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Resolving uncertainty on the fly:
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Understanding adaptive human driving behavior, in particular how drivers

manage uncertainty, is of key importance for developing simulated human driver

models that can be used in the evaluation and development of autonomous

vehicles. However, existing tra�c psychology models of adaptive driving

behavior either lack computational rigor or only address specific scenarios

and/or behavioral phenomena. While models developed in the fields of machine

learning and robotics can e�ectively learn adaptive driving behavior from

data, due to their black box nature, they o�er little or no explanation of the

mechanisms underlying the adaptive behavior. Thus, generalizable, interpretable,

computational models of adaptive human driving behavior are still rare. This

paper proposes such a model based on active inference, a behavioral modeling

framework originating in computational neuroscience. The model o�ers a

principled solution to how humans trade progress against caution through policy

selection based on the single mandate to minimize expected free energy. This

casts goal-seeking and information-seeking (uncertainty-resolving) behavior

under a single objective function, allowing the model to seamlessly resolve

uncertainty as a means to obtain its goals. We apply the model in two apparently

disparate driving scenarios that require managing uncertainty, (1) driving past an

occluding object and (2) visual time-sharing between driving and a secondary

task, and show how human-like adaptive driving behavior emerges from the

single principle of expected free energy minimization.

KEYWORDS

active inference, driving behavior, epistemic action, driver model, uncertainty, visual

time-sharing, driver distraction, pedestrian

1 Introduction

A fundamental aspect of motor vehicle driving, and locomotion in general, is to

find an adequate balance between progress and caution. The main purpose of driving

is typically to get to the destination as efficiently as possible. However, one also needs

to make sure to get there without crashing and avoid other undesired consequences

such as getting ticketed. A key challenge here is to manage the uncertainty inherent

in most traffic situations. For example, will the vehicle in front brake and, if so,

how hard? Is there a risk of a pedestrian suddenly appearing behind the stopped bus

ahead? Being too pessimistic about how a traffic situation may play out in uncertain

situations could lead to overcautious behavior or even a complete lack of progress.

Moreover, non-human-like, overcautious, behavior may be surprising to other road

users with potential negative safety consequences (Dinparastdjadid et al., 2023). Yet,

being too assertive in an uncertain situation may incur a significant risk of collision.
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Human drivers are most often able to manage this tradeoff,

even in highly complex and uncertain traffic situations. Thus,

understanding how human drivers manage uncertainty is critical

for developing realistic and explainable computational models of

their behavior. Such models have a range of applications such as

explaining crash causation (Summala, 1996), representing other

road users in traffic simulation (Treiber and Kesting, 2013; Igl et al.,

2018; Suo et al., 2021; Markkula et al., 2023), establishing behavior

benchmarks for autonomous vehicles (Engström et al., 2024), or as

part of the AV software itself (Sadigh et al., 2018).

Contemporary generative AI models can learn complex driving

behaviors from large quantities of data (e.g., Suo et al., 2021;

Igl et al., 2022). There has also been extensive work in machine

learning and robotics on developing models able to manage

uncertainty through concepts like artificial curiosity and intrinsic

motivation (e.g., Schmidhuber, 1991; Sun et al., 2011; Hester

and Stone, 2012). However, due to the black-box nature of these

models, they do not lend themselves to explaining the cognitive

mechanisms underlying human adaptive behavior, which is also

typically not their purpose.

There is a long-standing tradition in traffic psychology in

modeling adaptive road user behavior, such as the regulation

of speed and headway. Models in this tradition, often referred

to as motivational models, include the risk homeostasis theory

(Wilde, 1982), the zero-risk theory (Näätänen and Summala, 1976;

Summala, 1988), and the task capability interface (TCI) model

(Fuller, 2005) (see Lewis-Evans, 2012 for a review). In these

models, excitatory “forces" such as the motivation to make progress

toward the destination are balanced against inhibitory “forces"

where uncertainty is typically a key component. However, these

traditional motivational driving models are typically conceptual in

nature, lacking mathematical rigor.

One example of an early computational model of adaptive

driving behavior, of particular relevance for this paper, is the

pioneering work by Senders (1967) based on the visual occlusion

paradigm. In visual occlusion, subjects wear a helmet featuring a

visor that, while driving, intermittently occludes the subject’s view.

The occlusion and viewing times may be fixed, or the subject could

be given control over the occlusion time by means of a switch that

opens the visor for fixed viewing time period (typically 0.25–1 s).

Senders et al. found that, when occlusion times were controlled

at different levels, subjects adapted their speed such that shorter

occlusion times resulted in higher speed and vice versa. Conversely,

when subjects had voluntary control over the occlusion time, and

speed was controlled, higher speeds led to shorter occlusion times

and vice versa. To explain these results, the authors developed an

information theoretic model based on the idea that uncertainty

builds up during the occlusion intervals and that the observed

adaptive behaviors (speed and occlusion interval adjustments)

reflects the attempt of the driver to control this uncertainty. Senders

et al. further proposed two main sources of uncertainty in driving

that need to be controlled: (1) the uncertainty about the traffic

situation ahead due to loss of relevant visual information and (2)

uncertainty about the vehicle’s position on the road due to random

disturbances in vehicle lateral control.

These early occlusion results have since been replicated

for other types of driving scenarios. For example, in a recent

study, Pekkanen et al. (2017) found reduced voluntary occlusion

times with reduced headway. Pekkanen et al. (2018) developed

a computational model of drivers’ visual sampling where

uncertainty about the consequences of action (acceleration),

resulting from uncertainty in state estimation, was used to directly

control attention (operationalized as a voluntary opening of the

occlusion visor).

Victor et al. (2005) analyzed drivers’ visual time-sharing

between driving and a secondary task and found, in line with the

occlusion studies, that the visual demand of driving during curve

negotiation led to reduced off-road glance durations. Johnson et al.

(2014), based on earlier computational modeling in non-driving

domains (Sprague and Ballard, 2003), proposed a model of visual

time-sharing during car following based on a tradeoff between task

priority and uncertainty.

Most computational models of human adaptive driving

behavior have focused on visual sampling and models with a more

general behavioral scope are rare. One notable exception is the

model by Kolekar et al. (2020), based on zero-risk theory and the

field of safe travel concept from Gibson and Crooks (1938). The

model represents uncertainty about potential collisions in terms of

a dynamical risk field, and was demonstrated to account for a wide

range of empirical adaptive driving behavior results reported in the

literature. However, the current version of the model is limited to

static scenarios with no other road users present.

Another example of a generic computational model of adaptive

behavior, related in some ways to Kolekar et al.’s (2020) field

model, is the model developed by da Lio et al. (2023) based on

the affordance competition hypothesis originiating in neuroscience

(Cisek, 2007). The concept of affordances were introduced by

Gibson (2014), based on the earlier field of safe travel model

(Gibson and Crooks, 1938). Affordances refer to opportunities for

action offered to an agent by its environment. For example, a

chair affords sitting and an empty adjacent lane affords overtaking

the car ahead. The model by da Lio et al. implements a control

architecture with a set of affordances (e.g., stay in the current

lane or move to the next lane) which compete for action control,

where the selection of affordances is based on a reward function

which can be set to represent desired driving characteristics (e.g.,

avoid collisions, follow the road rules etc.). It was demonstrated

that a wide range of relative complex human-like driving behaviors

emerges from this general architecture, such as merging onto a

highway, overtaking a lead vehicle, responding to a cut-in event and

interacting with a pedestrian at a crosswalk. The affordance concept

has also been used as a basis for action-based representations in

machine learning-based driver models (e.g., Xiao et al., 2021).

A common denominator in most of these existing models

is that adaptive driving behavior is, on the one hand, driven

by a motivation to achieve goals and, on the other, by

inhibitory motives such as the need to control uncertainty. The

computational models reviewed above typically represent specific

aspects of this phenomenon (e.g., visual sampling and time-

sharing), except for a few notable developments of models with

a more general scope (Kolekar et al., 2020; da Lio et al., 2023).

However, a generic computational model of adaptive driving

behavior, applicable across all types of scenarios and behaviors, is

still lacking.
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In this paper, we propose such a model based on active

inference, a behavior modeling framework originating from

computational neuroscience (Friston et al., 2017; Parr and Friston,

2017; Parr et al., 2022). The application of active inference, and the

closely related predictive processing framework (Clark, 2013, 2015,

2023), in the automotive domain were explored in Engström et al.

(2018), but only conceptually. In a series of recent papers (Wei et al.,

2022, 2023a,b), we have demonstrated how computational driver

models based on active inference can be implemented and learned

from data, thus offering a potential “middle ground” between

traditional “black box” machine learning models and mechanistic

human behavior models. In this paper, we focus specifically on how

active inference can provide a conceptual and computational basis

for modeling human adaptive driving behavior and, in particular,

how a (Bayes) optimal balance between goal-directed action and

the resolution of uncertainty emerges “automatically” from the

minimization of expected free energy.

In active inference, the agent estimates the free energy

associated with alternative future policies, π , defined as sequences

of actions π = a1 :H within a predefined planning time horizon

H, and, at each time step, selects the action associated with the

policy that has the lowest expected free energy (EFE). Expected free

energy can be formulated in several different ways (see Friston

et al., 2015, 2017; Parr et al., 2022. For present purposes we

choose the formulation in Equation (1) which defines the expected

free energy as the (negative) sum of a pragmatic value and an

epistemic value, where the pragmatic value relates to goal seeking

behavior and epistemic value to information-seeking (uncertainty-

resolving) behavior, mapping conceptually to progress vs. caution

or exploitation vs. exploration.

EFE = G(π)

= −EQ(o|π)[logP(o)]
︸ ︷︷ ︸

Pragmatic value

−EQ(s,o|π)DKL[Q(s|o,π)||Q(s|π)]
︸ ︷︷ ︸

Epistemic value

(1)

In Equation (1), s = s1 :H and o = o1 :H are sequences

of future states and observations within the lookahead time

horizon H, E denotes expectations, and DKL denotes the Kulback-

Leibler (KL) divergence, a statistical measure of the distance

between two distributions. Q(o|π) and Q(o, s|π) are the agent’s

belief or prediction about future observation and state-observation

sequences, respectively.

In the formulation of expected free energy in Equation (1), the

pragmatic value is defined based on a prior probability distribution

over observations P(o) that is biased such that observations

preferred by the agent have the highest probability and, hence,

the highest pragmatic value. Thus, selecting policies that generate

preferred observations will maximize the pragmatic value and

contribute to minimizing the expected free energy. This hence

implements a mechanism that generates goal-directed (or aversive)

behavior, in a similar way as optimizing against a reward or cost

function in optimal control or reinforcement learning (Sutton and

Barto, 2018).

The epistemic value represents the value of obtaining new

information that may help to resolve uncertainty in the belief

about future states. This may, in turn, enable (or “open up”) new

policies that maximize pragmatic value and thus realize the agent’s

preferred observations. For example, when planning to overtake

a car ahead, there is typically uncertainty about whether this will

lead to a conflict with a potential vehicle approaching from behind

in the adjacent lane. The uncertainty can be resolved by checking

the rearview mirror to verify that the lane is clear. Epistemic value

scores such information-seeking actions, contributing to the overall

expected free energy. In Equation (1), the epistemic value of a

policy is defined as the expected KL divergence between the agent’s

prior belief Q(s|π) and posterior belief Q(s|o,π) about external

states associated with that policy, corresponding to (expected)

Bayesian Surprise (Itti and Baldi, 2009; Dinparastdjadid et al.,

2023). Intuitively, this means that epistemic value is maximized

for observations that lead to a maximum change in beliefs.

Epistemic value can also be expressed as in Equation (2), as

the difference between the posterior predictive entropy and the

expected ambiguity (Parr et al., 2022, p. 135):

EQ(o|π)DKL[Q(s|o,π)||Q(s|π)] = H[Q(o|π)]− EQ(s|π)H[P(o|s)]

(2)

whereH denotes Shannon entropy.

In Equation (2), the posterior predictive entropy (first term;

H[Q(o|π)]) represents the uncertainty about future observations

associated with a given policy. That is, a policy with a high posterior

predictive entropy may yield a variety of different observations

with a strong potential for gaining new information. The expected

ambiguity (second term; EQ(s|π)H[P(o|s)]) represents the expected

diversity of observations for a given state. Intuitively, this means

that the epistemic value of a policy is discounted if the state to

be visited does not generate reliable observations (e.g., due to

darkness or otherwise reduced visibility). Thus, epistemic value

is maximized when the expected ambiguity is zero, that is, when

the observation generated by the policy is expected to completely

resolve the uncertainty.

Thus, in uncertain situations, minimizing expected free energy

“automatically” promotes policies with high epistemic value,

generating observations expected to resolve the uncertainty. As

we will see below, a single action (e.g., moving forward) often

carries both pragmatic (moving closer to the goal or away

from danger) and epistemic value (getting a better view to

resolve uncertainty). This leads to a key distinguishing feature

of active inference: Goal directed (pragmatic) and information-

seeking (epistemic) value are defined in a common currency

and an optimal balance between them (given the agent’s beliefs

and preferences) can be established by minimizing the expected

free energy.

The key objective of this paper is to demonstrate how active

inference can provide a novel conceptual and computational

basis for modeling adaptive driving behavior. We explore

how uncertainty can be resolved “on the fly” as an integral

part of the general planning objective to minimize expected

free energy. Specifically, we demonstrate how a model based

on the single mandate to minimize expected free energy

can account for two apparently disparate adaptive driving

behaviors: (1) safely passing an occluding object and (2)

visual time-sharing behavior, for example when texting on a

cell phone.
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2 Materials and methods

2.1 Overview

A conceptual overview of our model is given in Figure 1.

Control actions (e.g., acceleration and steering inputs) are

generated as the result of a planning process where policies

π , constituting sequences of future actions up to the planning

horizon, are selected based on identifying the policy with the

minimum expected free energy (i.e., minπ G(π)). At each time

step, the first action of the selected policy is executed. The action

planning is based on the driver’s beliefs over hidden states Q(s) and

preferences defined as priors over observations P(o). The beliefs

are continuously updated into posterior beliefs Q(s|o) based on

new observations. The precision (inverse variance) of the beliefs

represents the certainty of these beliefs over states. The preferences

P(o) define the observations that the driver is seeking to realize

through action (e.g., maintain a speed near the speed limit)

and their precision represents the “strength”, or priority, of the

preference (i.e., how motivated the driver is to keep the speed near

the speed limit).

In action planning, a set of alternative counterfactual policies

are sampled at each time step t and rolled out up to a time horizon

representing the planning window. In all simulations reported here,

a planning horizon of 4 s is used. For each candidate policy, the

beliefs over states are propagated forward in time from the current

belief based on a state transition model and the propagated beliefs

are used to calculate the counterfactual pragmatic and epistemic

value at each future time step, τ , in the planning window. The

prior preferences are used to score the pragmatic value based on

the counterfactual observations generated, where the pragmatic

value at a given future time step, τ , is computed based on the

probability of the counterfactual observation made at that time

step under the preference distribution. Similarly, epistemic value is

computed based on counterfactual beliefs about future states and

observations. The overall expected free energy of each policy is

then scored based on Equation (1) and (2) (as the negative sum

of the epistemic and pragmatic values over the planning horizon),

and the action at the next time step is sampled from a distribution

of the first actions in the highest scoring policies. These general

principles can be implemented in many different ways, where the

current implementation is based on a particle filter, as described in

more detail below.

The driver’s generative model is represented as a discrete-time

Partially Observable Markov Decision Process (POMDP) which

describes how hidden environment states (e.g., pose of the ego

vehicle) evolve over time depending on the ego vehicle driver’s

chosen policies and resulting control actions, and generate signals

observed by the driver, for example the new pose of the ego

vehicle or the presence of a pedestrian. Importantly, some of these

state variables are not always directly observable to the driver, for

example, the driver cannot observe a pedestrian when they are

occluded by an object and cannot observe the road ahead while

looking away from the road.

The model uses a mixture of discrete and continuous

state, observation, and action variables with highly structured

dependencies, which makes exact computation of the belief update

and action selection intractable. We thus perform approximate

belief update and policy/action selection using a particle filter and

a particle planner. At a high level, this means that the model

represents uncertainty about the hidden states using an ensemble

of hypothetical states, where each ensemble member represents

a different possibility. The model then selects the best actions

by simulating future state-action-observation trajectories under

different policies using a state transition model and an observation

model and scores each policy for expected free energy using

Equation (1) and (2). Such a simulation-based inference method

is known to approach the theoretically optimal (or exact) solution

with a large number of particles (Murphy, 2012).

2.2 Implementation

In this section, we first describe the perception and action

process of active inference agents. We then describe our particle-

based implementation.

2.2.1 Active inference and expected free energy
We use the standard notation for POMDP (Kaelbling et al.,

1998), where S = {s} denotes a set of states, A = {a} denotes

a set of actions, O = {o} denotes a set of observations. The

active inference agent has a generative model of the environment

which consists of a state transition distribution P(s′|s, a) and an

observation distribution P(o|s). We denote the environment (also

known as the generative process in the active inference literature;

Parr et al., 2022) that the agent interacts with as P(o′|h, a),

where the time-indexed ht = (o1 : t , a1 : t−1) is the interaction

history.

Upon receiving an observation ot ∼ P(·|ht−1, at−1) from

the environment, the agent updates its belief, defined as a

probability distribution over the hidden environment state Q(st),

by minimizing the variational free energy of its generative model

(see Parr et al., 2022). The optimal belief distribution is known to

have the form given by Equation 5 (Da Costa et al., 2020):

Q(st) ∝ exp
(

logP(ot|st)+ EQ(st−1)[log P(st|st−1, at−1)]
)

(3)

Starting from the updated belief, the agent constructs

predictions over future state-observation trajectories

(st+1 : t+H , ot+1 : t+H) for a lookahead horizon of H time steps

given a policy π = at : t+H−1. These predictions, defined over

the lookahead time steps τ ∈ {t + 1, . . . , t + H} in the form of

probability distributions, can be constructed sequentially (i.e., via

rollout) as follow:

Q(oτ , sτ |π) = EQ(sτ−1|π)[P(oτ |sτ )P(sτ |sτ−1, aτ−1)] (4)

The quality of each policy is scored by the expected free energy

function defined in Equation (1) as:

G(π) =
t+H
∑

τ=t+1

−EQ(oτ |π)[logP(oτ )]
︸ ︷︷ ︸

Pragmatic value

− EQ(sτ ,oτ |π)DKL[Q(sτ |oτ ,π)||Q(sτ |π)]
︸ ︷︷ ︸

Epistemic value
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FIGURE 1

Schematic overview of the model. See the text for explanation.

2.2.2 Particle-based algorithm
We use a particle-based approach to belief representation,

inference, evaluation, and planning.We describe these components

below and summarize the entire process as pseudocode in

Algorithm 1.

Using a particle filter, we represent the ego’s belief bt over all

state variables using a set of N particles {δ1, ..., δN}, δn ∈ R|S|, where

each particle consists of a vector corresponding to a realization of

the state variables and a weight wn ≥ 0,
∑

n wn = 1 representing

the likeliness of the realization under the ego’s belief distribution.

Under this representation, the ego belief has high certainty (high

precision) if all particles with high weights are similar, for example,

all particles correspond to the pedestrian being present, and low

certainty if all particles have even weights and are substantially

different, for example, the element representing the pedestrian’s

position in each particle is evenly distributed on the road map.

Upon executing an action at and receiving a new observation

ot+1, we update the set of particles, including both the state vectors

and weights, using a Sequential Importance Resampling (SIR) filter

(Murphy, 2012). The SIR filter first samples a next state conditioned

on the current state and action and updates the weights using

Equation 5:

wt+1,n ∝ wt,nP(ot+1|δt+1,n) (5)

where δt+1,n ∼ P(·|δt,n, at).

To address the mode collapse problem common in particle

filters, we use a large number of samples and apply systematic

resampling so that the sampled particle weights are equidistant.

Resampling of the current set of particles is only performed if the

effective sample size Neff ≈ N/(1+
∑

n w
2
n) is less than N/2. In this

way, low weight particles are still represented.

2.2.3 EFE computation
Evaluating the EFE of an action sequence under a particular

belief requires propagating the belief particles to compute the state

and observation distributions at each counterfactual future time

step and using the propagated particles to evaluate the pragmatic

and epistemic values.

The particles can be easily propagated by recursively sampling

the next state from the transition distribution conditioned on the

previous sampled state and policy action and then sampling the

next observation from the observation distribution conditioned on

the sampled next state, i.e., Equation (4). To evaluate the pragmatic

value [the first term in Equation (1)], we compute the average

log likelihood of each observation sample under the preference

distribution.

To compute the epistemic value [term 2 in Equation (1)], we use

the decomposition of the expected information gain in Equation

(2), which is the difference between the posterior predictive entropy

and the expected ambiguity:

EQ(o|π)DKL[Q(s|o,π)||Q(s|π)] = H[Q(o|π)]− EQ(s|π)H[P(o|s)]

We approximate the intractable posterior predictive entropy

using a Kernel Density Estimator [similar to Fischer and Tas

(2020)].

2.2.4 Model predictive control
Given each updated belief, we compute the approximately

optimal EFE-minimizing actions using the Cross Entropy Method

(CEM) for model predictive control (De Boer et al., 2005).

CEM iteratively refines a distribution over action sequences (i.e.,

policies) by sampling a batch of action sequences, simulating

their trajectories forward, selecting the top r percent scoring

trajectories, and refitting the action distribution to the selected
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Require: Environment model P(o′|h, a), agent transition

model P(s′|s, a), agent observation model P(o|s), agent

preference model P(o), number of belief particles

N, number of planning particles Ñ, number of

plans to evaluate M, percent of top plans to

retain r, number of planning iterations K.

1: Initialize environment observation o0

2: Initialize belief particles b0 = (δ0,1 :N ,w0,1 :N )

3: for t = 0 :T do

4: # Agent planning

5: Initialize planning particles δ̃1 : Ñ using

multinomial resampling from bt

6: for k = 1 :K do

7: Sample M action sequences {am,1 :H}
M
m=1 from

distribution P(a1 :H)

8: for m = 1 :M do

9: # Evaluate plan

10: Sample a sequence of state and

observation particles (δ̃1 : Ñ,1 :H , õ1 : Ñ,1 :H)

using forward rollouts of P(s′|s, a) and P(o|s)

11: Compute the EFE of (δ̃1 : Ñ,1 :H , õ1 : Ñ,1 :H)

12: Refit distribution P(a1 :H) to the top r

percent of the M action sequences by EFE

13: end for

14: end for

15: # Choose action and update environment

16: Choose at as the mean of P(a0)

17: Sample observation ot+1 ∼ P(·|ht , at)

18: # Update belief using particle filter

19: Propagate belief particles forward: δt+1,n ∼

P(·|δt,n, at)

20: Update weights: wt+1,n ∝ wt,nP(ot+1|δt+1,n)

21: Apply systematic resampling on particles and

weights if N/(1+
∑

n w
2
n) ≤ N/2

22: end for

Algorithm 1. Simulation of particle-based active inference agent.

action sequences. This process can be understood as sampling

from a distribution of action sequences in proportion to

their EFE values similar to relative entropy policy search

(Peters et al., 2010).

Our application of CEM has two major differences from its

normal use in optimal control and trajectory optimization. First,

the optimal decision for an active inference agent is based on its

belief as opposed to a known state. Thus, we adapt the default

CEM by treating a set of belief particles as the state. Specifically,

we draw Ñ particles from the belief set according to their weights

as the input to the CEM planner. This allows us to compute EFE

using sampled-based averaging during policy search. Second, we

use a mixture of discrete (e.g., gaze direction) and continuous

actions (e.g., vehicle control) in the visual time-sharing scenario,

whereas the default CEM typically only optimizes continuous

actions. We solve this by separately fitting the discrete and

continuous variables once the best trajectory samples are selected in

each iteration.

3 Results

This section describes the simulation results from applying our

model to two different driving scenarios that require the control

of uncertainty: (1) passing an occluding object and (2) visually

time-sharing gaze between driving and a secondary task. In the

first scenario, the uncertainty concerns the potential presence of

a pedestrian hidden behind the object who may step into the ego

vehicle’s path. In the second scenario, uncertainty about the lateral

position of the vehicle in the lane builds up during glances away

from the road due to disturbances such as wind gusts and an uneven

road surface (Senders, 1967).

3.1 Scenario 1: passing an occluding object

In this scenario, the ego vehicle approaches a large occluding

object (e.g., a stopped bus) and there is uncertainty about whether

a pedestrian, potentially hidden behind the object, will encroach

into the ego vehicle’s path (see Figure 2). Managing uncertainties

around occlusions is a key behavior that must be mastered both by

human drivers and autonomous vehicles and thus an interesting

first use case for our model. We make the simplifying assumptions

that a single pedestrian is the only possible obstacle that could be

hidden behind the object and that, if a pedestrian is present, it will

always step out in the road and cause a potential conflict with the

ego vehicle. We further assume that the pedestrian can only be

present at a given point along the horizontal (x) dimension so that

it, if present, always becomes visible when it gets into the line of

sight of the ego vehicle driver (see Figure 2). These assumptions

simplify the current model implementation but they do not impose

any fundamental limitations on the general modeling framework.

We further assume that, as a default, the ego vehicle driver

prefers to keep the speed at the speed limit to maximize progress

while respecting the rules of the road. However, if the driver

believes that there is a risk for a hidden pedestrian encroaching

into their path, they need to adapt their speed to be able to stop

well ahead of the pedestrian (to meet the preference of conflict

avoidance) without harsh braking (to meet their preferences for

deceleration comfort). When the ego vehicle reaches the line of

sight, the driver’s uncertainty about the presence of the pedestrian

is resolved and, if no pedestrian is present, they can speed up again

to the preferred speed. Furthermore, as shown in Figure 2, bottom,

by moving left in its lane the ego driver can reach the line of sight

earlier, thus resolving the uncertainty that hinders progress and

enabling a potentially faster trajectory past the occluding object.

The general goal of the current simulation is to demonstrate how

these adaptive driving behaviors emerge solely on the basis of

minimizing expected free energy.

3.1.1 Model specification
The state, observation and action variables in the model are

listed in Table 1. The ego vehicle kinematic states are denoted

as sego = [x, vx, ax, y, vy, ay] and are assumed to follow linear

dynamics. In this scenario, we model the ego vehicle simply as a
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FIGURE 2

Conceptual illustration of Scenario 1. (Top) The ego vehicle driver ideally wants to keep speed as close as possible to the speed limit. However, until

reaching the line of sight, the driver is uncertain whether a pedestrian is hidden behind the double-parked vehicle and thus needs to adapt their

speed to make sure they can stop short of the location where a pedestrian may appear. (Bottom) By moving left, the ego driver could reach the line

of sight earlier, thus resolving the uncertainty sooner and potentially enabling more e�cient passing of the occluding object.

point mass which was motivated by the desire to keep the model

as simple as possible. Since the source of uncertainty here is the

presence or absence of the pedestrian, a pointmass dynamicsmodel

is sufficient to illustrate the key model principles of interest. By

contrast, in Scenario 2, where the main source of uncertainty is

the vehicle position on the road, we replaced the point mass model

with a bicycle model, as further described below. The pedestrian’s

position sped = [x, y] is determined by a context variable, I,

denoting whether the pedestrian is present or not present. If the

pedestrian is present, its x and y positions will be set next to the

occluding object. Otherwise, its x and y position will be set to a

null value far away from the ego vehicle (e.g.,−1,000). C represents

whether there is a conflict between the ego and the pedestrian or

if the vehicle exits the lane, in which case C is set to 1, and 0

otherwise. A conflict is defined as the pedestrian being present and

the longitudinal distance between the ego and the pedestrian is less

than a safe distance (2 m).

As described above, the main source of uncertainty in this

scenario is that the presence or absence of the pedestrian cannot

be determined before the vehicle reaches the line of sight.

Geometrically, as shown in Figure 2, the pedestrian is occluded if it

is behind (i.e, with smaller x coordinate) the line of sight connecting

the ego vehicle and the upper right tip of the occluding object

(since we are modeling the ego vehicle as a point mass, this is

also the reference point from which the observation is made). For

the observation space, we introduce a variable oI to represent the

context observed by the ego. oI is set to “observed” when the ego

vehicle enters the line of sight, otherwise, it is set to “not observed”.

The rest of the observation variables share the same semantics

and dimensionality as the underlying state variables, except when

the pedestrian is occluded. In this case, the observations of the

pedestrian’s position, oped, are set to null. Hence, as long as there is

no occlusion, we assume no uncertainty over the observations and

that, hence, the ego can observe both its own and the pedestrian’s

kinematics states exactly.

As described above, the model’s preferences are defined as

priors over observations. The preferences of the model used in

Scenario 1 and their default values are given in Table 2. The
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TABLE 1 State, observation and action variables in the POMDP for Scenario 1.

Variable name Symbol Values Type

States

Pedestrian context I Not present (0), present (1) Discrete

Is conflict or lane exit C Yes (1), no (0) Discrete

Pedestrian position sped xy position Continuous

Ego kinematics sego xy position, xy speed, xy acceleration Continuous

Observations

Pedestrian context observation oI Not observed (1), observed (2) Discrete

Conflict observation oC Yes (1), no (0) Discrete

Pedestrian position observation oped xy position, null Continuous

Ego kinematics observation oego xy position, xy speed, xy acceleration Continuous

Action

Ego control aego xy acceleration Continuous

TABLE 2 Preference priors for Scenario 1.

Preference prior Specification Default values

Speed keeping Gaussian distribution centered at the speed limit µ = 10m/s

σ = 1m/s

Lane keeping Triangular distribution centered at 0 and bounded at the lane boundaries N/A

Acceleration Gaussian distribution centered at zero for accelerations (x & y) µ = 0m/s2

σ = 0.5m/s2

Conflict Categorical distribution representing an absolute preference over “no-conflict” N/A

default parameter values were set by hand and no systematic

model optimization was performed. Again, the key purpose

was to demonstrate the basic model principles rather than to

achieve optimal performance. All simulations were run with a

200 ms time step (i.e, an update frequency of 5 Hz). Due to the

stochasticity of the model, each simulation run yields a unique

trace. However, for clarity, we only plot randomly selected single

simulation traces.

3.1.2 Simulations
This section presents the results of different permutations of the

occlusion scenario with the purpose to illustrate the key aspects

of our model described above. We begin with the case where

the ego driver can only drive straight (i.e., not move laterally,

e.g., due to a narrow lane) and then extend this to allow for

lateral movement that enables the driver to resolve uncertainty

earlier through epistemic action (moving left to reach the line of

sight earlier). In all simulations, we assume that no pedestrian

is actually present while the ego driver model may, or may

not, initially believe that a pedestrian could be present with a

given probability.

3.1.2.1 Simulation 1a: safely passing an occluding object

The purpose of this initial simulation is to show how our

active inference model generates successful adaptive behavior

in the occlusion scenario, finding an optimal balance between

progress and caution given its set beliefs and preferences. Since,

in this first simulation, the driver can only drive straight and

not move laterally, the ego driver’s preferences reduce to prior

distributions on preferred speed, comfortable accelerations and

avoiding conflicts.

We initiate the model at the speed limit (10 m/s) and

a 20% belief that the pedestrian is present. We assume that

this belief matches the true probability that a pedestrian is

present (in other words, the generative model matches the

generative process). As shown in Figure 3A (top panel), the

model initially slows down and then speeds up again after

the uncertainty about the presence of the pedestrian has been

resolved (bottom panel) when reaching the line of sight and it

can be observed that no pedestrian is present (the panel third

from top).

In our model, the initial slowing down behavior results from

selecting a policy that maximizes the probability of preferred

observations (maintaining the preferred speed, avoiding harsh

deceleration and avoiding conflicts) taking into account the initial
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FIGURE 3

Results from simulations (A) left, (B) middle, and (C) right. In (A), the model initially believes there is a 20% chance of a pedestrian being present

behind the occluding object. In (B), the model has a false certainty that no pedestrian is present. In (C), the driver takes epistemic action (change in Y)

to view the possible pedestrian sooner. Each column shows the vehicle speed profile (top; Vx), the vehicle’s lateral position (second from the top; Y),

the driver’s observations of the area behind the occluding object (third from the top; Obs), and the driver’s predicted beliefs about the pedestrian

presence (bottom; Belief). On the belief charts, the blue line represents belief that the pedestrian is present and green the belief that the pedestrian is

absent. The dashed lines in (C) show the deviations from scenarios (A, B). Note, that by taking epistemic action the driver observes the pedestrian

earlier and is able to maintain a higher speed than in (A).

uncertainty in the belief about the presence of the pedestrian.

Uncertainty about the presence of the pedestrian is represented

by the dispersion of belief particles on the pedestrian context

and position variables, and these variables are not updated by the

particle filter until the ego vehicle reaches the line of sight. Once the

uncertainty about the presence of the pedestrian has been resolved

(when the ego reaches the line of sight) the policies with the highest

pragmatic value are those that generate speed observations close

to the preferred speed (i.e., the 10 m/s speed limit) and thus the

model speeds up again. In this case, the behavior (policy selection)

is driven solely by maximizing pragmatic value, thus minimizing

expected free energy (Equation 1). The model’s behavior (moving

forward) also carries epistemic value as it eventually brings the

pedestrian site within its line of sight, but this epistemic value

here “comes for free” with the move-forward policy that maximizes

the pragmatic value. Thus, in this scenario, pragmatic value does

not have to be traded against epistemic value. This illustrates

the key point that a given behavior often carries both pragmatic

and epistemic value. The simulation in Figure 3A provides a

simple first illustration for how minimizing expected free energy

(in this case by maximizing expected pragmatic value) leads to

adaptive behavior that is optimal given the ego driver’s preferences

and beliefs.

3.1.2.2 Simulation 1b: false certainty

We now change the ego driver model’s prior belief from a 20%

to a 0% belief that a pedestrian is present. Since we assume that

there is a true 20% chance that a pedestrian may appear, the model

now has a false (overly certain) belief to the contrary. In other

words, this represents a mismatch between the prior belief and the

true statistics of the situation (i.e., the generative model does not

match the generative process). As shown in Figure 3B, as a result of

the false belief (bottom panel) the ego maintains a constant speed

near the speed limit (top panel) as it drives through the line of sight

thus ignoring the potential presence of the pedestrian (the panel

third from top).

In terms of our model, due to the lack of uncertainty in

the beliefs about the pedestrian (and the resulting false certainty

about the lack of risk for a conflict), the policy that minimizes

the expected free energy is that which maximizes progress, in this

case maintaining the preferred speed past the occlusion. This can

be seen as an example of “optimal behavior with a sub-optimal

model” (Schwartenbeck et al., 2016). Behavior is optimal given the

ego driver’s beliefs, but the beliefs do not match the true statistics of

the environment, that is, the ego driver has a false certainty about

the absence of pedestrians which leads to overly assertive behavior.

Real world examples of this phenomenon include novice drivers
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that have not yet learned the true statistics (generative process)

of all traffic situations or a drunk driver with a biased generative

model (generating overly certain beliefs), resulting in reduced risk

aversion.

3.1.2.3 Simulation 1c: harvesting epistemic value through

lateral movement

In Simulations 1a and 1b, policy and action selection was driven

by pragmatic value only. However, in many real world situations,

actions differ in their pragmatic and epistemic value and the

optimal policy may, for example, involve an initial action yielding

mainly epistemic value (e.g., turning on the light in a dark room,

checking the rear view mirror) which resolves the uncertainty

and enables pragmatic actions that realize the agent’s goal (exit

the room, overtake the vehicle ahead). To illustrate how such

policies, where uncertainty is resolved “on the fly”, can be found

by minimizing expected free energy, we introduce the possibility

for the ego vehicle to move laterally (along the y-axis). Due to

the geometry of the situation (see Figure 2), the lateral movement

allows the ego driver to resolve the uncertainty about the potential

pedestrian earlier (by reaching the line of sight earlier; see Figure 2,

bottom). This may lead to a more efficient overall path past the

occluding object; even if the initial lateral movement temporarily

reduces the pragmatic value (due to the agent’s prior preference to

stay in the middle of the lane) this may be offset by the advantage

of being able to speed up earlier (thus satisfying the preference of

maintaining a speed close to the speed limit).

The driver’s preferences are the same as in 1a and 1b with

the addition of a lane keeping preference defined by a triangular

distribution centered at x = 0 and bounded at the lane edges,

with a lane width of 3 m. The driver’s prior belief is the same as

in Simulation 1a, that is, the driver believes with 20% probability

that a pedestrian would appear.

The simulation results are shown in Figure 3A. The model

initially slows down as in Simulation 1a (top panel) but now also

moves to the left, reaching the line of sight earlier. This allows

the model to resolve the uncertainty one second earlier than in

Simulation 1a (around 2 s compared to 3 s in Simulation 1a; see the

bottom panels of Figure 3) and is thus also able to speed up earlier

than in Simulation 1a.

In our model, the leftward movement is generated by the

possibility of the driver to harvest epistemic value or, equivalently,

minimize the epistemic component of the expected free energy by

obtaining information about the pedestrian’s presence or absence

when reaching the line of sight. As described above in Equation (2),

the epistemic value can be decomposed as the difference between

the posterior predictive entropy and the expected ambiguity (Parr

et al., 2022). In the current simulation, we assume that the ego

vehicle’s observations of the pedestrian’s presence are precise: the

pedestrian is precisely unobserved before the ego vehicle reaches

the line of sight and precisely observed afterwards. Thus, the

expected ambiguity, is zero and does not change the epistemic value

associated with different actions. On the other hand, the posterior

predictive entropy, which corresponds to the diversity of the ego

vehicle’s future observations of the presence or absence of the

pedestrian, depends on the ego vehicle’s current belief uncertainty

as well as the ego’s position. Before the ego vehicle reaches the line

of sight, it can only observe the “null" pedestrian position value;

however, when it passes the line of sight, it may observe either the

“null" value if the pedestrian is not present or the pedestrian’s actual

position. This observation diversity increases the epistemic value of

road positions beyond the line of sight.

To further illustrate this mechanism, we fixed the ego vehicle’s

belief to have 20% probability over the pedestrian’s presence and

placed the ego vehicle at different positions on the road map

to calculate the epistemic value for each ego position. Figure 4

shows a plot of these ego vehicle positions, colored by the

corresponding epistemic values (yellow indicates high epistemic

value and purple indicates low epistemic value). The figure shows

that lateral positions above and beyond the line of sight had

about 75 more units of epistemic value than positions below the

line of sight. This shows that there is high epistemic value to

be gained by moving to the left in the lane, which temporarily

trumps the pragmatic value of continuing forward in the center

of the lane, leading to the selection of a policy that aims to

reach the line of sight sooner. The pattern in Figure 4 can be

seen as a saliency map representing epistemic affordances in terms

of future locations from which observations may yield valuable,

uncertainty-resolving, information. Such epistemic affordances can

be seen as a specific type of traditional (Gibsonian) affordances,

representing opportunities for actions that yield new valuable

information. Once the vehicle passes the line of sight (i.e., physically

rather than during the counterfactual planning operation), and

uncertainty is resolved, the saliency map will change such that

there is no longer a difference in epistemic value along the y

dimension, and the driver model will shift back to the lane center,

driven by the pragmatic value of maintaining the preferred central

lane position.

This simulation illustrates one of the key takeaways of this

paper: Since pragmatic and epistemic value are scored in the same

currency and optimized under the same objective, selecting policies

based on expected free energy minimization allows the driver to find

an optimal balance between assertiveness and caution (conditioned

on the drivers beliefs and preferences). This allows the driver to

resolve uncertainty “on the fly” simply by moving to a location

that provides a better view, an epistemic affordance, which unlocks

pragmatic affordances for maintaining efficient progress.

3.1.2.4 Simulation 1d: epistemic value depends on the

driver’s beliefs

Figure 5 shows the results of a simulation where, similar to

Simulation 1b, we set the model’s prior belief such that it is

(falsely) certain (believes with 100% probability) that no pedestrian

is present. In contrast to Simulation 1c the ego vehicle no longer

moves to the left but rather proceeds straight as in 1b. This

happens because, from the model’s (false) perspective, there is

no uncertainty about the pedestrian and hence no epistemic

value to be gained by moving left. Thus, the model’s behavior

is, again, driven by pragmatic value only. This is akin to a

situation where a human driver is (falsely) certain that no

other road users will enter into their path and thus fails to

visually scan the road scene (or take other epistemic actions)

to the extent that is warranted by the true uncertainty of the

situation.
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FIGURE 4

Epistemic a�ordance for moving left (see the text for explanation).

FIGURE 5

Simulation results for 1d illustrating a scenario where the driver has a strong prior belief that the pedestrian is not present. The vehicle kinematics for

this scenario are illustrated in black lines. Gray dashed reference lines illustrate the comparison to the results from Simulation 1c, where uncertainty is

present.

3.2 Scenario 2: visual time-sharing

In this scenario, we apply a slightly expanded version

of the model applied in Scenario 1 to a scenario where

the ego vehicle driver is performing a visually demanding

secondary task that requires looking away from the road,

such as texting on a cellphone. Visual distraction and time

sharing with secondary tasks while driving have been extensively

studied in the traffic safety and driving behavior literature,

in particular due to its well-demonstrated relation to crash

risk (Klauer et al., 2006, 2010; Victor et al., 2015). This

means that there are plenty of empirical results available in

the literature, both on visual behavior during time sharing

under different driving conditions, and on the effect of visual

time sharing on driving performance, which can be used to

validate the model. Another reason for choosing this scenario

is that it is substantially different from the occlusion scenario

in Simulation 1, thus testing the generality of the proposed

modeling framework.

For simplicity, the specifics of the visual task is not modeled,

only its effect on glance behavior. That is, we are assuming that

the modeled glances away from the road are associated with a

visual secondary task that the driver is motivated to perform.

Furthermore, we assume that during the off-road glances, no visual

information of the road ahead is available to the driver (i.e.,

ignoring peripheral vision). The driving task involves maintaining

longitudinal and lateral vehicle control on a straight road with no

other traffic, with a default lane width of 3 m. This set-up is akin

to the visual occlusion paradigm (Senders, 1967; Pekkanen et al.,

2017, 2018). However, a key difference is that we are here explicitly

modeling the motivation to perform the secondary task in terms of

a preference (prior distribution) for on-road vs. off-road glances.

During off-road glances, the uncertainty about the situation

on the road ahead and the vehicle’s position in the lane (i.e., the
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two sources of uncertainty identified by Senders (1967) discussed

above) builds up and the driver needs to intermittently look back

to the road to update their beliefs and reset the uncertainty. In

the active inference framework, such on-road glances can be seen

as actions carrying epistemic value, similar to looking behind the

occluding object in Scenario 1 to check for pedestrians. The drive

to reduce uncertainty through epistemic actions (on-road glances)

is offset by the motivation to look away from the road to perform

the secondary task. At the same time, the driver is motivated to keep

up speed, maintaining a central lane position and avoid exiting the

lane. All Scenario 2 simulations were performed for a segment of

30 s. Each scenario was run for 10 times and the time series plots

below show one randomly selected run. However, the results from

all 10 runs were used to compute summary statistic metrics for

comparison with human data.

3.2.1 Model specification
The visual time-sharing model builds on the model described

under Scenario 1 and, unless otherwise stated, uses the same

parameters and values. In this scenario, we replaced the point

mass vehicle dynamics model in the previous scenario with a

kinematic bicycle model to more accurately capture the vehicle

motion constraints (Polack et al., 2017). To generate uncertainty

in the ego vehicle’s actual position on the road we introduce a small

steering noise (0.001 rad/s) to represent the disturbance caused by

uncontrollable environment effects such as uneven road surface or

wind gusts.

We model the state of the driver-vehicle system using the

kinematic state of the vehicle in lane coordinates sego =

[x, y, θ , δ, v, a,w], two binary variables Cl and Cr for whether the

vehicle has crossed the left or right lane boundary, and a binary

variable I for the driver’s gaze direction (i.e., off-road or on-

road). The lane crossing variables can be seen as representing

rumble strips that generate vibrations and sound when crossed,

thus conveying to the driver their lane positions even when the

driver is looking off-road. The model makes decisions about two

types of actions: the kinematic control of the vehicle acontrol, and

the gaze action, aI , which represents a deterministic transition of

the corresponding gaze state.

To represent the buildup of uncertainty in the model’s belief

about the vehicle’s position and heading angle during off-road

glances, we added steering noise also to the model’s counterfactual

steering actions, matching the noise added to the actual steering

(0.001 rad/s). Thus, the driver’s generative model matched the

generative process. Since the road ahead was always empty, we here

only address the second source of uncertainty proposed by Senders

(1967) related to vehicle position in the lane. However, the model

could be extended to incorporate other sources of uncertainty, for

example, related to the behavior of other road users [the first type

of uncertainty in Senders (1967)].

We define the observations in the same space as the state

variables. However, when the driver glances off-road, we assume

that the vehicle’s lateral (y) and longitudinal (x) position and the

heading angle (θ) cannot be observed and they are thus set to null

values. This means that, due to the noise in the propagation of the

beliefs about these states, the uncertainty in the beliefs continue to

grow until the driver looks back to the road and the uncertainty

is reset. For simplicity, we assume that the belief update when

looking back occurs instantaneously during a single time step. As

a consequence, on-road glances in our simulations typically have a

duration of a single time step (200ms) which is clearly not a realistic

representation of visual behavior but sufficient for demonstrating

the key principles of the model. This is similar to the occlusion

setup where the viewing (visor opening) times also have a fixed

duration (250–1,000 ms in Senders (1967)). The state, observation

and action variables used in Scenario 2 are listed in Table 3.

The model’s default preferences are generally the same as in

Scenario 1, but the lateral acceleration preference is replaced by a

preference on steering rate and, as mentioned above, we include

two categorical distributions (Cl and Cr) to represent a strong

preference for not exiting the lane. Since preferences are defined

over observations, during off-road glances we do not evaluate the

pragmatic value over the variables that cannot be observed when

glancing off-road (i.e., vehicle lateral and longitudinal position and

the heading angle, as mentioned above).

We also specify a preference over gaze direction using the log

probability of on-road glances based on which we can also compute

the log probability of off-road glances to ensure a normalized

Bernoulli distribution. The preferences and their default values are

defined in Table 4.

3.2.2 Simulations
3.2.2.1 Simulation 2a: e�ects of visual time-sharing on

vehicle control

The goal of this first simulation was to establish that our model

could generate realistic visual time-sharing behavior and reproduce

effects of visual time-sharing on vehicle control established in

the literature. These effects include (1) increased lateral control

variability (e.g., Zwahlen et al., 1988; Greenberg et al., 2003; Östlund

et al., 2004; Engström et al., 2005; Horrey et al., 2006; Merat and

Jamson, 2008; McDonald et al., 2020), (2) an increased frequency

and magnitude of steering corrections (Macdonald and Hoffmann,

1980; Engström et al., 2005; Markkula and Engström, 2006), and (3)

a reduction in speed (e.g., Antin et al., 1990; Engström et al., 2005;

Merat and Jamson, 2008).

To establish a baseline condition representing vehicle control

only (i.e., with no visual time-sharing), the preference value for on-

road gaze was set to 0 (i.e., the prior probability of on-road glances

equals 100%), resulting in a simulation with no eyes off-road

glances. We then added a visual secondary task to be performed

concurrently with the vehicle control task by lowering the on-

road gaze preference from 0 to −7 (hence in effect increasing the

preference for looking off-road). This can be seen as endowing the

model with a motivation to glance off-road to perform the visual

secondary task.

Simulation results for the baseline and visual time-sharing

conditions are shown in Figure 6. As can be seen, the model finds

a way to visually timeshare between the driving and the secondary

task. When the model is looking off-road, the uncertainty in the

belief about lateral position [the standard deviation of the belief

particles, σ (by)] increases until it is reset by an on-road glance.

By visual inspection of the plot, it can also be observed that the

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1341750
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Engström et al. 10.3389/fnbot.2024.1341750

TABLE 3 State, observation and action variables in the POMDP for Scenario 2.

Variable name Symbol Values Type

States

Gaze I Off-road (0), on road (1) Discrete

Left bound crossed Cl Yes (1), no (0) Discrete

Right bound crossed Cr Yes (1), no (0) Discrete

Ego kinematics sego x, y, θ , δ, v, a,w Continuous

Observations

Gaze observation oI Off road (0), on road (1) Discrete

Left bound crossed observation oCl Yes (1), no (0) Discrete

Right bound crossed observation oCr Yes (1), no (0) Discrete

Ego kinematics observation oego x, y, θ , δ, v, a,w Continuous

Action

Ego kinematic control acontrol Acceleration (a), steering rate (w) Continuous

Gaze action aI Off road (0), on road (1) Discrete

TABLE 4 Preferences specifications for Scenario 2.

Preference Specification Default values

Speed keeping Gaussian distribution centered at the speed limit µ = 10m/s

σ = 1m/s

Lane keeping Triangular distribution centered at 0 and bounded at the lane boundaries N/A

Longitudinal acceleration Gaussian distribution centered at zero µ = 0m/s2

σ = 0.5m/s2

Steering rate Gaussian distribution centered at zero µ = 0 rad/s

σ = 0.005 rad/s

Gaze preference The log probability of an on-road glance based on a Bernoulli distribution
of on-road/off glances.

−7

Lane exit left/right Categorical distribution representing an absolute preference for not
exiting the lane

N/A

model reduces speed and the variation in lateral vehicle position,

and the amount of steering control activity increases during visual

time-sharing.

Figure 7 compares summary statistic metrics of speed, lane

position and steering reversals. The metrics are mean speed,

standard deviation of lane position and the number of large steering

reversals, which were computed for 10 simulation runs, for the

baseline and visual time-sharing conditions, respectively. Steering

reversal rate was defined as the number of time steps the front wheel

angle exceeds 0.0025 rad/0.14 deg. As shown in the plots, the model

reproduces the general effects of visual time-sharing on vehicle

control in the human data reviewed above, showing a pattern of

increased standard deviation of lane position (SDLP), increased

rate of large steering reversals and reduced speed.

The increased lane keeping variability (SDLP) can be generally

explained as the result of increased lane drifts that occur during

off-road glances driven by the secondary task preference. The

increasing number of steering corrections can be explained as

corrections to the lane drifts that the driver performs to align the

observed lane position with their prior lane keeping preference.

Finally, the speed reduction can be understood as a way to settle

on an optimal balance between the preference to maximize time on

the secondary task and the competing preference to keep the speed

close to the speed limit. By reducing speed, the model can “buy”

more time for the secondary task (since it takes longer to reach the

lane boundary at lower speed), but the model cannot slow down

more than mandated by the speed prior preference distribution.

To help explain the underlying visual time-sharing mechanism

implemented by our expected free energy minimizing model, we

visualize the tradeoff between pragmatic and epistemic value in

Figure 8. As in Scenario 1, the pragmatic value is determined by

the deviation of observations from the modes of the preference

prior distributions and the epistemic value is solely driven by the

posterior predictive entropy (first term in Equation 2) since, again,

there is no ambiguity in the state-observation mapping (i.e., the

second term in Equation 2 equals zero).
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FIGURE 6

Simulation of baseline (on-road gaze preference = 0; light blue lines) and visual time-sharing between the vehicle control and the secondary task

(on-road gaze preference = −7; green lines). The charts correspond to the following variables: V, speed; A, longitudinal acceleration; θ , heading

angle; δ, steering angle; y, lateral position.

Figure 8 illustrates how the pragmatic, epistemic and total

value (negative expected free energy) when gazing off-road (green)

vs. on-road (blue) vary with increasing standard deviation of

artificially generated belief particles representing uncertainty in

lateral position. Here, the expected free energy was evaluated for

each individual time step (and not for the 4 s policy as a whole).

The top and bottom panels differ only in the value of the on-road

preference. In the top panels we use the default value of −7 and in

the bottom panels, we reduced it to −10 (representing a stronger

motivation to look off road). In the plots for pragmatic and total

value, we truncate the log preference probability of lane exits (a very

large negative value) to −100 in order to visualize critical decision

points along the vertical axis.

The left panels show that on-road glances generally have lower

pragmatic value because they do not fulfill the preference of

engaging with the secondary task. The total pragmatic value during

on-road glances is higher for the higher on-road glance preference

(−7) compared to the lower on-road gaze preference (−10). With

increasing dispersion in the belief about lateral position (b(y)), the

pragmatic values during on-road and off-road glances initially do

not change significantly (it is constant for off-road glances and

decreases slightly for on-road glances but this is not visible in the

figure), but both start decreasing after a cut-off point, reflecting the

increased counterfactual risk of exiting the lane. The middle panels

show that the epistemic value of an on-road glance increases with

increasing uncertainty in the belief about lateral position, which is

unaffected by gaze preference (i.e., the top and bottom plots are very

similar). Combining the trend in pragmatic and epistemic value,

the right panels shows that the total value (negative expected free

energy) during an on-road glance exceeds that of an off-road glance

at a certain value of b(y) which depends on the gaze preference. At

this crossover point (dashed lines in Figure 8), a policy involving a

glance back to road will thus be selected. Thus, due to the stronger

prior preference for on-road glances, the model in the top panel

requires less epistemic value to cross over than the model in the

bottom panel with weaker on-road glance preference. Hence, the

former model is more prone to look back to the road than the latter

when the uncertainty about lateral position increases.
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FIGURE 7

E�ects of visual time-sharing (VTS; on-road gaze preference = −7) on vehicle control compared to baseline (on-road gaze preference = 0) in the

current simulation. SDLP, standard deviation of lane position.

FIGURE 8

Pragmatic value (left), epistemic value (middle), and total value (right) during eyes on road (light blue) and eyes o� road (green) glances. Top panels:

On-road glance preference = −7. Bottom panels: On-road glance preference −10. The dashed reference lines on the total value charts indicate the

standard deviation of the belief about lateral position where the total expected free energy of the o� road glance exceeds that of the on road glances

(or equivalently, the total value associated with an on-road glance exceeds that of an o�-rod glance).

The on-road visual sampling in our model is driven by

epistemic value in the same principal way as in the occluded

pedestrian scenario in Simulation 1 above. The posterior predictive

entropy entropy in Equation (1) (which in our model fully

determines the epistemic value) of a policy will be highest when the

belief is dispersed (high uncertainty) and the model chooses to look

back to the road, since this policy is expected to generate a greater

variety of possible observations compared to when continuing to

look away (and observe nothing) or looking back when the belief

is certain (and no new information expected is from looking back).

Hence, looking back to the road in this scenario is analogous to

reaching the line of sight in the occluded pedestrian scenario.

To summarize, this simulation demonstrates how visual time-

sharing behavior and its effect on vehicle control emerges from
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selecting policies that minimize expected free energy. Based on

this sole objective, the model strikes a balance between different

prior preferences (motivations for performing the secondary task

and maintaining vehicle control), and visual sampling of the road

ahead is driven by the epistemic value of resolving uncertainty

about the current vehicle state (here primarily lateral position).

It was also shown that the model explains and reproduces well-

established effects of visual time-sharing on vehicle control in the

driver behavior literature. In the following simulations, we further

explore how the model accounts for effects of driving demand and

prior preferences on visual time-sharing.

3.2.2.2 Simulation 2b: e�ects of driving demand and prior

preferences on visual time sharing

As reviewed above, empirical studies has established a strong

relationship between the demand (difficulty) of the vehicle control

task and visual sampling of the forward roadway. In particular,

Senders (1967) found that increasing driving demand by increasing

the set speed led drivers to choose shorter voluntary occlusion

intervals (i.e., increased viewing of the road ahead). Similarly,

Victor et al. (2005) found a significantly shorter mean off-road

glance duration when driving in curves compared to straight road

sections, as well as a trend for more frequent off-road glances in

curves.

To explore if our model was able to reproduce and explain these

effects, we manipulated driving demand in terms of lane width. It

is well-established that (all other things being equal) reducing lane

width leads to a reduction in speed (Yagar and Van Aerde, 1983;

Fitzpatrick et al., 2001).

As shown in Figure 9, reducing the lane width from 3 to 2.5 m

in our simulation leads to a reduction in speed as well as shorter

and more frequent off-road glances compared to the wider road,

in line with the empirical results from human drivers. This is also

accompanied by a reduction in lane keeping variation (SDLP), and

less frequent large steering reversals which can be interpreted as

a response to the need for tighter lateral control on the narrower

road.

In terms of our model, the speed reduction can be explained

as an attempt to limit the loss of expected pragmatic value during

off-road glances, due to the increased risk of exiting the lane, by

slowing down the dispersion of beliefs about future lane position.

The reduced duration and increased frequency of off-road glances

reflects a need for the model to sample the road more often on the

narrower road as driven by epistemic value.

Figure 10 further explores the dynamics of the model’s visual

behavior and vehicle control and plots the glance behavior along

with the overall epistemic and pragmatic value of the optimal

(selected) policy at each time step (where the optimal policy is

that which minimizes the expected free energy, i.e., maximizes the

pragmatic plus epistemic value) during the 4 s planning horizon.

The plot zooms in on the last 15 s of the simulation segment. It

can be seen that, for the wider lane (left panel), each on-road glance

is preceded by the selection of policies with increasing epistemic

value. Eventually, due to the build-up of uncertainty in lateral

position and the corresponding increasing epistemic value of an

off-road glance, a policy involving an on-road glance scores the

maximum total value and is selected (based on the mechanism

illustrated in Figure 8). The uncertainty (and the epistemic value)

is then reset as the result of the on road glance, leading to the model

performing a new off-road glance at the next time step (tomaximize

pragmatic value in the temporary absence of uncertainty).

For the narrow lane (left panel), the pragmatic value is generally

lower than on the wider lane and is also intermittently reduced

during the off-road glances due to the increased proportion of lane

exit risk in the selected policies (the large dips in pragmatic value).

Thus, less epistemic value is needed to trigger the selection of an on-

road glance policy, leading to shorter and more frequent on-road

glances (highlighted by the red points in the top charts).

Figure 11 explores the tradeoff between speed preference and

glance preference by systematically varying on-road glance and

speed preference precision on the wide (3m) lane. Reducing the on-

road glance preference (increasing the off-road glance preference)

leads to reduced speed but only if the speed preference precision

is sufficiently low to allow for speed compensation. This also leads

to longer mean off-road single glance durations where, again, the

effect is stronger when the speed preference precision is low. Thus,

as long as the model is not strongly motivated to keep up the speed,

the model adopts a strategy of slowing down to allow for longer off-

road glances while still maintaining sufficient lateral control (i.e.,

avoid exiting the lane). By contrast, if the speed keeping cannot be

sacrificed due to a high precision of the speed preference prior, the

model only looks away briefly before having to look back to the road

again. This shows how the visual time-sharing strategies adopted

by the model depend on the relative motivations for performing

the driving and secondary tasks and, more generally, how such

strategies emerge naturally from the single mandate of minimizing

expected free energy.

4 Discussion

Adaptive driving behavior has been extensively studied for the

past sixty years and there exists an influential tradition of (mostly)

conceptual models offering explanations for the key underlying

mechanisms (e.g., Senders, 1967; Näätänen and Summala, 1976;

Summala, 1988; Fuller, 2005), which has been followed by more

recent computational models addressing different adaptive driving

behavior phenomena (Johnson et al., 2014; Pekkanen et al., 2018;

Kolekar et al., 2020; da Lio et al., 2023).

A common theme in the existing models of adaptive driving

behavior is that drivers manage the progress vs. caution tradeoff

by balancing the motivation to achieve goals against the control

of uncertainty. Our active inference-based model implements

motivations (preferences) as prior distributions over observations

that the driver seeks to realize through behavior (yielding pragmatic

value) and the control of uncertainty as information-seeking

behavior (yielding epistemic value). Adaptive driving behavior,

finding an optimal (given the agent’s beliefs and preferences)

balance between progress and caution, then simply emerges by

selecting policies and actions that minimize the expected free

energy, which can be computed as the (negative) sum of the

pragmatic and epistemic value expected in the future.

Pragmatic value can be seen as corresponding to the notion

of reward in standard reinforcement learning (Sutton and Barto,

2018). However, pragmatic value in the active inference context

is conceptually different from the classical notion of (externally
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FIGURE 9

E�ects of lane width on vehicle control and glance metrics (wide = 3 m, narrow = 2.5 m).

imposed) reward in that it is internal to the agent and rests on the

idea of self-evidencing, emphasizing the key role of agency: In order

to maintain their existence, organisms need to seek evidence for

their own generativemodel of the world (Friston et al., 2012), where

the preferred outcomes, defined as prior beliefs over observations,

are those expected to be realized through action. This aspect

of active inference makes close contact with classical cybernetics

models (Miller et al., 1960) and, in particular, Perceptual Control

Theory (PCT), which suggests that behavior can be explained as the

control of sensory input signals relative to a reference, or goal, value

(Powers, 1973) (see Stephan et al., 2016 for a discussion about the

similarities between PCT and active inference). The self evidencing

concept in active inference also makes close contact with ecological

psychology (Gibson, 2014) and embodied and enactive approaches

to cognitive science (e.g., Clark, 2013, 2015, 2023; Kiverstein et al.,

2022).

Our model also has similarities with the affordance

competition hypothesis (Cisek, 2007) and its implementation

in the computational driver behavior model by da Lio et al. (2023).

Specifically, both models are based on the continuous selection of

action representations biased by value. The policies in our model

are action sequences that get selected if (1) the environment offers

the agent an opportunity to perform them (i.e., an affordance)

and (2) they generate preferred (valuable) observations. One key

difference is that, in our model, policy and action selection is

additionally driven by epistemic affordances, that is, opportunities

for actions that generate new information which could unlock new

pragmatic (traditional) affordances.

A key feature in ourmodel is that the strength of the preferences

is controlled by the precision (inverse variance) of the preference

priors. Thus, when a preference is tuned to high precision, only a

narrow range of observations yield high pragmatic value and the

model will tend to select policies that do not deviate from this range.

This offers a mechanism for protecting a given preference (e.g.,

keeping the speed near the speed limit) against other conflicting

goals (e.g., looking away from the road), and the current model

demonstrates how these factors interact in producing different

tradeoffs in adaptive behavior (Figure 11). This can be seen as a

potential mechanism underlying cognitive control, that is, the ability

to adaptively prioritize and focus behavior on the currently most

relevant goals and protect against distractions (Miller and Cohen,

2001; Engström et al., 2017).

Another key aspect of ourmodel is the resolution of uncertainty

in beliefs through epistemic actions. This leads to actions seeking

novel, newsworthy, information yielding epistemic value. In

the model simulations described above, such epistemic actions

included taking a wider turn to get a better view behind an

occluding object to resolve uncertainty about conflicts with a

potentially hidden pedestrian (Scenario 1), and looking back to the

road to resolve uncertainty about one’s position in the lane which

has accumulated during the off-road glance (Scenario 2). As shown

in this paper, these apparently disparate behaviors both emerge

from the same expected free energy minimizing objective.

Epistemic actions may unlock more efficient realizations of the

preferred observations (pragmatic value), in our case, being able

to safely speed up past the occluding object earlier (Scenario 1)

and enabling a new off-road glance after the uncertainty about

the lane position has been reset (Scenario 2). This seamless

interplay between pragmatic and epistemic value can be seen as

the core feature of our model (and the active inference framework
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FIGURE 10

Dynamics of expected free energy minimization during visual time-sharing. Large dips in pragmatic value due to lane exits are truncated by setting

the lane exit log preference probability to −100, similar to Figure 8. The red points in the gaze plot indicate on-road glances.

in general). In active inference, this is enabled by casting the

two quantities in the common currency of expected free energy

(Equation 1). By selecting policies that minimize expected (future)

free energy, uncertainty can be resolved “on the fly” as an integral

part of the generated behavior. As we demonstrate in this paper,

a single action often carries both pragmatic and epistemic value,

for example, in Simulation 1a where the ego vehicle was moving

forward toward the goal (yielding pragmatic value) which also

brought about a better view of the area behind the occluding object

(epistemic value).

Epistemic value has also been explored in machine learning

where it is typically referred to as artificial curiosity and intrinsic

motivation (Schmidhuber, 1991; Sun et al., 2011; Hester and Stone,

2012). In this context, the purpose of curiosity and intrinsic

motivation is generally to facilitate model learning by promoting

a wider exploration of the state space. By contrast, the focus

of the present paper is on the role of epistemic action in

resolving uncertainty during inference. However, active inference

also extends to learning, which can also be cast in terms of

expected free energy minimization and facilitated by epistemic

action (Friston et al., 2015). While classical machine learning

approaches to exploration often involve ad-hoc features and/or

separate mechanisms for exploitation and exploration, active

inference has the advantage of offering a more principled approach

for both inference and learning solely based on expected free

minimization.

Minimizing expected free energy “automatically” yields an

optimal combination of epistemic and pragmatic action, but the

ensuing behavior is only optimal given the agent’s subjective

preferences and beliefs. This allows for conceptualizing and

modeling situations where a driver’s understanding of the situation

is incorrect, that is, the driver’s generative model does not match

the actual state of affairs (the generative process) but the behavior is

still optimal given the agent’s subjective beliefs and preferences. In

this paper, we demonstrated how an overly certain (high precision)

belief may expose the driver to an increased risk for collision. In

our Simulations 1b and 1d, the model falsely believed with full

certainty that no pedestrian could be hidden behind the occluding

object, in which case it did not slow down or moved left to get a

better view. Based on the model’s own beliefs and preferences, this
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FIGURE 11

Interaction of on-road glance preference and speed preference on mean speed and mean o�-road single glance duration.

represented the optimal behavior in this situation, but the model’s

beliefs were not well-calibrated to the situation, representing the

general phenomenon of optimal inference with suboptimal models

studied in computational psychiatry (Schwartenbeck et al., 2016).

It is widely believed that failures to properly adapt behavior to the

traffic situation due to false beliefs is a leading factor behind road

crashes (Summala, 1996, 2007).

In Scenario 2, we demonstrated that our model was able

to reproduce and explain the underlying mechanisms behind

key human behavioral patterns in the literature on visual

sampling and visual time-sharing in driving. Specifically, the

model explains how visual time-sharing emerges as a result

of pragmatic value motivating off road glances to perform a

secondary task, counteracted by the epistemic value of resolving

uncertainty about one’s position in the lane, all governed by

selecting policies that minimize expected free energy. At the high

level, our model shares many of the key concepts behind the

existing computational visual sampling models by Senders (1967),

Pekkanen et al. (2018), and Johnson et al. (2014), in particular

regarding the explicit modeling of uncertainty and the key role

of visual sampling in resolving uncertainty. However, whereas

the existing models are specifically applicable to visual sampling,

our model is, in principle, applicable to any form of adaptive

driving behavior. While the current relatively simple scenarios

were chosen to illustrate the key principles of the model, we

believe that our model, thanks to its generality, can in principle

be applied to any traffic scenario. Even though the specific

implementation details may differ, the current framework suggests

that all that is needed to model a certain behavior is to define

the preference distribution, belief distribution, the observation and

action variables (as probability distributions), and the generative

model for how they evolve. Adaptive driving behavior will then

fall out “automatically” from the selection of policies that minimize

expected free energy.

While the current implementation of the model is based

on active inference principles (specifically expected free energy

minimization), it does not represent a “pure” implementation of

the type typically found in the active inference literature (e.g., Parr

et al., 2022). Rather the model makes use of standard engineering

methods such as particle filtering (for representing beliefs about

future states) and the cross entropy method for policy selection.

A related approach is presented in Fountas et al. (2020) which

used Monte Carlo Tree Search to generate policies evaluated

through expected free energy minimization. This yields a modular

architecture where the different components can be substituted for

othermodels andmethods. For example, in order to representmore

sophisticated probabilistic beliefs (e.g., about the future behavior

of other road users), the particle filter in the current model

could be replaced by a more advanced machine-learned behavior

prediction model (e.g., Chai et al., 2019), while still retaining the

key principles of active inference discussed above. Such alternative

implementations could also help increase computational efficiency

and make the model more amenable to real time implementation.

Whereas, in the current model, the parameter values were set

by hand, the model naturally lends itself to learning the parameters

from data (see Wei et al., 2022, 2023b for our earlier work in this

direction). The design space for incorporating techniques from

contemporary generative AI in active inference models is large

and the exploration of these possibilities has only begun (see e.g.,

Fountas et al., 2020; Tschantz et al., 2020; Lanillos et al., 2021;

Friston et al., 2022; Mazzaglia et al., 2022). However, regardless

of the implementation, behavioral models developed based on

the active inference principles outlined above are fundamentally

explainable and interpretable which is one of their key potential

advantages compared to existing black-box approaches for agent

modeling (Albarracin et al., 2023).

The modeling framework outlined in this paper has many

potential applications in road traffic research beyond driver agent
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modeling. For example, it can be used as the basis for defining

and modeling human road user failure modes behind road crashes,

and for designing effective countermeasures. As discussed above,

one such mechanism is how too high precision (false certainty)

in one’s belief in how a situation will play out leads to overly

assertive behavior (e.g., not accounting for potential occlusions, and

increased crash risk). While such crash causation mechanisms have

been previously outlined conceptually (Engström et al., 2018), the

current model offers a precise computational formulation of these

principles. The framework can also be used to develop models that

generate reference trajectories for the evaluation of autonomous

vehicles which are optimal given preferences that reflect the societal

norms in the community where the AI is deployed and reasonably

foreseeable assumptions (beliefs) about the behavior of other road

users, as formalized in the IEEE p2846 standard (IEEE, 2022).

The model presented in this paper has a number of specific

limitations related to the simplifying assumptions of the current

implementation described above (e.g., assuming only a single

pedestrian in Scenario 1, ignoring peripheral vision in Scenario

2 etc.). In general we do not think these simplifying assumptions

imply any fundamental limitations for the proposed behavior

modeling framework. However, there are certain aspects of the

current model set-up that warrants further consideration. For

example, the current model assumes that some variables (vehicle

x and y position and heading) are not observable when looking

off-road, and that this also applies during the counterfactual

evaluation of policies. During these counterfactual off-road glances,

the pragmatic value related to vehicle x and y position and heading

cannot be evaluated. This is a consequence of pragmatic value

being defined over observations and necessitated the addition of

the lane exit variable which is assumed to be always observable.

Clearly, this is somewhat arbitrary and an alternative approach

would be to define pragmatic value during counterfactual reasoning

over states instead of observations, in which case only the lane

position variable would be needed (and the lane exit variable would

be redundant). Such alternative model variants can be explored in

further work.

More broadly, there are many ways in which the current model

can be further developed. First, as already mentioned, using more

advanced generative models for representing beliefs and learning

parameters from data will likely be needed to scale up to more

realistic scenarios, for example including other vehicles and beliefs

about their future trajectories. Second, it would be interesting

to explore further the extent to which the model can generalize

across different types of traffic scenarios. Of particular interest is

to model collision avoidance behaviors in critical traffic conflicts.

Such behaviors are difficult to learn solely from data (due to the

sparsity of such long-tail events in human driving data), while the

present model could be better suited for such scenarios thanks to

the possibility to explicitly specify the behavioral mechanisms. This

would require a detailed model of the belief updating process to

model response timing, a feature which is lacking in the current

model (see Engström et al., 2024). Another very interesting avenue

of future model development is in the context of road user

interactions, for example at a crosswalk (Markkula et al., 2023). In

such scenarios, active inference models can represent the situation

understanding shared between interacting road users in terms of

shared generative models (see Friston and Frith, 2015; Friston et al.,

2022) and, conversely, failing interactions can be understood in

terms of mismatching generative models.

Another interesting question not addressed in the present paper

concerns how to model the difference between explicit planning

and more automatized habitual behavioral selection. The current

model is based on sampling and rolling out a large number

of policies (plans) where the optimal plan is identified based

on expected free energy minimization. However, human action

selection in everyday situations is at least partly governed by habits.

In skilled performance, humans do not evaluate all possible policies

but rather learn to “see” the best policy given the information

currently available (e.g., in terms of Gibsonian affordances; Gibson,

2014). This is particularly true in the context of driving which

is often to a large extent automatized for experienced drivers

(Engström et al., 2017). In current ML-based active inference

models, such habit formation has been modeled in terms of “habit

networks” which are able to learn successful policies through

amortization (e.g., Mazzaglia et al., 2022) and this is an interesting

topic for future development of the present framework.
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