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Throughout animal life, the brain is stunningly diverse, taking on myriad structural forms shaped
over evolutionary time. Homology between distantly related taxa of anatomically specialized cells
clearly exists (Lemaire et al., 2021), yet the extent to which cellular identities are conserved over
evolutionary time is not well understood, as comparisons of functionally specialized brain regions
are technically challenging or infeasible across neuroanatomically distinct species.

Comparative genomics, now possible at single-cell resolution, overcomes these constraints by pro-
filing the fundamental units of the nervous system in a species- and anatomy-agnostic manner, thus
allowing for direct comparisons of brain cell-type identities across diverse taxa. In particular, single-
cell RNA-Sequencing (scRNA-Seq) allows for unprecedentedly deep profiling of cellular identities
across species (Ofengeim et al., 2017), thus posing a unique question at the intersection of genomics,
neurobiology, and computation: How can brain cell populations, characterized at single-cell res-
olution, be meaningfully compared across distantly related species?

One major challenge to such comparisons is finding a latent representation of brain cells from dif-
ferent species, such that similar cells cluster together, and variation across species can be attributed,
at least in part, to signatures of evolutionary change in gene activity (Song et al., 2023). Previous ap-
proaches have relied on stringent homology detection methods like “one-to-one” orthology (Kon et
al., 2022), though it is largely unknown how this approach performs as evolutionary distance be-
tween species increases. Orthogroups, or sets of genes from two or more species predicted to have
descended from a common ancestral gene, better account for complex gene histories (Emms et al.,
2019) and have also been used for integration purposes (Lemaire et al., 2021). However, like for
one-to-one orthology, comparing gene expression alone across species misses other defining features
of cell-type identities, such as regulatory relationships between transcription factors (TFs) and their
targets (Lemaire et al., 2021). Recently, an integration model leveraging protein language models
was released to explore similarities at the protein level to integrate across different species (Yanai et
al., 2024). This approach aligns conceptually with orthogroups, as it clusters gene expression based
on protein similarity, with orthogroups being defined from proteome data.

While expression is commonly used for joint embedding, network-level approaches such as gene
regulatory network (GRN) inference have not yet been applied as a substrate for integration. Lever-
aging cell-type-specific regulatory programs could provide a meaningful cross-species comparison
by taking advantage of similarities in TF sequence and binding site homologies, which tend to be
highly conserved, even at greater evolutionary distances (Tanay et al., 2021).

To achieve this, we envision an innovative workflow for scRNA-Seq integration that captures the
evolutionary plasticity of brain gene expression across diverse taxa. This workflow would leverage
GRNs as a foundation for cross-species integration of single-cell brain data, aiming to unravel the
evolution and diversification of brain cells across the animal kingdom. In this brief report, we set the
foundations for such a mechanistic model by presenting the caveats of current integration models
when applied to cross-species integration.

Datasets: We used public scRNA-Seq data from the GEO database for Human (GSE67835),
Macaque (GSE233278), Mouse (GSE60361), Fly (GSE107451), and Honey Bee (GSE142044).

Orthofinder (Emms et al., 2019) was used to generate orthogroups based on the proteomes of hu-
man (Homo sapien), crab-eating macaque (Macaca mulatta), chimpanzee (Pan troglodytes, mouse
(Mus musculus), rat (Rattus norvegicus), tropical clawed frog (Xenopus laevis), fruit fly (Drosophila
melanogastor), Honey Bee (Apis mellifera), yellow fever mosquito (Aedes aegypti) and swiftwater
hydra (Hydra vulgaris). The additional species listed here but not in ”Datasets” above were included
to better represent phylogenetic relationships and enhance the performance of OrthoFinder, in-line
with best practices. To transform the scRNA-seq matrices from cells × genes to cells × orthogroups,
we assigned each gene to its corresponding orthogroup and added the expression levels of all genes
within the same orthogroup.
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Figure 1: UMAP of Human, Macaque, Mouse, Fly and bee single cell data using A) No integration
method B) Harmony and C) Seurat. D) UMAP of Human, Macaque, Mouse and Bee astrocyte single
cell data integrated using Harmony.

Integration models for single-cell data: We used Seurat (Stuart et al., 2019) to preprocess and
normalize the datasets, followed by integration using both the Harmony (Korsunsky et al., 2019) and
Seurat. We then subsetted only the astrocyte populations and performed integration using Harmony.

CURRENT INTEGRATION MODELS DOES NOT CAPTURE BIOLOGICAL RELATIONSHIPS.

Since we could not identify single-copy orthologs across all datasets (human, mouse, macaque,
fruit fly and honey bee; see Methods), we computed orthogroups (i.e., sets of one or more genes
for each species that are predicted to have descended from a common ancestral gene) as a lower-
dimensional representation (Fig. 1A), increasing the overlap to 199 common features. However,
we still observed very low overlap across species indicating that the computed orthogroups do not
fully capture the transcriptional identity of cells (Fig. 1A). Regardless of the technical variations
therein, human, mouse, and macaque cells tend to cluster together, while fruit fly and honey bee,
as the only invertebrate species in this analysis, remain transcriptionally distinct. Additionally, the
evaluated state-of-the-art integration methods (Harmony and Seurat) yielded completely different
levels of overlap in the low-dimensional embeddings (Fig. 1B, Fig. 1C).

We focused our preliminary analyses on astrocytes, a subtype of glia that likely share a common evo-
lutionary origin across vertebrates and invertebrates (Falcone, 2022).Therefore, we leveraged prior
knowledge of conserved transcriptional programs that characterize astrocytes and astrocyte-like glia
across taxa. We specifically explored honey bee astrocytes, as fruit fly glia annotations were insuffi-
cient for the targeted analyses. Integration results (Fig. 1D) demonstrate a clear overlap between the
human, macaque, and mouse datasets, while the honey bee data generate separate clusters. We will
further refine our approach to quantifying this separation and determining if it is consistent with the
known evolutionary relationships across the included species.

Due to the substantial variability in integration results across different methods and the limited un-
derstanding of cross-species cell-type relationships, a comprehensive analysis of existing integra-
tion techniques is essential. We hypothesize that an optimal low-dimensional embedding exists that
more accurately captures the underlying biology of evolutionary relationships across species. We
hope that this approach will enable us to better study brain evolution across taxa, shedding light on
the conserved and divergent aspects of brain function and structure.
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