
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WHEN IS TASK VECTOR Provably EFFECTIVE FOR
MODEL EDITING? A GENERALIZATION ANALYSIS OF
NONLINEAR TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Task arithmetic refers to editing the pre-trained model by adding a weighted sum
of task vectors, each of which is the weight update from the pre-trained model
to fine-tuned models for certain tasks. This approach recently gained attention as
a computationally efficient inference method for model editing, e.g., multi-task
learning, forgetting, and out-of-domain generalization capabilities. However, the
theoretical understanding of why task vectors can execute various conceptual op-
erations remains limited, due to the highly non-convexity of training Transformer-
based models. To the best of our knowledge, this paper provides the first theo-
retical characterization of the generalization guarantees of task vector methods on
nonlinear Transformers. We consider a conceptual learning setting, where each
task is a binary classification problem based on a discriminative pattern. We the-
oretically prove the effectiveness of task addition in simultaneously learning a set
of irrelevant or aligned tasks, as well as the success of task negation in unlearning
one task from irrelevant or contradictory tasks. Moreover, we prove the proper
selection of linear coefficients for task arithmetic to achieve guaranteed general-
ization to out-of-domain tasks. All of our theoretical results hold for both dense-
weight parameters and their low-rank approximations. Although established in a
conceptual setting, our theoretical findings were validated on a practical machine
unlearning task using the large language model Phi-1.5 (1.3B).

1 INTRODUCTION

Large pre-trained models (Chowdhery et al., 2022; Touvron et al., 2023; Achiam et al., 2023; Ope-
nAI, 2024) have recently served as a foundational module in deep learning systems. Under the
pre-training-and-fine-tuning paradigm, although the traditional and straightforward full-parameter
fine-tuning can demonstrate superior performance in downstream tasks, its immense computational
and memory costs have become a serious practical issue. Consequently, many Parameter-Efficient
Fine-Tuning (PEFT) methods (Li & Liang, 2021; Hu et al., 2022; Jia et al., 2022; Wei et al., 2022b;a)
have been proposed to address this concern. Among them, the recent task vector approach receives
increasing attention (Ilharco et al., 2022a; Ortiz-Jimenez et al., 2023; Hendel et al., 2023; Todd et al.,
2024).

The task vector approach first fine-tunes a pre-trained model on several simpler tasks to obtain task
vectors, which represent the weight differences between the fine-tuned models and the pre-trained
model. To handle more complex tasks, a proper model can be edited by adding a linear combination
of these task vectors to the pre-trained model. Since this approach only requires determining the
appropriate arithmetic hyperparameters, with no need for further fine-tuning on complicated tasks,
the task vector method offers a significant efficiency advantage and is particularly effective when
adapting to a wide range of downstream tasks. Empirical evidence shows that adding multiple task
vectors can improve the model’s performance on corresponding tasks, while subtracting certain task
vectors allows the model to forget associated tasks. A proper linear combination of task vectors can
even enable the model to generalize on an out-of-domain task that has an analogous relationship with
the given task vectors, without needing labeled data. Additionally, it has been found that using low-
rank and/or sparse task vectors can further improve efficiency while maintaining the performance
(Yadav et al., 2023; Chitale et al., 2023; Yu et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Despite empirical successes, theoretical analysis of task vectors is less investigated. In particular,
we ask the following question:

When and why can the task vector approach perform well in multi-task learning, unlearning, and
out-of-domain generalization successfully and efficiently?

Some related theoretical works focus on analyzing the performance of machine unlearning from
a purely optimization perspective (Ginart et al., 2019; Neel et al., 2021; Guo et al., 2020; Mu &
Klabjan, 2024). However, these analyses do not apply to Transformer-based neural networks, which
are key components of large pre-trained models. Moreover, these works cannot be extended to study
multi-task learning or out-of-domain generalization to new tasks. Frankle et al. (2020) proposes the
concept of linear mode connectivity, suggesting that there exists a small-loss connected region in
the loss landscape of the model, thereby demonstrating that linear interpolation between models can
yield good performance. The most relevant work to this paper is (Ortiz-Jimenez et al., 2023), which
uses the Neural Tangent Kernel (NTK) framework (Jacot et al., 2018) to study neural networks as
linearized models under specific assumptions, to justify the use of linear arithmetic on task vectors
for targeted model editing. However, this work does not have generalization guarantees and cannot
explain the success of task vectors in nonlinear models without NTK assumptions.

1.1 MAJOR CONTRIBUTIONS

To the best of our knowledge, this work is the first theoretical generalization analysis of task arith-
metic on a nonlinear Transformer model for multi-task learning, unlearning, and out-of-domain
generalization. Focusing on binary classification tasks, we provide a quantitative analysis of the
dependence of the task arithmetic effect on arithmetic hyperparameters. Although our analysis is
centered on a simplified single-head and one-layer nonlinear Transformer, our theoretical insights
are validated on practical architectures. Our major contributions include:

1. A fine-grained feature-learning analysis of the effectiveness of task addition and negation.
We consider a data model in which binary labels are determined by the majority of discriminative
tokens, rather than their opposing discriminative counterparts, while other tokens do not affect the
labels. We begin by analyzing the learning dynamics of fine-tuning a Transformer and characterize
the properties of the resulting task vectors. Next, we provide sufficient conditions on the arithmetic
hyperparameters for the task vector approach to be successful. We prove that task addition is effec-
tive for multi-task learning when the tasks are either irrelevant or aligned. Aligned tasks are those
where solving one task contributes positively to solving the other. In contrast, task negation is prov-
ably successful for unlearning tasks that are either irrelevant or contradictory. Contradictory tasks
are defined as those where improving performance on one task harms the performance of the other.

2. The first provable out-of-domain generalization guarantees through task arithmetic. Focus-
ing on task vectors representing a set of irrelevant tasks, we prove a linear combination of these task
vectors can generalize to a wide range of new tasks by properly selecting the arithmetic coefficients.
Additionally, we characterize the range of suitable arithmetic coefficients sufficient for successful
generalization. This is the first theoretical justification of task vectors’ ability to adapt to new tasks.

3. Theoretical justification of low-rank approximation and magnitude-based pruning for task
vectors. We construct low-rank and sparse approximations to task vectors and prove that the
generalization guarantees are minimally affected by these approximations. This provides the first
theoretical support for the practice of using low-rank and sparse approximations to task vectors in
order to reduce computational complexity.

1.2 RELATED WORKS

Weight interpolation technique. Weight interpolation or model merging (Matena & Raffel, 2022;
Ilharco et al., 2022b; Jin et al., 2023; Yadav et al., 2023; Yu et al., 2024) refers to the practice of
linearly interpolating weights of multiple models, where these models may be fine-tuned from dif-
ferent downstream tasks or using different hyperparameters (model soups (Wortsman et al., 2022a)).
Weight interpolation is empirically observed to be able to guide the model towards wider optima
(Izmailov et al., 2018; Frankle et al., 2020) and better generalization in both single-task perfor-
mance and multi-task ablities, even surpassing fine-tuning methods in some cases (Rame et al.,
2022; Wortsman et al., 2022b; Ramé et al., 2023). Task arithmetic can be viewed as a special type
of weight interpolation, where linear operations are performed on task vectors.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Feature learning analysis for Transformers. Several recent works study the optimization and
generalization analysis of Transformers following the feature learning framework, which describes
how neural networks gradually focus on important features while discarding unimportant features
during training. Jelassi et al. (2022); Li et al. (2023d); Oymak et al. (2023); Ildiz et al. (2024);
Nichani et al. (2024); Chen et al. (2024); Makkuva et al. (2024); Li et al. (2023a; 2024b); Huang
et al. (2024) study the generalization of one-layer Transformers on different data models such as
spatial association, semantic/contextual structure, causal structure/Markov Chain of data, and the
majority voting of tokens in the data. However, no discussion was provided for merged models.

Theoretical study of PEFT methods. These are recent theoretical analyses on other PEFT methods.
For example, in-context learning is analyzed from the perspective of expressive power (Wei et al.,
2021; Bai et al., 2023; Akyürek et al., 2023; Von Oswald et al., 2023), the training dynamics or
generalization (Xie et al., 2021; Zhang et al., 2023a; Li et al., 2023b; Huang et al., 2023; Li et al.,
2024a). Some other works focus on prompt engineering with a tunable prompt (Wei et al., 2021;
Oymak et al., 2023). Another line of work theoretically investigates the low-rank adaptation in terms
of the implicit bias of the optimization process (Damian et al., 2022; Abbe et al., 2022; 2023; Boix-
Adsera et al., 2023; Jang et al., 2024; Li et al., 2024c) or model pruning with generalization analysis
(Zhang et al., 2021; Yang & Wang, 2023; Yang et al., 2023; Zhang et al., 2023b; Li et al., 2024a).
However, none of these works involve the task vector method or related approaches.

2 TASK VECTOR: DEFINITION AND OBSERVATIONS

2.1 PRELIMINARIES

Let f : X × Θ → Y be a neural network that maps inputs X ∈ X to labels y ∈ Y with Ψ ∈ Θ as
the model parameters. Denote Ψ(0) as the pre-trained model and Ψ∗

T as the fine-tuned model on a
given task T .
Definition 1. (Task Vector) The task vector ∆ΨT for the task T is computed as the element-wise
difference between the pre-trained and fine-tuned weights, i.e., ∆ΨT = Ψ∗

T −Ψ(0).

Task Arithmetic and Generalization. Given the pre-trained model Ψ(0) and a set of task vectors
{∆ΨTi

}i∈V on tasks {Ti}i∈V , one can construct a merged model Ψ = Ψ(0) +
∑
i∈V λi∆ΨTi

for
inference on downstream tasks, where λi ∈ R are arithmetic hyperparameters. Denote ℓ(X, y; Ψ)
as the loss function for the input X ∈ X , output y ∈ Y , and the model Ψ ∈ Θ. Hence, the
generalization error on the task T ′ with data (X, y) ∼ DT ′ is defined as

E(X,y)∼DT ′ ℓ(X, y; Ψ). (1)

Existing works (Ilharco et al., 2022a; Ortiz-Jimenez et al., 2023) conclude that by controlling λi,
the merged model Ψ can generalize across different tasks. Specifically, adding several ∆ΨTi

via
making λi > 0, i ∈ VA ⊂ V , leads to a model that exhibits desired performance on multiple tasks
from VA. Such a successful multi-task learning result can be mathematically represented as

E(X,y)∼DTi
ℓ(X, y; Ψ) ≤ Θ(ϵ), ∀i ∈ VA. (2)

Meanwhile, negating ∆ΨTi
with λi < 0, i ∈ VN ⊂ V , results in a machine unlearning model that

performs poorly on VN but roughly retains the accuracy on V\VN , i.e.,
E(X,y)∼DTi

ℓ(X, y; Ψ) ≥ Θ(1), E(X,y)∼DTj
ℓ(X, y; Ψ) ≤ Θ(ϵ), ∀i ∈ VN ,∀j ∈ V\VN . (3)

Moreover, task arithmetic is empirically (Ilharco et al., 2022a) shown to produce a model Ψ =
Ψ(0) + λ ·∆ΨT ′ that performs well on task analogy, in the form that “the target out-of-domain task
T ′(/∈ V) is to TA as TB is to TC ,” by constructing a task vector ∆ΨT ′ = ∆ΨTA

+(∆ΨTB
−∆ΨTC

).

2.2 EMPIRICAL OBSERVATIONS

Note that experiments in (Ilharco et al., 2022a) only summarize the empirical findings when tasks
are almost “orthogonal” to each other, while non-orthogonal cases are less explored. Therefore, in
Table 1, we further construct binary classification tasks on the parity of digits of Colored-MNIST
(Arjovsky et al., 2019; Chapel et al., 2020). We control the colors of digits to generate a pair of
two datasets so that the parity classification tasks on different pairs of datasets are conceptually
“irrelevant,” “aligned,” or “contradictory” to each other, respectively.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

For irrelevant tasks, odd and even digits are highly correlated with red and green colors in one dataset
but independent of colors in the other. In aligned tasks, the odd and even digits are correlated with
red and green colors in both datasets. In contradictory tasks, the color-parity correspondence is the
opposite in the two datasets. Let T1 and T2 denote the parity classification task on two different
datasets. Ψ = Ψ(0) +∆ΨT1

+ λ∆ΨT2
is used to evaluate the performance of T1 and T2.

A key finding from Table 1 is that the task vector method performs quite differently with dif-
ferent task correlations. To be concrete, given ∆ΨT1

and ∆ΨT2
for aligned tasks, the merged

model Ψ can acquire strong multi-task learning abilities but have poor unlearning capabilities. The
conclusion is exactly opposite for contradictory tasks. For irrelevant tasks, using task arithmetic can
result in good performance in both unlearning and multi-task learning. A question arises, i.e.,

(Q1) How does task correlation quantitatively affect the performance of task arithmetic in
multi-task learning and unlearning?

“Irrelevant” Tasks “Aligned” Tasks “Contradictory” Tasks
Multi-Task Unlearning Multi-Task Unlearning Multi-Task Unlearning

Best λ 1.4 -0.6 0.2 0.0 0.6 -1.0
T1 Acc 91.83 (-3.06) 95.02 (-0.56) 95.62 (0.00) 95.20 (-0.42) 79.54 (-16.70) 94.21 (-0.61)

T2 Acc 88.40 (-5.65) 50.34 (-45.24) 92.46 (-3.23) 90.51 (-5.18) 62.52 (-33.72) 4.97 (-89.85)

Table 1: Test accuracy (%) of Ψ = Ψ(0) + ∆ΨT1 + λ∆ΨT2 on task T1 and T2 with λ ∈
{−1,−0.8,−0.6, · · · , 2}. Multi-task learning aims to achieve good performance on both tasks, while un-
learning is to decrease the accuracy on T2 but maintain the accuracy on T1. The best λ is selected based on the
largest accuracy summation (or gap) of T1 and T2 for multi-task learning (or unlearning). The accuracy gap
(%) using Ψ to the fine-tuned models Ψ∗

T1
or Ψ∗

T2
is reported in the bracket.

We then explore the use of task arithmetic with two tasks T1 and T2 for an out-of-domain task T ′.
We construct tasks and data with Colored-MNIST, where we make T ′ more aligned with T1 and
contradictory to T2. This is a new out-of-domain setting different from task analogies in (Ilharco
et al., 2022a). Table 2 indicates that the optimal λ1 and λ2 results in a testing performance better
than using any separately trained model Ψ∗

T1
or Ψ∗

T2
. This implies that task arithmetic is powerful

in domain generalization and can be extended to more general scenarios beyond analogous tasks.
Hence, another question occurs, i.e.,

(Q2) Why do the arithmetic operations of task vectors perform well for out-of-domain gener-
alization, and how to choose the arithmetic hyperparameter λi for a desired performance?

Fine-Tuning Ψ∗
T1

Ψ∗
T2

Searching λ1, λ2 in [−2, 3]
(λ1, λ2) N/A (1, 0) (0, 1) (1.2,−0.6)
T ′ Acc 92.21 88.10 45.06 91.74

Table 2: Comparison between the test accuracy (%) by different methods with ∆ΨT1 and ∆ΨT2 . Searching λ1

and λ2 refers to evaluating Ψ = Ψ(0) + λ1∆ΨT1 + λ2∆ΨT2 on T ′ with λ1, λ2 ∈ {−2,−1.8,−1.6, · · · , 3}.

3 A DEEP DIVE INTO TASK VECTORS

We first summarize the main insights in Section 3.1. Section 3.2 introduces the mathematical for-
mulation of data and model. Sections 3.3 and 3.4 present the formal theoretical results on task
arithmetic for multi-task learning, unlearning, and out-of-domain generalization. Section 3.5 the-
oretically proves the existence of a low-rank approximation or a sparse version of task vectors to
maintain the performance.

3.1 MAIN THEORETICAL INSIGHTS

We focus on a set of binary classification tasks, where the labels in each task are determined by the
majority between the discriminative tokens versus their opposite tokens in each data. This follows
the theoretical setting in (Cao et al., 2022; Kou et al., 2023; Li et al., 2023a; 2024b). We consider
one-layer single-head Transformers. Our major takeaways are:

P1. Quantitative Analysis of Multi-Task Learning and Unlearning via Task Addition and
Negation. Let α represent the correlations between two tasks T1 and T2, where positive, neg-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

ative, and zero values correspond to aligned, contradictory, and irrelevant tasks, respectively. We
prove that the merged model, Ψ = Ψ(0) +∆ΨT1

+ λ∆ΨT2
, is successful for multi-task learning if

λ ≥ 1− α+ β for some small constant β. Moreover, the merged model is successful in unlearning
T2 if λ ≤ 0 for irrelevant tasks or if λ ∈ [−Θ(α−2), O(α−1)] for contradictory tasks.

P2. Successful Out-of-domain Generalization through Task Arithmetic. Given the correlation
γi between each existing task Ti and the target task T ′, we prove that as long as not all Ti are
irrelevant to T ′, we can achieve a desired out-of-domain generalization on T ′ using task arithmetic.
We explicitly quantify the arithmetic hyperparameter as functions of γi’s.

P3. Low-rank Approximation and Magnitude-Based Pruning Preserves the Model Editing
Performance. We provide the first theoretical generalization guarantees for the practical techniques
of low-rank approximation and task vector sparsity that reduce computation. Focusing on binary
classification tasks based on discriminative patterns, we demonstrate that both sparsification of task
vectors in the MLP layer (by removing rows with small magnitudes) and low-rank approximations
of task vectors offer guaranteed generalization through task arithmetic.

3.2 PROBLEM FORMULATION

Suppose that data X = (x1,x2, · · · ,xP) ∈ Rd×P contains P tokens, where each token is d-
dimensional and ∥xi∥ = 1 for i ∈ [P]. The label y ∈ {+1,−1} is a scalar. We consider the
learning model as a single-head one-layer Transformer with one self-attention layer and one two-
layer perceptron, which is mathematically written as

f(X; Ψ) =
1

P

P∑
l=1

a⊤
(l)Relu(WO

P∑
s=1

WV xssoftmaxl(xs⊤W⊤
KWQxl)), (4)

where Ψ = {{a(l)}Pl=1,WO,WV ,WK ,WQ} denotes the set of all the model parameters.
a(l) ∈ Rm and WO ∈ Rm×ma are the weights in the MLP layer. WV ∈ Rma×d,
WK ,WQ ∈ Rmb×d are weights in the self-attention layer. softmaxl((WKxi)

⊤WQxl) =

e(WKxi)
⊤WQxl/

∑P
j=1 e

(WKxj)
⊤WQxl . min{ma,mb} > d.

Fine-tuning algorithm for task vectors. Denote {Xn, yn}Nn=1 as a dataset with N data points for
the task function T , i.e., yn = T (Xn) for n ∈ [N]. We fine-tune the model by minimizing the
empirical risk function, i.e., minΨ

1
N

∑N
n=1 ℓ(X

n, yn; Ψ), via stochastic gradient descent (SGD) to
obtain the task vector ∆ΨT for T . We use the Hinge loss ℓ(X, y,Ψ) = max{1 − y · f(X; Ψ), 0}
as the loss function. For simplicity of analysis, we let W = W⊤

KWQ ∈ Rd×d and V = WOWV ∈
Rm×d as (Jelassi et al., 2022; Huang et al., 2023; Zhang et al., 2023a). At the t-th iteration, t =
0, 1, · · · , T − 1, the gradient is computed using a mini-batch Bt with |Bt| = B. The step size is
η ≤ O(1). Every entry of W and V is initialized from N (0, ξ2) where ξ ≤ 1/

√
m. Each ai is

sampled from {+1/m,−1/m}. a(l) does not update during the fine-tuning.

Following (Bu et al., 2024; Jiang et al., 2024), we consider the data formulation as in Definition 2.

Definition 2. Denote µT ∈ Rd as the discriminative pattern for the task T . Let {v1,v2, · · · ,vM}
be a set of d-dimensional orthonormal vectors that spans the subspace of task-irrelevant tokens
vj ⊥ µT , j ∈ [M]. Then, each (X, y) ∼ DT is generated as follows:

• Randomly generate the label y from {+1,−1} with an equal probability.

• Each token is randomly chosen from {µT ,−µT } ∪ {v1, · · · ,vM}. If y = 1 (or −1),
the number of tokens equal to µT (or −µT) is larger than that of −µT (or µT)1. µT and
−µT (or “−µT and µT ”) are referred to label-relevant and confusion patterns for y = 1
(or y = −1), respectively. The average fractions of label-relevant, confusion tokens, and
each vi, i ∈ [M] are δ∗, δ#, and (1− δ∗ − δ#)/M , respectively.

The basic idea of Definition 2 is that each label is determined by the dominant tokens with ±µT
patterns while all vi do not affect labels.

1This is motivated by some empirical observations that embeddings of data with opposite labels, such as
anonymous words, are significantly distinct (Engler et al., 2022) and even in opposite directions (Liu et al.,
2024).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3 HOW DO TASK ADDITION AND NEGATION AFFECT THE PERFORMANCE?
Next, we investigate the generalization of task addition and negation with task vectors obtained by
fine-tuning. Consider the setting where V = {1, 2} with ∆ΨT1

and ∆ΨT2
as the task vectors for two

binary tasks T1 and T2, respectively. T1 (or T2) is defined based on µT1
(or µT2

) as the discriminative
pattern following Definition 2. Hence, Ψ = Ψ(0) +∆ΨT1 + λ∆ΨT2 .

Denote α = µT1
⊤µT2

∈ [−1, 1], β = poly(ηδ∗)/M + Θ(ϵ
√
M)(< Θ(1)). Motivated by experi-

ments in Table 1, we discuss three cases, i.e., α > 0, α < 0, and α = 0, which corresponds to an
“aligned”, “contradictory”, or “irrelevant” relationship between T1 and T2, respectively. Then, we
state Theorem 1 for multi-task learning with the merged model Ψ.
Theorem 1. (Success of Multi-Task Learning on Irrelevant and Aligned Tasks) For any ϵ ∈ (0, 1)
and task T , suppose the following conditions hold when fine-tuning a pre-trained model: (i) the
batch size B ≥ Ω(ϵ−2 logM), (ii) the step size η ≤ O(1), (iii) the number of training it-
erations t ≥ T = Θ(η−1δ−2

∗), then the returned model Ψ∗
T achieves a generalization error

E(X,y)∼DT [ℓ(X, y; Ψ∗
T)] ≤ Θ(ϵ).

Moreover, given task vectors ∆ΨT1 and ∆ΨT2 obtained by fine-tuning as above for tasks T1 and T2,
the resulting Ψ = Ψ(0) +∆ΨT1

+ λ∆ΨT2
satisfies

E(X,y)∼DT1
ℓ(X, y; Ψ) ≤ Θ(ϵ) + |λ| · β, and E(X,y)∼DT2

ℓ(X, y; Ψ) ≤ Θ(ϵ) (5)

provided that α ≥ 0, λ ≥ 1− α+ β.
Remark 1. Theorem 1 first states the sufficient conditions during the fine-tuning stage to obtain
proper task vectors. Then, it characterizes the region of λ to ensure both tasks achieve Θ(M−1)
or Θ(ϵ) generalization error by adding task vectors. For irrelevant tasks with α = 0, a constant
λ ≥ 1 − β is required. This implies that adding up the task vector ∆ΨT2

in Ψ results in a desired
performance of multi-task learning. For aligned tasks with α > 0, we can obtain a good multi-task
learning performance if λ ≥ 1 − α + β. For contradictory tasks with α < 0, we cannot find the
proper λ such that Ψ obtains a small error on both T1 and T2 simultaneously, which means Ψ can
hardly generalize well on contradictory tasks.

We then study the unlearning using the merged model Ψ in different cases of α.
Theorem 2. (Success of Unlearning on Irrelevant and Contradictory Tasks) Given task vectors
∆ΨT1 and ∆ΨT2 that are fine-tuned following conditions (i)-(iii) in Theorem 1, the resulting Ψ =
Ψ(0) +∆ΨT1

+ λ∆ΨT2
satisfies

E(X,y)∼DT1
ℓ(X, y; Ψ) ≤ Θ(ϵ) + |λ| · β, and E(X,y)∼DT2

ℓ(X, y; Ψ) ≥ Θ(1) (6)

when (A) α = 0, λ ≤ 0; or (B) α < 0, and −Θ(α−2) ≤ λ ≤ poly(ηδ∗)α, or (C) 0 < α < 1− c for
some c = Θ(1), and 0 ≤ λ ≤ c/2;
Remark 2. For irrelevant tasks with α = 0, a constant λ ≤ 0 can ensure a perfect unlearning on
T2 while retaining on T1. For contradictory tasks with α < 0, the unlearning performance is desired
if a negative λ is in [−Θ(α−2),−poly(ηδ∗)/α], i.e., negating ∆ΨT2

. For aligned tasks with α > 0,
a proper λ for unlearning to be successful only exists when α is small, indicating that unlearning
becomes more challenging when tasks are more aligned.
Remark 3. Theorem 1 and 2 generally justify the validity of task addition, i.e., λ > 0 for multi-task
learning and negation, i.e., λ < 0, for unlearning as long as |λ| is not too large. The appropriate
region for λ is determined by α, the correlation between the tasks.

3.4 CAN A MODEL PROVABLY GENERALIZE OUT-OF-DOMAIN WITH TASK ARITHMETIC?
Consider {∆ΨTi

}i∈VΨ
as a set of task vectors fine-tuned on Ψ(0) for binary classification tasks

{Ti}i∈VΨ
. Each task Ti is defined with µTi

, i ∈ VΨ as the discriminative pattern following Def-
inition 2. Given the observation that task vectors are usually orthogonal to each other in practice
(Ilharco et al., 2022a), we study the setup where {µTi

}i∈VΨ
forms a set of orthonormal vectors.

We analyze the out-of-domain generalization on data (X, y) ∼ DT ′ for the task T ′, where the
discriminative pattern is denoted by µT ′ , and µT ′ =

∑
i∈VΨ

γiµTi
+κ ·µ′

⊥ with µ′
⊥ ⊥ {µTi

}i∈VΨ
,

∥µT ′∥ = ∥µ′
⊥∥ = 1, γi, κ ∈ R for i ∈ VΨ. Note that µT ′ contains a component µ′

⊥ that is
orthogonal to all discriminative patterns of existing tasks, characterizing it as an out-of-domain task.

The following theorem summarizes the required conditions for out-of-domain generalization on T ′.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Theorem 3. (Out-of-domain generalization using task arithmetic) Suppose µTi
⊥ µTj

for i ̸=
j, i, j ∈ VΨ . Let Ψ =

∑
i∈VΨ

λi∆ΨTi +Ψ(0), λi ̸= 0. Then, given that each ∆ΨTi is fine-tuned to
achieve Θ(ϵ) error following conditions (i)-(iii) in Theorem 1, as long as the following conditions
(A) there exists i ∈ VΨ s.t., γi ̸= 0 , and (B)

∑
i∈VΨ

λiγi ≥ 1 + c,∑
i∈VΨ

λiγ
2
i ≥ 1 + c,

|λi| · β ≤ c, for some c ∈ (0, 1) and all i ∈ VΨ,

(7)

we have E(X,y)∼DT ′ ℓ(X, y; Ψ) ≤ Θ(ϵ). (8)

Remark 4. Theorem 3 implies that linear operations of task vectors can produce a model that can
generalize well on out-of-domain tasks T ′ that has a distribution shift from tasks Ti, i ∈ VΨ. With
properly fine-tuned task vectors, the conditions to make out-of-domain generalization successful are
(1) the discriminative pattern of the target task T ′ has a non-zero projection onto at least one of the
discriminative pattern of tasks Ti, i ∈ VΨ; (2) the weighted summation of γi and γ2

i with λi as the
coefficient should be greater than the margin of the binary classification task; (3) the absolute value
of each λi is not too large to avoid large errors to the resulting model Ψ.
Remark 5. Note that λi satisfying (7) exists under mild conditions. In (75) of Appendix, we provide
a closed-form solution that meets (7). We omit them from the main paper to simplify the presentation.

3.5 CAN TASK VECTORS BE IMPLEMENTED EFFICIENTLY?
In this section, we theoretically investigate how to improve the computation efficiency of task vector
techniques during inference. We focus on two properties of task vectors, low rankness and sparsity.

Consider the fine-tuned model Ψ∗
T = {{a(l)}Pl=1,W

∗
OT ,W

∗
V T ,W

∗
KT ,W

∗
QT } with W ∗

T =

W ∗
K

⊤
T W

∗
QT and V ∗

T = W ∗
OT W

∗
V T from Lemma 1. Denote ∆WT = W ∗

T − W (0) and
∆VT = V ∗

T − V (0). We have the following conclusions.
Corollary 1. (Low-rank approximation) For any task T defined in Section 3.2, there exists
∆WLR ∈ Rd×d and ∆VLR ∈ Rm×d with rank(∆WLR) = rank(∆VLR) = 1, such that

∥∆WT −∆WLR∥F ≤ M · ϵ+ 1

logM
, and ∥∆VT −∆VLR∥F ≤ δ−1

∗ ϵ, (9)

hold. Moreover, Theorems 1-3 hold by replacing ∆WT and ∆VT with ∆WLR and ∆VLR in the
task vectors and replacing ϵ with ϵLR = (log η−1 + δ−1

∗)ϵ in the results.
Remark 6. Corollary 1 states that when ϵ ∈ (0, (M logM)−1), we can find a rank-12 approxi-
mation of W ∗ and V ∗ with an error less than Θ(log−1 M) to ensure that all Theorems hold with
roughly the same generalization error. Specifically, with ϵ error derived in Theorems 1-3, using
rank-1 approximation leads to ϵLR = (log η−1 + δ−1

∗)ϵ, which equals Θ(ϵ) given η and δ∗ as
constants. Hence, Corollary 1 indicates that low-rank approximation of individual task vectors
generally preserves the performance of the model after applying task arithmetic.

We also prove that task vectors are approximately sparse in Corollary 2, which implies that pruning
task vectors does not change the generalization.
Corollary 2. (Sparsity of task vectors) There exists L ⊂ [m] with |L| = Θ(m) s.t.,

∥ui∥ ≥ Ω(m−1/2), i ∈ L; ∥ui∥ ≤ O(m−1/2
√

logB/B), i ∈ [m]\L, (10)

where ui is the i-th row of ∆V ∗
T and B is the batch size of fine-tuning lower bounded in condition

(i) of Lemma 1. Then, pruning all rows in [m]\L of ∆V ∗
T ensures Theorems 1-3 to hold.

Remark 7. Corollary 2 illustrates that a constant fraction of rows in ∆V ∗
T in L has a large mag-

nitude, while the remaining ones in [m]\L have much smaller magnitude. Then, we prove that
removing rows in [m]\L does not hurt the performance of multi-task learning, unlearning, and out-
of-domain generalization by task arithmetic. This indeed justifies the existence of redundancy in

2The rank-1 approximation results from our simplified model that has one discriminative pattern per task.
Our result indicates that the proper rank for approximation depends on the number of discriminative patterns
for each task, which is far smaller than the model dimension in practice.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

“Delta parameters,” a similar notion of task vectors, defined in (Yu et al., 2024), and verifies the
validity of magnitude-based pruning on task vectors like TIES (Yadav et al., 2023) or DARE (Yu
et al., 2024).

3.6 PROOF SKETCH AND TECHNICAL NOVELTY

We first provide the following informal lemma for the fine-tuned task vector. Lemma 1 provides the
convergence of the fine-tuning process and the properties the obtained task vector satisfies.

Lemma 1. (informal) A model Ψ has a generalization error Θ(ϵ) on task T (with the discriminative
pattern µT) if ∆Ψ := Ψ−Ψ(0) = {∆W ,∆V } satisfy both conditions as follows:

(A) the attention weights between two label-relevant patterns are dominant, while the attention
values between a label-relevant pattern and any other pattern are close to zero;

(B) A constant fraction of rows in ∆V in the MLP layer has a large magnitude with a direction
either close to µT or −µT , while the remaining rows have small weights.

Moreover, any task vector obtained by fine-tuning on task T satisfying conditions (i)-(iii) in Theorem
1 satisfy conditions (A) and (B) for task T .

The proof ideas of Theorems 1 and 2 are as follows. To ensure a successful multi-task learning
stated in (2), we need ∆ΨT1

+ λ∆ΨT2
satisfying both conditions (A) and (B) in Lemma 1 for tasks

T1 and T2. To ensure unlearning T2 and maintaining the generalization in T1 as stated in (3), we
need ∆ΨT1

+λ∆ΨT2
satisfying (A) and (B) for T1 but failing either (A) or (B) for T2. When α = 0,

the component of ∆ΨTi in Ψ has negligibile effect on data from Tj , for any i ̸= j, i, j ∈ {1, 2}.
When α > 0, both T1 and T2 should tend to favor λ > 0 for a good generalization. When α < 0, T1
prefers a negative λ, while T2 prefers a positive λ.

To prove the out-of-domain generalization in Theorem 3, we need to find a proper set of λi, i ∈
VΨ ∩V ′ such that

∑
i∈VΨ

λi∆ΨTi
hold for conditions (A) and (B) in Lemma 1 for the task T ′. The

proof idea for Corollaries 1 and 2 comes from an observation from Lemma 1. That is, Conditions (A)
and (B) demonstrate that the rows in ∆V and the matrix ∆W only enlarge tokens in the direction
of label-relevant pattern or its opposite. This implies the sparsity of ∆V and the low-rank property
of the entire ∆Ψ. The proofs for Theorems 1 and 2 and 3 and Corollaries 1 and 2 can be found in
Appendix C, respectively.

Technical Novelty. Compared with (Li et al., 2023a), Lemma 1 establishes a more fine-grained
characterization of ∆ΨT , which allows us to perform a detailed analysis of layer-by-layer outputs of
the merged model. Furthermore, Lemma 1 extends the theoretical analysis to training from random
initialization with two merged trainable parameter matrices W and V .

Moreover, to the best of our knowledge, we provide the first generalization analysis of task arith-
metic in model editing (Theorems 1, 2, and 3). The merged model Ψ preserves the nonlinearity of
task vectors from the nonlinear model architecture rather than linearizing the model by impractical
infinite wide network assumption in (Ortiz-Jimenez et al., 2023). This allows us to expand the un-
derstanding of task arithmetic beyond the NTK region as in (Ortiz-Jimenez et al., 2023), where the
problem is extremely overparameterized.

4 NUMERICAL EXPERIMENTS

We conduct extensive experiments on image classification and natural language generation to verify
the effectiveness of task vectors in different downstream tasks. For image classification, we use
the ViT-Small/16 model (Dosovitskiy et al., 2020) pre-trained from ImageNet-21K (Russakovsky
et al., 2015) for downstream tasks with Colored-MNIST (Arjovsky et al., 2019; Chapel et al., 2020).
For natural language generation, we use the open-source Phi-1.5 (1.3B) language model (Gunasekar
et al., 2023; Li et al., 2023c). We repeat the experiment using LoRA with Phi-3-small (7B) in
Appendix A.

4.1 EXPERIMENTS ON IMAGE CLASSIFICATION

Experiment Setup. To control the correlation between tasks, we use Colored-MNIST for image
classification tasks. We designed binary classification problems based on the parity of digits, where
odd digits are labeled as +1 and even digits as −1. We utilize two colors, red and green, to construct

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

different task correlations. Define ro and re as the proportion of red colors in odd and even digits,
respectively. Then, the proportion of green colors in odd and even digits are 1 − ro and 1 − re, re-
spectively. Across all of our experiments, we set re = 1−ro. The correlation α̂(Ψ∗

T1
,Ψ∗

T2
) between

two tasks T1 and T2, with D1 and D2 respectively as the corresponding test set, is approximated by
their averaged cosine similarity between centered outputs from the two fine-tuned models, i.e.,

α̂(Ψ∗
T1
,Ψ∗

T2
) = 1/2(α̂(Ψ∗

T1
,Ψ∗

T2
,D1) + α̂(Ψ∗

T1
,Ψ∗

T2
,D2)),

where α̂(Ψ∗
T1
,Ψ∗

T2
,Dj) =

∑
i∈Dj

cos
〈
ỹi1,j , ỹ

i
2,j

〉
|Dj |

, ỹil,j = ŷil,j −
1

|Dj |
∑
i∈Dj

ŷil,j , l, j ∈ {1, 2}. (11)

ŷil,j represents the i-th output of the fine-tuned model Ψ∗
Tl

on the test set Dj . Note that to compute
α̂(Ψ∗

T1
,ΨT ∗

2
) by (11), we do not require the availability of extra models or datasets except Ψ∗

T1
,

Ψ∗
T1

, and the test set D1 and D2.

Experiment Results. We first investigate the ability of task arithmetic using Ψ = Ψ(0) +∆ΨT1
+

λ∆ΨT2
to handle multi-task learning and unlearning under three cases in terms of task correlations.

Let ro = 0.95 for T1. In case I, let ro = re = 0.5 in T2. In case II, let ro = 0.9 in T2, and in
case III, let ro = 0.05 in T2. The computed correlations α̂(Ψ∗

T1
,Ψ∗

T2
) of the above three settings

are 0.164, 0.891, and −0.849, which corresponds to irrelevant (α ≈ 0), aligned (α > 0), and
contradictory (α < 0) tasks discussed in Theorem 1, respectively. Figure 1 illustrates that when
tasks are irrelevant, successful multi-task learning on both tasks and unlearning on task T2 can be
achieved when λ ≥ 1 and λ ≤ 0, respectively. When tasks are aligned, the trend of testing accuracy
of Ψ on T1 and T2 are consistent. A superior multi-task learning performance can be observed when
λ > 0, and one cannot find a region of λ where T2 is unlearned while maintaining the accuracy for
T1. When tasks are contradictory, one can obtain a good unlearning behavior when λ ≤ 0, and no
selection of λ can achieve multi-task learning. This result verifies Theorems 1 and 2 for α = 0,
α > 0, and α < 0, respectively.

(A) Irrelevant tasks (B) Align tasks (C) Contradictory tasks
Figure 1: Testing accuracy of the merged model Ψ on task T1 and T2.

(A) (B)
Figure 2: (A) The heatmap of the testing accuracy
(the color bar %) on T ′ using the merged model Ψ.
The black dot is the baseline, while the green cross is
the best λ1, λ2. (B) The red region satisfies (7), while
the blue region does not.

We then study the out-of-domain generalization
capability of task arithmetic. We consider a
merged model Ψ = Ψ(0) + λ1∆ΨT1

+ λ2∆ΨT2

constructed by two task vectors. In T1, we let
ro = 0.85, while in T2, we let ro = 0.05.
In the target task T ′, ro = 0.9. We compute
that α̂(Ψ∗

T1
,Ψ∗

T2
) = 0.115, which means T1 and

T2 are approximately irrelevant. Figure 2 (A)
demonstrates that in a triangular region with the
black dashed line of λ1 and λ2, we can achieve
a good generalization performance. This region
is consistent with the red region in Figure 2 (B),
which is produced by condition (7)3 where γ1 and
γ2 are estimated by α̂(Ψ∗

T1
,Ψ∗

T ′) = 0.792 and
α̂(Ψ∗

T2
,Ψ∗

T ′) = −0.637. We choose small values
β = 0.01, c = 0.02. The result justifies the sufficient conditions for a successful out-of-domain
generalization in Theorem 3.

3Since the practical classification margin might be smaller than that of Hinge loss used in our theoretical
analysis, we replace 1 + c in (7) with 0.2 + c.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.2 EXPERIMENT ON LANGUAGE GENERATION TASK

Experiment setup. We study the unlearning performance using three datasets, “Harry Potter 1”
(HP1), “Harry Potter 2” (HP2) by J.K. Rowling, and “Pride and Prejudice” (PP) by Jane Austen.
We consider HP1 and HP2 as semantically similar and aligned books due to the shared authors
(α̂(Ψ∗

THP1
,Ψ∗

THP2
) = 0.498 by (11)) following Dou et al. (2024), while PP is less aligned with

HP1 than HP2 (α̂(Ψ∗
THP1

,Ψ∗
TPP

) = 0.239 by (11)). We study Next Token Prediction on these three
datasets separately as three different tasks, denoted by THP1, THP2, and TPP, respectively. Then THP1
and THP2 are greatly aligned, while THP1 and TPP are less aligned.

Denote the pre-trained Phi-1.5 model as Ψ(0). We first fine-tune Ψ(0) on all three datasets jointly to
obtain Ψ(0)′, which has favorable generalization for all tasks THP1, THP2, and TPP. Initialized from
Ψ(0), we fine-tune on dataset HP1 to obtain model Ψ∗

HP1. The task vector for THP1 is computed as:
∆ΨHP1 = Ψ∗

HP1 −Ψ(0). The merged model is Ψ = Ψ(0)′ + λ ·∆ΨHP1.

Experiment results. We vary λ and evaluate the performance on THP1, THP2, and TPP, respectively.
The evaluation metric is the Rouge-L score used in (Dou et al., 2024), which measures the ratio
of the longest common sequence between the original book and the LLM’s generation. A higher
score indicates a better generation performance. As shown in Table 3, when λ becomes negative,
the Rouge-L score for THP1 decreases, indicating the success of unlearning. When λ is the smallest
value in the experimental selection (λ = −1), the unlearning performance is the best, with the
Rouge-L decreasing by 37.23% from Ψ(0)′. Moreover, when THP1 is unlearned, the performance
of THP2 also degrades significantly, with the Rouge-L score decreasing by 34.71%. In contrast,
the performance degradation on TPP is much smaller, with a decrease by 15.13%4. This verifies
Theorem 2 that unlearning a task THP1 can effectively degrade the performance of the aligned task
(THP2) as well, while the performance degradation on the less aligned task (TPP) is relatively smaller.

λ 0 (baseline) −0.2 −0.4 −0.6 −0.8 −1

THP1 0.2213 0.2211 0.1732 0.1866 0.1572 0.1389 (37.23% ↓)
THP2 0.2302 0.2032 0.2111 0.2034 0.1695 0.1503 (34.71% ↓)
TPP 0.1983 0.1888 0.1877 0.1802 0.1932 0.1683 (15.13% ↓)

Table 3: Rouge-L scores of THP1, THP2, and TPP by Ψ = Ψ(0)′+λ ·∆ΨHP1 using full-rank task vector ∆ΨHP1.

We also implement our experiment using LoRA in fine-tuning to compute the task vector. We set
the rank of each parameter as 32, which requires to tune only 0.35% of total parameters and reduces
the peak memory consumption by 54%. Let ∆ΨLR

HP1 denote the resulting low-rank task vector for
THP1. We repeat the experiments by replacing ∆ΨHP1 with ∆ΨLR

HP1. Comparing Table 4 to Table 3,
on can see that all the insights still hold when using a low-rank task vector, verifying Corollary 1.

λ 0 (baseline) −0.2 −0.4 −0.6 −0.8 −1

THP1 0.2432 0.2033 0.1857 0.1665 0.1439 0.1568 (35.53% ↓)
THP2 0.2335 0.1932 0.2065 0.1813 0.1664 0.1772 (24.11% ↓)
TPP 0.2111 0.2001 0.1884 0.1963 0.1849 0.1819 (13.83% ↓)

Table 4: Rouge-L scores of THP1 THP2, and TPP by Ψ = Ψ(0)′ +λ ·∆ΨLR
HP1 using low-rank task vector ∆ΨLR

HP1.

5 CONCLUSIONS

In this paper, we theoretically investigate the generalization ability of the task vector technique.
Based on feature learning analysis of a one-layer nonlinear Transformer, we quantitatively charac-
terize the selection of arithmetic hyperparameters and their dependence on task correlations so that
the resulting task vectors achieve desired multi-task learning, unlearning, and out-of-domain gen-
eralization. We also demonstrate the validity of using sparse or low-rank task vectors. Theoretical
results are justified on large language models. Future directions include analyzing the performance
of task vectors in more complex models and designing more robust task vector selection methods.

4Note that the task vector method leads to a 13.1% decrease in Rouge-L score on BOOKS dataset on average
(Shi et al., 2024). The state-of-the-art unlearning methods are empirically shown to result in a performance drop
in utility (Maini et al., 2024; Shi et al., 2024).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase property: a
necessary and nearly sufficient condition for sgd learning of sparse functions on two-layer neural
networks. In Conference on Learning Theory, pp. 4782–4887. PMLR, 2022.

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. Sgd learning on neural networks:
leap complexity and saddle-to-saddle dynamics. In The Thirty Sixth Annual Conference on Learn-
ing Theory, pp. 2552–2623. PMLR, 2023.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2023.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians: Prov-
able in-context learning with in-context algorithm selection. arXiv preprint arXiv:2306.04637,
2023.

Enric Boix-Adsera, Etai Littwin, Emmanuel Abbe, Samy Bengio, and Joshua Susskind. Transform-
ers learn through gradual rank increase. arXiv preprint arXiv:2306.07042, 2023.

Dake Bu, Wei Huang, Taiji Suzuki, Ji Cheng, Qingfu Zhang, zhiqiang xu, and Hau-San Wong. Prov-
ably neural active learning succeeds via prioritizing perplexing samples. In Forty-first Interna-
tional Conference on Machine Learning, 2024. URL https://openreview.net/forum?
id=kzz0kn546b.

Yuan Cao, Zixiang Chen, Misha Belkin, and Quanquan Gu. Benign overfitting in two-layer convo-
lutional neural networks. Advances in neural information processing systems, 35:25237–25250,
2022.

Laetitia Chapel, Mokhtar Z Alaya, and Gilles Gasso. Partial optimal tranport with applications on
positive-unlabeled learning. Advances in Neural Information Processing Systems, 33:2903–2913,
2020.

Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Unveiling induction heads: Provable
training dynamics and feature learning in transformers. arXiv preprint arXiv:2409.10559, 2024.

Rajas Chitale, Ankit Vaidya, Aditya Kane, and Archana Ghotkar. Task arithmetic with lora for
continual learning. arXiv preprint arXiv:2311.02428, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
with gradient descent. In Conference on Learning Theory, pp. 5413–5452. PMLR, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations, 2020.

Guangyao Dou, Zheyuan Liu, Qing Lyu, Kaize Ding, and Eric Wong. Avoiding copyright infringe-
ment via machine unlearning. arXiv preprint arXiv:2406.10952, 2024.

Jan Engler, Sandipan Sikdar, Marlene Lutz, and Markus Strohmaier. Sensepolar: Word sense aware
interpretability for pre-trained contextual word embeddings. In Findings of the Association for
Computational Linguistics: EMNLP 2022, pp. 4607–4619, 2022.

11

https://openreview.net/forum?id=kzz0kn546b
https://openreview.net/forum?id=kzz0kn546b

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode con-
nectivity and the lottery ticket hypothesis. In International Conference on Machine Learning, pp.
3259–3269. PMLR, 2020.

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data
deletion in machine learning. Advances in neural information processing systems, 32, 2019.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are
all you need. arXiv preprint arXiv:2306.11644, 2023.

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal
from machine learning models. In Proceedings of the 37th International Conference on Machine
Learning, pp. 3832–3842, 2020.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. In Findings
of the Association for Computational Linguistics: EMNLP 2023, pp. 9318–9333, 2023.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. In NeurIPS
2023 Workshop on Mathematics of Modern Machine Learning, 2023.

Yu Huang, Zixin Wen, Yuejie Chi, and Yingbin Liang. Transformers provably learn feature-position
correlations in masked image modeling. arXiv preprint arXiv:2403.02233, 2024.

M Emrullah Ildiz, Yixiao Huang, Yingcong Li, Ankit Singh Rawat, and Samet Oymak. From self-
attention to markov models: Unveiling the dynamics of generative transformers. arXiv preprint
arXiv:2402.13512, 2024.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International Conference
on Learning Representations, 2022a.

Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi, Si-
mon Kornblith, Ali Farhadi, and Ludwig Schmidt. Patching open-vocabulary models by interpo-
lating weights. Advances in Neural Information Processing Systems, 35:29262–29277, 2022b.

P Izmailov, AG Wilson, D Podoprikhin, D Vetrov, and T Garipov. Averaging weights leads to wider
optima and better generalization. In 34th Conference on Uncertainty in Artificial Intelligence
2018, UAI 2018, pp. 876–885, 2018.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Uijeong Jang, Jason D. Lee, and Ernest K. Ryu. LoRA training in the NTK regime has no spurious
local minima. In Forty-first International Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=s1sdx6vNsU.

Samy Jelassi, Michael Sander, and Yuanzhi Li. Vision transformers provably learn spatial structure.
Advances in Neural Information Processing Systems, 35:37822–37836, 2022.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In European Conference on Computer Vision, pp. 709–727.
Springer, 2022.

Jiarui Jiang, Wei Huang, Miao Zhang, Taiji Suzuki, and Liqiang Nie. Unveil benign overfitting
for transformer in vision: Training dynamics, convergence, and generalization. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=FGJb0peY4R.

12

https://openreview.net/forum?id=s1sdx6vNsU
https://openreview.net/forum?id=s1sdx6vNsU
https://openreview.net/forum?id=FGJb0peY4R
https://openreview.net/forum?id=FGJb0peY4R

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
by merging weights of language models. In The Eleventh International Conference on Learning
Representations, 2023.

Yiwen Kou, Zixiang Chen, Yuanzhou Chen, and Quanquan Gu. Benign overfitting in two-layer relu
convolutional neural networks. In International Conference on Machine Learning, pp. 17615–
17659. PMLR, 2023.

Hongkang Li, Meng Wang, Sijia Liu, and Pin-Yu Chen. A theoretical understanding of shallow
vision transformers: Learning, generalization, and sample complexity. In The Eleventh Interna-
tional Conference on Learning Representations, 2023a. URL https://openreview.net/
forum?id=jClGv3Qjhb.

Hongkang Li, Meng Wang, Songtao Lu, Xiaodong Cui, and Pin-Yu Chen. How do nonlinear trans-
formers learn and generalize in in-context learning? In Forty-first International Conference on
Machine Learning, 2024a. URL https://openreview.net/forum?id=I4HTPws9P6.

Hongkang Li, Meng Wang, Tengfei Ma, Sijia Liu, ZAIXI ZHANG, and Pin-Yu Chen. What im-
proves the generalization of graph transformers? a theoretical dive into the self-attention and
positional encoding. In Forty-first International Conference on Machine Learning, 2024b. URL
https://openreview.net/forum?id=mJhXlsZzzE.

Hongkang Li, Meng Wang, Shuai Zhang, Sijia Liu, and Pin-Yu Chen. Learning on transformers
is provable low-rank and sparse: A one-layer analysis. In 2024 IEEE 13rd Sensor Array and
Multichannel Signal Processing Workshop (SAM), pp. 1–5. IEEE, 2024c.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, 2021.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-context learning. In International Conference on
Machine Learning, 2023b.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023c.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards a
mechanistic understanding. arXiv preprint arXiv:2303.04245, 2023d.

Sheng Liu, Haotian Ye, Lei Xing, and James Y Zou. In-context vectors: Making in context learning
more effective and controllable through latent space steering. In Forty-first International Confer-
ence on Machine Learning, 2024.

Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C Lipton, and J Zico Kolter. Tofu: A task
of fictitious unlearning for llms. arXiv preprint arXiv:2401.06121, 2024.

Ashok Vardhan Makkuva, Marco Bondaschi, Adway Girish, Alliot Nagle, Martin Jaggi, Hyeji Kim,
and Michael Gastpar. Attention with markov: A framework for principled analysis of transformers
via markov chains. arXiv preprint arXiv:2402.04161, 2024.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances
in Neural Information Processing Systems, 35:17703–17716, 2022.

Siqiao Mu and Diego Klabjan. Rewind-to-delete: Certified machine unlearning for nonconvex func-
tions. arXiv preprint arXiv:2409.09778, 2024.

Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods
for machine unlearning. In Algorithmic Learning Theory, pp. 931–962. PMLR, 2021.

Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
gradient descent. arXiv preprint arXiv:2402.14735, 2024.

13

https://openreview.net/forum?id=jClGv3Qjhb
https://openreview.net/forum?id=jClGv3Qjhb
https://openreview.net/forum?id=I4HTPws9P6
https://openreview.net/forum?id=mJhXlsZzzE

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

OpenAI. Openai o1 system card. OpenAI, 2024.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
space: Improved editing of pre-trained models. Advances in Neural Information Processing Sys-
tems, 36, 2023.

Samet Oymak, Ankit Singh Rawat, Mahdi Soltanolkotabi, and Christos Thrampoulidis. On the role
of attention in prompt-tuning. arXiv preprint arXiv:2306.03435, 2023.

Alexandre Rame, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, Patrick Gallinari,
and Matthieu Cord. Diverse weight averaging for out-of-distribution generalization. Advances in
Neural Information Processing Systems, 35:10821–10836, 2022.

Alexandre Ramé, Kartik Ahuja, Jianyu Zhang, Matthieu Cord, Léon Bottou, and David Lopez-Paz.
Model ratatouille: Recycling diverse models for out-of-distribution generalization. In Interna-
tional Conference on Machine Learning, pp. 28656–28679. PMLR, 2023.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211–252, 2015.

Weijia Shi, Jaechan Lee, Yangsibo Huang, Sadhika Malladi, Jieyu Zhao, Ari Holtzman, Daogao
Liu, Luke Zettlemoyer, Noah A Smith, and Chiyuan Zhang. Muse: Machine unlearning six-way
evaluation for language models. arXiv preprint arXiv:2407.06460, 2024.

Eric Todd, Millicent Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau.
Function vectors in large language models. In The Twelfth International Conference on Learning
Representations, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiv:1011.3027, 2010.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Colin Wei, Sang Michael Xie, and Tengyu Ma. Why do pretrained language models help in down-
stream tasks? an analysis of head and prompt tuning. Advances in Neural Information Processing
Systems, 34:16158–16170, 2021.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing in-
ference time. In International conference on machine learning, pp. 23965–23998. PMLR, 2022a.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust
fine-tuning of zero-shot models. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 7959–7971, 2022b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In International Conference on Learning Representations,
2021.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Re-
solving interference when merging models. Advances in Neural Information Processing Systems,
36, 2023.

Hongru Yang and Zhangyang Wang. On the neural tangent kernel analysis of randomly pruned
neural networks. In International Conference on Artificial Intelligence and Statistics, pp. 1513–
1553. PMLR, 2023.

Hongru Yang, Yingbin Liang, Xiaojie Guo, Lingfei Wu, and Zhangyang Wang. Theoreti-
cal characterization of how neural network pruning affects its generalization. arXiv preprint
arXiv:2301.00335, 2023.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Ab-
sorbing abilities from homologous models as a free lunch. In Forty-first International Conference
on Machine Learning, 2024.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
arXiv preprint arXiv:2306.09927, 2023a.

Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, and Jinjun Xiong. Why lottery ticket wins?
a theoretical perspective of sample complexity on sparse neural networks. Advances in Neural
Information Processing Systems, 34, 2021.

Shuai Zhang, Meng Wang, Pin-Yu Chen, Sijia Liu, Songtao Lu, and Miao Liu. Joint edge-model
sparse learning is provably efficient for graph neural networks. In The Eleventh International
Conference on Learning Representations, 2023b.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A ADDITIONAL EXPERIMENTS

We repeat the language generation experiment in Section 4.2 with Phi-3-small (7B). The task vectors
are obtained by LoRA (Hu et al., 2022). Table 5 shows that the insight of Theorem 2 still holds, i.e.,
unlearning a certain task (HP1) can effectively forget the aligned task (HP2) with a 52.29% decrease
of Rouge-L scores, while the Rouge-L score for the less-aligned task (PP) has a decrease of only
20.65%. Moreover, by using a larger model than Phi-1.5, the unlearning performance of the aligned
task HP2 is improved from 37.23% decrease to 55.61% decrease. In comparison, the performance
difference on the less-aligned PP is much smaller, from 15.13% decrease to 20.65% decrease.

λ 0 (baseline) −0.2 −0.4 −0.6 −0.8 −1

THP1 0.2573 0.1989 0.1933 0.1888 0.1572 0.1142 (55.61% ↓)
THP2 0.2688 0.2113 0.1993 0.1938 0.1622 0.1563 (52.29% ↓)
TPP 0.1942 0.1825 0.1644 0.1687 0.1592 0.1541 (20.65% ↓)

Table 5: Rouge-L scores of THP1 THP2, and TPP by Ψ = Ψ(0)′ + λ ·∆ΨLR
HP1 using low-rank task vector ∆ΨLR

HP1
with Phi-3-small (7B).

B PRELIMINARIES OF THEORY

We first summarize the notations we use in this paper in (6).

Table 6: Summary of Notations
Notations Annotation
X , xi, Xn, yn X is the input data, which contains P tokens. xi is the i-th token of X . Xn

is the n-th input data with yn as the corresponding label.
Ψ Ψ = {{a(l)}Pl=1,WO,WV ,WK ,WQ} denotes the set of all the model pa-

rameters. a(l) ∈ Rm and WO ∈ Rm×ma are the weights in the MLP layer.
WV ∈ Rma×d, WK ,WQ ∈ Rmb×d are weights in the self-attention layer.

Ψ(0), Ψ∗
T , ∆ΨT Ψ(0) is the pre-trained model. Ψ∗

T is the fine-tuned model on a given task
T . ∆ΨT is the task vector of the task T , which is computed as ∆ΨT =
Ψ∗

T −Ψ(0).
µT , vj µT is the discriminative pattern of the task T . vj is the j-th task-irrelevant

pattern, j ∈ [M].
δ∗, δ# δ∗ is the average fraction of label-relevant pattern in the input data. δ# is the

average fraction of confusion pattern in the input data.
q1(t), ζ1,t, pn(t) q1(t) = µ⊤

1 W
(t)µ1 denotes the value of the product, where the patterns on

both sides of W (t) are the same. ζ1,t denotes the modified value embedding
of µ1 at the t-th iteration. pn(t) refers to the summation of attention weights
where the key and the query are the same discriminative pattern.

Wn,l, Un,l Wn,l and Un,l respectively represent of sets of positive or negative neurons so
that the Relu activation is activated with xnl as the query.

Bb Bb is the SGD batch at the b-th iteration.
O(), Ω(), Θ() We follow the convention that f(x) = O(g(x)) (or Ω(g(x)), Θ(g(x)))) means

that f(x) increases at most, at least, or in the order of g(x), respectively.
≳, ≲ f(x) ≳ g(x) (or f(x) ≲ g(x)) means that f(x) ≥ Ω(g(x)) (or f(x) ≲

O(g(x))).

Definition 3. For a task based on any discriminative pattern µ1,

1. q1(t) = µ⊤
1 W

(t)µ1.

2. Sn: the set of tokens in the n-th data. Sn1 : the set of tokens of µ1 in the n-th data. Sn2 : the
set of tokens of −µ1 in the n-th data. Rn

k : the set of tokens of vk in the n-th data.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

3. ϕn(t) =
1

|Sn
1 |eq1(t)2+P−|S1|

.

4. pn(t) =
∑
s,l∈Sn

1 or s,l∈Sn
2

softmaxl(x
n
sW

(t)xnl).

5. ζi,1,t = V
(t)
(i,·)x

n
s for s ∈ Sn1 .

6. ζ1,t = mini∈[m] ζi,1,t.

7. softmaxl(X
n⊤Wxl) = (softmaxl(x

n
1
⊤Wxl), · · · , softmaxl(x

n
P
⊤Wxl)).

Definition 4. Define

Rn
l (t) :=

P∑
s=1

V (t)xns softmaxl(x
n
s
⊤W (t)xnl), (12)

Define Wn,l, Un,l as the sets of lucky neurons such that

Wn,l = {i : V ⊤
(i,·)Rn,l(0) > 0, l ∈ Sn1 , ai > 0}, (13)

Un,l = {i : V ⊤
(i,·)Rn,l(0) > 0, l ∈ Sn2 , ai < 0}. (14)

Definition 5 ((Vershynin, 2010)). We say X is a sub-Gaussian random variable with sub-Gaussian
norm K > 0, if (E|X|p)

1
p ≤ K

√
p for all p ≥ 1. In addition, the sub-Gaussian norm of X, denoted

∥X∥ψ2
, is defined as ∥X∥ψ2

= supp≥1 p
− 1

2 (E|X|p)
1
p .

Lemma 2 (Vershynin (2010) Proposition 5.1, Hoeffding’s inequality). Let X1, X2, · · · , XN be in-
dependent centered sub-gaussian random variables, and let K = maxi ∥Xi∥ψ2

. Then for every
a = (a1, · · · , aN) ∈ RN and every t ≥ 0, we have

Pr
(∣∣∣ N∑

i=1

aiXi

∣∣∣ ≥ t
)
≤ e · exp

(
− ct2

K2∥a∥2

)
, (15)

where c > 0 is an absolute constant.
Lemma 3. For task T based on any µ1, 0 ≤ t ≤ T , there exists K(t) > 0, such that

W (t+1)µ1 = W (t+1)µ1 +K(t)µ1 +

M∑
l=1

ι′lµl, (16)

where

K(t) ≳ η
1

B

∑
n∈Bb

m|Sn1 |
aP

ζ1,tpn(t)ϕn(t)(P − |Sn1 |), (17)

ι′l ≤ K(t) · e−q1(t). (18)
For k ∈ [M],

∥µ⊤
1 W

(t)vk∥ ≤
√

logB

B

t∑
b=0

K(b), (19)

and for j ̸= k, j ∈ [M],
∥v⊤

j W
(t)vk∥ ≤ K(t)e−q1(t), (20)

For any µ′ such that µ⊤
1 µ

′ = α and µ′ ⊥ v1,v2, · · · ,vM , we have

µ′⊤W (t)µ′ = α2µ⊤
1 W

(t)µ1 · (1±Θ(ϵ)). (21)

Lemma 4. Given a task T based on any µ1, 0 ≤ t ≤ T . Then, for i ∈ Wn,l,

V
(t)
(i,·)µ1 ≥ η

t−1∑
b=0

1

B

∑
n∈Bb

|Sn1 |
aP

· pn(b), (22)

V
(t)
(i,·)vk ≤ η

t−1∑
b=0

1

B

∑
n∈Bb

|Sn1 |
aPM

, (23)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

for k ∈ [M]. For i ∈ Un,l, we similarly have

−V
(t)
(i,·)µ1 ≥ η

t−1∑
b=0

1

B

∑
n∈Bb

|Sn2 |
aP

· pn(b), (24)

V
(t)
(i,·)vk ≤ η

t−1∑
b=0

1

B

∑
n∈Bb

|Sn1 |
aPM

, (25)

for some k ∈ [M]. For i /∈ Wn,l ∪ Un,l, we have that

V
(t)
(i,·)µ1 ≤

√
logB

B
V

(t)
(j,·)µ1, (26)

V
(t)
(i,·)vk ≤

√
logB

B
V

(t)
(j,·)vk, (27)

where k ∈ [M], j ∈ Wn,l ∪ Un,l.
Lemma 5. (Full version of Lemma 1) Given a task T defined in Definition 2 based on the discrimi-
native pattern µT , we have that as long as conditions (i)-(iii) in Theorem 1 hold, then the returned
model Ψ∗

T after T iterations achieves a generalization error

E(X,y)∼DT [ℓ(X, y; Ψ∗
T)] ≤ Θ(ϵ). (28)

The required sample complexity is N = BT , where B is the batch size. We also have that

•
pn(T) ≥ 1− (1− δ∗)δ

−1
∗ T−C (29)

for some constant C > 1.

•
M∑
k=1

∥V (T)
(i,·)vk∥

2 ≲
1

M
∥V (T)

(i,·)µT ∥2, (30)

for i ∈ Wn,l with l ∈ Sn1 and for i ∈ Un,l with l ∈ Sn2 . We also have that (26) and (27)
hold when t = T .

C PROOF OF MAIN THEOREMS AND COROLLARIES

C.1 PROOF OF THEOREM 1 AND 2

Proof. Since the model is initialized close to zero, we have ∆Ψ ≈ Ψ. Denote Ψ1 =

{{a(l,1)
P

l=1
},V1,W1} and Ψ2 = {{a(l,2)

P
l=1

},V2,W2}. We consider three cases of this prob-
lem.
(1) α = 0. By the gradient update of W , we know that

µ⊤
T1
(W

(T)
1 + λW

(T)
2)µT1

= µ⊤
T1
W

(T)
1 µT1

(1 + λα2) = µ⊤
T1
W

(T)
1 µT1

(31)

−µ⊤
T1
(W

(T)
1 + λW

(T)
2)µT1

= −µ⊤
T1
W

(T)
1 µT1

(32)

µ⊤
T2
(W

(T)
1 + λW

(T)
2)µT2 = λµ⊤

T2
W

(T)
2 µT2 (33)

−µ⊤
T2
(W

(T)
1 + λW

(T)
2)µT2

= −λµ⊤
T2
W

(T)
2 µT2

(34)
Then, for any l ∈ [M], for task T1,∑

s∈Sn
1

softmaxl(xns
⊤W (T)xnl) ≥ 1− 1− δ∗

δ∗
T−C , (35)

for task T2, ∑
s∈Sn

1

softmaxl(xns
⊤W (T)xnl) ≥

δ∗T
λC

δ∗TλC + (1− δ∗)
≥ 1− 1− δ∗

δ∗
T−λC . (36)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Since that µT2
⊥ {µT1

,v1,v2, · · · ,vM} and µT1
⊥ {µT2

,v1,v2, · · · ,vM}, we have

V
(T)
(i,·)µT2 = 0, (37)

for V ∈ Ψ1, and
V

(T)
(i,·)µT1 = 0, (38)

for V ∈ Ψ2. Then, for data with the label y = 1, the network output for Ψ1 + λΨ2 is almost the
same as that for Ψ1 on task T1 when |λ| is not too large. To see this, for X from T1, we have

1− 1

P

P∑
l=1

∑
i∈[m]

1

a
Relu((V (T)

1(i,·) + λV
(T)
2(i,·))Xsoftmaxl(Xn⊤(W

(T)
1 + λW

(T)
2)xnl))

≤|λ| ·Θ(η

T−1∑
b=0

1

B

∑
n∈Bb

|Sn1 |
aPM

) · 1− δ∗
δ∗

T−C + |λ| ·Θ(

√
M

logB

B
)

≤|λ| ·Θ(
1− δ∗
M

) · poly(ηδ∗) + |λ| ·Θ(ϵ
√
M)

=|λ|β,

(39)

where the second to last step is by (26) and (27). Therefore, a larger |λ| leads to a performance drop
in task T1. For data of T1 with the label y = −1, we can choose λ to be greater than around 1 to
make the network output smaller than −1. Meanwhile, for X from T2, we have

f(Xn,Ψ)

≳(1− 1− δ∗
δ∗

T−Cλ) · λ−Θ(

√
M logB

B
)−Θ(

1− δ∗
δ∗M

) · poly(ηδ∗),
(40)

where we need λ ≥ 1 + β so that f(Xn,Ψ) ≥ 1−Θ(ϵ).

If λ ≤ 0, the attention map tends to be uniform. Then, for Xn in task T2,

f(Xn; Ψ1 + λΨ2) ≲ − 1

P
, (41)

which leads to
E(X,y)∼DT2

ℓ(X, y; Ψ) ≥ Θ(1). (42)

(2) α > 0. We first have

µ⊤
T1
(W

(T)
1 + λW

(T)
2)µT1

= µ⊤
T1
W

(T)
1 µT1

(1 + λα2), (43)

µ⊤
T2
(W

(T)
1 + λW

(T)
2)µT2

= (λ+ α2)µ⊤
T2
W

(T)
2 µT2

. (44)
Then, for yn = 1 in task T1, we have that when λ > 0,

f(Xn,Ψ)

≳(1− 1− δ∗
δ∗

T−C(1+λα2)) · (1 + λα)− |λ| ·Θ(η

T−1∑
b=0

1

B

∑
n∈Bb

|Sn1 |
aPM

) · 1− δ∗
δ∗

T−λC

− |λ| ·Θ(

√
M logB

B
)

≥1 + Θ(λα)− |λ| ·Θ(
1− δ∗
δ∗M

) · poly(ηδ∗)− |λ| ·Θ(ϵ
√
M)

=1 + Θ(λα)− |λ|
M

·Θ(
1− δ∗
δ∗

) · poly(ηδ∗)− |λ| ·Θ(ϵ
√
M),

(45)

and for yn = 1 in task T2, we have that when λ ≥ 0,

f(Xn,Ψ) ≳(1− 1− δ∗
δ∗

T−C(λ+α2)) · (λ+ α)−Θ(

√
M logB

B
)

−Θ(
1− δ∗
δ∗M

) · poly(ηδ∗).
(46)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Therefore, when λ ≥ 1− α+ β, we have that for task T1,
f(Xn,Ψ) ≥ 1− |λ|β −Θ(ϵ), (47)

and for task T2,

f(Xn,Ψ) ≥(1− ηC)(λ+ α)− 1− δ∗
δ∗

· 1

M
· poly(ηδ∗)−Θ(

√
M logB

B
)

≥(1− ηC)(λ+ α)− β

≥1−Θ(ϵ).

(48)

We can obtain corresponding conclusions for yn = −1. Hence,
E(X,y)∼DT1

ℓ(X, y; Ψ) ≤ Θ(ϵ) + |λ|β, (49)

E(X,y)∼DT2
ℓ(X, y; Ψ) ≤ Θ(ϵ). (50)

Meanwhile, for yn = 1 in task T1, we have that when λ < 0,

f(Xn,Ψ) ≳(1− 1− δ∗
δ∗

T−C − (
1− δ∗
δ∗

T−C(1+λα2) − 1− δ∗
δ∗

T−C)) · (1 + λα)

− (
|λ|
M

+ 1) ·Θ(
1− δ∗
δ∗

) · poly(ηδ∗)− |λ| ·Θ(ϵ
√
M)

≥1 + λα(1− 1− δ∗
δ∗

T−C(1+λα2))− (
1− δ∗
δ∗

T−C(1+λα2) − 1− δ∗
δ∗

T−C)

− (
|λ|
M

+ 1) ·Θ(
1− δ∗
δ∗

) · poly(ηδ∗)− |λ| ·Θ(ϵ
√
M),

(51)

and for yn = 1 in task T2, we have that when λ < 0,

f(Xn,Ψ) ≳(1− 1− δ∗
δ∗

T−C(λ+α2)) · (λ+ α)−Θ(

√
M logB

B
)−Θ(

1− δ∗
δ∗M

) · poly(ηδ∗)

≥(1− 1− δ∗
δ∗

T−C − (
1− δ∗
δ∗

T−C(λ+α2) − 1− δ∗
δ∗

T−C)) · (λ+ α)

−Θ(

√
M logB

B
)−Θ(

1− δ∗
δ∗M

) · poly(ηδ∗)

≥λ+ α(1− 1− δ∗
δ∗

T−C(λ+α2))− λ(
1− δ∗
δ∗

T−C(λ+α2) − 1− δ∗
δ∗

T−C)

−Θ(

√
M logB

B
)−Θ(

1− δ∗
δ∗M

) · poly(ηδ∗).

(52)

Then, for task T1, when λ ≥ −Θ(1/α2),
E(X,y)∼DT1

ℓ(X, y; Ψ)

=min{Θ(−λα(1− 1− δ∗
δ∗

T−C(1+λα2)) + (
1− δ∗
δ∗

T−C(1+λα2) − 1− δ∗
δ∗

T−C) + ϵ

+ (
|λ|
M

+ 1) ·Θ(
1− δ∗
δ∗

) · poly(ηδ∗) + |λ| ·Θ(ϵ
√
M)),Θ(1)}

≥min{Θ(−λα+ (
|λ|
M

+ 1) · poly(ηδ∗) + |λ| ·Θ(ϵ
√
M)),Θ(1)}

=min{Θ(−λα+ |λ|β + poly(ηδ∗)),Θ(1)},

(53)

where the last step is because 1+λα2 ≥ 1−Θ(1/α2) ·α∗ > 0. The result of the minimal compared
with Θ(1) comes from the upper bound for Hinge loss in binary classification. Hence,

E(X,y)∼DT1
ℓ(X, y; Ψ) ≥ min{Θ(−λα+ (1 + |λ|)β),Θ(1)}. (54)

When λ < −Θ(1/α2),
E(X,y)∼DT1

ℓ(X, y; Ψ)

=Θ(1− 1

M
· 1

M
·M)

≥Θ(1).

(55)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

For task T2, when 0 > λ ≥ Θ(1)− α2,

E(X,y)∼DT2
ℓ(X, y; Ψ)

=min{Θ(1− λ− α(1− 1− δ∗
δ∗

T−C(λ+α2)) + λ(
1− δ∗
δ∗

T−C(λ+α2) − 1− δ∗
δ∗

T−C) + ϵ

+Θ(

√
M logB

B
) + Θ(

1− δ∗
δ∗M

) · poly(ηδ∗)),Θ(1)}

≥min{Θ(1 + ηC − λ− α+Θ(poly(ηδ∗) + ϵ
√
M)),Θ(1)}

=min{Θ(1 + ηC − λ− α+ β),Θ(1)}.

(56)

When λ < Θ(1)− α2 < 0,
E(X,y)∼DT1

ℓ(X, y; Ψ) ≥ Θ(1). (57)

(3) α < 0. When λ ∈ (−Θ(1/α2), 0), we have that for task T1,

f(Xn,Ψ)

≳(1− 1− δ∗
δ∗

T−C(1+λα2)) · (1 + λα)− |λ| ·Θ(η

T−1∑
b=0

1

B

∑
n∈Bb

|Sn1 |
aPM

) · 1− δ∗
δ∗

T−λC

− |λ| ·Θ(

√
M logB

B
)

≥(1− 1− δ∗
δ∗

T−C) · (1 + λα)− |λ|
M

·Θ(
1− δ∗
δ∗

) · poly(ηδ∗)− |λ| ·Θ(ϵ
√
M)

+
1− δ∗
δ∗

(T−C − T−C(1+λα2))(1 + λα)

≥(1− 1− δ∗
δ∗

T−C) · (1 + λα)− |λ|
M

·Θ(
1− δ∗
δ∗

) · poly(ηδ∗)− |λ| ·Θ(ϵ
√
M)

+ poly(ηδ∗)λα2(− ln ηδ∗),

(58)

Hence, if λ ≤ poly(ηδ∗)α, we have

f(Xn,Ψ) ≥ 1− |λ|β −Θ(ϵ). (59)

E(X,y)∼DT1
ℓ(X, y; Ψ) ≤ Θ(ϵ) + |λ|β. (60)

If λ > β
α−β , we have

E(X,y)∼DT1
ℓ(X, y; Ψ) ≥ min{Θ(1),Θ(−λα+ (

|λ|
M

+ 1) · poly(ηδ∗) + |λ| ·Θ(ϵ
√
M))}. (61)

If λ ≤ −Θ(1/α2), we have
E(X,y)∼DT1

ℓ(X, y; Ψ) ≥ Θ(1). (62)

For task T2, we have that when λ ≥ 1 + ηC − α+ β,

f(Xn,Ψ) ≳ (1− ηC)(λ+ α)− 1− δ∗
δ∗

· 1

M
· poly(ηδ∗)−Θ(

√
M logB

B
) ≥ 1, (63)

E(X,y)∼DT2
ℓ(X, y; Ψ) ≤ Θ(ϵ). (64)

When λ ≤ 1 + ηC − α+Θ(poly(ηδ∗) + ϵ
√
M),

E(X,y)∼DT2
ℓ(X, y; Ψ) ≥ min{Θ(1), 1 + ηC − λ− α+ β}. (65)

One can easily find that there is no region of λ such that Ψ performs well on both T1 and T2.
However, when −Θ(1/α2) < λ < poly(ηδ∗)α < 1 + ηc − α+ β, we can unlearn T2 and retain the
performance of T1.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C.2 PROOF OF THEOREM 3

Proof. By Lemma 1, we know that

µT ′
⊤W (T)µT ′

=
∑
i∈VΨ

γiµ
⊤
Ti
(
∑
j=1

λjW
(T)
j)

∑
k∈VΨ

γkµTk

≳
∑
i∈VΨ

γ2
i µ

⊤
Ti

· λiW (T)
i µTi

.

(66)

For positive neurons, we also have

V (T)µT ′ =
∑
i∈VΨ

λiVTi

(T)
∑
i∈V′

γiµTi
=
∑
i∈VΨ

λiγiVTi

(T)µTi
(67)

Then, we need ∑
i∈VΨ

λiγi ≥ 1 + c, (68)

∑
i∈VΨ

λiγ
2
i ≥ 1 + c, (69)

|λi|(Θ(
1− δ∗
δ∗M

poly(ηδ∗) + ϵ
√
M)) = |λi|β ≤ c, for some c > 0 and all i ∈ VΨ, (70)

to hold simultaneously.

Then, when γi = k does not hold for all i ∈ VΨ and for some fixed k < 0, we can find λi in the
middle of the normalized γi and γ2

i to satisfy (68) and (69), i.e.,

λi ∝
γi√∑
i∈VΨ

γ2
i

+
γ2
i√∑

i∈VΨ
γ4
i

. (71)

By Cauchy–Schwarz inequality, we have

−
√∑
i∈VΨ

γ2
i ·
√∑
i∈VΨ

γ4
i <

∑
i∈VΨ

γ3
i <

√∑
i∈VΨ

γ2
i ·
√∑
i∈VΨ

γ4
i . (72)

Hence,

∑
i∈VΨ

λiγi ∝
√∑
i∈VΨ

γ2
i +

∑
i∈VΨ

γ3
i√∑

i∈VΨ
γ4
i

=

√∑
i∈VΨ

γ2
i ·
√∑

i∈VΨ
γ4
i +

∑
i∈VΨ

γ3
i√∑

i∈VΨ
γ4
i

> 0, (73)

∑
i∈VΨ

λiγ
2
i ∝

∑
i∈VΨ

γ3
i√∑

i∈VΨ
γ2
i

+

√∑
i∈VΨ

γ4
i =

√∑
i∈VΨ

γ2
i ·
√∑

i∈VΨ
γ4
i +

∑
i∈VΨ

γ3
i√∑

i∈VΨ
γ2
i

> 0. (74)

Therefore, by letting

λi = Cγ ·

 γi√∑
i∈VΨ

γ2
i

+
γ2
i√∑

i∈VΨ
γ4
i

 , (75)

where

Cγ =
(1 + c)

√∑
i∈VΨ

γ4
i√∑

i∈VΨ
γ2
i ·
√∑

i∈VΨ
γ4
i +

∑
i∈VΨ

γ3
i

, (76)

we can obtain (68) and (69) hold if Cγ ≲ β−1.
When γi = k hold for all i ∈ VΨ and for some fixed k < 0 with |VΨ| > 0, we cannot find λi such
that both (68) and (69) hold.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C.3 PROOF OF COROLLARY 1

Proof. Let {µ1,v1,v2, · · · ,vM}∪{u1,u2, · · · ,ud−M+1} form a set of orthonormal vectors. De-
note

U = (µ1,v1,v2, · · · ,vM ,u1,u2, · · · ,ud−M+1). (77)
Note that for any a, b ∈ {µ1,v1,v2, · · · ,vM} ∪ {u1,u2, · · · ,ud−M+1},

a⊤W (0)b =
∑

1≤i,j≤d

aibjW
(0)
i,j ∼ N (0,

∑
1≤i,j≤d

|aibj |ξ2), (78)

where the last step comes from that each entry of W (0) ∼ N (0, ξ2). Given that ∥a∥ = ∥b∥ = 1,
we have ∑

1≤i,j≤d

|aibj | = (|a1|, · · · , |ad|)⊤(|b1|, · · · , |bd|) ≤ 1. (79)

By (90), we know that for a ∈ {u1,u2, · · · ,ud−M+1} and any t = 0, 1, · · · , T − 1,

η
1

B

∑
n∈Bb

∂ℓ(Xn, yn; Ψ)

∂W (t)
a = 0, (80)

a⊤η
1

B

∑
n∈Bb

∂ℓ(Xn, yn; Ψ)

∂W (t)
= 0. (81)

Then, we have that for some C > 1,

[U⊤W (T)U]i,j =


Θ(log T), i = j = 1,

O(ϵ · 1

eΘ(log T)·(1− 1−δ∗
δ∗ T−C)

) = O(ϵ · T−C), j = 1, 1 ≤ i ≤ M − 1,

O(ϵ · log T), j ∈ [2,M − 1], i ∈ [1,M − 1],

O(ξ), else.
(82)

Let Ei,j be the matrix that only the (i, j) entry equals 1, while all other entries are 0. Therefore,

∥U⊤W (T)U −E1,1 ·Θ(log T)∥2F
≤(ϵ · T−C)2 · (M − 1) + (ϵ · log T)2 · (M − 1)(M − 2) + ξ2(d2 −M2)

≤ϵ2 log2 T ·M2 + d2/m

≲ϵ2 ·M2 +
1

logM
,

(83)

where the last step comes from that m ≳ M2 and M = Θ(d). Then,

∥W (T) −UE1,1 ·Θ(log T) ·U⊤∥F
≤∥W (T)U −UE1,1 ·Θ(log T)∥F · ∥U⊤∥
≤∥U∥ · ∥U⊤W (T)U −E1,1 ·Θ(log T)∥F
≤ϵM + 1/ logM.

(84)

Likewise, by (132), we know that neurons of V (T) with a non-trivial magnitude are in the direction
of the iterative summation of

(∑P
s=1 x

n
s softmaxl(xns

⊤Wxnl)
)

. Hence, there exists v̂1 ∈ Rm and

v̂2 ∈ Rd such that

∥V (T) − v̂1v̂2
⊤∥F ≤ Θ(1) ·

√
m ·

√
logB

B
· δ−2

∗ · δ∗ ·
1√
m

≤ δ−1
∗ ϵ (85)

Then, for n such that yn = +1, we have that the low-rank trained model, where W
(T)
LR = UE1,1 ·

Θ(log T) ·U⊤, satisfies

f(Xn,ΨLR) ≥ 1 · (1− δ∗ϵ) · (1−Θ(ϵ log T)) = 1−Θ((log T + δ∗)ϵ), (86)

which leads to
ℓ(Xn, yn; ΨLR) ≤ Θ(ϵLR), where ϵLR = (log T + δ∗)ϵ. (87)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C.4 PROOF OF COROLLARY 2

Proof. We know that from Lemma 1, there is a number of Ω(m) lucky neurons with large weights.
We can denote the set of lucky neurons as L ⊂ [m]. By combining (148) and (163), we have that
for any lucky neuron ui,

∥ui∥ ≥ ηη−1δ−1
∗ · δ∗ ·

1√
m

= m−1/2. (88)

For any unlucky neurons, by (149), we have

∥ui∥ ≤ m−1/2

√
logB

B
. (89)

Since that B ≥ ϵ−2 logM by Lemma 1, we have that if we remove neurons from m\L, the output
in (158) and (159) will only be affected by a factor of ϵ. Therefore, Lemma 1 still holds, so that
Theorems 1-3 all hold.

D PROOF OF KEY LEMMAS

D.1 PROOF OF LEMMA 3

For ease of presentation, we sometimes use µ2 to represent −µ1 in the proof. We first investigate
the gradient of W , i.e.,

η
1

B

∑
n∈Bb

∂ℓ(Xn, yn; Ψ)

∂W

=η
1

B

∑
n∈Bb

∂ℓ(Xn, yn; Ψ)

∂f(Xn; Ψ)

f(Xn; Ψ)

∂W

=η
1

B

∑
n∈Bb

(−yn)
1

P

P∑
l=1

m∑
i=1

a(l)i1[V(i,·)Xsoftmaxl(Xn⊤Wxnl) ≥ 0]

·
(
V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl)

P∑
r=1

softmaxl(xnr
⊤Wxnl)(x

n
s − xnr)x

n
l
⊤
)

=η
1

B

∑
n∈Bb

(−yn)
1

P

P∑
l=1

m∑
i=1

a(l)i1[V(i,·)X
nsoftmaxl(Xn⊤Wxnl) ≥ 0]

·
(
V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤
)

(90)

For j, l ∈ Sn1 , we have

softmaxl(xnj
⊤W (t)xnl) ≳

e∥q1(t)∥

|Sn1 |e∥q1(t)∥ + (P − |Sn1 |)
(91)

For j /∈ Sn1 and l ∈ Sn1 , we have

softmaxl(xnj
⊤W (t)xnl) ≲

1

|Sn1 |e∥q1(t)∥ + (P − |Sn1 |)
, (92)

where ∥q1(0)∥ = 0. For l /∈ Sn1 ∪ Sn2 , j ∈ [P], we have

softmaxl(xnj
⊤W (0)xnl) ≲

1

P
. (93)

Therefore, for s, r, l ∈ Sn1 , let

xns −
P∑
r=1

softmaxl(xnr
⊤W (t)xnl)x

n
r := βn1 (t)µ1 + βn2 (t), (94)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

where

βn1 (t) ≳
P − |Sn1 |

|Sn1 |e∥q1(t)∥ + P − |Sn1 |
:= ϕn(t)(P − |Sn1 |). (95)

βn2 (t) =

M1∑
l=2

ι′lµl, (96)

where

|ι′l| ≤ βn1 (t)
|Snl |

P − |Sn1 |
. (97)

Note that |ι′l| = 0 if P = |Sn1 |, l ≥ 2.
If s ∈ Sn1 , we have

V
(t)
(i,·)x

n
s softmaxl(xns

⊤Wxnl) ≥ ζi,1,t ·
pn(t)

|Sn1 |
. (98)

If s ∈ Sn2 and j ∈ Sn1 , we have

V
(t)
(i,·)x

n
s softmaxl(xns

⊤W (t)xnl) ≲ V
(t)
(i,·)x

n
j softmaxl(xnj

⊤W (t)xnl)ϕn(t) ·
|Sn1 |
pn(t)

. (99)

If s /∈ (Sn1 ∪ Sn2) and j ∈ Sn1 ,

V
(t)
(i,·)x

n
s softmaxl(xns

⊤W (t)xnl) ≲ V
(t)
(i,·)x

n
j softmaxl(xnj

⊤W (t)xnl)ϕn(t) ·
|Sn1 |√
Bpn(t)

. (100)

Then, by combining (94) to (100), we have that for l ∈ Sn1 , i ∈ Wn,l,

µ⊤
1 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤µ1

≳ζi,1,t · pn(t)ϕn(t)(P − |Sn1 |).

(101)

For l ∈ Sn1 , i ∈ Wn,l, we have that for k ̸= 1, 2,

µ⊤
2 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤µ1

= −µ⊤
1 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤µ1.

(102)

For l ∈ Sn1 , i ∈ Wn,l, we have that for k ∈ [M],

v⊤
k V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤µ1

≤µ⊤
1 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤µ1

· |Rn
k |

P − |Sn1 |
· |S

n
1 |ϕn(t)
pn(t)

.

(103)

For i ∈ Un,l, by the definition, we have

1[V(i,·)X
nsoftmaxl(Xn⊤Wxnl) ≥ 0] = 0. (104)

For i /∈ Wn,l ∪ Un,l, we have that for j ∈ Wn,l, k ∈ [M],

µ⊤
1 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤µ1

≤µ⊤
1 V(j,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤µ1

· ϕn(t)
|Sn1 |√
Bpn(t)

.

(105)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

µ⊤
2 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤µ1

=− µ⊤
1 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤µ1.

(106)

v⊤
k V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤µ1

≤µ⊤
1 V(j,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤µ1

· ϕn(t)
|Sn1 |√
Bpn(t)

· |Rn
k |

P − |Sn1 |
.

(107)

When l /∈ Sn1 , we have that xnl
⊤µ1 = 0. If l ∈ Sn2 , we can obtain that

µ⊤
2 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤µ2

≳ζi,1,t ·
pn(t)|Sn2 |

|Sn1 |
ϕn(t)(P − |Sn1 |),

(108)

µ⊤
1 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤µ2

=− µ⊤
2 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤µ2,

(109)

v⊤
k V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤µ2

≤µ⊤
2 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤µ2 ·

|Rn
k |

P − |Sn2 |

· |S
n
1 |ϕn(t)
pn(t)

,

(110)
where k ∈ [M], i ∈ Un,l. If i ∈ Wn,l,

1[V(i,·)X
nsoftmaxl(Xn⊤Wxnl) ≥ 0] = 0. (111)

If i /∈ Wn,l ∪ Un,l, we have that for j ∈ Un,l, k ∈ [M],

µ⊤
2 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤µ2

≤µ⊤
2 V(j,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤µ2

· ϕn(t)
|Sn1 |√
Bpn(t)

.

(112)

µ⊤
1 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤µ2

=− µ⊤
2 V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤µ2.

(113)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

v⊤
k V(i,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤µ2

≤µ⊤
2 V(j,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤µ2

· ϕn(t)
|Sn1 |√
Bpn(t)

· |Rn
k |

P − |Sn1 |
.

(114)

If l ∈ Rn
k , k ∈ [M], we have that for j ∈ Wn,l, if V(j,·)

∑P
s=1 x

n
s softmaxl(xns

⊤Wxnl) > 0,
l′ ∈ Sn1 ,

0 ≤µ⊤
1 V(j,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤vk

≤µ⊤
1 V(j,·)

P∑
s=1

xns softmaxl′(xns
⊤Wxnl′) · (xns −

P∑
r=1

softmaxl′(xnr
⊤Wxnl′)x

n
r)x

n
l′
⊤µ1,

(115)

µ⊤
2 V(j,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤vk

=− µ⊤
1 V(j,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤vk,

(116)

v⊤
k V(j,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤vk

≤µ⊤
1 V(j,·)

P∑
s=1

xns softmaxl′(xns
⊤Wxnl′) · (xns −

P∑
r=1

softmaxl′(xnr
⊤Wxnl′)x

n
r)x

n
l′
⊤µ1

· |Rn
k |

P − |Sn1 |
.

(117)

Likewise, if l ∈ Rn
k , k ∈ [M], V(j,·)

∑P
s=1 x

n
s softmaxl(xns

⊤Wxnl) > 0, j ∈ Un,l, l′ ∈ Sn1 ,
l′′ ∈ Sn2 ,

0 ≤µ⊤
2 V(j,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤vk

≤µ⊤
2 V(j,·)

P∑
s=1

xns softmaxl′′(xns
⊤Wxnl′′) · (xns −

P∑
r=1

softmaxl′′(xnr
⊤Wxnl′′)x

n
r)x

n
l′′

⊤µ2,

(118)

µ⊤
1 V(j,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤vk

=− µ⊤
2 V(j,·)

P∑
s=1

xns softmaxl′′(xns
⊤Wxnl′′) · (xns −

P∑
r=1

softmaxl′′(xnr
⊤Wxnl′′)x

n
r)x

n
l′′

⊤µ2,

(119)

v⊤
k V(j,·)

P∑
s=1

xns softmaxl(xns
⊤Wxnl) · (xns −

P∑
r=1

softmaxl(xnr
⊤Wxnl)x

n
r)x

n
l
⊤vk

≤µ⊤
1 V(j,·)

P∑
s=1

xns softmaxl′(xns
⊤Wxnl′) · (xns −

P∑
r=1

softmaxl′(xnr
⊤Wxnl′)x

n
r)x

n
l′
⊤µ1

· |Rn
k |

P − |Sn1 |
.

(120)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Therefore, by the update rule, we know

W (t+1)µ1 =W (t)µ1 − η
1

B

∑
n∈Bb

∂ℓ(Xn, yn; Ψ)

∂W (t)
µ1

=W (t)µ1 +K(t)µ1 +

M∑
l=2

ι′lµl,

(121)

where

K(t) ≳ η
1

B

∑
n∈Bb

m|Sn1 |
aP

ζ1,tpn(t)ϕn(t)(P − |Sn1 |), (122)

ι′l ≤ K(t) ·max
n

{
|Sn1 |ϕn(t)
pn(t)

}
≤ K(t) · e−q1(t). (123)

We know that
W (0)µ1 ≈ 0. (124)

Then,
q1(t+ 1) = µ⊤

1 W
(t+1)µ1

=µ⊤
1 W

(t)µ1 +K(t)

=q1(t) +K(t)

=

t∑
b=0

K(b).

(125)

Similarly,

W (t+1)µ2 =W (t)µ2 − η
1

B

∑
n∈Bb

∂ℓ(Xn, yn; Ψ)

∂W (t)
µ2

=W (t)µ2 +K(t)µ2 +
∑
l ̸=2

ι′lµl.
(126)

µ⊤
2 W

(t+1)µ2 =

t∑
b=0

K(b). (127)

For k ∈ [M],

W (t+1)vk = W (t)vk + J1(t)µ1 + J2(t)µ2 +

M∑
l=1

ι′lvl. (128)

By Hoeffding’s inequality (15), with high probability,

∥µ⊤
1 W

(t+1)vk∥ ≤ Θ(1) ·
√

logB

B

t∑
b=0

K(b) ≲ ϵ ·
t∑

b=0

K(b), (129)

where the second step holds if B ≥ ϵ−2 logM . And for j ̸= k, j ∈ [M],

∥v⊤
j W

(t)vk∥ ≤ K(t)e−q1(t). (130)

For any µ′ such that µ⊤
1 µ

′ = α and µ′ ⊥ {v1,v2, · · · ,vM}, we can write µ′ as αµ1±
√
1− α2µ⊥,

where µ⊥ ⊥ {µ1,v1,v2, · · · ,vM}. Therefore,

µ′⊤W (t+1)µ′ =(αµ1 ±
√
1− α2µ⊥)

⊤
W (t+1)(αµ1 ±

√
1− α2µ⊥)

=α2µ1
⊤W (t+1)µ1 ±Θ(ϵ) · µ1

⊤W (t+1)µ1.
(131)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

D.2 PROOF OF LEMMA 4

For ease of presentation, we sometimes use µ2 to represent −µ1 in the proof.

η
1

B

∑
n∈Bb

∂ℓ(Xn, yn; Ψ)

∂V(i,·)

=η
1

B

∑
n∈Bb

∂ℓ(Xn, yn; Ψ)

∂f(Xn; Ψ)

f(Xn; Ψ)

∂V(i,·)

=η
1

B

∑
n∈Bb

(−yn)
1

P

P∑
l=1

a(l)i1[V(i,·)Xsoftmaxl(Xn⊤Wxnl) ≥ 0]

·
(P∑
s=1

xns softmaxl(xns
⊤Wxnl)

)
.

(132)

For n such that yn = +1 and i ∈ Wn,l, we have that

1[V(i,·)Xsoftmaxl(xns
⊤Wxnl) ≥ 0] = 1, (133)

and for l ∈ Sn1 ,

P∑
s=1

xns softmaxl(xns
⊤Wxnl) = pn(t)µ1 +

M2∑
l=1

ι′lvl + ι′M2+1µ2, (134)

where

ι′l ≤ (1− pn(t)) ·
|Rl

k|
P − |Sn1 |

. (135)

If l ∈ Sn2 , we have

P∑
s=1

xns softmaxl(xns
⊤Wxnl) = p′n(t)µ2 +

M2∑
l=1

κ′
lvl + κ′

M2+1µ2, (136)

where
p′n(t) ≤ pn(t), (137)

κ′
l ≤ (1− pn(t)) ·

|Rl
k|

P − |Sn2 |
. (138)

If l ∈ Rn
k , k ∈ [M], we have

P∑
s=1

xns softmaxl(xns
⊤Wxnl) = p′n(t)µ1 + p′′n(t)µ2 + on(t)vk +

∑
l ̸=k

u′
lvl, (139)

where

p′n(t) ≤
|Sn1 |
P

· pn(t), (140)

p′′n(t) ≤
|Sn2 |
P

· pn(t), (141)

on(t) ≤
|Rn

k |
P

· pn(t) (142)

u′
l ≤ (1− |Sn1 |+ |Sn2 |+ |Rn

k |
|Sn1 |

· pn(t)) ·
|Rl

k|
P − |Sn1 | − |Sn2 | − |Rn

k |
. (143)

Therefore, we have

− η
1

B

∑
n∈Bb

∂ℓ(Xn, yn; Ψ)

∂V
=

M∑
l=1

u′
lvl + qn(t)µ1 + q′n(t)µ2, (144)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

where

qn(t)
′ ≳ η

1

B

∑
n∈Bb

|Sn1 |
aP

· pn(t), (145)

|q′n(t)| ≲ η
1

B

∑
n∈Bb

|Sn2 |
aP

· pn(t), (146)

|u′
k| ≲ η

1

B

∑
n∈Bb

|Rn
k |

aP
· (1− pn(t))

1

M
. (147)

Then,

V
(t)
(i,·)µ1 ≥ η

t−1∑
b=0

1

B

∑
n∈Bb

|Sn1 |
aP

· pn(b), (148)

V
(t)
(i,·)µ2 = −V

(t)
(i,·)µ1, (149)

V
(t)
(i,·)vk ≤ η

t−1∑
b=0

1

B

∑
n∈Bb

|Sn1 |
aPM

, (150)

for k ∈ [M]. For i ∈ Un,l, we similarly have

V
(t)
(i,·)µ2 ≥ η

t−1∑
b=0

1

B

∑
n∈Bb

|Sn2 |
aP

· pn(b), (151)

V
(t)
(i,·)µ1 = −V

(t)
(i,·)µ2, (152)

V
(t)
(i,·)vk ≤ η

t−1∑
b=0

1

B

∑
n∈Bb

|Sn1 |
aPM

, (153)

for some k ∈ [M]. For i /∈ Wn,l ∪ Un,l, we have that

V
(t)
(i,·)vk ≤

√
logB

B
V

(t)
(j,·)vk, (154)

V
(t)
(i,·)µ1 ≤

√
logB

B
V

(t)
(j,·)µ1, (155)

where k ∈ [M], j ∈ Wn,l ∪ Un,l.

D.3 PROOF OF LEMMA 1

We know that by Lemma 3 and 4 in (Li et al., 2023a), for i ∈ Wn,l(0) and l ∈ Sn1 , we have that

1[V
(t)
(i,·)R

n
l (t)] = 1, (156)

and for i ∈ Un,l(0) and l ∈ Sn2 , we have that

1[V
(t)
(i,·)R

n
l (t)] = 1. (157)

We also have that the size of Wn,l and Vn,l are larger than Ω(m). Therefore, for yn = +1, by
Lemma 4 and 3, we have

f(Xn; Ψ) =
1

P

P∑
l=1

∑
i∈Wl,n(0)

1

a
Relu(V(i,·)Xsoftmaxl(Xn⊤Wxnl))

+
1

P

P∑
l=1

∑
i/∈Wl,n(0),a(l)i>0

1

a
Relu(V(i,·)Xsoftmaxl(Xn⊤Wxnl))

− 1

P

P∑
l=1

∑
i:a(l)i<0

1

a
Relu(V(i,·)Xsoftmaxl(Xn⊤Wxnl)).

(158)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

We know that
1

P

P∑
l=1

∑
i∈Wl,n(0)

1

a
Relu(V (T)

(i,·)Xsoftmaxl(Xn⊤W (T)xnl))

≳
|Sn1 |
P

· m
a

· ζT · pn(T)

≳
|Sn1 |
P

· m
a2

· η
T−1∑
b=0

1

B

∑
h∈Bb

|Sh1 |
P

ph(b) · pn(T).

(159)

We can derive that

q1(T) =

T−1∑
b=0

K(b)

≥
T−1∑
b=0

η
1

B

∑
n∈Bb

m|Sn1 |
aP

pn(b)ϕn(b)(P − |Sn1 |)η
b−1∑
c=0

1

B

∑
h∈Bc

|Sh1 |
aP

ph(c)

≳ δ4∗η

T−1∑
b=0

1

eq1(b)
.

(160)

Therefore, we have that when q1(T) ≤ O(1) or q1(T) ≥ Θ(T c) for c = Θ(1), (160) does not hold.
When q1(T) = Θ(log T), we have that (160) holds. In this case,

pn(T) ≥
δ∗T

C

δ∗TC + 1− δ∗
≥ 1− 1− δ∗

δ∗
T−C , (161)

where C > 1. Meanwhile, for l ∈ Rn
k , k ∈ [M], and any s ∈ [P],

softmaxl(xns
⊤W (T)xnl) = Θ(

1

P
). (162)

We can then derive that as long as
T ≳ η−1δ−2

∗ , (163)

we have
|Sn1 |
P

· m
a2

· η
T−1∑
b=0

1

B

∑
h∈Bb

|Sh1 |
P

ph(b) · pn(T) ≥ 1. (164)

Then,
f(Xn; Ψ) ≥ 1, ℓ(Xn, yn; Ψ) = 0. (165)

With (163), we can also derive that

M∑
k=1

∥V (T)
(i,·)vk∥

2 ≲
1

M
∥V (T)

(i,·)µ1∥2, (166)

which means that for i ∈ Wn,l with l ∈ Sn1 , V (T)
(i,·) is mainly in the direction of µ1. This verifies

condition (B) of Lemma 1. Therefore, by Hoeffding’s inequality (15), for any W ′ ∈ Ψ,

Pr

(∥∥∥ 1

|Bb|
∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W ′ − E
[
∂ℓ(Ψ;P n, zn)

∂W ′

] ∥∥∥ ≥
∣∣∣E [∂ℓ(Ψ;P n, zn)

∂W ′

]
ϵ

)
≤ e−Bϵ

2

≤ M−C ,
(167)

as long as
B ≳ ϵ−2 logM. (168)

Then,
E(X,y)∼DT ℓ(X, y; Ψ) ≤ ϵ. (169)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

E EXTENSION TO MULTI-CLASSIFICATION

Define that a 2c-classification is achieved by c times of binary classification with the orthonormal
set {µ(1)

T , · · · ,µ(c)
T } as the discriminative patterns for the task T . We have µ

(i)
T ⊥ vm, m ∈ [M],

i ∈ [c]. The label y is c-dimensional with each entry chosen from {+1,−1}. Specifically, each
(X ∈ Rd×P ,y ∈ Rc) ∼ DT is generated as follows:

• Randomly generate the k-th entry yk, k ∈ [c] of the label y from {+1,−1} with an equal
probability.

• Each token is randomly chosen from {µ(i)
T ,−µ

(i)
T }ci=1 ∪ {v1, · · · ,vM}. If yk = 1 (or

−1), the number of tokens corresponding to µTk
(or −µTk

) is larger than that of −µTk
(or

µTk
). µ

(i)
T and −µ

(i)
T (or “−µ

(i)
T and µ

(i)
T ”) are referred to label-relevant and confusion

patterns for yk = 1 (or yk = −1), respectively. The average fractions of label-relevant and
confusion tokens of µ(i)

T are δ
(i)
∗ and δ

(i)
, respectively.

We then need c sets of our binary model (4) to generate the output for 2c-classification, i.e.,

f(X; Ψ) = (f1(X; Ψ), f2(X; Ψ), · · · , fc(X; Ψ))

fi(X; Ψ) =
1

P

P∑
l=1

a⊤
(l)i

Relu(WOi

P∑
s=1

WVi
xssoftmaxl(xs⊤W⊤

Ki
WQi

xl)),
(170)

with Ψ = {{a(l)i}Pl=1,WOi
,WVi

,WKi
,WQi

}ci=1. The dimensions of WOi
,WVi

,WKi
,WQi

,
i ∈ [c] follow Section 3.2.

The learning process is then c independent and parallel binary classification problems for each entry
of the c-dimensional output. After fine-tuning, the trained model of each output entry has a similar
property to Lemma 1 for single binary classification. δ(i)∗ , the fraction of label-relevant pattern µ

(i)
T ,

i ∈ [c], may decrease by c times in average from the binary classification scenario. Therefore, by
condition (iii) of Theorem 1, the number of iterations and samples increases by c2 times, which is a
polynomial of log scale of the number of classes 2c. Then, for the disrminative patterns {µ(i)

T1
}ci=1

of task T1 and {µ(i)
T2
}ci=1 and T2 of task T2, if for any µ

(i)
T1

, there exists a unique µ
(i)
T2

close to be

orthogonal to µ
(i)
T1

, then T1 and T2 are irrelevant. If for any µ
(i)
T1

, there exists a unique µ
(i)
T2

with a

small angle to (or almost opposite to) µ(i)
T1

, then T1 and T2 are aligned (or contradictory). We can
then derive similar conclusions as our Theorems 1 and 2 by combining the results of all the output
entries.

32

	Introduction
	Major Contributions
	Related Works

	Task Vector: Definition and Observations
	Preliminaries
	Empirical Observations

	A Deep Dive into Task Vectors
	Main Theoretical Insights
	Problem Formulation
	How do task addition and negation affect the performance?
	Can a model provably generalize out-of-domain with task arithmetic?
	Can task vectors be implemented efficiently?
	Proof Sketch and Technical Novelty

	Numerical Experiments
	Experiments on Image Classification
	Experiment on Language Generation Task

	Conclusions
	Additional Experiments
	Preliminaries of theory
	Proof of Main Theorems and Corollaries
	Proof of Theorem 1 and 2
	Proof of Theorem 3
	Proof of Corollary 1
	Proof of Corollary 2

	Proof of key Lemmas
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 1

	Extension to multi-classification

