
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Beyond Random Augmentations: Pretraining
with Hard Views

Anonymous authors
Paper under double-blind review

Abstract

Self-Supervised Learning (SSL) methods typically rely on random image
augmentations, or views, to make models invariant to different transforma-
tions. We hypothesize that the efficacy of pretraining pipelines based on
conventional random view sampling can be enhanced by explicitly selecting
views that benefit the learning progress. A simple yet effective approach is
to select hard views that yield a higher loss. In this paper, we propose Hard
View Pretraining (HVP), a learning-free strategy that extends random view
generation by exposing models to more challenging samples during SSL
pretraining. HVP encompasses the following iterative steps: 1) randomly
sample multiple views and forward each view through the pretrained model,
2) create pairs of two views and compute their loss, 3) adversarially select
the pair yielding the highest loss according to the current model state, and
4) perform a backward pass with the selected pair. In contrast to existing
hard view literature, we are the first to demonstrate hard view pretraining’s
effectiveness at scale, particularly training on the full ImageNet-1k dataset,
and evaluating across multiple SSL methods, Convolutional Networks, and
Vision Transformers. As a result, HVP sets a new state-of-the-art on DINO
ViT-B/16, reaching 78.8% linear evaluation accuracy (a 0.6% improvement)
and consistent gains of 1% for both 100 and 300 epoch pretraining, with
similar improvements across transfer tasks in DINO, SimSiam, iBOT, and
SimCLR.

1 Introduction

Learning effective and generalizable visual representations in Self-Supervised Learning (SSL)
has been approached in various ways. Many SSL methods can be broadly categorized into
generative and discriminative approaches (Chen et al., 2020a). Generative methods focus
on generating image inputs, while discriminative methods, particularly contrastive learning
(Hadsell et al., 2006; He et al., 2020), aim at learning latent representations in which similar
image views are located closely, and dissimilar ones distantly.
Such views are generated by applying a sequence of (randomly sampled) image transfor-
mations and are usually composed of geometric (cropping, rotation, etc.) and appearance
(color distortion, blurring, etc.) transformations. Prior work (Chen et al., 2020a; Wu et al.,
2020; Purushwalkam & Gupta, 2020; Wagner et al., 2022; Tian et al., 2020b) has identified
random resized crop (RRC), which randomly crops the image and resizes it back to a fixed
size, as well as color distortion as critical transformations for effective representation learn-
ing. However, despite this finding and to our best knowledge, little research has gone into
identifying more effective ways for generating views to improve performance.
Existing SSL approaches that attempt to control the hardness of views include adversarial
(Shi et al., 2022; Tamkin et al., 2021) or cooperative (Hou et al., 2023) techniques. For
instance, Tian et al. (2020b) use mutual information theory to adversarially learn view
generators. These methods offer valuable insights into optimizing views but often introduce
additional complexity, such as requiring additional models or significant changes to the SSL
pipeline, limiting their practicality in state-of-the-art models where resource constraints are
already a concern. Similar to what we propose, Koçyigit et al. (2023) introduce a hard view

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Adversarial 
Selection

Vanilla SSL 
train step

repeat

SSL 
Model

sample views forward create pairs select hardest pair training step

Calculate 
Loss

(a) (b)

Figure 1: (a) HVP first samples N views, pairs them, and adversarially selects the hardest
pair, i.e., the one with the worst loss according to the current model state. (b) Examples
(left) and sampled views (right) after transformations. Hard pairs selected by HVP are
shown with a solid frame.

sampling strategy but targeting the acceleration of pretraining. Moreover, their approach
requires tuning hyperparameters like learning rate and augmentation magnitude, which can
introduce confounding variables. Furthermore, neither Koçyigit et al. (2023) nor Tian et al.
(2020b) validate their methods on larger datasets such as ImageNet-1k (Deng et al., 2009),
or across larger model architectures, limiting their scalability and applicability.
Building on these observations, we propose Hard View Pretraining (HVP), a fully learning-
free, easy-to-integrate approach designed to improve standard pretraining methods without
the need for additional model training or complex modifications. Our method leverages
the current model state to select challenging samples during pretraining by adversarially
sampling pairs of views and selecting the pair that yields the highest loss according to
the model‘s current state (see Fig. 1a). Unlike previous approaches, HVP requires no
hyperparameter tuning and demonstrates scalability to large datasets like ImageNet-1k,
offering an efficient and practical solution for improving SSL pretraining. To the best of
our knowledge, we are the first to demonstrate the effectiveness of a hard view sampling
strategy at scale, particularly on modern architectures like Vision Transformers (ViTs) and
training on the full ImageNet dataset. Our approach not only integrates seamlessly with
recent state-of-the-art SSL methods but also showcases consistent improvements across both
convolutional architectures and ViTs, validating its robustness and scalability.
Overall, our contributions can be summarized as follows:

• We propose Hard View Pretraining (HVP), an easy-to-use method complementing
SSL by extending the common random view generation to automatically expose
the model to harder samples during pretraining. HVP simply requires the ability
to compute sample-wise losses;

• We demonstrate the effectiveness and compatibility of our approach using
ImageNet-1k pretraining across four popular SSL methods that cover a diverse range
of discriminative objectives such as SimSiam (Chen & He, 2021), DINO (Caron
et al., 2021), iBOT (Zhou et al., 2021), and SimCLR (Chen et al., 2020a);

• HVP achieves a new state-of-the-art result on DINO ViT-B/16, improving over the
officially reported baseline of 78.2% linear evaluation accuracy by reaching 78.8%
(400 epochs). HVP also consistently improves all other baselines by an average of
1% in linear evaluation on ImageNet across 100 and 300 epoch-pretraining runs;

• We show similar improvements on a diverse set of transfer tasks, including finetun-
ing, object detection, and segmentation;

• We present insights into the underlying mechanisms and robustness of HVP.

We make our PyTorch Paszke et al. (2019) code, models, and all used hyperparameters pub-
licly available under https://anonymous.4open.science/r/pretraining-hard-views/.

2

https://anonymous.4open.science/r/pretraining-hard-views/


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 Related Work

2.1 Discriminative Self-Supervised Learning

The core idea behind the discriminative learning framework (Chen et al., 2020a) is to learn
image representations by contrasting positive pairs (two views of the same image) against
negative pairs (two views of different images) (Hadsell et al., 2006). To work well in practice
and to prevent model collapse, contrastive learning methods often require a large number of
negative samples (Wu et al., 2018; van den Oord et al., 2018; Chen et al., 2020a; He et al.,
2020; Tian et al., 2020a; Chen et al., 2020b) stored in memory banks (Wu et al., 2018; He
et al., 2020) or, for instance, in the case of SimCLR, implicitly in large batches (Chen et al.,
2020a). Non-contrastive approaches, such as BYOL (Grill et al., 2020), SimSiam (Chen &
He, 2021), DINO (Caron et al., 2021) and others (Zbontar et al., 2021; Caron et al., 2020;
Ermolov et al., 2021), can only use positive pairs without causing model collapse but rely
on other techniques, such as Siamese architectures, whitening of embeddings, clustering,
maximizing the entropy of the embeddings, momentum encoders, and more.

2.2 Optimizing for Hard Views in SSL

Past work has shown that optimizing augmentation policies or views directly can be ben-
eficial. Hence, the realm of learning task-specific augmentation policies based on data has
seen quick development (Cubuk et al., 2019; Ho et al., 2019; Lin et al., 2019; Zhang et al.,
2020; Hataya et al., 2020; Hou et al., 2023; Müller & Hutter, 2021). However, these ap-
proaches do not include the random resize crop operation into their search spaces and thus,
are limited in leveraging the geometric perspective to control view hardness. In contrast to
learning hard augmentations, another family of approaches optimizes directly on the pixel
level to control view hardness (Shi et al., 2022; Tamkin et al., 2021). Other approaches
leverage hard views in order to improve performance. Similar to us, Koçyigit et al. (2023)
uses the current model state for selecting hard views in order to accelerate SSL pretraining.
However, their approach requires controlling hyperparameters such as learning rate and aug-
mentation magnitude, while predominantly training on a smaller version of ImageNet and
ResNets (He et al., 2016) only. In contrast, our work offers a more complete analysis of hard
view pretraining, demonstrating the benefits without potential confounding factors such as
hyperparameter adjustments. Moreover, focusing on performance rather than pretraining
speedups, we employ higher budgets (longer pretraining, larger batch sizes) across the full
ImageNet dataset and different architectures (ResNets and ViTs (Dosovitskiy et al., 2020)).
In a similar vein, Tian et al. (2020b) leverages the view content for better performance.
Under the lens of mutual information, they derive an objective to adversarially learn view
generators for contrastive learning. While such methods can complement our approach, they
are less easily integrated into existing discriminative pipelines due to the need for adversarial
network training or do not use the current model state to control learning hardness.

3 Method

3.1 Self-supervised Learning Framework

In this section, we introduce our approach, which is also depicted in Algorithm 1. Many
different self-supervised discriminative learning (He et al., 2020) objectives exist, each char-
acterized by variations stemming from design choices, such as by the use of positive and
negative samples or asymmetry in the encoder-projector network structure. For simplicity
of exposure, we will introduce our approach based on the SimSiam objective (Chen & He,
2021), but we do note that our method can be used with any other discriminative SSL
objective that allows the computation of sample-wise losses.
SimSiam works as follows. Assume a given set of images D, an image augmentation dis-
tribution T , a minibatch of M images x = {xi}M

i=1 sampled uniformly from D, and two
sets of randomly sampled image augmentations A and B sampled from T . SimSiam applies
A and B to each image in x resulting in xA and xB . Both augmented sets of views are
subsequently projected into an embedding space with zA = gθ(fθ(xA)) and hB = fθ(xB)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where fθ represents an encoder (or backbone) and gθ a projector network. SimSiam then
minimizes the following objective:

L(θ) = 1
2

(
D(zA, hB) + D(zB , hA)

)
(1)

where D denotes the negative cosine similarity function. Intuitively, when optimizing θ, the
embeddings of the two augmented views are attracted to each other.

3.2 Pretraining with Hard Views

We now formalize how we expose the model to more challenging views during pretraining.
In a nutshell, Hard View Pretraining extends the random view generation by sampling
adversarially harder views during pretraining. Instead of having two sets of augmentations
A and B, we now sample N sets of augmentations, denoted as A = {A1, A2, . . . , AN }. Each
set Ai is sampled from the image augmentation distribution T , and applied to each image in
x, resulting in N augmented sets of views xA1 , xA2 , . . . , xAN . Similarly, we obtain N sets of
embeddings zA1 , zA2 , . . . , zAN and predictions hA1 , hA2 , . . . , hAN through the encoder and
projector networks. We then define a new objective function that seeks to find the pair
(xAk

i , xAl
i ) of a given image xi that yields the highest loss:

(xAk
i , xAl

i ) = arg max
k,l;k ̸=l

L(θ)i,k,l

= arg max
k,l;k ̸=l

1
2

(
D(zAk

i , hAl
i ) + D(zAl

i , hAk
i )

)
,

(2)

where L(θ)i,k,l simply denotes a sample-wise variant of Eq. 1.

Algorithm 1 Pretraining with Hard Views
1: Input: Number of views N ≥ 2, batch size M ,
2: augmentation distribution T , model f

3: for each xi in the sampled batch {xi}M
i=0 do

4: Sample N augmentations: A = {tn ∼ T }N
n=0

5: Create augmented views: xA
i = {tn(xi)}N

n=0
6: Forward all views through f
7: Create all

(
N
2
)

view pairs xAk
i × xAl

i , k ̸= l

8: Add hard pair (xAk∗
i , x

Al∗
i ) that maximizes

Eq. 2 to the new batch with only hard pairs
9: Proceed with standard SSL training

10: Repeat for all batches
11: return Pretrained model f

Overall, we first generate N aug-
mented views for each image xi in
the minibatch. Then, we forward
these augmented views through the
networks and create all combinatori-
ally possible

(
N
2
)

pairs of augmented
images. Subsequently, we use Eq.
2 to compute the sample-wise loss
for each pair. We then select all
pairs that yielded the highest loss
to form the new hard minibatch of
augmented sets xAk∗ and xBl∗ , dis-
card the other pairs and use the
hard minibatch for optimization. As
shown in Algorithm 1, we repeat this
process in each training iteration.
Intuitively, our approach introduces a more challenging learning scenario in which the model
is encouraged to learn more discriminate features by being exposed to harder views. In the
early stages of training, the embedding space lacks a defined structure for representing
similarity among views. As training progresses, our method refines the concept of similarity
through exposure to increasingly harder views given the current model state. By limiting
the number of sampled views, we upper-bound the difficulty of learning to avoid overly
difficult tasks that would impede learning. This ensures a gradual and controlled evolution
of the embedding space, where the difficulty of views escalates in tandem with the model’s
growing capacity to differentiate them. Consequently, our method systematically advances
the representation of challenging views within the embedding space, which we believe to be
the reason for improved feature learning.
While we exemplified the integration of HVP with the SimSiam objective, integrating it
into other contrastive methods is as straightforward. The only requirement of HVP is to
be able to compute sample-wise losses (to select the views with the highest loss). In our
experiments section and in addition to SimSiam, we study the application of HVP to the

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

objectives of DINO, iBOT, and SimCLR (see also Appendix K.1 for a formal exemplary
definition for the integration of HVP into SimCLR).

4 Implementation and Evaluation Protocols

4.1 Implementation

We now describe the technical details of our approach. HVP can be used with any SSL
method that allows computing sample-wise losses, and the only two elements in the pipeline
we adapt are: 1) the data loader (which now needs to sample N views for each image) and
2) the forward pass (which now invokes a select function to identify and return the hard
views). The image transformation distribution T taken from the baselines is left unchanged.
Note, for the view selection one could simply resort to random resized crop (RRC) only and
apply the rest of the operations after the hard view selection (see Section 6.1 for a study on
the influence of appearance on the selection).

All experiments were conducted with N = 4 sampled views, yielding
(

N
2
)

= 6 pairs to
compare, except for DINO which uses 10 views (2 global, 8 local heads) per default. For
DINO, we apply HVP to both global and local heads but to remain tractable, we upper-
bound the number of total pair comparisons to 128. SimCLR uses positive and negative
samples. In accordance with the simplicity of HVP, we do not alter its objective, which
naturally leads to selecting hard views that are adversarial to positive and “cooperative"
to negative views. For iBOT, we use the original objective as defined by the authors with
global views only.

4.2 Evaluation Protocols

We now describe the protocols used to evaluate the performance in our main
results section. In self-supervised learning, it is common to assess pretrain-
ing performance with the linear evaluation protocol by training a linear classi-
fier on top of frozen features or finetuning the features on downstream tasks.

Method Arch. 100 epochs 300 epochs
Lin. k-NN Lin. k-NN

DINO ViT-S/16 73.52 68.80 75.48 72.62
+ HVP ViT-S/16 74.67 70.72 76.56 73.65
Impr. +1.15 +1.92 +1.08 +1.03
DINO RN50 71.93 66.28 75.25 69.53
+ HVP RN50 72.87 67.33 75.65 70.05

+0.94 +1.05 +0.40 +0.52
SimSiam RN50 68.20 57.47 70.35 61.40
+ HVP RN50 68.98 58.97 70.90 62.97

+0.78 +1.50 +0.55 +1.57
SimCLR RN50 63.37 52.83 65.50 55.65
+ HVP RN50 65.33 54.76 67.30 56.80

+1.96 +1.93 +1.80 +1.15
iBOT ViT-S/16 69.55 62.93 72.76 66.92
+ HVP ViT-S/16 70.27 62.75 73.99 67.16

+0.73 -0.18 +1.23 +0.24

Table 1: Average top-1 linear and k-NN classifica-
tion accuracy on the ImageNet validation set for
100 and 300-epoch pretrainings across 3 seeds.

Our general procedure is to follow
the baseline methods as closely as pos-
sible, including hyperparameters and
code bases (if reported). It is common
to use RRC and horizontal flips during
training and report the test accuracy on
central crops. Due to the sensitivity of
hyperparameters, and as done by Caron
et al. (2021), we also report the quality
of features with a simple weighted near-
est neighbor classifier (k-NN).

5 Main Results

Here, we discuss our main results on
image classification, object detection,
and segmentation tasks. All results are
self-reproduced using the original base-
line code and hyperparameters (see Ap-
pendix Section Afor details).

5.1 Evaluations on ImageNet

We report the top-1 validation accuracy
on frozen features, as well as the k-NN classifier performance, in Table 1. For DINO, we
additionally compare ResNet-50 (He et al., 2016) against the ViT-S/16 (Dosovitskiy et al.,
2020) architecture. We point out that both methods, vanilla, and vanilla+HVP always

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Method Arch. CIFAR10 CIFAR100 Flowers102 iNat 21 Food101
Lin. F.T. Lin. F.T. Lin. F.T. Lin. F.T. Lin. F.T.

SimSiam RN50 82.60 95.50 54.20 77.20 34.27 56.40 32.50 60.30 65.70 83.90
+ HVP RN50 84.40 96.10 57.10 78.20 38.37 58.90 33.90 60.90 67.10 84.70

Impr. +1.80 +0.60 +2.90 +1.00 +4.10 +2.50 +1.40 +0.60 +1.40 +0.80
DINO ViT-S/16 94.53 98.53 80.63 87.90 91.10 93.20 46.93 53.97 73.30 87.50
+ HVP ViT-S/16 95.13 98.65 81.27 88.23 92.07 93.60 49.03 54.16 74.13 87.91

Impr. +0.60 +0.12 +0.63 +0.33 +0.97 +0.40 +2.10 +0.19 +0.83 +0.41

Table 2: HVP compares favorably against models trained without it when fine-tuned (F.T.)
to or linearly evaluated (Lin.) on other datasets (averaged over 3 seeds; 100-ep. preraining).

receive the same number of data samples for training. Our method compares favorably
against all baselines with an increased performance of approximately 1% on average for 100
and 300 epoch pretraining, showing the benefit of sampling hard views.
Due to limited compute resources, we run the majority of pretrainings in this paper for
100 epochs and 300 epochs (200 epochs for SimCLR) and batch sizes of 512 (100 epoch)
or 1024 (200 & 300 epoch trainings), respectively. This choice is in line with a strategy
that favors the evaluation of a diverse and larger set of baselines over the evaluation of a
less diverse and smaller set and underpins the broad applicability of HVP. We primarily
ran our experiments with 8xNVIDIA GeForce RTX 2080 Ti nodes, with which the cheapest
runs required ∼3.5 days for pretraining and linear evaluation and the most expensive runs
required ∼25 days (60 days for ViT-B on 3 nodes; see Appendix J for further discussion
on the time complexity of HVP). Moreover, we emphasize that HVP is insensitive to the
baseline hyperparameters and simply reusing these consistently resulted in improvements of
the reported magnitudes across all experiments.
To explore the scalability of HVP with larger models and extended training schedules, we ran
HVP with DINO ViT-B/16 (400 epochs) and achieved a state-of-the-art result of 78.8%
accuracy in linear evaluation, improving over the officially reported baseline of
78.2%. For k-NN classification, the same model similarly surpassed the DINO baseline by
0.85%, reaching 76.95% compared to 76.1%. These results demonstrate the scalability of
our method to larger models and longer pretraining schedules.

5.2 Transfer to Other Datasets and Tasks

We now report the transferability of features learned with HVP. For all experiments here,
we use our 100-epoch ImageNet pretrained iBOT and DINO ViT-S/16 models, respectively.

5.2.1 Linear Evaluation and Finetuning

Method Arch. OD IS
100 300 100 300

iBOT ViT-S/16 66.13 66.80 63.10 63.63
+ HVP ViT-S/16 66.50 67.13 63.50 64.23
Impr. +0.37 +0.33 +0.40 +0.60
DINO ViT-S/16 65.90 66.60 62.83 63.63
+ HVP ViT-S/16 66.37 67.00 63.37 64.00
Impr. +0.47 +0.40 +0.53 +0.37

Table 3: Object Detection (OD) and Instance
Segmentation (IS) AP50 performance on COCO
for 100/300 epoch pretraining.

In Table 2, we apply both the linear
evaluation (Lin.) and finetuning (F.T.)
protocols to our models across a diverse
set of datasets consisting of CIFAR10
(Krizhevsky, 2009), CIFAR100, Flow-
ers102 (Nilsback & Zisserman, 2008),
Food101 (Bossard et al., 2014), and iNat-
uralist 2021 (iNaturalist 2021 competi-
tion dataset). Our results show that the
improvements achieved by sampling hard
views that we observed so far also trans-
fer to other datasets.

5.2.2 Object Detection and Instance Segmentation

For object detection and instance segmentation, we use the COCO (Lin et al., 2014) dataset
with Cascade Mask R-CNN (Cai & Vasconcelos, 2019; He et al., 2017). Table 3, where

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

we report the AP50 performance, shows that the features learned with HVP also transfer
favorably to these tasks and outperform the iBOT and DINO baseline with a 100-ep. and
300-ep. pretraining. More details and performance results on this task are provided in
Appendix H.1.

6 Empirical Analysis of HVP

In this section, we discuss studies designed to shed light on the mechanisms underlying HVP.
We address the following questions: 1) “Which pattern can be observed that underlies the
hard view selection?” and 2) “What are the effects on empowering the adversary?”. For all
experiments conducted here, we use our 100-epoch, ImageNet-pretrained SimSiam+HVP
models with four sampled views. In Appendix F.1, we also analyze whether we can infer a
“manual" augmentation policy from the following observed patterns.

6.1 Q1: Which Patterns Can be Observed with HVP?

When visually studying examples and the views selected by HVP in Figures 1b and 5 (in
the appendix), we notice that both geometric and appearance characteristics seem to be
exploited, for instance, see the brightness difference between the views of the first two rows
in Fig. 1b. We also see a generally higher training loss (Fig. 6 in the appendix) indicative
of an increased task difficulty.

6.1.1 Logging Augmentation Data

To assess these observations, we logged relevant hyperparameter data during SimSiam train-
ing with HVP. The logs include for each view the sampled geometric and appearance param-
eters from the data augmentation operations (such as the height/width of the crops or the
brightness; see Section E in the appendix for more details), as well as the loss and whether
the view was selected. As evaluated metrics, we chose the Intersection over Union (IoU),
Relative Distance (normalized distance of the center points views), color distortion distance
(the Euclidean distance between all four color distortion parameters), and the individual
color distortion parameters.

6.1.2 Importance of Augmentation Metrics

Given 300k such samples, we then used fANOVA (Hutter et al., 2014) to determine how
predictive these metrics are. This resulted in the metric with the highest predictive capacity

Figure 2: Left: In over 40% of the cases, the adversarially selected view pair is also the one
with the lowest IoU (Intersection over Union) throughout SimSiam+HVP pretraining. We
attribute the spike in the early phase to the random initialization of the embedding. Right:
When using HVP (blue), a shift to smaller IoU values is visible when compared to standard
pretraining (orange). Both results are based on 3 seeds.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

on the loss being the IoU, explaining 15% of the variance in performance, followed by
brightness with 5% (for more details see Fig. 8 in the appendix). The importance of IoU in
HVP is further underpinned by the following observation: the fraction of view pairs selected
by HVP, which are also the pairs with the lowest IoU among all six pairs (N=4), is over
40% (random: ∼16.7%) during training. Moreover, when using HVP, a shift to smaller IoU
values can be observed when comparing against standard pretraining (see Fig. 2).

6.1.3 Taking a Closer Look at the Intersection over Union

We also examined the IoU value over the course of training in Fig. 3 (left). An observable
pattern is that the IoU value with HVP (Fig. 3 (left) in green) is smaller and varies more
when compared against training without HVP (blue). We believe this is due to the sample-
wise and stateful nature of the adversarial selection as HVP chooses different IoU values
between varying samples and model states.
Lastly, we assessed the effect of the color augmentation on the pair selection. For this study,
we sampled one set of color augmentations (as opposed to one for each view) per iteration
and applied it to all views. We apply sampled data augmentations to each view only after
identifying the hardest pair. As we show in Fig. 3 (right), the fraction of selected pairs
that are also the hardest pairs slightly increases in this case. One possible explanation for
this is that it reflects the non-negligible role of color variation between views (as shown
previously with the importance analysis), where HVP is given less leverage to increase
hardness through a static appearance and instead, depends more on leveraging the IoU.
Another key observation is that HVP often chooses view pairs that incorporate zooming in
and out or an increased distance between the views (see last row of Fig. 1b).

6.2 Q2: What are the Effects of Strong Adversaries?

It is well known that adversarial learning can suffer from algorithmic instability (Xing et al.,
2021), e.g. by giving an adversary too much capacity. Here, we further explore the space
of adversarial capacity for pretraining with hard views by adapting and varying HVP hy-
perparameters in order to gain a better understanding of their impact and robustness on
discriminative learning. Additionally, we report further results on learning an adversary in
Appendix G.1.

6.2.1 Robustness to Augmentation Hyperparameters

In assessing the robustness of HVP to augmentation hyperparameters, we conducted an
analysis focusing on two primary augmentation operations: RandomResizedCrop (RRC)
and ColorJitter (CJ). Our findings depicted in Fig. 4 suggest that HVP enhances the

Figure 3: Left: The average IoU of view pairs selected by SimSiam+HVP (blue) compared
against the default SimSiam training (green). Right: Using static color augmentation for
all pairs before the selection increases the dependency on the IoU.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: With HVP, SimSiam appears more robust to augmentation hyperparameter vari-
ation. We show this for RandomResizedCrop (left) and ColorJitter (right). For RRC, the
values indicate the lower value of the sampling range and for CJ the intensity of the color
cues. Results averaged over two seeds and SimSiam defaults are RRC=0.2 and CJ=0.5.

robustness of SSL methods, like SimSiam, against variations in these hyperparameters.
Note, when varying one operation, either RRC or CJ, we maintained the other operation
at its default configuration. In both settings, we observe less performance degradation with
extreme augmentation values and overall smaller degradation rates for HVP. We believe
that this robustness stems from hard view pretraining which inadvertently equips the model
to handle stronger augmentations.

6.2.2 Increasing the Number of Views

In our initial experiments, we explored variations in the number of sampled views N with
SimSiam and HVP. As can be seen in Fig. 7 in the appendix, while N = 8 views still
outperform the baseline in terms of linear evaluation accuracy, it is slightly worse than
using N = 4 views (-0.05% for 100 epochs pretraining on linear evaluation). We interpret
this result as the existence of a “sweet spot" in setting the number of views, where, in
the limit, a higher number of views corresponds to approximating a powerful adversarial
learner, capable of choosing very hard and unfavorable learning tasks that lead to model
collapse and performance deterioration. We experimented with such an adversarial learner
and report results in Appendix G.1.

7 Conclusion

In this study, we presented HVP, a new data augmentation and learning strategy for Self-
Supervised Learning designed to challenge pretrained models with more demanding samples.
This method, while straightforward in its design, has proven to be a powerful tool, pushing
the effectiveness of the traditional random view generation in SSL. When combined with
methods like DINO, SimSiam, iBOT, and SimCLR, HVP consistently showcased improve-
ments of 1% on average in linear evaluation and a diverse set of transfer tasks. Notably,
HVP achieved a new state-of-the-art result of 78.8% linear evaluation accuracy on DINO
ViT-B/16, a 0.6% improvement over the previous baseline. This highlights the scalabil-
ity and effectiveness of our approach for larger pretraining settings. As models continue
to become larger, there is an increasing demand for more data to effectively train them.
Synthetic data generation offers a viable solution by enhancing the quantity and diversity
of training data. Data augmentation techniques like HVP can play a crucial role in this
process by creating challenging views, which serve as synthetic data. Lastly, our study also
investigates the efficiency and robustness of HVP. All in all, HVP holds promise for scenar-
ios where one seeks to push absolute performance or explore making models less sensitive
to hyperparameters, thereby strengthening them for various downstream applications.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

References
L. Bossard, M. Guillaumin, and L. Van Gool. Food-101 – mining discriminative components

with random forests. In Proc. of ECCV’14, 2014.

Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: High quality object detection and
instance segmentation. IEEE transactions on pattern analysis and machine intelligence,
43(5):1483–1498, 2019.

M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. In Proc. of NeurIPS’20, 2020.

M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging
properties in self-supervised vision transformers. In Proc. of ICCV’21, pp. 9630–9640,
2021.

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang
Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu,
Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong
Wang, Jianping Shi, Wanli Ouyang, Chen Change Loy, and Dahua Lin. MMDetection:
Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155, 2019.

T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton. A simple framework for contrastive
learning of visual representations. In Proc. of ICML’20, pp. 1597–1607, 2020a.

X. Chen and K. He. Exploring simple siamese representation learning. In Proc. of CVPR’21,
pp. 15750–15758, 2021.

Xinlei Chen, Haoqi Fan, Ross B. Girshick, and Kaiming He. Improved baselines with
momentum contrastive learning. CoRR, abs/2003.04297, 2020b.

E. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. Le. Autoaugment: Learning augmen-
tation strategies from data. In Proc. of CVPR’19, pp. 113–123, 2019.

J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In Proc. of CVPR’09, pp. 248–255, 2009.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image
is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:12010.11929, 2020.

A. Ermolov, A. Siarohin, E. Sangineto, and N. Sebe. Whitening for self-supervised repre-
sentation learning. In Proc. of ICML’21, pp. 3015–3024, 2021.

J. Friedman. Greedy function approximation: A gradient boosting machine. Annals of
Statistics, pp. 1189–1232, 2001.

J. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya, C. Doersch,
B. Ávila Pires, Z. Daniel Guo, M. G. Azar, B. Piot, K. Kavukcuoglu, R. Munos, and
M. Valko. Bootstrap your own latent: A new approach to self-supervised learning. In
Proc. of NeurIPS’20, 2020.

R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant
mapping. In Proc. of CVPR’06, pp. 1735–1742, 2006.

R. Hataya, J. Zdenek, K. Yoshizoe, and H. Nakayama. Faster autoaugment: Learning
augmentation strategies using backpropagation. In Proc. of ECCV’20, pp. 1–16, 2020.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc.
of CVPR’16, pp. 770–778, 2016.

K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask R-CNN. In Proc. of ICCV’17, pp.
2980–2988, 2017.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

K. He, H. Fan, Y. Wu, S. Xie, and R. B. Girshick. Momentum contrast for unsupervised
visual representation learning. In Proc. of CVPR’20, pp. 9726–9735, 2020.

D. Ho, E. Liang, X. Chen, I. Stoica, and P. Abbeel. Population based augmentation: Effi-
cient learning of augmentation policy schedules. In Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, pp. 2731–2741, 2019.

C. Hou, J. Zhang, and T. Zhou. When to learn what: Model-adaptive data augmentation
curriculum. CoRR, abs/2309.04747, 2023.

F. Hutter, H. Hoos, and K. Leyton-Brown. An efficient approach for assessing hyperparam-
eter importance. In Proc. of ICML’14, pp. 754–762, 2014.

iNaturalist 2021 competition dataset. iNaturalist 2021 competition dataset. https://
github.com/visipedia/inat_comp/tree/master/2021, 2021.

M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial transformer net-
works. In Proc. of NeurIPS’15, pp. 2017–2025, 2015.

M. Taha Koçyigit, T. M. Hospedales, and H. Bilen. Accelerating self-supervised learning
via efficient training strategies. In Proc. of WACV, pp. 5643–5653. IEEE, 2023.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

C. Lin, M. Guo, C. Li, X. Yuan, W. Wu, J. Yan, D. Lin, and W. Ouyang. Online hyper-
parameter learning for auto-augmentation strategy. In Proc. of ICCV’19, pp. 6578–6587,
2019.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. Zitnick.
Microsoft COCO: common objects in context. In Proc. of ECCV’14, pp. 740–755, 2014.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In Proc. of ICLR’19,
2019.

S. Müller and F. Hutter. Trivialaugment: Tuning-free yet state-of-the-art data augmenta-
tion. In Proc. of ICCV’21, pp. 774–782, 2021.

M.-E. Nilsback and A. Zisserman. Automated flower classification over a large number of
classes. In Proc. of ICVGIP’08, pp. 722–729, 2008.

A. Paszke, S. Gross, F. Massa, A. Lerer, et al. PyTorch: An imperative style, high-
performance deep learning library. In Proc. of NeurIPS’19, pp. 8024–8035, 2019.

S. Purushwalkam and A. Gupta. Demystifying contrastive self-supervised learning: Invari-
ances, augmentations and dataset biases. In Proc. of NeurIPS’20, 2020.

Y. Shi, N. Siddharth, P. H. S. Torr, and A. R. Kosiorek. Adversarial masking for self-
supervised learning. In Proc. of ICML’22, volume 162, pp. 20026–20040, 2022.

A. Tamkin, M. Wu, and N. D. Goodman. Viewmaker networks: Learning views for unsu-
pervised representation learning. In Proc. of ICLR’21, 2021.

Y. Tian, D. Krishnan, and P. Isola. Contrastive multiview coding. In Proc. of ECCV’20,
pp. 776–794, 2020a.

Y. Tian, C. Sun, B. Poole, D. Krishnan, C. Schmid, and P. Isola. What makes for good
views for contrastive learning? In Proc. of NeurIPS’20, 2020b.

A. van den Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748, 2018.

11

https://github.com/visipedia/inat_comp/tree/master/2021
https://github.com/visipedia/inat_comp/tree/master/2021


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

D. Wagner, F. Ferreira, D. Stoll, R. T. Schirrmeister, S. Müller, and F. Hutter. On the
importance of hyperparameters and data augmentation for self-supervised learning. In
Pre-Training Workshop at the International Conference for Machine Learning (ICML),
2022.

M. Wu, C. Zhuang, M. Mosse, D. Yamins, and N. D. Goodman. On mutual information in
contrastive learning for visual representations. arXiv:2005.13149 [cs.CV], 2020.

Z. Wu, Y. Xiong, S. X. Yu, and D. Lin. Unsupervised feature learning via non-parametric
instance-level discrimination. In Proc. of CVPR’18, 2018.

Y. Xing, Q. Song, and G. Cheng. On the algorithmic stability of adversarial training. In
Proc. of NeurIPS’21, pp. 26523–26535, 2021.

Y. You, I. Gitman, and B. Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny. Barlow twins: Self-supervised learning
via redundancy reduction. In Proc. of ICML’21, pp. 12310–12320, 2021.

X. Zhang, Q. Wang, J. Zhang, and Z. Zhong. Adversarial AutoAugment. In Proc. of
ICLR’20, 2020.

J. Zhou, C. Wei, H. Wang, W. Shen, C. Xie, A. L. Yuille, and T. Kong. ibot: Image BERT
pre-training with online tokenizer. In Proc. of ICML’22, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Appendix

A Reproducibility Statement

We provide complete code, environment installation instructions, hyperparame-
ter settings and model checkpoints here: https://anonymous.4open.science/r/
pretraining-hard-views/. For transparency, we outline all hyperparameters, data splits,
and evaluation protocols in detail in Section I. Most experiments were run across multiple
seeds, and we report average results to account for variability. Information regarding the
required computational resources is discussed in Section J below.

B Examples Sampled by HVP

Figure 5: We depict row-wise ten example images from the ImageNet train set along with
their sampled views with a finished, 100-epoch trained SimSiam ResNet50 model. Left:
original image with the overlaid randomly sampled crops (colored dashed rectangles). Right:
All views after applying resizing and appearance augmentations. The pair that is selected
adversarially by HVP is highlighted in solid lines, eg. View 1 and View 4 in the first row.

13

https://anonymous.4open.science/r/pretraining-hard-views/
https://anonymous.4open.science/r/pretraining-hard-views/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

C Training Loss

Figure 6: The training loss over 100 epochs. Comparing the DINO vanilla method with
DINO + HVP. The spike and drop in the loss curve of DINO is caused by freezing the
last layer in the first epoch which was proposed by the authors as a strategy to enhance
downstream performance. For HVP we can only see a drop and no spike. We believe this is
because HVP exposes the model to hard views from the beginning of training (i.e. the loss
is immediately maximized).

D Effect of More Views on Linear Evaluation Performance

Figure 7: Setting the number of views too high can result in performance deterioration.
This shows that diminishing returns exist, likely because the adversary becomes too strong,
resulting in a too hard learning task.

E Assessing the Importance of Metrics with fANOVA

To assess the importance of various metrics on the training loss, we apply fANOVA Hutter
et al. (2014) on data that we logged during training with HVP. We used 300k samples
that contain the following sampled parameters from the geometric and appearance data
augmentation operations for each view: all random resized crop parameters (height and
width of the original image, coordinates of crop corners and height and width of the crop),
all Colorjitter (color distortion) strengths (brightness, contrast, saturation, hue), grayscale
on/off, Gaussian blurring on/off, horizontal flip on/off, loss, and if the crop was selected or

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

IoU Policy Type SimSiam DINO
Baseline (B) 68.20 73.50
B+range(0.3-0.35) -0.80 -1.47
B+range(0.3-0.35)+alt. +0.10 -0.45
B+range(0.4-0.6) +0.55 -0.40
B+range(0.4-0.6)+alt. +0.25 -0.20
B+range(0.1-0.8) -33.95 -1.50
B+range(1.0-0.1) +0.07 -

Table 4: Top-1 lin. eval. accuracies for the manual IoU policy.

not. The metrics we chose are Intersection over Union (IoU), Relative Distance (sample-
wise normalized distance of the center points of crop pairs), color distortion distance (the
Euclidean distance between all four color distortion operation parameters, i.e. brightness,
contrast, saturation, hue), and the individual color distortion parameters of the Colorjitter
operation. As can be seen in Fig. 8, the metric with the highest predictive capacity on the
loss is the IoU with an importance of 15.2% followed by brightness with 5.1%. The relative
distance has an importance of 3.3%, the Colorjitter distance 2.3%, the contrast 1.6%, the
saturation 1.4%, hue 0.6%, and all parameters jointly 1.7%.

Figure 8: Application of fANOVA Hutter et al. (2014) on logged training data to determine
metrics with high predictive capacity on the training loss.

F Additional Empirical Analysis

F.1 Can a Manual Augm. Policy be Derived?

Since harder pretraining tasks seem beneficial according to observations made in Q1, a
natural question arises: can we mimic the adversarial selection with a manually scripted
augmentation policy? Such a policy would replace HVP and lower the computational cost.
Since the IoU plays an important role, below, we study several ways to construct a simple
manual augmentation policy based on IoU.

F.1.1 Deriving an Augmentation Policy

We implemented the following rejection sampling algorithm in the augmentation pipeline:
we linearly approximate the IoU values from Fig. 3 (left; in blue) with start and end values
of 0.30 and 0.35 (ignoring the dip in the early phase). For each iteration, we then check
if the pairs exceed the IoU value and if so, we reject the pair and re-sample a new pair.
This ensures that only pairs are sampled that entail a minimum task difficulty (by means

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

of a small enough IoU). We varied different hyperparameters, e.g., IoU start/end ranges,
inverse schedules, and alternating between the IoU schedule and the standard augmentation
. Training both SimSiam and DINO models for 100 epochs yielded performance drops or
insignificant improvements (see Table 4). These results indicate that using a manual policy
based on metrics in pixel space such as the IoU is non-trivial. Additionally, these results
show that transferring such a policy from SimSiam to DINO does not work well, possibly
due to additional variations in the augmentation pipeline such as multi-crop. In contrast,
we believe that HVP is effective and transfers well since it 1) operates on a similarity level
of latent embeddings that may be decorrelated from the pixel space and 2) has access to
the current model state.

F.1.2 Assessing the Difficulty of Predicting the Pair Selected by HVP

We further validate the previous result and assess an upper limit on the performance for
predicting the hardest pair. By fitting a gradient boosting classification tree Friedman
(2001), we predict the selected view pair conditioned on all SimSiam hyperparameter log
data from Q1 except for the flag that indicates whether a view was selected. As training and
test data, we used the logs from two seeds (each 300k samples) and the logs from a third
seed, respectively. We also tuned hyperparameters on train/valid splits and applied a 5-fold
CV. However, the resulting average test performance in all scenarios never exceeded 40%,
indicating that it is indeed challenging to predict the hardness of views based on parameter-
level data. This further supports our hypothesis that deriving a policy for controlling and
increasing hardness based on geometric and appearance parameters is non-trivial and that
such a policy must function on a per-sample basis and have access to the current model
state as in HVP.

G Learning View Generation

G.1 Adversarial Learner

In this experiment, we explore adversarially learning a network to output the transforma-
tion matrix for view generation. We use Spatial Transformer Network (STN) Jaderberg
et al. (2015) to allow generating views by producing 6D transformation matrices (allowing
translating, rotating, shearing, scaling, affine transformations, and combinations thereof) in
a differentiable way since most common augmentations are not off-the-shelf differentiable.
We optimize the STN jointly with the DINO objective and a ViT-tiny. We train it alongside
the actual pretrained network using the same (inverted) objective. For our experiments, we
use DINO with multi-crop, i.e. 2 global and 8 local heads. As STN we use a small CNN fol-
lowed by a linear layer for outputting the 10*6D transformation matrices. In this scenario,
we use a ViT-tiny/16 with a 300 epoch pretraining on CIFAR10 with a batch size of 256.
All other hyperparameters are identical to the ones reported in the DINO paper.
Figure 9 visualizes the procedure. The STN takes the raw image input and generates a
number of transformation matrices that are applied to transform the image input into views.
These views are then passed to the DINO training pipeline. Both networks are trained jointly
with the same loss function. DINO is trained with its original contrastive objective, where
the STN is trained by inverting the gradient after the DINO during backpropagation.
The STN, without using auxiliary losses, starts zooming in and generating single-color views.
To counteract this behavior, we experimented with different penalties on the transformation
matrices produced by the STN. For instance, in order to limit the zooming pattern, we can
use the determinants of the sub-matrices of the transformation matrix to penalize based on
the area calculated and apply a regression loss (e.g. MSE). We refer to this type of penalty
as Theta Crops Penalty (TCP). Additionally, we also restrict its parameters to stay within
a sphere with different parameters for local and global crops. Next to determinant-based
penalty losses, we also experimented with other penalty functions such as the weighted MSE
between the identity and the current transformation matrix or penalties based on histograms
of the input image and generated views after applying the transformation. To avoid strong
uni-dimensional scaling behavior, we also implemented restricting scaling in a symmetric

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Input STN Crops Views DINO Loss
augm.

maximize

minimizePenalty

Figure 9: Illustration of adversarial learning with a Spatial Transformer Network (STN)
jointly with contrastive learning (here: DINO).

way (i.e. applied to both x and y dimensions) and refer to this as scale-sym.. We report
our best results in Table 5 which are all TCP-based. As can be seen, no setting is able
to outperform the baseline. Our best score was achieved with translation-scale-symmetric
which is very similar to random cropping. When removing the symmetries in scaling, the
performance drops further. Removing a constraint adds one transformation parameter and
therefore one dimension. This can be seen as giving more capacity to the adversarial learner
which in turn can make the task significantly harder. Similarly, when adding rotation, the
performance drops further and in part drastically. This is on the one hand due to the
penalties not being fully able to restrict the output of the STN. On the other, the task of
extracting useful information from two differently rotated crops is even harder, and learning
spatial invariance becomes too challenging. All in all, we experienced two modes: either
the STN is too restricted, leading to static output (i.e. independent of image content, the
STN would produce constant transformation matrices) or the STN has too much freedom,
resulting in extremely difficult tasks. See Fig. 10 for an example of the former behavior.

Figure 10: Example for static output behavior of the STN.

Mode Penalty Lin. F.T.
baseline - 86.1 92.7
translation-scale-sym. TCP 83.7 90.3
translation-scale TCP 82.8 89.7
rotation-translation TCP 56.7 -
rotation-translation-scale TCP 31.7 -
rotation-translation-scale-sym. TCP 77.6 -
affine TCP 78.3 83.5

Table 5: Linear evaluation and finetuning classification performance on CIFAR10.
Top-1 accuracy on the validation set of CIFAR10 for our best results reported with different
STN transformation modes.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

G.2 Cooperative Learner

To investigate the effect of a cooperative, i.e. easy pair selection, we conducted a small
experiment. Instead of selecting the pair yielding the worst loss, we inverted the objective
and selected the pair with the best loss. As expected, this led to model collapses with a
linear eval. performance of 0.1%. This result is in line with previous findings that highlight
the importance of strong augmentations in CL.

H Additional Results

H.1 Object Detection and Instance Segmentation

Here we provide more detailed results on object detection and instance segmentation, shown
in Tab. 6 and Tab. 7 respectively. We followed iBOT’s default configurations which
employed Cascade Mask R-CNN as the task layer.

Method Arch. Object Detection Instance Segmentation
APb APb

50 APb
75 APm APm

50 APm
75

iBOT ViT-S/16 47.00 66.13 50.63 40.67 63.10 43.37
+ HVP ViT-S/16 47.27 66.50 50.90 40.90 63.50 43.83

Improvement +0.27 +0.37 +0.27 +0.23 +0.40 +0.47
DINO ViT-S/16 46.50 65.90 50.30 40.43 62.83 43.27

+ HVP ViT-S/16 47.07 66.37 50.63 40.80 63.37 43.87
Improvement +0.57 +0.47 +0.33 +0.37 +0.53 +0.60

Table 6: Additional object detection and instance segmentation results on the COCO
dataset. The ViT-S/16 models were pretrained for 100 epochs.

Method Arch. Object Detection Instance Segmentation
APb APb

50 APb
75 APm APm

50 APm
75

iBOT ViT-S/16 47.60 66.80 51.33 41.10 63.63 44.07
+ HVP ViT-S/16 48.03 67.13 51.73 41.50 64.23 44.40

Improvement +0.43 +0.33 +0.40 +0.40 +0.60 +0.33
DINO ViT-S/16 47.27 66.60 51.00 41.00 63.63 44.03

+ HVP ViT-S/16 47.50 67.00 51.33 41.17 64.00 44.13
Improvement +0.23 +0.40 +0.33 +0.17 +0.37 +0.10

Table 7: Additional object detection and instance segmentation results on the COCO
dataset. The ViT-S/16 models were pretrained for 300 epochs.

I Hyperparameters

I.1 Evaluations on ImageNet

I.1.1 DINO

For DINO, we report the ViT pretraining hyperparameters in Table 8 (ViT-S) and Table
9 (ViT-B) which are the original ones as reported by the authors. Note, for HVP we limit
the total number of comparisons to 128 across all heads. Linear evaluation is executed for
100 epochs and we use a learning rate of 0.00075, SGD optimizer (AdamW Loshchilov &
Hutter (2019) during pretraining), a batch size of 1024, a momentum of 0.9, and no weight
decay (as reported by the authors).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Hyperparameter Value Hyperparameter Value
architecture vit-small epochs: 100
img-size 224 warmup-epochs: 10
patch-size 16 freeze-last-layer: 1
out-dim 65536 lr: 0.0005
norm-last-layer true min-lr: 1.0e-06
momentum-teacher 0.996 optimizer: AdamW
use-bn-in-head false weight-decay: 0.04
teacher-temp 0.04 weight-decay-end: 0.4
warmup-teacher-temp 0.04 global-crops-scale: 0.4, 1.0
warmup-teacher-temp-epochs 0 global-crops-size: 224
fp16 true local-crops-number: 8
batch-size 512 local-crops-scale 0.05, 0.4
clip-grad 3.0 local-crops-size: 96
drop-path-rate 0.1

Table 8: Pretraining ImageNet hyperparameters for the runs with DINO ViT-S/16. For
300 epochs, we use a batch size of 1024.

Hyperparameter Value Hyperparameter Value
architecture vit-base epochs: 400
img-size 224 warmup-epochs: 10
patch-size 16 freeze-last-layer: 3
out-dim 65536 lr: 0.00075
norm-last-layer true min-lr: 2.0e-06
momentum-teacher 0.996 optimizer: AdamW
use-bn-in-head false weight-decay: 0.04
teacher-temp 0.07 weight-decay-end: 0.4
warmup-teacher-temp 0.04 global-crops-scale: 0.25, 1.0
warmup-teacher-temp-epochs 50 global-crops-size: 224
fp16 false local-crops-number: 10
batch-size 1024 local-crops-scale: 0.05, 0.25
clip-grad 0.3 local-crops-size: 96
drop-path-rate 0.1

Table 9: Pretraining ImageNet hyperparameters for the runs with DINO ViT-B/16.

I.1.2 SimSiam

In Table 10, we report the ResNet-50 pretraining hyperparameters. Linear evaluation is
executed for 90 epochs (as reported by the SimSiam authors) and we use a learning rate of
0.1, LARS optimizer You et al. (2017), a batch size of 4096, and no weight decay.

I.1.3 SimCLR

We report the ResNet-50 pretraining hyperparameters for SimCLR in Table 11. Linear
evaluation is executed for 90 epochs with a learning rate of 0.1, SGD optimizer, batch size
of 4096, and no weight decay.

I.2 Transfer to Other Datasets and Tasks

For linear evaluation on the transfer datasets, we simply used the same hyperparameters
for linear evaluation on ImageNet (DINO and SimSiam respectively). For finetuning DINO
ViT-S/16, we used the hyperparameters reported in Table 12 and for SimSiam ResNet-50
we used the hyperparameters in Table 13

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Hyperparameter Value
architecture resnet50
batch-size 512
blur-prob 0.5
crops-scale 0.2, 1.0
crop-size 224
feature-dimension 2048
epochs 100
fix-pred-lr true
lr 0.05
momentum 0.9
predictor-dimension 512
weight-decay 0.0001
optimizer SGD

Table 10: Pretraining ImageNet hyperparameters for the runs with SimSiam. For 300
epochs, we use a batch size of 1024.

Hyperparameter Value
architecture resnet50
proj-hidden-dim 2048
out-dim 128
use-bn-in-head true
batch-size 4096
optim LARS
lr 0.3
sqrt-lr false
momentum 0.9
weight-decay 1e-4
epochs 100
warmup-epochs 10
zero-init-residual true

Table 11

Hyperparameter CIFAR10 CIFAR100 Flowers102 iNat 21 Food101
lr 7.5e-6 7.5e-6 5e-5 5e-5 5e-5
weight-decay 0.05 0.05 0.05 0.05 0.05
optimizer AdamW AdamW AdamW AdamW AdamW
epochs 300 300 300 100 100
batch-size 512 512 512 512 512

Table 12: Finetuning hyperparameters for DINO ViT-S/16.

Hyperparameter CIFAR10 CIFAR100 Flowers102 iNat 21 Food101
lr 7.5e-6 5e-6 5e-4 7e-5 5e-6
weight-decay 0.05 0.05 0.05 0.05 0.05
optimizer AdamW AdamW AdamW AdamW AdamW
epochs 300 300 300 100 100
batch-size 512 512 512 512 512

Table 13: Finetuning hyperparameters for SimSiam and ResNet-50.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

I.3 Object Detection and Instance Segmentation

Our experiments utilized Open MMLab’s detection library Chen et al. (2019) for object
detection and instance segmentation on COCO Lin et al. (2014). We followed iBOT’s
default configuration.

Obj. Det. & Inst. Segm. on COCO
Hyperparameter Value
epochs 12
batch-size 32
lr 0.02

Table 14: Hyperparameters object detection and instance segmentation on COCO.

J Computational Overhead of HVP

The additional forward passes that HVP introduces for the selection phase increase the
time complexity of the individual baseline methods. Several possible approaches exist to
mitigate this overhead, one of which is to alternate between the vanilla and HVP training
step. We measured the overhead factors for different alternating frequencies (i.e., after how
many training steps we use the hard views from HVP; we refer to this as step) for SimSiam,
DINO, and iBOT which we report in Table 15. Below, we propose additional ways that
may allow using hard views more efficiently.

Step SimSiam
(RN50)

DINO
(ViT-S/16)

DINO
(RN50)

iBOT
(ViT-S/16)

1 (HVP) x1.64 x2.21 x2.01 x2.13
2 x1.38 x1.61 x1.56 x1.57
3 x1.32 x1.43 x1.42 x1.38
4 x1.29 x1.34 x1.35 x1.29

Table 15: Slowdown factors for HVP and the alternating training method, where step refers
to the interval at which HVP is applied during training (i.e., step=1 refers to full HVP and
step=3 indicates that HVP is approx. used 33% of the training time). Measurements are
averages across 3 seeds.

As an alternative to the alternating training, we also experimented with a 50% image resolu-
tion reduction for the selection phase but observed that the final performance was negatively
affected by it or that baseline performance could not be improved.
The details of hardware and software used for this analysis are: one single compute node
with 8 NVIDIA RTX 2080 Ti, AMD EPYC 7502 (32-Core Processor), 512GB RAM, Ubuntu
22.04.3 LTS, PyTorch 2.0.1, CUDA 11.8. For DINO’s 2 global and 8 local views (default),
applying HVP with nviews=2 sampled for each original view results in 4 global and 16
local views. Since considering all combinations would yield over 77k unique comparisons
(
(4

2
)
×

(16
8

)
), to remain tractable, we limit the number of total comparisons to 64. For training

experiments that exceed the limit of 8x RTX 2080 Ti, we apply gradient accumulation.
While technically there can be a memory overhead with HVP, with the number of sampled
views chosen in this paper, the backward pass of the methods that compute gradients only
for the selected view pair still consumes more memory than the selection part of HVP (even
for 8 sampled views in SimSiam). Note, that selection and the backward computation are
never executed at the same time but sequentially.
We emphasize that further ways exist to optimize HVP’s efficiency which remain to be
explored. For instance:

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

• using embeddings of views from “earlier” layers in the networks or
• using 4/8 bit low-precision for the view selection or
• using one GPU just for creating embeddings and selecting the hardest views while

the remaining GPUs are used for learning or
• other approaches to derive manual augmentation policies or
• bypassing forwarding of similar pairs.

K Hard View Pretraining Objectives

K.1 SimCLR

In this section, we are going to introduce the application of HVP with the SimCLR objective.
Assume a given set of images D, an image augmentation distribution T , a minibatch of M

images x = {xi}M
i=1 sampled uniformly from D, and two sets of randomly sampled image

augmentations A = {ti ∼ T }M
i=1 and B sampled from T . We apply A and B to each image

in x resulting in xA and xB . Both augmented sets of views are subsequently projected into
an embedding space with zA = gθ(fθ(xA)) and zB = gθ(fθ(xB)) where fθ represents an
encoder (or backbone) and gθ a projector network. Contrastive learning algorithms then
minimize the following objective function:

L(T , x; θ) = − log exp(sim(zA
i , zB

i )/τ)∑
i ̸=j exp(sim(zA

i , zB
j )/τ)

(3)

where τ denotes a temperature parameter and sim a similarity function that is often chosen
as cosine similarity. Intuitively, when optimizing θ, embeddings of two augmented views of
the same image are attracted to each other while embeddings of different images are pushed
further away from each other.
To further enhance the training process, we introduce a modification to the loss function
where instead of having two sets of augmentations A and B, we now have "N" sets of
augmentations, denoted as A = {A1, A2, . . . , AN }. Each set Ai is sampled from the image
augmentation distribution T , and applied to each image in x, resulting in "N" augmented
sets of views xA1 , xA2 , . . . , xAN .
Similarly, we obtain N sets of embeddings zA1 , zA2 , . . . , zAN through the encoder and pro-
jector networks defined as:

zAi = gθ(fθ(xAi)), i = 1, 2, . . . , N

We then define a new objective function that seeks to find the pair of augmented images
that yield the highest loss. The modified loss function is defined as:

Lmax(T , x; θ) = max
k,l:k ̸=l

L(T , x; θ)kl

where

L(T , x; θ)kl = − log
exp(sim(zAk

k , zAl

k )/τ)∑
i̸=j exp(sim(zAk

i , zAl
j )/τ)

and k, l ∈ {1, 2, . . . , N} and i, j ∈ {1, 2, . . . , M}.
For each iteration, we evaluate all possible view pairs and contrast each view against every
other example in the mini-batch. Intuitively, the pair that yields the highest loss is selected,
which is the pair that at the same time minimizes the numerator and maximizes the de-
nominator in the above equation. In other words, the hardest pair is the one, that has the
lowest similarity with another augmented view of itself and the lowest dissimilarity with all
other examples.

22


	Introduction
	Related Work
	Discriminative Self-Supervised Learning
	Optimizing for Hard Views in SSL

	Method
	Self-supervised Learning Framework
	Pretraining with Hard Views

	Implementation and Evaluation Protocols
	Implementation
	Evaluation Protocols

	Main Results
	Evaluations on ImageNet
	Transfer to Other Datasets and Tasks
	Linear Evaluation and Finetuning
	Object Detection and Instance Segmentation


	Empirical Analysis of HVP
	Q1: Which Patterns Can be Observed with HVP?
	Logging Augmentation Data
	Importance of Augmentation Metrics
	Taking a Closer Look at the Intersection over Union

	Q2: What are the Effects of Strong Adversaries?
	Robustness to Augmentation Hyperparameters
	Increasing the Number of Views


	Conclusion
	Reproducibility Statement
	Examples Sampled by HVP
	Training Loss
	Effect of More Views on Linear Evaluation Performance
	Assessing the Importance of Metrics with fANOVA
	Additional Empirical Analysis
	Can a Manual Augm. Policy be Derived?
	Deriving an Augmentation Policy
	Assessing the Difficulty of Predicting the Pair Selected by HVP


	Learning View Generation
	Adversarial Learner
	Cooperative Learner

	Additional Results
	Object Detection and Instance Segmentation

	Hyperparameters
	Evaluations on ImageNet
	DINO
	SimSiam
	SimCLR

	Transfer to Other Datasets and Tasks
	Object Detection and Instance Segmentation

	Computational Overhead of HVP
	Hard View Pretraining Objectives
	SimCLR


