
HiLD 2024: 2nd Workshop on High-dimensional Learning Dynamics

Nonconvex Meta-optimization for Deep Learning

Xinyi Chen XINYIC@PRINCETON.EDU
Princeton University and Google DeepMind

Evan Dogariu EDOGARIU@PRINCETON.EDU
Princeton University

Zhou Lu ZHOUL@PRINCETON.EDU
Princeton University

Elad Hazan EHAZAN@PRINCETON.EDU

Princeton University and Google DeepMind

Abstract
Hyperparameter tuning in mathematical optimization is a notoriously difficult problem. Recent
tools from online control give rise to meta-optimization, a provable methodology for learning opti-
mal hyperparameters in convex optimization. In this work, we extend this methodology to noncon-
vex optimization and the training of deep neural networks. We present an algorithm for nonconvex
meta-optimization that leverages the reduction from nonconvex optimization to convex optimiza-
tion, and investigate its applicability for deep learning tasks on academic-scale datasets.

1. Introduction

Hyperparameter tuning for deep learning is notoriously difficult and resource-consuming. It is there-
fore an extremely well-studied problem, with numerous approaches including Bayesian optimiza-
tion [20], bandit algorithms [16], meta-gradient methods [3], and spectral methods [13].

A recent paradigm based on online control named meta-optimization [5] gives the first provable
guarantees for learning certain hyperparameters for smooth convex optimization. There are several
novel aspects to this approach: (1) Instead of learning the hyperparameters in one shot, the goal
is to repeatedly solve the given optimization problem, learning from experience and converging to
the performance of the best hyperparameters. (2) The parameters of the optimizer are learned via a
feedback control algorithm based on novel techniques from online control.

Since meta-optimization is based on minimizing regret, which is intractable in general for non-
convex problems, the existing guarantees of this approach only apply to convex problems. In this
work, we extend the online control based framework of meta-optimization to nonconvex optimiza-
tion. Given the framework’s guarantees for smooth convex functions, we leverage a reduction from
nonconvex to convex optimization inspired by [1]. We propose an algorithm that can learn to adapt
to the problem over many episodes, and eventually reach an approximate stationary point. As the
number of episodes increases, it converges at a rate that is determined by the performance of the
best optimization algorithm from a class of methods.

We conduct experiments on academic-scale workloads, including image classification and ma-
chine translation. These initial experiments demonstrate the applicability of the algorithm. In addi-
tion, we ablate over several design choices and empirically verify our assumptions.

© X. Chen, E. Dogariu, Z. Lu & E. Hazan.

META-OPTIMIZATION FOR DEEP LEARNING

1.1. Related work

Parameter-free optimization Parameter-free optimization methods are adaptations of first-order
methods that do not need to tune certain hyperparameters, such as the learning rate. Methods in this
space include coin-betting [18], adaptation to the diameter of the decision set [7], and many more
[14], [6], [17]. The meta-optimization approach is more general in two aspects: (1) it attempts to
learn the best algorithm for specific objective functions, rather than a class of functions (for example
smooth functions with a specific smoothness parameter) (2) for quadratic problems, it has guaran-
tees over a larger class of methods, including precoditioned methods with a fixed precoditioner.
However, it is not parameter-free.

Control for optimization Control and optimization are closely related fields, starting from Lya-
punov’s work and its application to the design and analysis of optimization algorithms, see [5] for
more background. [15] apply control theory to the analysis of optimization algorithms on a single
problem instance, giving a general framework for obtaining convergence guarantees for a variety
of gradient-based methods. [4] study the characterization of the regret-optimal algorithm given an
objective function, using a value function-based approach motivated by optimal control. Our work
builds upon [5], which proposes an online control based methodology for regret minimization on
convex problems.

2. Preliminaries

Meta-optimization In meta-optimization [5], we are given a sequence of optimization prob-
lems, called episodes. The goal is to design an algorithm that can, over many episodes, perform as
well as the best algorithm in a benchmark algorithm class. We denote the number of episodes as N ,
and in each episode, we perform T steps of optimization. At the beginning of an episode, the iter-
ate is reinitialized to an arbitrary starting point xi,1 to be consistent with the standard optimization
setting. Chen and Hazan [5] propose a method based on online control, and guarantees that over N
episodes, the method converges to the performance of the best first-order gradient method from a
general class of methods.

Extension to nonconvex stochastic optimization We extend the meta-optimization framework
to nonconvex optimization in the finite-sum setting. Denote the sequence of N objective functions
as {fi}Ni=1, in this setting, each function is a finite sum of n nonconvex functions :

fi(x) =
1

n

n∑
j=1

fi,j(x).

In each episode, we are given an objective function fi, and at each time step, we have access to a
mini-batch of fi,j’s. Notably, this setting formalizes the problem of neural network training, where
the objective function is the average loss on training examples.

The goal of stochastic nonconvex optimization is to obtain an ε-stationary point in expectation
for each objective function: an xi such that E [∥∇fi(xi)∥] ≤ ε for every i ∈ [N]. Following standard
assumptions in the literature, we assume each fi,j is smooth and has bounded function value.

In episode i, at time t (denoted as step (i, t)), an optimization algorithm A chooses a point
xi,t ∈ Rd. Then it receives a mini-batch of examples Bi,t of size b, and suffers the nonconvex
cost fi,t(xi,t) = 1

b

∑
j∈Bi,t

fi,j(xi,t). The protocol of this setting and our assumptions are formally

2

META-OPTIMIZATION FOR DEEP LEARNING

defined in Appendix A. Our goal is to design an algorithm A whose convergence rate for finding
approximate stationary points approaches that of the best algorithm in a benchmark class.

3. Algorithms and guarantees

We first present the meta-optimization algorithm by [5] in Algorithm 1 for completeness. In Algo-
rithm 1, the iterate xi,t is updated using weight decay, gradient descent, and a meta-optimization
update. The meta-optimization update is a linear function of past gradients parameterized by a set
of matrices M , which are the parameters learned by the meta-optimization process. Algorithm 1
updates M using GD according to the rollout loss, which approximates the objective function value
achieved had we used the current M for a number of steps. Algorithm 1’s guarantees apply when
the objective functions are quadratic; we will use a bandit version of the algorithm that has provable
guarantees for general smooth convex functions, Algorithm 5.

Algorithm 1: Convex meta-optimization
input : episode number N , number of steps per episode T , window size H , rollout length L,

meta learning rate ηg, initial points {xi,1}Ni=1, base learning rate η, weight decay δ.
Set M1,1 = {M (1)

1,1 , . . . ,M
(H)
1,1 ∈ Rd×d} to 0.

for i = 1, . . . , N do
Re-initialize iterate to xi,1.
for t = 1, . . . , T do

Update xi,t = (1− δ)xi,t−1 − ηgi,t−1 −
∑H

h=1M
(h)
i,t gi,t−h.

Receive fi,t, compute gi,t = ∇fi,t(xi,t).
If t ≥ H + L, use Algorithm 4 in Appendix B to construct the rollout loss

c(M) = Rollout(M, xi,t−L, {fi,τ}tτ=t−L−1} {gi,τ}tτ=t−H−L+1

)
and update Mi,t+1 = Mi,t − ηg∇Mi,tc(Mi,t)

end
end

Reduction from nonconvex to convex optimization Prior works in the literature propose reduc-
ing nonconvex optimization to solving a sequence of strongly convex problems [1, 19, 22]. In this
approach, each sub-problem in the sequence, now strongly convex, is the original nonconvex ob-
jective with ℓ2-regularization from a particular point. The reduction is stated in Algorithm 3 in the
appendix. Analysis of the reduction shows that if one can minimize the aforementioned sequence of
strongly convex problems, then an approximate stationary point can be found among the minimiz-
ers. Using this framework, we can apply convex meta-optimization to the sequence of strongly con-
vex functions, and obtain a method whose convergence is characterized by the performance of the
best method on that sequence of functions. This guarantee is different from the meta-optimization
guarantee one can achieve in convex optimization through regret minimization. In general, regret
minimization for nonconvex functions is computationally intractable, and alternative notions of re-
gret were introduced in [12].

3

META-OPTIMIZATION FOR DEEP LEARNING

Algorithm 2: Nonconvex stochastic meta-optimization
input : episode number N , epoch number K, inner step number S such that KS = T ,

smoothness parameter β, initial points {xi,1}, convex meta-optimization algorithm A.
for i = 1, . . . , N do

Re-initialize iterate to xi,1.
for k = 1, . . . ,K do

Set xi,k,1 = xi,k, denote fi,k(x) = fi(x) + β∥x− xi,k∥2 as the regularized objective.
Receive mini-batches of examples and optimize the regularized objective for S time

steps using A, output {xi,k,s}Ss=1.

Update xi,k+1 =
1
S

∑S
s=1 xi,k,s.

end
end

We describe our method for nonconvex meta-optimization in Algorithm 2, and present its guar-
antee in the theorem below. In addition to the smoothness and boundedness assumptions on the
objective functions, we also make assumptions to ensure the stability of our algorithm, similar to
[5]. The class of benchmark algorithms Π contains methods whose updates are linear functions of
past gradients. If the losses are quadratic, it can simulate first-order gradient-based methods such as
gradient descent, momentum, and preconditioned methods. Due to limited space, we defer formal
definition of our assumptions and other technical details to Appendix B.

Theorem 1 Let x∗i,k be a minimizer of fi,k, xπi,k,s be the iterate under another algorithm π, and

let ∇2
i = 1

K

∑K
k=1 ∥∇fi(xi,k)∥2 be the average squared gradient norm. Under Assumptions 1, 2, 3

and 4, using the bandit meta-optimization algorithm (Algorithm 5) as A in Algorithm 2 yields the
following guarantee:

E

[
1

N

N∑
i=1

∇2
i

]
≤ O

(
1

K

)
+ Õ((NKS)−

1
4) +

6β

NKS
min
π∈Π

E

[
N∑
i=1

K∑
k=1

S∑
s=1

(
fi,k,s(x

π
i,k,s)− fi,k(x

∗
i,k)
)]

.

4. Experiments

We run experiments on three deep learning workloads of increasing scale: MNIST handwritten digit
recognition, CIFAR-10 image classification, and WMT-17 English-to-German machine translation.
On each dataset, we apply a standard deep learning architecture (MLP, CNN, and transformer,
respectively) and compare our method against the common deep learning optimization techniques.
We train in two optimization settings: gradient descent on a fixed batch (i.e. fi,j ≡ fi for a fixed
fi) and stochastic gradient descent (i.e. a minibatch of fi,j’s is sampled i.i.d. each step). For the
methods labeled ”ours”, we make practical modifications to Algorithm 2 with the considerations
mentioned in Appendix E.1 to arrive at Algorithm 7; this is done in Jax and the code may be found
at https://github.com/edogariu/meta opt/tree/v1.0/.

We compare against the following fully-tuned baselines: vanilla gradient descent, momentum,
Adam with weight decay (AdamW), hypergradient descent [3], Distance-over-Gradients [14], D-
Adaptation [7], and the Mechanic algorithm [6]. Each of the latter 4 optimizers is based on either

4

https://github.com/edogariu/meta_opt/tree/v1.0/

META-OPTIMIZATION FOR DEEP LEARNING

vanilla gradient descent or vanilla Adam; to reduce clutter, we only plot these final 4 optimizers
when they match or outperform their tuned vanilla counterparts. We refer to AdamW, D-Adaptation,
and Mechanic collectively as the ”adaptive methods”, which are not captured theoretically by our
benchmark algorithm class. See Appendix E.2 for more information about baselines and experi-
mental hyperparameters such as batch size and number of iterations.

5. Results

We present our main experimental results below, for additional ablations and empirical verification
of our assumptions, see Appendix E.3.

Deterministic optimization The training loss in the deterministic setting (i.e. where each training
step is over the same subset of data) allows us to inspect the optimization performance of our
algorithm without the effect of noise. In Figure 1, the training losses of the various optimization
algorithms are plotted across episodes. We see that our method improves over time until the meta-
optimization parameters converge – during the first episode it is worse than gradient descent, but
after a handful of deterministic episodes it matches or outperforms many other baselines (note that
on WMT there is a separation between adaptive methods and non-adaptive methods). Though
complexity and the required number of iterations vary between tasks, we find compelling evidence
that even on large deep learning workloads our method finds consistent improvement over episodes.

(a) MNIST full GD (b) CIFAR full GD (c) WMT full GD

Figure 1: Full gradient descent training with a fixed batch on the three workloads. MNIST and
CIFAR are averaged over 5 trials. Losses smoothed with a mean filter.

Furthermore, since meta-optimization is a convex relaxation of the learning to learn problem,
we expect that the meta-optimization process is well-behaved in the deterministic setting. This is
indeed the case, as the improvement across episodes is monotonic, and the parameters eventually
converge. Moreover, for each fixed workload, the resulting optimal parameters are independent of
the initial learning rate η and other hyperparameters. This stability allows our algorithm to converge
properly every time we run it; by contrast, none of the self-tuning baselines converged on the CIFAR
workload and only the adaptive methods converged on WMT.

Stochastic optimization We also test meta-optimization in the stochastic deep learning setting.
Experimentally, we found that the meta-optimization algorithm in the stochastic setting was not as
stable on large workloads (see Appendix E.3 for a short explanation). To mitigate this, we take
the meta-optimization parameters learned in the deterministic setting and deploy them with frozen

5

META-OPTIMIZATION FOR DEEP LEARNING

parameters (Mi,t in Algorithm 1) to the stochastic setting. Figure 2 shows the performance with this
approach. Our method is able to outperform the non-adaptive baselines in terms of training loss,
demonstrating that the optimal parameters transfer from deterministic to the stochastic setting. For
evaluation metrics, we see that on MNIST and CIFAR our method is able to generalize as well as the
baselines. On the WMT workload, however, we once again see a qualitative separation between the
adaptive methods and non-adaptive methods (those roughly captured by our benchmark algorithm
class). We are investigating this generalization gap in our ongoing work (see Appendix F for a
discussion of current questions and future work). When we compare our method to the self-tuning
baselines, we see that meta-optimization is consistently competitive in training while methods like
DoG, D-Adaptation, and Mechanic can unpredictably suffer on certain workloads.

(a) MNIST stochastic (b) CIFAR stochastic (c) WMT stochastic

Figure 2: Stochastic minibatch gradient descent on the three workloads. MNIST and CIFAR are
averaged over 5 trials. Losses smoothed with a mean filter.

References

[1] Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, and
Yi Zhang. Efficient full-matrix adaptive regularization. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning Research, pages 102–110. PMLR, 09–15
Jun 2019.

[2] Oren Anava, Elad Hazan, and Shie Mannor. Online convex optimization against adversaries
with memory and application to statistical arbitrage, 2014.

[3] Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank
Wood. Online learning rate adaptation with hypergradient descent. arXiv preprint
arXiv:1703.04782, 2017.

6

META-OPTIMIZATION FOR DEEP LEARNING

[4] Philippe Casgrain and Anastasis Kratsios. Optimizing optimizers: Regret-optimal gradient
descent algorithms. In Proceedings of Thirty Fourth Conference on Learning Theory, pages
883–926. PMLR, 2021.

[5] Xinyi Chen and Elad Hazan. Online control for meta-optimization. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023.

[6] Ashok Cutkosky, Aaron Defazio, and Harsh Mehta. Mechanic: A learning rate tuner. Advances
in Neural Information Processing Systems, 36, 2024.

[7] Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. In
International Conference on Machine Learning, pages 7449–7479. PMLR, 2023.

[8] Abraham D. Flaxman, Adam Tauman Kalai, and H. Brendan McMahan. Online convex op-
timization in the bandit setting: gradient descent without a gradient. In Proceedings of the
Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, page 385–394,
USA, 2005. Society for Industrial and Applied Mathematics. ISBN 0898715857.

[9] Paula Gradu, John Hallman, and Elad Hazan. Non-stochastic control with bandit feedback. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 10764–10774. Curran Associates, Inc.,
2020.

[10] Paula Gradu, Elad Hazan, and Edgar Minasyan. Adaptive regret for control of time-varying
dynamics. In Nikolai Matni, Manfred Morari, and George J. Pappas, editors, Proceedings of
The 5th Annual Learning for Dynamics and Control Conference, volume 211 of Proceedings
of Machine Learning Research, pages 560–572. PMLR, 15–16 Jun 2023.

[11] Elad Hazan and Karan Singh. Introduction to online nonstochastic control, 2023.

[12] Elad Hazan, Karan Singh, and Cyril Zhang. Efficient regret minimization in non-convex
games. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 1433–1441. PMLR, 06–11 Aug 2017.

[13] Elad Hazan, Adam Klivans, and Yang Yuan. Hyperparameter optimization: a spectral ap-
proach. In International Conference on Learning Representations, 2018.

[14] Maor Ivgi, Oliver Hinder, and Yair Carmon. Dog is sgd’s best friend: A parameter-free dy-
namic step size schedule. In International Conference on Machine Learning, pages 14465–
14499. PMLR, 2023.

[15] Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and design of optimization
algorithms via integral quadratic constraints. SIAM Journal on Optimization, 26(1):57–95,
2016.

[16] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hy-
perband: A novel bandit-based approach to hyperparameter optimization. Journal of Machine
Learning Research, 18(185):1–52, 2018.

7

META-OPTIMIZATION FOR DEEP LEARNING

[17] Zhou Lu, Wenhan Xia, Sanjeev Arora, and Elad Hazan. Adaptive gradient methods with local
guarantees. arXiv preprint arXiv:2203.01400, 2022.

[18] Francesco Orabona and Dávid Pál. Coin betting and parameter-free online learning. Advances
in Neural Information Processing Systems, 29, 2016.

[19] Courtney Paquette, Hongzhou Lin, Dmitriy Drusvyatskiy, Julien Mairal, and Zaid Harchaoui.
Catalyst for gradient-based nonconvex optimization. In Amos Storkey and Fernando Perez-
Cruz, editors, Proceedings of the Twenty-First International Conference on Artificial Intelli-
gence and Statistics, volume 84 of Proceedings of Machine Learning Research, pages 613–
622. PMLR, 09–11 Apr 2018.

[20] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of ma-
chine learning algorithms. Advances in neural information processing systems, 25, 2012.

[21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

[22] Weiran Wang and Nathan Srebro. Stochastic nonconvex optimization with large minibatches.
In Aurélien Garivier and Satyen Kale, editors, Proceedings of the 30th International Con-
ference on Algorithmic Learning Theory, volume 98 of Proceedings of Machine Learning
Research, pages 857–882. PMLR, 22–24 Mar 2019.

8

META-OPTIMIZATION FOR DEEP LEARNING

Appendix A. Additional preliminaries

We make the following assumptions on the nonconvex objective functions, and present the reduction
from nonconvex to convex optimization below.

Definition 2 We say a function is β-smooth if for every x, y, ∥∇f(x)−∇f(y)∥ ≤ β∥x− y∥.

Assumption 1 For all i, j, 0 ≤ fi,j(x) ≤ M for all x, and fi,j is β-smooth.

Algorithm 3: Reduction from nonconvex to convex optimization
input : epoch number K, number of inner steps S such that T = KS, convex optimization

algorithm A, smoothness parameter β, initial point x1, nonconvex function f .
for k = 1, . . . ,K do

Consider the function fk(x) = f(x) + β∥x− xk∥2.
Starting from xk, apply A for S steps on fk with mini-batch access, obtain xk+1.

end
output: x∗ = argmin{xk}Kk=1

∥∇f(xk)∥.

Appendix B. Algorithm details

Algorithm 4: Rollout

input : controller parameters {M (h)}Hh=1, initial model parameters x0, buffer of cost functions
{fτ}Lτ=0, buffer of disturbances {gτ}L−1

τ=−H , rollout length L, initial learning rate η,
weight decay δ.

for t = 0, . . . , L− 1 do
Suffer loss ft(xt).
Update xt+1 = (1− δ)xt − η∇ft(xt)−

∑H
h=1M

(h)gt−h+1.
end
output: fL(xL)

The framework of meta-optimization applies online control methods to a particular dynami-
cal system that describes the optimization process. We apply meta-optimization to the stochastic,
ℓ2-regularized strongly convex functions fi,k,s, and describe the dynamical system below. The dy-
namical system is similar to the one for smooth convex optimization put forth in [5].

The dynamical system For each episode i, denote Hi,k,s to be the matrix that satisfies

∇fi,k,s(xi,k,s) = Hi,k,s(xi,k,s − xi,k,s−1) +∇fi,k,s(xi,k,s−1). (1)

If each fi,j is quadratic, then Hi,k,s has the following explicit form,

Hi,k,s =
1

b

∑
j∈Bi,k,s

∇2fi,j + 2β.

For general smooth functions that are twice differentiable, this matrix exists and each row con-
tains certain second-order information of fi,k,s. To see this, observe that we can apply the mean
value theorem to each coordinate of ∇fi,k,s to obtain Hi,k,s.

9

META-OPTIMIZATION FOR DEEP LEARNING

The linear dynamical system we consider is xi,k,s+1

xi,k,s
∇fi,k,s(xi,k,s)

 =

(1− δ)I 0 −ηI
I 0 0

Hi,k,s −Hi,k,s 0

×

 xi,k,s
xi,k,s−1

∇fi,k,s−1(xi,k,s−1)

 (2)

+

I 0 0
0 0 0
0 0 0

× ui,k,s +

 0
0

∇fi,k,s(xi,k,s−1)

 . (3)

For notational convenience, we write the dynamical system as

zi,k,s+1 = Ai,k,szi,k,s +Bui,k,s + wi,k,s,

where Ai,k,s is the system dynamics, B is a constant control-input matrix, and wi,k,s is the non-
stochastic disturbance that contains the gradient.

The system above is linear time-varying (LTV), and we introduce the following notion of sta-
bility for LTV systems standard in the non-stochastic control literature [5, 10].

Definition 3 (Sequentially stable) A time-varying linear dynamical system with dynamics A1, . . . , AT

is (κ, γ) sequentially stable if for all intervals I = [r, s] ⊆ [T], ∥
∏r

t=sAt∥ ≤ κ2(1− γ)|I|.

Assumption 2 We assume that the dynamical system (2) is (κ, γ) sequentially stable with κ ≥ 1.

We in addition make the following two assumptions on the system dynamics and the iterates,
following the meta-optimization framework. In meta-optimization, the iterates are re-initialized
to starting points with bounded norm in each episode; in our algorithm, we essentially have NK
episodes, and the iterates are re-initialized with xi,k at the beginning of each episode. We note that
since each fi,k,s is strongly convex, the iterates effectively stay within a bounded region, potentially
justifying the latter assumption below.

Assumption 3 For all i ∈ [N], k ∈ [K], s ∈ [S], ρ(Hi,k,s) ≤ β.

Assumption 4 For all i ∈ [N], k ∈ [K], ∥xi,k∥ ≤ R.

The benchmark algorithm class The benchmark algorithm class we consider consists of meth-
ods whose updates are linear functions of past gradients. Since we view optimization from the
perspective of online control, this class of methods correspond to a general class of controllers that
often appear in the online control literature. This class of controllers is called Disturbance-feedback
controllers (DFCs), and for linear time-invariant systems, they can approximate any stabilizing state-
feedback controllers. Consequently, if our objective functions are quadratic with uniformly bounded
Hessians, this benchmark class of algorithms can simulate gradient descent, momentum, and pre-
conditioned methods with a fixed preconditioner. Since these algorithms have to be stabilizing on
the dynamical system described above, only certain values of learning rate, momentum, and precon-
ditioners are allowed. For example, the learning rate can be at most O(1/β), and the preconditioner
P needs to satisfy ρ(PH) < 1/8, where H is the Hessian. For more detailed specifications of the
range of parameters, see the full version of [5].

10

META-OPTIMIZATION FOR DEEP LEARNING

Appendix C. Proofs for Section 3

Proof [Proof of Theorem 1] Since all fi,k,s(x) are convex and smooth, we can use the bandit meta-
optimization algorithm (Algorithm 5) as the black-box optimizer A. For any policy π ∈ Π, let xπi,k,s
be its updates, and by Corollary 6 we have the following guarantee:

min
π∈Π

E

[
N∑
i=1

K∑
k=1

S∑
s=1

(
fi,k,s(xi,k,s)− fi,k,s(x

π
i,k,s)

)]
= Õ((NKS)

3
4). (4)

Denote π∗ = argminπ∈ΠE
[∑N

i=1

∑K
k=1

∑S
s=1 fi,k,s(x

π
i,k,s)

]
as the optimal algorithm in Π.

By Theorem A.3 in [1], since each fi,k is smooth and strongly convex, for any i, k,

fi,k(xi,k)−min
x

fi,k(x) ≥
∥∇fi,k(xi,k)∥2

6β
.

In addition, we have the following decomposition

fi(xi,k)− fi(xi,k+1) ≥ fi,k(xi,k)−min
x

fi,k(x)− (fi,k(xi,k+1)−min
x

fi,k(x))

= fi,k(xi,k)−min
x

fi,k(x)−

(
1

S

S∑
s=1

fi,k(x
π∗
i,k,s)−min

x
fi,k(x)

)

+

(
1

S

S∑
s=1

fi,k(x
π∗
i,k,s)− fi,k(xi,k+1)

)

≥ fi,k(xi,k)−min
x

fi,k(x)−

(
1

S

S∑
s=1

fi,k(x
π∗
i,k,s)−min

x
fi,k(x)

)

+

(
1

S

S∑
s=1

fi,k(x
π∗
i,k,s)−

1

S

S∑
s=1

fi,k(xi,k,s)

)
.

Rearranging the terms, we have

fi,k(xi,k)−min
x

fi,k ≤ fi(xi,k)− fi(xi,k+1) +
1

S

S∑
s=1

fi,k(x
π∗
i,k,s)−min

x
fi,k(x) (5)

+

(
1

S

S∑
s=1

fi,k(xi,k,s)−
1

S

S∑
s=1

fi,k(x
π∗
i,k,s)

)
. (6)

Using the lower bound on the left hand side and summing up over k = 1, 2, . . . ,K,

K∑
k=1

∥∇fi,k(xi,k)∥2

6β
≤ M +

1

S

∑
s,k

(
fi,k(x

π∗
i,k,s)−min

x
fi,k(x)

)

+

 1

S

∑
s,k

fi,k(xi,k,s)−
1

S

∑
s,k

fi,k(x
π∗
i,k,s)

 .

11

META-OPTIMIZATION FOR DEEP LEARNING

Summing over i and taking an average,

1

NK

∑
i,k

∥∇fi(xi,k)∥2 ≤ O

(
1

K

)
+

1

NKS

∑
i,s,k

fi,k(x
π∗
i,k,s)−min

x
fi,k(x)

+

1

NKS

∑
i,s,k

fi,k(xi,k,s)−
∑
i,s,k

fi,k(x
π∗
i,k,s)

 .

The theorem follows by taking an expectation over the randomness of the batches, and using the
guarantee (4).

Refinement of Theorem 1 We use an approach inspired by [1] to refine our guarantee. Define
λi,k as the ratio

1

S

S∑
s=1

fi,k(x
π∗
i,k,s)−min

x
fi,k(x) ≤ λi,k

√
fi,k(xi,k)−minx fi,k(x)

βS
. (7)

Then in the inequality (5) above, we have

fi,k(xi,k)−min
x

fi,k − λi,k

√
fi,k(xi,k)−minx fi,k(x)

βS
≤ fi(xi,k)− fi(xi,k+1)

+

(
1

S

S∑
s=1

fi,k(xi,k,s)−
1

S

S∑
s=1

fi,k(x
π∗
i,k,s)

)
.

Observe that when a variable y satisfies y2 − ay ≤ b, we can complete the squares and obtain
(y − a

2)
2 ≤ b+ a2

4 . Taking a square root, we have y ≤
√
b+ a, and squaring both sides, we arrive

at y2 ≤ 2b+ 2a2. Using this result, we have

∥∇fi(xi,k)∥2

6β
≤

λ2
i,k

βS
+ 2

(
fi(xi,k)− fi(xi,k+1) +

1

S

S∑
s=1

fi,k(xi,k,s)−
1

S

S∑
s=1

fi,k(x
π∗
i,k,s)

)
.

Summing over i, k, and taking an average,

1

NK

∑
i,k

∥∇fi(xi,k)∥2 ≤ O

(
1

K

)
+O

(∑
i,k λ

2
i,k

NKS

)
+

6β

NSK

∑
i,s,k

fi,k(xi,k,s)− fi,k(x
π∗
i,k,s).

In particular, we have that

E

[
1

N

N∑
i=1

min
k

∥∇fi(xi,k)∥2
]
≤ O

(
1

K
+

∑
i,k λ

2
i,k

NKS
+ Õ((NKS)−

1
4)

)
.

Let λ0 denote an upper bound of λi,k. As N grows large, the right hand side is dominated by
the first two terms, and therefore in this regime we can write

E

[
1

N

N∑
i=1

min
k

∥∇fi(xi,k)∥2
]
≤ O

(
1

K
+

λ2
0

S

)
.

12

META-OPTIMIZATION FOR DEEP LEARNING

As defined in Equation (7), λi,k scales with the function value optimality gap of the average

iterate under π∗, and
√

1
βS . By the online to batch reduction, SGD on strongly convex functions

converges at a rate of Õ(1S). The learning rate of SGD that attains this rate depends on the strong
convexity parameter and the gradient upper bound of the loss function. If all the fi’s have the same
smoothness parameter, and under the assumption of bounded domain, taking π∗ to be SGD with the
optimal learning rate, λ0 can be as small as Õ

(
1√
S

)
.

Appendix D. Bandit meta-optimization

We give the details of the bandit meta-optimization algorithm in this section. For any set M and
δM > 0, define the Minkowski subset MδM = {x : 1

1−δM
x ∈ M}, and let Sd1 be the d-dimensional

unit sphere.

13

META-OPTIMIZATION FOR DEEP LEARNING

Algorithm 5: Bandit meta-optimization

input : episode number K, system parameters η, δ, κ, γ, learning rates {ηMi,k,s}, history length
L, δM , starting points {xi,1}Ni=1.

Set: M = {M = {M1, . . . ,ML} : ∥M l∥ ≤ κ3(1− γ)l}.
Initialize any M1,1 = · · · = ML,1 ∈ MδM , zi,1,1 = [x⊤i,1 x⊤i,1 0]⊤.

Sample ϵ1,1, . . . , ϵL,1 ∈R SL×3d×3d
1 , set M̃l,1 = Ml,1 + δM ϵl,1 for l = 1, . . . , L.

for i = 1, . . . , N do
If i > 1, set zi,1,1 = zi−1,K,S+1,Mi,1,1 = Mi−1,K,S+1.
for k = 1, . . . ,K do

If k > 1, set zi,k,1 = zi,k−1,S+1,Mi,k,1 = Mi,k−1,S+1.
for s = 1, . . . , S do

Choose ui,k,s =
∑L

l=1 M̃
l
i,k,swi,k,s−1.

Receive fi,k,s, compute wi,k,s = ∇fi,k,s(xi,k,s−1). If s = S, compute
xi,k+1 =

1
S

∑S
s=1 xi,k,s, and

wi,k,S =

xi,k+1 − ((1− δ)xi,k,S − η∇fi,k,S−1(xi,k,S−1) + ūi,k,S)
xi,k+1 − xi,k,S

∇fi,k,S(xi,k,S−1)−∇fi,k,S(xi,k,S)

 , (8)

where ūi,k,S is the first d coordinates of the control signal ui,k,s.
Suffer control cost fi,k,s(xi,k,s).

Store the gradient estimator gi,k,s =
9d2L

δM
fi,k,s(xi,k,s)

L∑
l=1

ϵi,k,s−l if s ≥ L, else 0.

Perform gradient update on the controller parameters:

Mi,k,s+1 = ΠMδM
(Mi,k,s − ηMi,k,s · gi,k,s−L).

Sample ϵi,k,s+1 ∈R SL×3d×3d
1 , set M̃i,k,s+1 = Mi,k,s+1 + δM ϵi,k,s+1.

end
If k = K, compute wi,K,S similar to (8), so the next state evolves to
zi,K,S+1 = [x⊤i,1,1 x⊤i,1,1 0⊤].

end
end

Theorem 4 (Theorem 5.1 in [9], Theorem 3.3 in [5]) Under Assumptions 1, 2, 3, 4, Algorithm 5
with η ≤ 1, L = Θ(logNKS), and setting ηMi,k,s = Θ((N(i−1)+K(k−1)+s)−3/4L−3/2G−2/3),
and perturbation constant δM = Θ((NKS)−1/4L−1/2) gives the guarantee

E

∑
i,k,s

fi,k,s(xi,k,s)

−min
A∈Π

∑
i,k,s

fi,k,s(x
A
i,k,s) ≤ Õ((NKS)3/4),

where Õ, Θ contain polynomial factors in γ−1, β, κ,R, b, d,M , and Õ in addition contains log-
arithmic factors in K,S,N . The benchmark algorithm class Π is the class of DFCs discussed in
Appendix B.

14

META-OPTIMIZATION FOR DEEP LEARNING

The theorem above guarantees the performance of Algorithm 5 under any adversarially chosen
functions fi,k,s. However, for our setting of nonconvex stochastic optimization, is it more useful
to derive a guarantee in expectation for randomly chosen functions. We show that such extension
is possible, and we start from the bandit convex optimization with memory (BCOwM) problem
[9]. The guarantee for bandit online control and hence bandit meta-optimization can be derived as
corollaries of the BCOwM guarantee.

Consider the basic online learning with memory problem under bandit feedback, where the
loss functions ft are β-smooth, G-Lipschitz, and M -bounded. The domain of decisions K has
diameter D, and the ft’s are random functions determined by previous decisions of the player.
Same as before, let Kδ be the Minkowski set of K, and let Sd1 be the d-dimensional unit sphere. The
algorithm below, proposed by [9], is an application of zeroth-order method [8] to the Online Convex
Optimization with Memory (OCOwM) setting [2].

Algorithm 6: BCO with Memory
input : Decision set K, time horizon T , history length L, learning rates {ηt} and noise

magnitude δ.
Initialize x1 = · · · = xL ∈ Kδ arbitrarily, and sample noise u1, . . . , uL ∈ Sd1.
Set yi = xi + δui for i = 1, . . . , L, gi = 0 for i = 1, . . . , L− 1.
Predict yi for i = 1, . . . , L− 1.
for t = L, . . . , T do

Play yt, and suffer loss ft(yt−L+1:t).

Store gradient estimate gt =
d
δ ft(yt−L+1:t)

L−1∑
i=0

ut−i.

Set xt+1 = Π
Kδ

[xt − ηt · gt−L+1].

Sample ut+1 ∈ Sd1 , set yt+1 = xt+1 + δut+1.
end

Theorem 5
Suppose the loss functions ft are random functions determined by previous iterates y1, . . . , yt−1.

Let O denote polynomial dependence on D, d,M,L,G, β. Taking ηt = O(t−3/4), δ = O(T−1/4),
Algorithm 6 produces yt’s that satisfy

E

[
T∑

t=L

ft(yt−L+1:t)

]
−min

x∈K
E

[
T∑

t=L

ft(x, . . . , x)

]
≤ O(T 3/4).

Proof We largely follow the proof of Theorem 3.1 in [9]. Let x∗ be any comparator in K, and x∗δ
be the projection of x∗ in the Minkowski set. Let f̃(x) = f(x, . . . , x) be the shorthand notation.

E

[
T∑

t=L

ft(yt−L+1:t)−
T∑

t=L

f̃t(x
∗)

]
= E

[
T∑

t=L

(ft(yt−L+1:t)− f̃t(x
∗))

]
− E

[
T∑

t=L

f̃t−L+1(xt)− f̃t−L+1(x
∗
δ)

]
(9)

+ E

[
T∑

t=L

f̃t−L+1(xt)− f̃t−L+1(x
∗
δ)

]
(10)

15

META-OPTIMIZATION FOR DEEP LEARNING

We bound (9) and (10) separately. We start with (9), which can be bounded for any sequence
of random variables u1, . . . , uT . Fix u1, . . . , uT , we have

ft(yt−L+1:t)− f̃t(xt+L−1) = ft(xt−L+1:t + δut−L+1:t)− f̃t(xt+L−1)

≤ ft(xt−L+1:t)− f̃t(xt+L−1) + δG
√
L

≤ G∥xt−L+1:t − (xt+L−1, . . . , xt+L−1)∥+ δG
√
L

≤ 2dMGL2ηt−L+1

δ
+ δG

√
L,

where the first and second inequalities hold by the Lipschitz property of ft, and the last inequality
is due to Lemma 7. Furthermore, the Lipschitz property of ft gives

|f̃t(x∗δ)− f̃t(x
∗)| ≤ G∥(x∗δ , . . . , x∗δ)− (x∗, . . . , x∗)∥ ≤ δGD

√
L.

Putting the two inequalities together, and accounting for the shift in the index of f̃t−L+1(x
∗
δ),

(2) ≤ 2δGD
√
LT +

2dMGL2

δ

T∑
t=1

ηt + 2LM.

The term (10) can be decomposed as follows,

E

[
T∑

t=L

f̃t−L+1(xt)− f̃t−L+1(x
∗
δ)

]
≤ E

[
T∑

t=L

∇f̃t−L+1(xt)
⊤(xt − x∗δ)

]

= E

[
T∑

t=L

(gt−L+1 + (Eut−2L+2:t−L+1 [gt−L+1]− gt−L+1)

]
+ E

[
(∇f̃t−L+1(xt)− Eut−2L+2:t−L+1 [gt−L+1]))

⊤(xt − x∗δ)
]
.

Since xt+1 is a projected gradient descent step from xt with the gradient estimator gt−L+1, we have

2g⊤t−L+1(xt − x∗δ) ≤
1

ηt
(∥xt − x∗δ∥2 − ∥xt+1 − x∗δ∥2) + ηt∥gt−L+1∥2, (Eq. 3.2 in [9])

and
T∑

t=L

g⊤t−L+1(xt − x∗δ) ≤
1

2

T∑
t=L

(
∥xt − x∗δ∥2

(
1

ηt
− 1

ηt−1

)
+ ηt∥gt−L+1∥2

)
+

∥xL − x∗δ∥2

ηL−1

≤ D2

2

(
1

ηT
+

1

ηL−1

)
+

d2M2L

2δ2

T∑
t=L

ηt,

where the bound on ∥gt∥ is in the proof of Lemma 7.
By Lemma 8, we also have

E
[
(∇f̃t−L+1(xt)− Eut−2L+2:t−L+1 [gt−L+1]))

⊤(xt − x∗δ)
]

≤ E
[
∥∇f̃t−L+1(xt)− Eut−2L+2:t−L+1 [gt−L+1]∥∥xt − x∗δ∥

]
≤ DE

[
∥∇f̃t−L+1(xt)− Eut−2L+2:t−L+1 [gt−L+1]∥

]
≤ 2ηt−L+1

dML5/2βD

δ
+

dδL2D

2
.

16

META-OPTIMIZATION FOR DEEP LEARNING

Lastly, by Lemma 9,

E

[
T∑

t=L

(Eut−2L+2:t−L+1 [gt−L+1]− gt−L+1)
⊤(xt − x∗δ)

]
≤ 2d2M2L2

δ2

T∑
t=L

ηt−L+1.

Summing up the the three inequalities, (3) can be bounded by

(3) ≤ D2

ηT
+

(
3d2M2L2

δ2
+

2dML5/2βD

δ

)
T∑
t=1

ηt +
dδL2DT

2
.

Putting everything together, the expected regret can be bounded by

E

[
T∑

t=L

ft(yt−L+1:t)−
T∑

t=L

f̃t(x
∗)

]
≤ 2LM +

D2

ηT
+

(
3d2M2L2

δ2
+

4dGML5/2βD

δ

)
T∑
t=1

ηt

+
5dδGL2DT

2
.

Let O denote polynomial dependence on D, d,M,L,G, β. Taking ηt = O(t−3/4), δ = O(T−1/4),
we have

∑T
t=1 ηt ≤ O(T 1/4), and

E

[
T∑

t=L

ft(yt−L+1:t)−
T∑

t=L

f̃t(x
∗)

]
≤ O(T 3/4).

Corollary 6 Under the same assumptions as Theorem 5, and setting ηMi,k,s, δM , L correctly, Algo-
rithm 5 produces a sequence of controls Mi,k,s that satisfy

E

∑
i,k,s

fi,k,s(xi,k,s)

 ≤ min
π∈Π

E

∑
i,k,s

fi,k,s(x
π
i,k,s)

+ Õ((NKS)3/4).

Lemma 7 (Variant of Lemma A.6 in [9]) Fixing u1, . . . , uT , Algorithm 6 produces a sequence of
xt such that

∥xt−H+1:t − (xt+H−1, . . . , xt+H−1)∥ ≤ 2ηt−H+1
dCH2

δ
.

17

META-OPTIMIZATION FOR DEEP LEARNING

Proof Fix u1, . . . , uT .

∥xt−L+1:t − (xt+L−1, . . . , xt+L−1)∥2 =
L−1∑
i=0

∥xt−i − xt+L−1∥2

≤
L−1∑
i=0

i+L−1∑
j=1

∥xt+L−j − xt+L−j−1∥

2

≤
L−1∑
i=1

i+L−1∑
j=1

ηt+L−1−j∥gt−j∥

2

≤ η2t−L+1

L−1∑
i=1

i+L−1∑
j=1

∥gt−j∥

2

≤ 4η2t−L+1L
3d

2M2L

δ2
,

where the second-to-last inequality holds since the stepsize is non-increasing, and the last inequality
is true because for any t,

∥gt∥ =
d

δ
∥ft(yt−L−1:t)

L−1∑
i=0

ut−i∥ ≤ dM

δ

√
L.

The lemma follows by taking a square root on both sides.

Lemma 8 (Variant of Lemma A.12 in [9]) Conditioned on u1, . . . , ut−2L+1, for any sequence of
ut−2L+2:t−L+1 that determines xt,

∥Eut−2L+2:t−L+1 [gt−L+1]−∇f̃t−L+1(xt)∥ ≤ 2ηt−L+1
dML5/2β

δ
+

dδL2

2
.

Proof By definition, after fixing u1:t−2L+1, the following quantities and functions are deterministic:
g1, . . . , gt−2L+1, x1, . . . , xt−L+1, and f1, . . . , ft−L+2. For a function f that takes in L inputs, let
∇if(x0, . . . , xL−1) =

∂f(x0,...,xL−1)
xi

denote the gradient of f with respect to xi.
By triangle inequality,

∥Eut−2L+2:t−L+1 [gt−L+1]−∇f̃t−L+1(xt)∥ ≤ ∥Eut−2L+2:t−L+1 [gt−L+1]−
L−1∑
i=0

∇ift−L+1(xt−2L+2:t−L+1)∥

+ ∥
L−1∑
i=0

∇ift−L+1(xt−2L+2:t−L+1)−∇f̃t−L+1(xt)∥

≤ dδL2

2
+ ∥

L−1∑
i=0

∇ift−L+1(xt−2L+2:t−L+1)−∇f̃t−L+1(xt)∥,

18

META-OPTIMIZATION FOR DEEP LEARNING

where the second inequality is due to Corollary A.10 in [9]. The norm of the sum can be bounded
by smoothness: for any sequence of ut−2L+2:t−L+1,

∥
L−1∑
i=0

∇ift−L+1(xt−2L+2:t−L+1)−∇f̃t−L+1(xt)∥2 ≤ L

L−1∑
i=0

∥∇ift−L+1(xt−2L+2:t−L+1)−∇ift−L+1(xt:t)∥2

= L∥∇ft−L+1(xt−2L+2:t−L+1)−∇ft−L+1(xt:t)∥2

≤ Lβ2∥xt−2L+2:t−L+1 − (xt, . . . , xt)∥2

≤ 4η2t−L+1

d2M2L5β2

δ2
,

by Lemma 7. Hence

∥
L−1∑
i=0

∇ift−L+1(xt−2L+2:t−L+1)−∇f̃t−L+1(xt)∥ ≤ 2ηt−L+1
dML5/2β

δ
,

and

∥Eut−2L+2:t−L+1 [gt−L+1]−∇f̃t−L+1(xt)∥ ≤ 2ηt−L+1
dML5/2β

δ
+

dδL2

2

Lemma 9 Conditioned on u1, . . . , ut−2L+1,

Eut−2L+2:t−L+1

[(
Eut−2L+2:t−L+1 [gt−L+1]− gt−L+1

)⊤
(xt − x∗δ)

]
≤ ηt−L+1

2d2M2L2

δ2
.

Proof For convenience, let E denote the expectation over ut−2L+2:t−L+1. Note that xt is a function
of gt−L+1, which depends on ut−2L+2:t−L+1. We have

E
[
(E[gt−L+1]− gt−L+1)

⊤ (xt − x∗δ)
]
= E

[
(E[gt−L+1]− gt−L+1)

⊤ (xt−L+1 − x∗δ)
]

+ E
[
(E[gt−L+1]− gt−L+1)

⊤ (xt − xt−L+1)
]
.

Note that xt−L+1 is fixed conditioned on u1, . . . , ut−2L+1, so

E
[
(E[gt−L+1]− gt−L+1)

⊤ (xt−L+1 − x∗δ)
]
= 0.

The second term satisfies, for any sequence of ut−2L+2:t−L+1,

(E[gt−L+1]− gt−L+1)
⊤ (xt − xt−L+1) ≤ ∥E[gt−L+1]− gt−L+1∥ ∥xt − xt−L+1∥

≤ 2 max
ut−2L+1:t−L+1

∥gt−L+1∥∥xt − xt−L+1∥

≤ 2dM
√
L

δ
∥xt − xt−L+1∥.

19

META-OPTIMIZATION FOR DEEP LEARNING

Similarly to the proof of Lemma 7, we have

∥xt − xt−L+1∥ ≤
L−2∑
i=0

∥xt−i − xt−i−1∥ ≤
L−2∑
i=0

ηt−i−1∥gt−i−L∥ ≤ ηt−L+1
dML3/2

δ
.

Therefore,

(E[gt−L+1]− gt−L+1)
⊤ (xt − xt−L+1) ≤ ηt−L+1

2d2M2L2

δ2
,

and the lemma follows by summing the two terms.

Appendix E. Experiments

E.1. Meta-optimization implementation

The implementation used for the deep learning experiments is based on the convex stochastic meta-
optimization algorithm detailed in Algorithm 1. This has two key differences with what is used in
our proofs: (1) we do not use the regularized loss functions of the form f(x) + β∥x− xk∥2 and (2)
we compute gradients of Algorithm 4 instead of using bandit feedback. Note that to differentiate
the surrogate loss that is computed through counterfactual rollouts, the implemented algorithm must
backpropagate through several training steps in order to perform each meta-update. In the control
language, this amounts to applying the gradient perturbation controller (GPC) to the dynamical
system defined in Appendix B; for more information on nonstochastic control and the counterfactual
nature of the GPC algorithm, please see Chapter 7 of [11]. We learn scalar meta-parameters Mi,t

instead of full matrices for computational efficiency (though we observed no difference when using
diagonal matrices), and we use the Adam optimizer with learning rate 10−4 and β1 = 0.9, β2 =
0.999 to update the Mi,t parameters.

An efficient open-source implementation of the algorithm as an optax optimizer is available
at https://github.com/edogariu/meta opt/tree/v1.0/. For clarity and reproducibility, we also provide
as Algorithm 7 a specification (in more standard deep learning terminology) of the practical meta-
optimization algorithm that was used in our experiments. The algorithm is phrased to handle mini-
batches and stochastic gradients for user convenience, but in our experiments we only use the full
Algorithm 7 in the deterministic setting with a fixed batch and full gradients. As discussed in the
main paper, in the stochastic setting we freeze the Mi,t parameters. In the algorithm below, we set
H = 32 (except for WMT, where H = 16 due to memory constraints), L = 2, O as Adam with
learning rate 10−4 and (β1, β2) = 0.9, 0.999, and the initializers selected at random; however, the
behavior is quite robust to all these parameters.

20

https://github.com/edogariu/meta_opt/tree/v1.0/

META-OPTIMIZATION FOR DEEP LEARNING

Algorithm 7: Meta-optimization, deep learning implementation
input : number of episodes N , number of steps per episode T , window size H , rollout length

L, first-order optimizer O, initial points {xi,1}Ni=1, initial learning rate η, weight decay
δ.

Initialize buffers of the past L model parameters, the past L+ 1 loss functions, and the past
H + L stochastic gradients.

Initialize scalar parameters {M (h)
1,1 }Hh=1 ⊂ R with M

(h)
1,1 = 0 for all h.

for i = 1, . . . , N do
for t = 1, . . . , T do

Play xi,t = xi,t−1 − η∇̃fi,t−1 −
∑H

h=1M
(h)
i,t ∇̃fi,t−h if t > 1; else play xi,1 (if

t− h < 1, set ∇̃fi,t−h = 0).
Receive a mini-batch of examples Bi,t of size b.
Obtain the loss function fi,t =

1
b

∑
j∈Bi,t

fi,j and append it to the buffer of loss
functions.

Suffer loss fi,t(xi,t) and compute the stochastic gradient ∇̃fi,t = 1
b

∑
j∈Bi,t

∇fi,j(xi,t).
If t ≥ H + L, calculate the counterfactual GPC rollout gradients

gi,t = ∇Mi,tRollout
(
Mi,t, xi,t−L, {fi,τ}tτ=t−L−1, {∇̃fi,τ}tτ=t−H−L+1, L, η, δ

)
by running Algorithm 4 and autodifferentiating. Update the meta-optimizer
parameters via Mi,t+1 = O(Mi,t, gi,t).

Append ∇̃fi,t to the gradient buffer and xi,t to the parameter buffer.
end

end

E.2. Experimental setup

Architectures We used the following commonplace deep learning architectures for the three
workloads, and note that the deterministic setting uses the same batch of data throughout training:

• MNIST: a 3-layer multilayer perceptron (MLP) with ReLU and 784, 100, 100, and 10 neu-
rons in the input layer, two hidden layers, and output layer, respectively, totaling 90K param-
eters. We used a batch size of 512 in both the deterministic and stochastic settings with no
preprocessing. For the deterministic setting we trained for N = 16 episodes of T = 500
iterations each, and for the stochastic setting we train for 5,000 iterations.

• CIFAR: a VGG-16 architecture with an output layer of 10, totaling 15M parameters. We used
a batch size of 512 in both the deterministic and stochastic settings with no preprocessing. For
the deterministic setting we trained for N = 8 episodes of T = 500 iterations each, and for
the stochastic setting we train for 9,000 iterations.

• WMT: a base Transformer architecture (as specified in [21] and implemented in Flax’s WMT
tutorial) totaling 65M parameters. We evaluated on the WMT-14 English-to-German dataset,
and we used a batch size of 16 in both the deterministic and stochastic settings. For the
deterministic setting we trained for N = 12 episodes of T = 8, 000 iterations each, and for
the stochastic setting we train for 100,000 iterations.

21

META-OPTIMIZATION FOR DEEP LEARNING

Baselines For each of the above workloads, we tried the following deep learning optimizers:

• SGD: Gradient descent with weight decay. To tune this baseline, we used a grid search over
the learning rate η and the weight decay parameter δ taking values η ∈ [0.001, 0.01, 0.1, 0.2, 0.4, 1.0]
and δ ∈ [0, 10−5, 10−4, 10−3], respectively.

• MOMENTUM: Gradient descent with momentum and weight decay. To tune this baseline,
we used a grid search over the learning rate η, the momentum parameter µ, and the weight
decay parameter δ taking values η ∈ [0.001, 0.01, 0.1, 0.2, 0.4, 1.0], µ ∈ [0.9, 0.95, 0.99], and
δ ∈ [0, 10−5, 10−4, 10−3], respectively.

• ADAMW: Adam optimizer, with weight decay. To tune this baseline, we used a grid search
and swept the learning rate η, momentum parameters β1, β2, and weight decay parameter δ
with the values η ∈ [10−4, 4 · 10−4, 10−3], β1 ∈ [0.9, 0.99], β2 ∈ [0.9, 0.99, 0.999], and
δ ∈ [0, 10−5, 10−4, 10−3], respectively.

• HGD: Hypergradient descent acting on the standard gradient descent algorithm (Algorithm 4
in [3]). To tune this baseline, we set the initial learning rate to be the tuned SGD learning rate
and swept the meta-learning rate β with the values β ∈ [10−5, 10−4, 10−3, 10−2]. Hypergra-
dient descent never performed better than tuned vanilla SGD, so we do not plot it in Figures
1 or 2.

• DOG: The Distance-over-Gradients (DoG) algorithm [14]. We run this baseline with the
given hyperparameters since it is self-tuning, and we use the optax.contrib implemen-
tation.

• D-ADAPTATION: D-Adaptation algorithm acting on the Adam optimizer (Algorithm 5 in
[7]). We run this baseline with the given hyperparameters since it is self-tuning, and we use
the optax.contrib implementation.

• MECHANIC: the Mechanic [6] algorithm acting on the AdamW optimizer described earlier.
We tune this baseline with the same grid search used to tune the AdamW optimizer, and we
use the optax.contrib implementation.

E.3. Ablations & other experiments

Sequential stability One assumption we make that is nonstandard in the deep learning optimization
literature is Assumption 2 – the sequential stability of the LTV dynamical system. We numerically
verify this notion of stability in Figure 3 for the dynamical system induced by training a small neural
network on MNIST (since the size of these matrices scales quadratically with number of parameters,
computing this for larger networks is infeasible).

Stochastic meta-optimization In Figure 4, we show what may happen if the meta-optimization
algorithm is run in the stochastic setting; as can be seen, the performance degrades between episodes.
This occurs on the more complex datasets, and so we believe it to be a characteristic of how back-
propagation through rollouts responds to noise between batches.

22

META-OPTIMIZATION FOR DEEP LEARNING

Figure 3: Decay of spectral norm of ∥
∏r

t=sAt∥ as a function of |r − s| for a small neural network
at the beginning of training. Averaged over 10 trials. Assumption 2 is satisfied in this
instance with a value of κ ≈ 2.0.

Figure 4: Behavior of the meta-optimization algorithm when training unfrozen in the stochastic
regime. The optimizer’s performance degrades over time.

23

META-OPTIMIZATION FOR DEEP LEARNING

Appendix F. Future work

In this work, we presented an initial exploration into the behavior of our meta-optimization algo-
rithm in deep learning environments. As such, our investigations and design decisions leave much
room for improvement and discovery, and we hope that the promising results inspire research to
make such methods more practical. We list below several directions of investigation that we think
will be fruitful.

Generalization As seen in Figure 2, on the WMT workload there is a noticeable generalization
gap between adaptive methods (algorithms like Adam and its derivatives) and non-adaptive methods
(vanilla gradient descent, momentum, and fixed preconditioners). This mirrors what is seen in
many related works, where versions of hyperparameter-tuning algorithms that are built on top of
Adam variants perform better than those built on vanilla gradient descent. While training with
adaptive methods does not induce a linear dynamical system, we consider it a problem of practical
importance to incorporate this adaptivity into the meta-optimization algorithm.

Scaling We have demonstrated that the meta-optimization approach is competitive on workloads
of different scales. However, for the largest workloads, it would be valuable to understand the
transferability of learned optimizers across model scales. Progress in this direction could allow for
one to learn a meta-optimizer on a smaller architecture and transfer it to a larger one, potentially
allowing for meta-optimization of large frontier models.

Optimizer pre-training The paradigm we proposed for meta-optimization on general deep learn-
ing workloads was to learn an optimizer in the deterministic setting on a fixed batch and deploy it
in the stochastic setting. However, we are still investigating the effects of the data selection itself
on the downstream performance: how do batch size, dataset complexity, and using the same frozen
batch affect the optimal Mi,t’s, and does this impact their transferability to the stochastic setting?
Depending on the answers to these questions, there may be more principled or practical ways to
learn a robust optimizer that can be deployed in the stochastic minibatch setting.

Efficient implementation There is much room for improvement in terms of the implementation
and parallelization of the meta-optimization algorithm. At the moment, the optimizer state needs to
retain the past H gradients, which for large models can be a significant memory burden; however,
there is ample structure in the gradient buffer and how it is used, and so we expect that an efficient
sharding of optimizer state is possible. Furthermore, we anticipate that there are cleverer ways to use
Jax’s machinery in order to help with the computational cost of backpropagating through rollouts.

24

	Introduction
	Related work

	Preliminaries
	Algorithms and guarantees
	Experiments
	Results
	Additional preliminaries
	Algorithm details
	Proofs for Section 3
	Bandit meta-optimization
	Experiments
	Meta-optimization implementation
	Experimental setup
	Ablations & other experiments

	Future work

