlighting the utility
of our deducibility-graph-guided approach.

1 INTRODUCTION

As foundation models become ubiquitous, it is important to verify the correctness of their genera-
tions. Consequently, ensuring the factuality and reliability of the outputs of these models is an area
of active and growing research. One line of research (Guo et al., 2017; Jiang et al., 2021; Lin et al.,
2022; Mielke et al., 2022; Detommaso et al., 2024; Ahdritz et al., 2024) attempts to catch errors
by quantifying model uncertainty; however, these methods are often difficult to apply in practical
settings where output spaces are intractably large and uncertainty signals, like logit weights, are not
accessible for many proprietary models.

Recently, conformal prediction has been explored as an uncertainty quantification technique to ad-
dress correctness in language model (LM) outputs. In particular, (Mohri & Hashimoto, 2024) apply
split conformal prediction to filter generations by removing weak claims according to some thresh-
old calibrated to a desired error rate α. Subsequent work (Cherian et al., 2024) issues weaker but
adaptive guarantees to ensure output completeness. However, both works implicitly assume the fac-
tuality of a claim can be independently evaluated, which limits their generalizability to reasoning
domains, where claims require substantiation. For example, in solving math problems, a given step
is often deduced as a result of preceding steps: generally, logical arguments require substantiation.

To tackle this challenge, we propose a new notion of factuality to account for the structure of rea-
soning problems, provide an algorithm which applies split conformal prediction to filter claims over
a graph representation, and give correctness guarantees over the filtered output:

A well-defined notion of coherent factuality. We present a notion of factuality which accounts for
inter-claim dependence to evaluate correctness in a more faithful manner. This definition requires
that language model generations are both factual and coherent by evaluating entire orderings of
claims as correct rather than evaluating individual claims.
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Figure 1: Here, the previous method (Output 1) removes the erroneous claims outlined in red, but
leaves the response incoherent by removing Step 2, which is referenced in Step 3. We (Output 2)
consider reasoning structure to filter out erroneous claims while maintaining coherence; even though
we remove a true claim, it is not essential for understanding the claims that remain (α = 0.1).

An algorithm for coherent claim filtration. To apply this coherent definition of factuality, we
propose a graph representation for inter-claim dependence and an empirical method for obtaining
such a graph. Rather than filtering claims individually, we filter between “well-supported” subgraphs
via split conformal prediction to ensure coherence and factuality at any user-specified rate.

Empirical realization of conformal guarantees. We validate our algorithm on a variety of compe-
tition math problems from the MATH dataset (Hendrycks et al., 2021) and from FELM (Chen et al.,
2023a), and experiment with different heuristic risk functions. We find that our graphical represen-
tation is often both sufficient (graph-based calibration satisfies conformal guarantees) and necessary
(calibration that ignores graph structure does not satisfy conformal guarantees) to ensure coherent
factuality. We achieve outputs as complete as the baseline with improved “legibility,” or third-party
verifiability, and we bootstrap filtered responses by reprompting to further improve factuality.

1.1 RELATED WORK

Conformal prediction is a statistical uncertainty quantification technique which yields marginal
coverage guarantees over a confidence set in a distribution-free manner, traditionally only assum-
ing exchangeability of the data (Gammerman et al., 1998; Shafer & Vovk, 2008; Angelopoulos &
Bates, 2022). Split conformal prediction (Papadopoulos et al., 2002; Lei et al., 2018; Romano et al.,
2019) is a batched algorithm which relies on a held out calibration set to yield tight guarantees in
expectation over the draw of the calibration set. While conformal prediction has been explored un-
der graph settings, this has largely been in the context of hierarchical labels (Tyagi & Guo, 2024;
Angelopoulos et al., 2023) or graph neural networks, rather than induced graphs for reasoning.

Recent work has sought to apply conformal prediction to language modeling, including multiple
choice question answering (Kumar et al., 2023), as well as open domain and domain-specific ques-
tion answering and long-form generations (Quach et al., 2024; Mohri & Hashimoto, 2024; Cherian
et al., 2024; Liu & Wu, 2024). Mohri & Hashimoto 2024 applies nested conformal prediction (Gupta
et al., 2022) with entailment sets, splitting generations into disjoint claims, and obtaining confidence
estimates for each such that removing claims below a corresponding calibrated threshold score yields
an α-conformal factual response. Cherian et al. 2024 extends this framework by introducing level
adaptivity by conditional calibration (see also Detommaso et al. (2024) for a conditional calibration
approach to scoring factuality), lowering the correctness level while simultaneously ensuring com-
pleteness of the output. Liu & Wu 2024 extend Mohri & Hashimoto 2024 to give context-conditional
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coverage guarantees using the group conditional conformal prediction techniques developed by Jung
et al. 2023. However, while these works are effective in their application domains, where claims may
be treated as independent, they do not generalize to reasoning problems, where the correctness of
each step cannot be evaluated without the context of the steps that precede it.

LLM Reasoning. Chain-of-Thought (CoT) reasoning induces LLMs to produce step-by-step ra-
tionales to support their generations, similar to the human System 2 reasoning process (Wei et al.,
2024; Nye et al., 2021; Kojima et al., 2022). Several approaches have been proposed to explore
thought diversity to this effect by sampling more and marginalizing over reasoning chains (Wang
et al., 2023b; Chen et al., 2023b), incorporating different types of feedback (e.g. self-critique, ex-
ternal verifiers) and revision (Yao et al., 2023; Besta et al., 2024). (Radhakrishnan et al., 2023)
introduced CoT decomposition and factored decomposition as procedures that iteratively solve sub-
questions that make up the final generation, and showed that while accuracy drops slightly, factored
decomposition greatly improves faithfulness to the true reasoning process of the model. Lastly,
works on process supervision and intermediate verification (Lightman et al., 2023; Ma et al., 2023;
Dhuliawala et al., 2023) help with mitigating hallucination, but are costly at test-time and rely on
the correctness of the feedback. We show how our filtered output can be used as chain-of-thought to
get more factual completions.

2 PRELIMINARIES

Setup and notation. As is standard in the language model (LM) generation setting, we assume that
the LM takes in input X ∈ X and generates an output Y ∈ Y . We further assume that an output Y
can be written as set of “claims,” and our goal is to filter the output to keep a set of “factual” and
“coherent” claims. Note that we do not attempt formal definitions for each of these difficult terms,
and we ultimately evaluate our method’s performance with human annotations.
Definition 1 (Claim). A claim is an atomic proposition. From this, we define C, the set of all claims.

For example, claims might assert things like “The sky is blue” or, more abstractly, provide the
definition of addition. The set of claims C can also contain assertions that are incorrect–for example
that “Barack Obama was president in 2020.” Note that we will not formalize where the boundaries
are for what makes a particular string an atomic “claim” or not; we assume we have access to a
claim splitter function, which takes LM outputs in Y and maps them to a set of discrete claims. We
write this as S : Y → 2C . In practice, we will use a language model to implement claim splitting as
realized in Figure 1.
Definition 2 (Ground Truth). The ground truth Ctrue ⊆ C is the subset of all claims we assume to
be valid without any additional information or context. In particular, this set is some known body of
knowledge from which we base our evaluations of factuality.
Remark 1. In practice, we might choose some reference like Wikipedia or a math textbook as our
ground truth. It is important to note that the ground truth is not necessarily fixed over examples
and can be context-sensitive–for instance, while it is generally reasonable to assume that

√
2 is

irrational, it is not reasonable to do so in a proof of that fact.

Background: conformal prediction guarantees for LM generations. Mohri & Hashimoto
2024 improve the factuality of LM generations by splitting them into subclaims and filtering low-
confidence subclaims via conformal prediction. They obtain factuality calibrated to a user-specified
parameter α while maintaining a significant proportion of the original output. Each subclaim is
scored according to some heuristic confidence function1 σ : C → [0, 1] computed by comparing par-
ticular subclaims to alternate generations for the same prompt. For each output, the non-conformity
score r(X,Y, T ) is simply the minimum threshold such that all subclaims with confidence scores
above the threshold are “factual” (or entailed by the ground truth Ctrue, as verified by a human
annotator). Further mathematical details are in Appendix H.

Then, for a calibration set of (X1, Y1), ..., (Xn, Yn), ordering r(X1, Y1, T ), ..., r(Xn, Yn, T ) and
taking q̂α as the ⌈(n+1)(1−α)⌉

n quantile of the scores we obtain the split conformal guarantee:
1− α ≤ P[r(Xn+1, Yn+1, T ) ≤ q̂α] ≤ 1− α+ 1/(n+ 1).

1To frame our method as incurring risk by adding subclaims, we instead consider σ to be a heuristic risk
function–details follow.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The above simply assumes exchangeability and no ties in scores (which can be enforced by inserting
small amounts of continuous noise). They further assume that (∀y ∈ S(Y ), Ctrue =⇒ y) ⇐⇒
(Y is factual), i.e., the factuality of Y is simply the simultaneous factuality of each of its claims
y. Then, simply omitting those claims in S(Yn+1) with confidence scores below the threshold
and recompiling the remaining claims in Y q̂α

n+1, they transfer the above guarantee to factuality (as
measured by individual claim correctness without accounting for coherence).

3 A NEW NOTION OF FACTUALITY: COHERENT FACTUALITY

While the approach of Mohri & Hashimoto 2024 obtains useful results calibrated to a partic-
ular notion of factuality, which we call independent factuality, this notion of factuality implic-
itly makes the strong assumption that subclaims are independent. Specifically, the assertion that
(∀y ∈ S(Y ), Ctrue =⇒ y) ⇐⇒ (Y is factual) treats each claim’s correctness independently of
the other claims in the generation. While this may be appropriate for pure recall tasks, like biography
generation, we find that it is not sufficient to preserve output quality for reasoning tasks. Our notion
of coherent factuality further imposes coherence by requiring both correctness and substantiation.

Definition 3 (Coherent factuality). Given an example X and ground truth Ctrue, an output Yordered =
(y1, ..., yn) ∈ CN of distinct claims is coherently factual if it satisfies

∀ i ∈ [n], yi is deducible from (y1, ..., yi−1), X,Ctrue.

We use “deducible” without a formal definition since deducibility is both subjective and context-
sensitive (e.g., a claim that follows directly from a logical argument from the point of view of
professional mathematicians may not for grade-schoolers). It is also important to note that we
require a claim in the ordering to be deducible from its prefix, the ground truth, and the example
X , since information like variable definitions will be sensitive to the context. Additionally, as noted
before, the ground truth is determined in part by the question (it is not appropriate to assume a fact
in the proof of that fact).

Remark 2. According to this definition, coherence cannot come at the cost of factuality. Coherent
factuality requires truth because deducibility is only stronger than Mohri and Hashimoto’s indepen-
dent factuality; in particular, any fact which is deducible from the ground truth must be implied by
the ground truth. At worst, we might expect that by calibrating for this more stringent notion, we
would simply output subsets of the claims output by Mohri and Hashimoto. However, by making use
of graphical structure in our scoring and filtering, our method produces outputs of similar complete-
ness to those of Mohri & Hashimoto (2024), and which, in some cases, contain important reasoning
steps the previous method had omitted (see Appendix L)

Like independent factuality, coherent factuality does not stipulate that the response is relevant or
responsive to query X (although it cannot contradict it), and would therefore consider logically
consistent non-sequiturs to be correct. In the setting we consider, we find that requiring relevance is
not necessary, since the LMs we study consistently attempt a relevant response.

Intuitively, coherent factuality ensures outputs contain sufficient reasoning between previous claims
and subsequent ones and considers orderings of claims rather simply claim sets. Steps must appear
in logical sequence (for instance, a variable must be defined before it is used). Given a set of claims
S(Y ), we write π(S(Y )) ∈ CN to denote a particular ordering of those claims.

Observation 1. If an ordering (y1, ..., yn) is coherently factual, any prefix (y1, ..., yi) for i < n is
also coherently factual.

3.1 GRAPHICAL REPRESENTATIONS OF COHERENT FACTUALITY

It will be helpful for us to capture coherence over claims graphically. To do so, we will make the fol-
lowing benign assumption on deducibility of claims: if a claim is deducible from some information,
the claim is also deducible after adding more “good” information.

Assumption 1 (Superstring deducibility). Fix some input X , ground truth Ctrue and claim yn. Say
that yn is deducible from some ordering of {y1, ..., yn−1}, and call the ordering Ysub. Then, if Ysuper
is a coherently factual ordering on a superset of {y1, ..., yn−1}, yn is also deducible from Ysuper.
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Figure 2: The nodes above correspond to the subclaims enumerated in Figure 1. In blue is the
ideal deducibility graph for this output which gives perfect information and allows us to keep all
true claims. Even though our approximate deducibility graph lacks a ground truth node and has
additional edges (e.g., (6, 7)), it helps us preserve the integrity of an output while filtering. In
contrast, the baseline method leaves Claim 3 unsubstantiated by omitting Claim 2.

Ideal deducibility graphs. For a particular (X,Y ), Ctrue, an oracle with perfect understanding of
the ground truth could construct an ideal deducibility graph G = (V,E) to capture deducibility.
Define vertex set V := {S(Y ), vtrue}, with vtrue to stand in for all claims in Ctrue and question X (as
claims may be deducible from either/both of these). Then, edges indicate that a claim is deducible
from its ancestors. In particular, the oracle could construct the edge set E by iteratively consider-
ing topological layers, beginning with the ground truth, asking, “Which claims are deducible from
previous layers?” and drawing edges between those claims and the previous layer (a more detailed
algorithm for construction is in Appendix A).

Remark 3. There may be many such ideal deducibility graphs; for example, if a claim c is deducible
from a or b, both deducible from vtrue, there is no way to represent this relationship uniquely without
a hypergraph; a graph with edge (a, c) and a graph with (b, c) could be obtained by the algorithm
in Appendix A).

This idealized construction produces a directed acyclic graph (DAG) where substantiated claims de-
scend from vtrue, and erroneous or unsubstantiated claims do not. If such a graph existed, conformal
filtering would be unnecessary; we would simply output the descendants of vtrue in topological order.
However, this ideal is unattainable, as ground-truth and deducibility are context-dependent and not
well-defined. Instead, we develop imperfect approximations of these graphs that suffice to achieve
coherent factuality.

Approximate deducibility graphs. Approximate deducibility graphs. We define a weaker notion
of approximate deducibility graphs that are realizable using GPT-generated proxies and sufficiently
represent deducibility to maintain coherence during filtering while ensuring calibrated guarantees
of coherent factuality. Unlike ideal graphs, these proxies do not trace claims to a ground truth or
represent the minimal set needed to substantiate a claim; instead, they capture sufficient sets for
substantiation (see Observation 2 for a formal definition of minimality). While these proxies will
not tell us exactly which nodes to keep and which to omit, they give us some sense of which claims
are ‘required” to keep another and give us a basis for outputting orderings on the claims we keep 2..
The following criteria must hold for a graph G to qualify as an approximate deducibility graph for
(X,Y ), Ctrue:

Definition 4 (Approximate deducibility graph). Let G = (V,E) be a DAG for inputs X and outputs
Y with ground truth Ctrue. Each node v ∈ V represents a claim y ∈ Y . The edge set E must satisfy
the following conditions: (1) Ancestor-connected subgraphs: for any subgraph Gsub = (Vsub, Esub)
that includes all ancestors of its nodes, if a coherently factual ordering exists for Vsub, then every
topological ordering of Gsub must also be coherent, and (2) Consistency: if a[n ancestor-connected]

2In practice, these will almost always correspond to the original numeric orderings of the claims as originally
generated.
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Figure 3: Even though Claim 6 is technically true, it detracts from the coherent solution as it is
derived from a false claim (which falsely suggests the solution to be 0). Although we do not require
dependency, the edge (5, 6) helps us to avoid considering Claim 6 in the absence of Claim 5. This
property improves the quality of the subgraphs we consider.

subgraph Gsub does not allow a coherently factual ordering, then any larger subgraph Gsuper ⊇ Gsub
must also not admit a coherent ordering.

In words, we require that a particular claim is sufficiently substantiated by its ancestors (so a topolog-
ical sort on those nodes will be coherently factual if and only if the set does not contain erroneous
claims). Since we assume we can access one such graph for each example, we would like to be
assured, at the very least, that a graph satisfying this definition can always be constructed.
Observation 2 (Approximate deducibility graph realizability). For any (X,Y ), Ctrue, there exists a
graph with vertex set S(Y ) satisfying Definition 4.

The subgraph of the ideal deducibility graph G = (V,E) induced on V \ vtrue (omitting the ground
truth node) is an approximate deducibility graph (proof deferred to Appendix A).
Remark 4. [An ideal deducibility graph is minimal, containing the fewest edges among all ap-
proximate graphs for a given (X,Y ), Ctrue. Approximate graphs can be derived from ideal graphs
by removing the ground truth node and adding edges, provided no cycles are introduced (follow-
ing Assumption 1). This means approximate graphs may allow sufficient but not strictly necessary
substantiation. While this non-ideal structure could theoretically harm performance, it shows em-
pirical utility empirical utility in Section 5, with quantitative results in Appendix F and a qualitative
example in Appendix L]

While we are assured that an approximate deducibility graph exists, we further assume that we can
construct one for each (X,Y ). In practice, we use GPT-4o to generate these graphs after splitting
an output into claims, so we cannot enforce this graph validity rigorously. However, our empirical
results suggest our deducibility graph representations satisfy these formal requirements. For both
calibration bounds to hold, each graph need only satisfy Definition 4. However, we later remark
on another helpful property (which we call “dependency”) that our GPT-generated graphs possess,
which allows us to search over more reasonable sets of subgraphs and thereby retain more claims in
our filtering procedure. See Section 5 (end of paragraph “Approximate deducibility graph genera-
tion”) for more details and Figure 3 (Appendix L) for an example.

4 A PROTOCOL FOR COHERENT FACTUALITY

If ideal deducibility graphs could be obtained for each (X,Y ), optimal filtering would be easy. As
we previously discussed, we could simply take all descendants from the ground truth node and filter
the rest. Of course, the approximate graphs we obtain do not have this property. These approximate
deducibility graphs have two essential shortcomings: (1) they may contain extraneous edges ([which
is preferred over failing to capture dependencies)], and (2) they do not identify which claims follow
from the ground truth.

First approach: post-hoc filtering. We would like to apply conformal prediction to filter the
original output while maintaining the calibration guarantees. As a first approach, which we call
“Post-hoc filtering”, we take outputs filtered by the independent conformal baseline and apply our
graphs to further remove claims whose ancestors aren’t present. This alternate method will achieve
coherent factuality by design if our graph proxies are good but does necessarily not achieve as it it
will be overly conservative since we may remove additional erroneous claims.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1: Subgraph Generator
Input: Graph G = (V,E), claim-wise risk function σ : V → R
Output: Set of subgraphs U and corresponding thresholds T
U ← {∅} , T ← sorted({−∞} ∪ {σ(v) | v ∈ V }) // Sort risk scores
foreach τi ∈ T do

Vi ← {v ∈ V | σ(v) ≤ τi} // Select nodes below threshold
foreach v ∈ Vi in topological order do

if ∃ ancestor of v not in Vi then
Vi ← Vi \ {v} // Remove claim with missing ancestors

Ui ← G[Vi] // Induced subgraph
U ← U ∪ {Ui}

return U , T

Second approach: subgraph filtering. In order to achieve calibration, instead of computing risk
thresholds based on the constituent claims of some example (X,Y ), we compute thresholds over a
set of subgraphs of the approximate deducibility graph G to consider which subgraph (and corre-
sponding topological ordering of claims) to output, and subsequently show that thresholding based
on this set suffices to obtain conformal coherent factuality.

To select subgraphs, we use a heuristic risk-scoring function σ : C → [0, 1], which differs from
Mohri & Hashimoto (2024) by measuring risk rather than confidence and using the graph G as
input rather than a singular subclaim (elided for notational simplicity). Subgraphs are generated
by thresholding nodes independently and filtering out vertices without their ancestors, producing at
most |S(Y )|+1 induced subgraphs. The heuristic risk of each subgraph corresponds to its threshold,
with at most n+ 1 relevant thresholds, one for each each node including one for the empty set. See
Algorithm 1 for details.

Scoring functions. Claim retention is dependent on our choice of claim-scoring function σ. We
take any context independent claim-scoring function σind to score nodes individually which we refer
to this as self-consistency scoring. [In practice, we compute σind as in Mohri & Hashimoto (2024)
by querying GPT-4 to generate 5 alternate responses and counting the frequency with which each
subclaim appears. We then take an inverse to get a risk score rather than a confidence score. View
the specific prompt in K.1]. We use these node scores to compute σ in the following two3 ways (with
the use of the graph G): (1) Graph independent: σ(v) = σind(v), which does not consider the graph
to score each node. (2) Descendant weighting: For each v ∈ V , define σ(v) = (1 − β)σind(v) +
βmedian{σind(v

′) : v′ is a descendant of v}, where β is a hyperparameter[4]. The motivation for the
descendant weighting function is to boost (reduce) confidence if the claims derived from a particular
claim are very confident (uncertain).

Once we have a set of subgraphs U corresponding to an output Y , the non-conformity score of Y is
simply the risk threshold below which all subgraphs make “good” filtered outputs.
Definition 5 (Non-conformity scoring function). Given some (X,Y ) pair with deducibility graph
G = (V,E), and candidate subgraphs U with corresponding thresholds T , we compute non-
conformity score as follows:

r(X,Y,U , T ) = sup{τ : ∀ (U, τ ′) ∈ U , T s.t. τ ′ ≤ τ =⇒ U is coherently factual given X,Ctrue}

Note that when we say U is coherently factual, we are abusing notation in saying that each topolog-
ical sort of U is coherently factual.

Conformal correctness guarantees. Now, to apply split conformal prediction to control this risk,

we take q̂α := ⌈(1−α)(n+1)⌉
n

th
quantile of {1 − r(Xi, Yi,Ui, Ti)}ni=1. We then filter new outputs

3Note that there are several other ways to use graph structure for scoring (including modifications of the
ones below). We leave the study of this to future work.

4We explored several similar graph-sensitive scoring mechanisms, each motivated by weighting the risk
score of a node according to the risk scores of its ancestors and/or descendants. The median version was most
robust in performance to small changes in beta (we speculate this is because the median is not sensitive to
outlier scores). We swept beta values in [0, 1] and chose 0.5 for its good performance.
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(Xn+1, Yn+1) with Gn+1 by generating Un+1, Tn+1, computing

Ufiltered, τfiltered = argmax
(U,τ)∈Un+1,Tn+1:τ≤1−q̂α

τ,

and defining our final filtered output Y q̂α
n+1 := V ′

filtered, a topological sort on Vfiltered. 5 With the
minimal assumption of exchangeability of the underlying distribution D = X × Y , we have the
following theorem (see Appendix C for full proof).
Theorem 1 (Calibrated Factuality). Fix some calibration set {(Xi, Yi)}ni=1, test point
(Xn+1, Yn+1) ∼ D, ground truth Ctrue, and desired error rate α. Then the following holds for
Y q̂α
n+1 (obtained as described above):

1− α ≤ P[Y q̂α
n+1is coherently factual].

If, additionally, each Gi is an approximate deducibility graph (see Definition 4), we have

P[Y q̂α
n+1is coherently factual] ≤ 1− α+

1

n+ 1
.

5 EMPIRICAL FINDINGS

Datasets. Our experiments make use of the MATH dataset (Hendrycks et al., 2021), which spans
various branches of mathematics. This dataset is among the standard benchmarks reported in recent
model releases, on which even frontier models hallucinate. We also use the FELM dataset Chen
et al., 2023a which consists of a variety of verbal reasoning problems with results in Appendix D.
We replicate our main experiments with an open-source model (Llama-3.1-70B-Instruct for output
and graph generation) and discuss the costs associated with GPT prompts in J.

Approximate deducibility graph generation. [For proprietary models, we used examples and
outputs from Mohri & Hashimoto (2024), where subclaims were generated by GPT-4. We then
queried GPT-4o via few-shot prompting (Appendix K) to produce adjacency lists, as graph gener-
ation proved more challenging than claim-splitting. Open-source experiments followed a similar
setup (Appendix K.1). Model-generated proxies ensure the conformal upper bound under Defini-
tion 4, while the lower bound relies only on data exchangeability, independent of graph quality.] We
observe that our graph proxies even impose structure between bad claims6, a property we call de-
pendency. Dependency is difficult to formalize, but it suggests the consideration or use of one claim
in producing the other, whether or not the use was correct. In this way, a claim might depend on
another even if it results from a logical misstep. Dependency structure is quite common among the
subgraphs we generate: in fact, 50% of graphs that contain any erroneous nodes have edges between
erroneous nodes. [For evidence of dependency’s empirical utility, see Appendix F for quantitative
data and L for qualitative data].

Annotation. Individual claim (silver standard) and subset-level (gold standard) annotations were
used to evaluate output factuality. For individual claims, annotators assessed whether a claim c
would be true if all its graph ancestors were true, or, for a priori claims, whether it was supported
by the ground truth. Subset factuality was measured by checking (1) ancestor connectedness and (2)
whether any claim in the subset had an individual annotation of “No,” assuming the graph proxies
are reliable—an assumption that may falter with sparse representations. Gold standard annotations
directly assessed subsets for human notions of coherent factuality, independent of the graph. Silver
annotations demonstrate the utility and accuracy of deducibility graphs through relative calibration.
The MATH dataset includes both annotation types, while FELM includes only silver annotations.

Results. We directly compare the results of our coherent calibration algorithm with the conformal
factuality algorithm of (Mohri & Hashimoto, 2024), which we call the baseline, on both independent
and coherent definitions of factuality, considering the samples from the MATH dataset as well as the
FELM dataset. We validate all of our methods on manual (gold standard) annotations on each

5If one considers the “original” ordering of claims as produced by the language model and finds that there
are no “back edges” (yj ⇝ yi when j > i), simply removing the filtered claims and outputting the original
ordering is a satisfactory V ′

filtered.
6Our definition of deducibility graphs permits the arbitrary treatment of claims that do not follow from the

ground truth.
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(a)
(b)

(c)

Figure 4: We evaluate our post-hoc (green) and subgraph filtering algorithms (using descendant
weighting with β = 1/2 (red) and graph-independent scoring (blue)) on MATH dataset. Post-hoc
filtering is applied using the graph after initial filtering without a graph. We consider the baseline
to be the method of Mohri & Hashimoto (2024) (yellow). In (a), we show calibration to desired
factuality levels for Subgraph Filtering within theoretical bounds (shown in grey). In (b), we assess
claim retention rates by varying α values, plotting both realized factuality and the fraction of retained
claims across calibration methods and graph generation techniques. In (c) we plot claim retention
with respect to user-desired calibration level.

output. We also test our methods on the FELM Dataset 7 with results in D and demonstrate utility
for varying types of reasoning problems. We attempted to generate deducibility graphs for the
FActScore biography-generation dataset; however, we found these graphs to be nonsensical and
to contain cycles as responses to such prompts do not carry any inherent, directed structure. Our
prompts can be found in Appendix K.1[, and results of these experiments with Llama-3.1-70B-
Instruct can be found in Appendix J].

[R1] Graph proxies are sufficient to obtain coherent factuality. [ The quality of the graph proxies
is affirmed by the empirical satisfaction of theoretical guarantees in Figure 4a. Both bounds hold
across factuality levels when we calibrate on silver annotations that assume proxies are good and
validate on gold annotations. Empirical measurements of graph quality are in F. ]. We note some
miscalibration for the FELM dataset (see Appendix 5a), which could be due to the lack of gold stan-
dard annotations for validation or incorrect graphs. The more efficient annotation method contingent
on good LM-generated graphs gives a practical empirical instantiation of our algorithm.

[R2] Graphical proxies are necessary to obtain coherent factuality. The baseline method fails
to achieve both calibration (Figure 4a) and competitive claim retention likely because independent
factuality does not often imply factual coherence. However, we must still validate against a simple
deducibility graph 1 → 2 → · · · → N following the (linear) order in which claims occur in the
generation, which also fails to achieve competitive levels of claim retention for the majority of α
values when compared to subgraph filtering. The linear method performs better on the FELM dataset
(Figure 5b), which suggests the underlying graphs are closer to linear than they are in MATH.

[R3] Post-hoc filtering is not calibrated. While post-hoc filtering achieves similar claim retention
as subgraph filtering for a realized factuality level, it is not calibrated to user input. For a fixed user-
specified factuality rate (which post-hoc filtering will often overshoot), subgraph filtering achieves
better claim retention than post-hoc filtering although post-hoc filtering shows potential to correct
independently-calibrated outputs. We note similar lack of calibration in post-hoc filtering for the
FELM dataset (Figure 5a).

[R4] Conformally-filtered results achieve high levels of factuality while retaining most claims.
We empirically achieve high coverage levels while retaining a majority of claims, thus preserving
the utility of the generation (Figure 4b). This is important as conformal guarantees can trivially
achieved by removing all claims with some calibrated probability. For example, the subgraph filter-
ing algorithm obtains 90% factuality while retaining close to 80% of the claims, and obtains 85%
factuality while retaining nearly 90% of the claims. [The descendant weighting] scoring function

7this dataset contains reasoning word problems
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Table 1: Change in error rate on questions with reprompting using claims retained via coherent and
independent methods. [We record the error rate of GPT outputs on the prompt before conformal
prediction is applied (zero-shot) and the error rate of GPT outputs when prompted to complete an
incomplete (filtered) output. We compare error reduction between coherent incomplete outputs and
incoherent incomplete outputs.]

Coherent Factuality Error Independent Factuality Error
α Zero-shot Post-filter Reduction Zero-shot Post-filter Reduction

0.05 28% 10% ↓18% 28% 26% ↓2%
0.10 28% 10.88% ↓17.12% 28% 16.56% ↓11.44%
0.15 28% 14% ↓14% 28% 18.84% ↓9.16%

shows superior performance at low α, achieving arbitrarily high factuality while retaining at least
40% of claims.

[[R5] Coherent outputs are more “legible” than the baseline while equally complete. (Kirchner
et al., 2024) define legible reasoning as “reasoning that is clear and easy to check.” We defer human
studies of output legibility to future works, but as a proxy, we asked GPT-4o and Llama-3.1-70B-
Instruct to grade filtered outputs as either correct or erroneous (more details in Appendix N). For
each combination of output generation model (GPT-4, Llama-3.1-70B-Instruct) and output grading
model (aforementioned judges), our method was more legible than the baseline (lower false positive
and false negative rates for fixed levels of factuality). This improved output utility does not come at
the cost of completeness: at α = 0.1, 64% of error-free outputs contain a correct final answer, the
same rate as the baseline outputs, which have diminished legibility and coherence.]

[R6] Bootstrapping coherently factual inputs improves factuality of regenerations. We boot-
strap coherent factuality by running the filtered output back through the model with the original
prompt and requesting the model to fill in the blanks of our filtered output. See I for more details.
For α = 0.05, 0.10, 0.15, reprompting on coherent outputs provides consistently better reductions
in error rate, as compared to independently filtered outputs (Table 1). We posit this methodology is
more effective for coherent outputs because they are easier to parse and build upon, demonstrating
the utility of our method.

6 DISCUSSION

We show how to achieve coherent factuality using the underlying graph structure of deducibility in
reasoning problems. We show both theoretical bounds on the calibration guarantees of our method,
and practical utility of our approach to improve factuality of language models. Here we discuss
limitations and potential future directions.

Graph proxies. While our graph proxies satisfy the definition of deducibility graphs empirically,
relying on a proprietary model like GPT-4o for accurate graph generation is not ideal. We note that
GPT-4o struggled with longer reasoning outputs containing many claims, raising concerns about
practicality for multi-step problems.

Subjective ground truth and deduction. Whether a claim is valid depends on the annotator’s
perspective and context. In a complex theorem, arithmetic may be implicit, while for simple algebra,
it could be central. Assumptions and axioms also vary by context. It is important to note that
correctness of outputs is only consistent with the annotator’s subjective notion of truth.

Improved scoring functions. Our method works with any subgraph scoring function and increases
claim retention by working to converge on the “true” underlying risk function with our scoring
function. Improvements may include scoring subsets beyond those considered by our algorithm
based and accounting for additional graph structure in node heuristic measures.

Expanding evaluation to further domains. This work is primed to extend to any reasoning con-
text, where a graphical representation is not insignificantly sparse. For example, code generation
is a natural domain, as compilation is both an easy and well defined notion of coherent substanti-
ation, and correct final outputs clearly indicate correctness. Furthermore, dependency graphs are a
common notion in software systems at large, which pairs well with our framework.
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A GRAPH DETAILS

Algorithm 2: Ideal Graph Assembly

Input: example (X,Y ), ground truth Ctrue, claim splitter S : Y → 2C

Vstart = S(Y )
V,E = {}
L0 = {vtrue}
V = V ∪ L0

t = 0
while ∃v ∈ Vstart that is deducible from some ordering of nodes in V do

t← t+ 1
Lt = {}
for each such v do

ancestors = {A ⊆ V | ∃π with π(A), v is coherently factual}
A = argminA′∈ancestors |A′ ∩ Lt−1|
Lt = Lt ∪ v
V = V \ {v}
for each v′ ∈ A ∩ Lt−1 do

E = E ∪ {(v′, v)}
V = V ∪ Lt

return G = (V,E)

Proof of approximate deducibility graph existence. To prove this, we first make note of an important
property of the ideal graph construction.

Lemma 1. In the ideal graph, a claim is a descendant of vtrue iff. it is an element of a coherently
factual ordering.

To prove the forward direction, assume a node v is a descendant of the ground truth. Then, by
construction, there is some ordering π(a(v)) = (vtrue, v1, ..., vk) such that (vtrue, v1, ..., vk, v) is
coherently factual.

For the backward direction, assume that a claim is part of a coherently factual ordering (v1, ..., vk, v).
Then, by the definition of coherent factuality, v1 is deducible from vtrue, and so on inductively, so
each node preceding v will have a path from vtrue in the ideal graph. Thus, v will also be a descendant
of vtrue. By Assumption 1, v is also deducible from any topological sort on its ancestors.

Now, fix some (X,Y ), Ctrue, S : Y → C.

Generate the ideal graph with Algorithm 2. Then, consider its subgraph induced on V \ L0 =
L1 ∪ ... ∪ Ln. Call this subgraph G = (V,E).

G is a DAG by construction, so to prove the approximate deducibility property, we fix some Gsub
satisfying ancestor connectedness. Consider the case that Gsub contains a claim vbad that is not a
descendant of vtrue. Then we are in the case that there is no coherently factual ordering of Vsub, but
by Lemma 1, there is no coherently factual ordering containing vbad, so in particular, a superset of
Vsub has no coherently factual ordering, and the approximate deducibility property holds.

In the other case, consider that each claim v ∈ Vsub is a descendant of vtrue. Then, by construction,
each v is deducible from a(v) (and inductively, a topological sort suffices), so since the subgraph is
assumed to satisfy ancestor connectedness, any topological sort on Vsub is coherently factual. This
concludes the proof.
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B CONFORMAL FILTERING ALGORITHM

In the algorithm below, we refer to Algorithm 1, “Subgraph Generator,” simply as “subG.”

Algorithm 3:: Coherent Calibration
Input: Confidence α, calibration data {(Xi, Yi)}ni=1, output graphs {Gi = (Vi, Ei)}ni=1
τ = {}
for i in [n] do
Ui, Ti = subG(Gi)
τ = τ ∪ {r(Xi, Yi,Ui)}

q̂α = ⌈(n+1)(1−α)⌉
n th quantile of τ

return q̂α

C PROOF OF THEOREM 1

Proof. To show the following, we refer to the notion of ancestor connectedness introduced in Defi-
nition 4.

Note that, if we apply Algorithm 1 to Gn+1, each subgraph in output Un+1 satisfies ancestor con-
nectedness.

As we proceed, for ease of notation, we simply write r(Xn+1) for r(Xn+1, Yn+1,Un+1, Tn+1).

Now, since (1− r(Xn+1) ≤ q̂α) ⇐⇒ (r(Xn+1) ≥ 1− q̂α), we have

1− α ≤ P[r(Xn+1) ≥ 1− q̂α] ≤ 1− α+
1

n+ 1

as a standard split conformal result (where the probability is taken over the draw of the calibration
set and (Xn+1, Yn+1).

To prove the claim, it suffices to show r(Xn+1) ≥ 1− q̂α ⇐⇒ Y q̂α
n+1 is coherently factual.

For both directions, we will consider Ufiltered as in Section 4:

Ufiltered = argmax
U ′∈Un+1:τ ′≤1−q̂α

[τ ′]

For the forward direction, assume (r(Xn+1) ≥ 1 − q̂α). Then, by definition, conformally filtered
Y q̂α
n+1 is coherently factual (since r(Xn+1) is defined such that each subgraph with equal or less risk

is coherently factual, and Ufiltered from satisfies this since τfiltered ≤ 1 − q̂α ≤ r(Xn+1)). Note that
we make no assumptions beyond distributional exchangeability to obtain this result.

For the reverse direction, we will show the contrapositive. Assume r(Xn+1) < 1− q̂α. This means
that there exists a subgraph Ubad = (Vbad, Ebad) ∈ Un+1 with τbad ≤ 1− q̂α; otherwise, the first bad
graph would have risk greater than 1 − q̂α, so the supremum of safe scores r(Xn+1) would be at
least 1− q̂α.

Say Y q̂α
n+1 is the vertex set from Ufiltered. Note that τfiltered ≥ τbad (since τfiltered is the supremum of

risks below 1− q̂α).

In the first case, Ufiltered = Ubad from which the desired result (Y q̂α
n+1 is not coherently factual)

follows.

Otherwise, Ubad is a subgraph of Ufiltered, and both are ancestor-connected, properties obtained by
Algorithm 1. In particular, this means Vfiltered is a superset of Vbad.

Note that Gn+1 is an approximate deducibility graph and Ubad is an ancestor-connected subgraph
with no coherently factual ordering (if it had one, Vbad’ in particular would be coherently factual by
Definition ), any superset of Vbad has no coherently factual ordering, also by Definition . However,
Y q̂α
n+1 is one such ordering on superset Vfiltered, which concludes the contrapositive of the backward

direction.

We have thus shown that (r(Xn+1) ≥ 1− q̂α) ⇐⇒ (Y q̂α
n+1 is factual), which proves the claim.
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D RESULTS FOR FELM DATASET

We present the results of our algorithms on the FELM Dataset, as discussed in the results section.
The lines graphed correspond to the same evaluation settings as with the MATH dataset. We note that
the Post-Hoc Filtering algorithm remains un-calibrated (even more so) in these results as compared
to subgraph filtering which is (almost perfectly) calibrated (see 5a). The slight discrepancy may be
due to erroneous graphs as we lack manual annotations. The no dependency baseline performs better
in this case, but still fails to meet the lower bound for any value of α. The validation results (see 5b
also appear to be similar to that of the MATH dataset. However, we now note better performance
of linear graphs, implying that reasoning paths may be closer to perfectly linear in this dataset.
Post-Hoc and subgraph filtering remain relatively the same, and are still competitive relative to one
another in claim retention.

(a) Calibration plot (FELM) (b) Percent of claims kept vs. factuality (FELM)
Figure 5: Results on the FELM dataset using GPT-4 for responses and GPT-4o for graphs.

E RESULTS WITH LLAMA-3.1-70B-INSTRUCT (OPEN-SOURCE)

We ran the same experiment on the MATH dataset for outputs, subclaim splits, and graphs produced
by Llama. While Llama-generated graphs were further from ideal and less often satisfied Definition
4 (discussion of our altered approach in Appendix K.1), our empirical results suggest they are still
useful. The plots below are for silver-annotated calibration and validation.

(a) Calibration plot (Llama) (b) Percent of claims kept vs. factuality (Llama)
Figure 6: Results on the MATH dataset solely using Llama-3.1-70B-Instruct.
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F MODEL-GENERATED VS. IDEAL GRAPHS

[Surprisingly, graphs generated by GPT-4o seemed to have more empirical utility than ideal, human-
generated graphs. As discussed in Section 5, this additional structure, although not strictly necessary
to obtain theoretical guarantees, tends to improve the set of subgraphs we search over by deferring
admittance of faulty claims that rely on faulty claims. GPT includes edges between such claims
while the ideal construction does not require this.

In Figure 7, we compare the claim retention of GPT-graph vs. ideal-graph calibration on 10 examples
from the MATH dataset.]

We assert the validity of our graphs by manually constructing ideal graphs for the first ten examples
and computing the edit-distance of GPT proxies to the ideal graph (1.8 on average) and the nearest
approximate deducibility graph (0 on average)—note that the second result means each graph we
checked satisfied Definition 4, which is sufficient to obtain both conformal bounds (the respective
distances were [result] and [result] for Llama-generated graphs).

Figure 7: Performance of GPT-generated vs. human-constructed graphs for α = 0.1, 0.2, 0.3.

G FURTHER RELATED WORK

Factuality and Hallucination in Language Models.

Ensuring the factuality of language model outputs is an important objective towards their reliable
real-world deployment across diverse settings. Hallucinations can arise in several ways, including
lack of knowledge or recall problems from pre-training data, fine-tuning data, or a vector datastore
with RAG, as well as issues with decoding strategy (Huang et al., 2023), (Wang et al., 2023a)).
Works such as (Kalai & Vempala, 2024) suggest that LMs will always hallucinate while there exists
unknown knowledge, while others such as (Ahdritz et al., 2024) seek to identify uncertainty due
to lack of knowledge via linear probes. At the same time, (Zhang et al., 2023) demonstrate LLMs
can independently identify hallucinations, but often continue with incorrect lines of reasoning even
when a mistake is made early on. Our work directly addresses such a setting through dependence-
based factuality within a reasoning chain, avoiding cascading hallucinations by design with high
probability.

Uncertainty Estimation. The problem of insufficient (or incorrect) knowledge can be treated as
epistemic uncertainty, while inference-time decoding randomness in sampling can be addressed as
aleatoric (Ahdritz et al., 2024). Thus, the study of uncertainty estimation in language models is
complementary to our goal of mitigating hallucinations. Prior works have explored expressions
of uncertainty including logit weights (Guo et al., 2017; Jiang et al., 2021), surrogate estimates
(Shrivastava et al., 2023), sampling variance (Kuhn et al., 2023; Xiong et al., 2024), and natural
language generations indicating uncertainty (Lin et al., 2022; Zhou et al., 2023).

There is also a line of work which leverages confidence scores which, when calibrated, should be
proportional to the correctness of the generation (Mielke et al., 2022)). Chen & Mueller 2023 use
self-reflection and consistency over generations sampled with a fixed temperature, and select the
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generation with the highest confidence score (which is also output to the user). Tian et al. 2023
demonstrates that verbalized confidence scores, akin to (Lin et al., 2022), are better calibrated than
using the log probabilities, which are generally overconfident relative to the true level of correct-
ness. Band et al. 2024 introduces a pipeline for linguistic calibration with supervised fine-tuning to
enable elicitation of faithful confidence scores, and decision-based reinforcement learning through
a forecasting formulation. Detommaso et al. 2024 uses multicalibration to several groups of promp-
t/completion pairs as a means to elicit reliable confidence scores. Our work makes use of a risk
function based on our coherent approach on factuality, calibrating with respect to annotated claim
and subset labels.

H MORE DETAILS ON CONFORMAL FACTUALITY

We expand on the details of Mohri & Hashimoto (2024) application of conformal prediction to
language model outputs.

More formally, Mohri & Hashimoto (2024) frame factuality in terms of entailment by the ground
truth (which we consider insufficient, since this does not require justification for outputs).
Definition 6 (Entailment operator). The function E : C → {Csupport ⊆ 2C} takes in a claim c ∈ C
and outputs each set C ⊆ 2C of claims whose conjunction implies c.

If C ∈ E(c), we abuse notation and simply write C =⇒ c. Mohri and Hashimoto seek to retain
claims c such that Ctrue =⇒ c for each c, and consider this sufficient for realizing factuality of an
output.

There is some difference in notation between this definition and the original since Mohri and
Hashimoto frame the ground truth Ctrue as simply an element of Y , while we frame it as a set of
claims. With this in mind, they define a non-conformity scoring function as follows:
Definition 7 (Independent non-conformity scoring function). For a particular output Y with claims
C = S(Y ) and some set T of candidate thresholds, the non-conformity score r is defined as follows:

r(X,Y, T ) = inf{τ ∈ T : ∀j ≥ τ,∀y ∈ C, (σ(y) ≥ j) =⇒ (Ctrue =⇒ y)}

Then, since increasing the threshold can only remove claims, the traditional conformal guarantee

1− α ≤ P[r(Xn+1, Yn+1, T ) ≤ q̂α] ≤ 1− α+
1

n+ 1
.

can be written as

1− α ≤ P[∀y ∈ S(Y q̂α
n+1), Ctrue =⇒ y] ≤ 1− α+

1

n+ 1
.

Then, they assume that (∀y ∈ S(Y ), Ctrue =⇒ y) ⇐⇒ (Y is factual), so we obtain

1− α ≤ P[Y q̂α
n+1 is factual] ≤ 1− α+

1

n+ 1
.

[

I MORE DETAILS ON BOOTSTRAPPING CONFORMAL FACTUALITY

We may use the outputs of both the baseline independent factuality conformal prediction algorithm
and our new coherent factuality conformal prediction algorithm to reprompt the model, see K.3 for
the exact prompt. We give the model both the original question and the remaining filtered output
and ask it to complete the solution using the context given.

For α = 0.05, 0.1, 0.15 we observe the change in factuality from prompting with no context to
prompting with the added context of the filtered set of claims. After reprompting, we observe the
correctness of the new output and record the new error rate. The new output is considered correct
only if all the new claims and reasoning used are correct. The table 1 demonstrates how the error
rate has a greater reduction when reprompting with a coherent subset of the original claims rather
than an incoherent subset.

]
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J COSTS ASSOCIATED WITH GPT QUERIES AND RUNNING ON
LLAMA-3.1-70B-INSTRUCT

Cost and reproducibility. [We replicated our main experiments with Llama-3.1-70B-Instruct (for
output and graph generation) with slight changes to the prompting required to elicit useful graphs
(see Appendix K.1). We find that the utility of the approach holds for less powerful open-source
models: we present our results in Appendix .

The algorithm is also inexpensive to implement. For each example in the calibration and test set, the
algorithm requires 8 queries comprising at most 16k tokens; for our calibration set of 50 examples,
this cost less than $5.00 using GPT and less than $0.70 using Llama. The same queries are made for
the test set, so each test example cost less than $0.10 for GPT and $0.01 for Llama. These estimates
are conservative, assuming full utilization of 2000-token total context and output to accommodate
longer form responses (although our responses were much shorter). Perhaps more prohibitive than
monetary cost is the number of annotations necessary (at worst exponential in n, the number of
subclaims for an example). However, this is a one-time cost for calibration, and our results suggest
that silver annotations, of which there are n, suffice.]

K API USAGE FOR MODEL QUERIES

We report a few important notes on the API calls made to OpenAI models for empirical evaluation
of our algorithm:

1. [A temperature of 1.0 was used to generate alternate responses for frequency scoring; a
temperature of 0.0 was used for all other API calls.]

2. GPT-4 was used for the generation of outputs for the MATH questions.
3. GPT-4 was used for self-consistency scoring, described in Section 4.
4. GPT-4o was used for graph generation.

K.1 DEPENDENCY GRAPH GENERATION PROMPT (MATH/FELM)

GPT-4o Our prompt for graph generation includes in-context exemplars annotated with rationales
(“commentary”) for guided decomposition of the model-generated output into claims and their rela-
tion to one another.

I’m going to give you a question and a series of claims in response to the question. I want you
to create a dependency graph to represent the relationships between claims. The set of vertices
should be the set of claims. Then, if a claim ”a” relies on another claim ”b” to be considered
true, include edge (b, a) in the graph (so a node’s ancestors should contain all of its necessary
assumptions). Vertices that are ”a priori” (e.g., assumptions given in the question, definitions,
etc.), should not have ancestors. Your final output will be an adjacency list.

Next, I’ll give you some examples to make this clear.

Question: How many vertical asymptotes does the graph of y = x
x2+1 have?

claim 1: A function has vertical asymptotes exactly where its denominator equals zero. claim
2: To solve for the vertical asymptotes of the function y = x

x2+1 , we therefore must solve
x2 + 1 = 0. claim 3: For all real values of x, x2 + 1 > 0 claim 4: Thus, we conclude that the
function y = x

x2+1 has no vertical asymptotes.

Desired Output: [[0, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 1, 0]]

Commentary:

You should output an object like the one above without any other reasoning or formatting. In
particular, you should output an array of n arrays, each of length n, where n is the number of
claims. If claim j relies on the information from claim i, the jth array should have the ith entry
= 1; otherwise this entry should be zero. In this case, note that claim 1 does not have ancestors,
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because it does not require other steps to be justified (we assume common mathematical the-
orems, like the presence of vertical asymptotes when the denominator is zero, to be a priori).
However, claim 2 relies on the conclusion of claim 1 since it sets the denominator equal to zero.
claim 3 implicitly relies on claim 2, since we derive this check from claim 2. Also, the final
answer, claim 4, relies on combining information from both claims 2 and 3 (which describe the
significance of the equation x2+1 = 0 and its answer, respectively). Also note that in generat-
ing this graph, we represent implicit relationships between claims: claim 4, for instance, does
not cite claims 2 and 3 explicitly, but it certainly relies on their contents. For this reason, we
put those edges in its adjacency list. It is very important to represent all relationships in this
way. In general, it is unlikely that a claim should be completely ”floating” (not relied upon by
or reliant upon another claim); in this case, it would not be contributing to the complete output.

By convention, we never include a claim in its own adjacency list (we do not consider a claim
to rely on itself).

Here, we’re interested in the dependency between claims, not just the correctness. For this
reason, it’s also important to represent these dependencies even in the case that an answer is
wrong.

I’ll give you another example below.

Question: Consider the function y = x2 + 2x + 15. What is the sum of the zeroes of this
function?

claim 1: The zeroes of a function are the x-values of its x-intercepts. claim 2: To find the zeroes
of y = x2 +2x+15, we set the right hand side equal to 0, writing 0 = x2 +2x+15. claim 3:
To solve 0 = x2 + 2x+ 15, we factor it as 0 = (x+ 3)(x− 5). claim 4: This means that the
zeroes of y = x2 +2x+15 are x = −3, 5. claim 5: We conclude that the sum of the zeroes of
this function is −3 + 5 = 2.

Desired Output: [[0, 0, 0, 0, 0], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0]]

Commentary:

Here, each claim simply relies on the previous claim. Importantly, claim 3 makes an algebraic
error, incorrectly factoring as 0 = (x+3)(x− 5) instead of 0 = (x− 3)(x+5), which means
the final answer is wrong. Even so, this claim relies on information from claim 2, and claim 4
relies on the conclusion from claim 3, so we represent these edges in our final output. We are
agnostic to correctness, and focus solely on the reliance between claims. If claim i makes use
of claim j, even incorrectly, claim j should be an ancestor of claim i in our adjacency list.

Now, I’m going to give you another question and list of claims, as before. With all of this
explanation in mind, I want you to output an adjacency list with no other reasoning.

Llama-3.1-70B-Instruct Llama had more difficulty with this task, especially replicating the di-
mensions of the adjacency list, so we reworked the few-shot prompt and gave more explicit in-
struction. Despite our best efforts, it occasionally output cyclic graphs, in which case we simply
considered the trivial “linear” graph (1 ⇝ 2 ⇝ ... ⇝ n); our empirical results suggest that, while
imperfect, its graphs were still useful.

You are a system designed to create dependency graphs for subclaims in response to a given
question. Your output must strictly adhere to the following instructions:

1. Graph Description:
- Represent the dependency relationships between subclaims as a directed graph.
- Each subclaim is a vertex in the graph.
- An edge (b → a) exists if subclaim “a” depends on subclaim “b.”
- Subclaims that are “a priori” (e.g., assumptions or definitions) should not have any ancestors.

2. Output Format:
- Provide your graph as an adjacency list of size NUM × NUM, where NUM is the number of
subclaims (this will be given at the beginning of the prompt).
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- Each entry in the adjacency list is a list of n integers:
- A value of 1 at position i in row j indicates that subclaim j depends on subclaim i. - A value
of 0 indicates no dependency. - Ensure no claim depends on itself (diagonal entries must be 0).

3. Rules: - The adjacency list must be square, with n rows and n columns, where n is the
exact number of subclaims provided. - Each row and column must be exactly n integers. Do
not include extra rows, columns, or misaligned entries. - The output must consist solely of the
adjacency list (e.g., [[0, 1, 0], [0, 0, 1], [0, 0, 0]]); do not include explanations, commentary, or
any other formatting.

4. Dependencies:
- Consider explicit and implicit dependencies between subclaims. For example, if subclaim
j implicitly relies on subclaim i (even if not stated directly), include the edge (i → j) in the
graph.
- Always represent dependencies, even if the subclaims are incorrect or contain logical errors.

Examples:

- Input:
Question: How many vertical asymptotes does the graph of y = x/(x2 + 1) have?

NUM = 4 Subclaims:
1. A function has vertical asymptotes exactly where its denominator equals zero.
2. To solve for the vertical asymptotes of the function y = x/(x2+1), we therefore must solve
x2 + 1 = 0.3. For all real values of x, x2 + 1 > 0.
4. Thus, we conclude that the function y = x/(x2 + 1) has no vertical asymptotes.

Desired Output: [[0,0,0,0],[1,0,0,0],[0,1,0,0],[0,1,1,0]]

- Input:
Question: Consider the function y = x2 + 2x + 15. What is the sum of the zeroes of this
function?

NUM = 5
Subclaims:
1. The zeroes of a function are the x-values of its x-intercepts.
2. To find the zeroes of y = x2 + 2x + 15, we set the right-hand side equal to 0, writing
0 = x2 + 2x+ 15.
3. To solve 0 = x2 + 2x+ 15, we factor it as 0 = (x+ 3)(x− 5).
4. This means that the zeroes of y = x2 + 2x+ 15arex = −3, 5.
5. We conclude that the sum of the zeroes of this function is −3 + 5 = 2.

Desired Output: [[0,0,0,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]

Now provide your adjacency list for the following question and subclaims:

K.2 SELF-CONSISTENCY (FREQUENCY) SCORING PROMPT

You will get a list of claims and piece of text. For each claim, score whether the text sup-
ports, contradicts, or is unrelated to the claim. Directly return a jsonl, where each line is
{”id”:[CLAIM ID], ”score”:[SCORE]}. Directly return the jsonl with no explanation or other
formatting. For the [SCORE], return 1 for supports, −1 for contradicts, and 0 for unrelated.
The claims are: {CLAIMS}

K.3 RE-PROMPTING WITH FILTERED OUTPUT PROMPT

I am going to give you a question some starter work. Please fill in the starter work to provide a
complete answer to the question. Question: [QUESTION], Starter Work: [STARTER WORK]
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L COMPARING OUTPUTS GENERATED FROM INDEPENDENT FACTUALITY
AND COHERENT FACTUALITY

L.1 MATH DATASET OUTPUTS

Example 1

Question: Solve for w and express as a common fraction: 1 1
6w = 42

3

Independent Factuality:

1. Multiplying both sides by w gives 1 1
6 =

w · 423 .

2. Converting 1 1
6 to an improper fraction

gives 7
6 = 14w.

Coherent Factuality:
1. Multiplying both sides by w gives 1 1

6 =

w · 423 .

2. Simplifying the right side gives 1 1
6 =

14w.

3. Converting 1 1
6 to an improper fraction

gives 7
6 = 14w.
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Example 2

Question: Mr. Madoff invests 1000 dollars in a fund that compounds annually at a constant
interest rate. After three years, his investment has grown to 1225 dollars. What is the annual
interest rate, as a percentage? (Round your answer to the nearest integer.)

Independent Factuality:

1. In the formula, A is the amount of
money accumulated after n years, in-
cluding interest.

2. In the formula, P is the principal amount
(the initial amount of money).

3. In the formula, r is the annual interest
rate (in decimal).

4. In this case, A = 1225, P = 1000,
n = 1, and t = 3 years.

5. Substituting the given values into the
formula, we get: 1225 = 1000(1 +
r/1)1∗3.

6. Simplifying the equation, we get:
1225 = 1000(1 + r)3

7. Dividing both sides by 1000, we get:
1.225 = (1 + r)3

8. Taking the cube root of both sides, we
get: 1.07 = 1 + r.

9. Subtracting 1 from both sides, we get:
r = 0.07.

10. The annual interest rate is 0.07, or 7%
when expressed as a percentage.

11. Rounded to the nearest integer, the an-
nual interest rate is 7%.

Coherent Factuality:
1. The formula for compound interest is

A = P (1 + r/n)nt.

2. In the formula, A is the amount of
money accumulated after n years, in-
cluding interest.

3. In the formula, P is the principal amount
(the initial amount of money).

4. In the formula, r is the annual interest
rate (in decimal).

5. In the formula, n is the number of times
that interest is compounded per year.

6. In this case, A = 1225, P = 1000,
n = 1, and t = 3 years.

7. Substituting the given values into the
formula, we get: 1225 = 1000(1 +
r/1)1∗3.

8. Simplifying the equation, we get:
1225 = 1000(1 + r)3.

9. Dividing both sides by 1000, we get:
1.225 = (1 + r)3.

10. Taking the cube root of both sides, we
get: 1.07 = 1 + r.

11. Subtracting 1 from both sides, we get:
r = 0.07.

12. The annual interest rate is 0.07, or 7%
when expressed as a percentage.

13. Rounded to the nearest integer, the an-
nual interest rate is 7%.

Example 3

Question: What is the smallest real number x in the domain of the function

g(x) =
√
(x− 3)2 − (x− 8)2 ?

Independent Factuality:
1. The expression under the square root

must be nonnegative.
2. We must have (x− 3)2 − (x− 8)2 ≥ 0.
3. This simplifies to (x − 3 + x − 8)(x −

3− (x− 8)) ≥ 0.

4. The smallest such x is
11

2
.

Coherent Factuality:
1. The expression under the square root

must be nonnegative.
2. We must have (x− 3)2 − (x− 8)2 ≥ 0.
3. This simplifies to (x − 3 + x − 8)(x −

3− (x− 8)) ≥ 0.
4. This further simplifies to (2x−11)(5) ≥

0.
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Example 4

Question: If (2x+ 5)(x− 3) = 14, find the sum of the possible values of x.

Independent Factuality:

1. The expanded equation simplifies to
2x2 − x− 29 = 0

2. Vieta’s formulas are used to find the sum
of the roots of the equation

3. The sum of the roots of the equation is 1
2

Coherent Factuality:
1. The left side of the equation is expanded

to 2x2 − 6x+ 5x− 15 = 14

2. The expanded equation simplifies to
2x2 − x− 29 = 0

3. Vieta’s formulas are used to find the sum
of the roots of the equation

4. The sum of the roots of the equation is 1
2

Example 5

Question: If (2x+ 5)(x− 3) = 14, find the sum of the possible values of x.

Independent Factuality:

1. The expanded equation simplifies to
2x2 − x− 29 = 0

2. Vieta’s formulas are used to find the sum
of the roots of the equation

3. The sum of the roots of the equation is 1
2

Coherent Factuality:
1. Mike was offered $1.25 for the stamp.
2. The offer for the stamp was doubled, re-

sulting in $2.50.
3. There are 12 years under consideration.
4. A three-year period is being used as a

unit of measurement.
5. There are 4 three-year periods in 12

years.
6. The offer price was doubled once for

each three-year period.
7. Doubling the offer price four times re-

sulted in $40.
8. The final answer is $40.

L.2 FELM DATASET OUTPUTS

Example 1

Question: Jessica makes $2,000.00 a month. She sets 25% of her paycheck aside to put
towards fancy shoes. Each pair of shoes she buys costs $1,000.00. How many shoes can she
buy in a year?

Independent Factuality:

1. Jessica sets aside 25% of her paycheck,
which is: $2,000.00 x 0.25 = $500.00

2. So Jessica can buy 6 pairs of shoes in a
year with the money she sets aside from
her paycheck.

Coherent Factuality:
1. Jessica sets aside 25% of her paycheck,

which is: $2,000.00 x 0.25 = $500.00

2. To figure out how many pairs of shoes
she can buy in a year, we need to multi-
ply the number of pairs she can buy in a
month by 12 (the number of months in a
year):$500.00 x 12 = $6,000.00.
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Example 2

Question: The ratio of men to women on a bus is 5:9. If the total number of passengers on
the bus is 84, and 20 women alight from the bus at the next stop, how many women have
remained on the bus?

Independent Factuality:

1. If the total number of passengers on the
bus is 84, then each ratio unit represents
84
14 = 6 passengers.

2. The number of women on the bus
is 9 units × 6 passengers/unit =
54 passengers.

3. If 20 women alight from the bus, then
the number of women remaining on the
bus is 54 − 20 = 34 women. Answer:
34 .

Coherent Factuality:
1. The total ratio of men and women on the

bus is 5 + 9 = 14.

2. If the total number of passengers on the
bus is 84, then each ratio unit represents
84
14 = 6 passengers.

3. The number of women on the bus
is 9 units × 6 passengers/unit =
54 passengers.

4. If 20 women alight from the bus, then
the number of women remaining on the
bus is 54 − 20 = 34 women. Answer:
34 .

Example 3

Question: John injured his back and needs to go to physical therapy. He went to physical
therapy for 6 weeks. Each week he went twice for 2 hours at a time. If the sessions cost
$125 per hour how much did the physical therapy cost?

Independent Factuality:

1. He went to therapy 6 × 2 =≪ 6 × 2 =
12≫ 12 times.

2. So he paid 250× 12 = $≪ 250× 12 =
3000≫ 3000.

3. Answer: 3000 .

Coherent Factuality:
1. He went to therapy 6 × 2 =≪ 6 × 2 =

12≫ 12 times.

2. Each session cost 2 × 125 = $ ≪
2× 125 = 250≫ 250.

3. So he paid 250× 12 = $≪ 250× 12 =
3000≫ 3000.

4. Answer: 3000 .
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M INDEPENDENT FACTUALITY BASELINES

We also report the baseline results of independent factuality as in (Mohri & Hashimoto, 2024) for
the problems we analyze; these plots are analogous to those we report in Section 6.

(a) Calibration plot (b) Percent of claims kept vs. independent factuality
Figure 8: These figures depict the performance of independent factuality calibration validated
against independent factuality. We can see that the calibration guarantees still hold and useful pro-
portions of claim retention, however, as claims may still be retained despite claims that preceding it
being deemed as incorrect, this does not reflect our coherent definition of factuality.
[

N LEGIBILITY RESULTS

To measure legibility, we asked GPT-4o and Llama-3.1-70B-Instruct to grade outputs as erroneous
or factual.

All queries were at temperature = 0. We considered all outputs across α = 0.1, 0.15, 0.2 for which
(1) our method and the baseline produced different, non-empty outputs and (2) both outputs had
the same independent factuality (both contained a hallucination or both didn’t). The task was error
detection, so “false positive” means GPT graded an output as containing an error when it didn’t.

1. GPT-4 outputs, GPT-4o as judge

Table 2: Results of legibility experiment with LLM-as-a-judge with our method.

Outcome Proportion
True Positive 0.22
True Negative 0.59
False Positive 0.17
False Negative 0.02

Table 3: Results of legibility experiment with LLM-as-a-judge with the baseline, independent fac-
tuality method.

Outcome Proportion
True Positive 0.17
True Negative 0.46
False Positive 0.32
False Negative 0.05
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2. GPT-4 outputs, Llama-3.1-70B-Instruct as judge

Table 4: Results of legibility experiment with LLM-as-a-judge with our method.

Outcome Proportion
True Positive 0.15
True Negative 0.61
False Positive 0.15
False Negative 0.10

Table 5: Results of legibility experiment with LLM-as-a-judge with the baseline, independent fac-
tuality method.

Outcome Proportion
True Positive 0.10
True Negative 0.54
False Positive 0.24
False Negative 0.12

3. Llama-3.1-70B-Instruct outputs, GPT-4o as judge

Table 6: Results of legibility experiment with LLM-as-a-judge with our method.

Outcome Proportion
True Positive 0.08
True Negative 0.64
False Positive 0.26
False Negative 0.03

Table 7: Results of legibility experiment with LLM-as-a-judge with the baseline, independent fac-
tuality method.

Outcome Proportion
True Positive 0.06
True Negative 0.53
False Positive 0.36
False Negative 0.05

4. Llama-3.1-70B-Instruct outputs, Llama-3.1-70B-Instruct as judge

Table 8: Results of legibility experiment with LLM-as-a-judge with our method.

Outcome Proportion
True Positive 0.03
True Negative 0.83
False Positive 0.08
False Negative 0.08
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Table 9: Results of legibility experiment with LLM-as-a-judge with the baseline, independent fac-
tuality method.

Outcome Proportion
True Positive 0.03
True Negative 0.78
False Positive 0.11
False Negative 0.09

Grading Prompt:

Given the prompt: [prompt]

Do the following subclaims contain any errors?

[Subclaims separated by newlines]

Respond with exactly one character: either ‘Y’ for ‘there’s an error’ or ‘N’ for ‘no error.’

]
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