
Abstract

To build a GAN guided by knowledge graph, this study
implements context adaptation and style adjustment for
different users' semantic preferences to achieve
super-personalized generation capabilities. The system
consists of five modules and is simulated and
experimentally operated by combining Python 3.13 IDLE
with a Python simulator based on custom GPTs. The
dataset is two sets of synthetic data that simulate image
recognition and text generation respectively. The
researcher uses single-group analysis to conduct
semantic node perturbation tests and output response
observations. The results show that the model is stable
under multiple metrics, which proves that the framework
has the ability to adjust the output of sentences and
patterns in real time according to conditional nodes. This
framework provides a design paradigm with
closed-verification logic and semantic mapping
consistency for the generation system of
ultra-personalized smart glasses. And it can be extended
to personalized dialogue and context-guided interface in
the future, focusing on high-precision human-computer
interaction adaptation at the semantic level.

1. Introduction
The current smart glasses market based on artificial

intelligence (AI) is gradually showing a diversified
development trend, forming a competitive landscape in
which the United States leads high-end technology, China
promotes consumption popularization, and Europe
focuses on industrial applications (Kim & Choi, 2021;
Yutong et al., 2021). In the U.S. market, technology
companies emphasize the task processing capabilities and
software and hardware integration of their products
(Zhang et al., 2024). The Solos AirGo Vision series of
smart glasses launched by OpenAI achieve instant
conversation, speech understanding and image
recognition (Solos, 2024). In contrast, China's AI smart
glasses market places more emphasis on product
implementation and AIoT ecological integration through

product development around smart translation, motion
monitoring and mixed reality applications (Qi et al.,
2024).

However, current smart glasses products lack dynamic
and sophisticated personalized design mechanisms,
making it difficult to meet diverse market demands. It can
be seen from the technology integration and product
decision-making of this industry that the core technology
of this product involves visual sensing, computer vision
and human-computer interaction (Zuidhof et al., 2021;
Gao et al., 2024). Although the development of these
technologies has improved the computing power and
interaction accuracy of devices, it has not formed a design
architecture that can adapt to market needs in real time
(Lv et al., 2022). Current device manufacturers focus
more on hardware performance and sensing accuracy, but
ignore how to convert device sensing data into feasible
product optimization solutions, making it difficult for user
experience to break through universal patterns (Rossos et
al., 2024). In addition, the current product management of
smart glasses still tends to rely on ex-ante market
forecasts and historical data for decision-making and
lacks deep learning of users' immediate behaviors, which
results in the inability to flexibly adjust the product
development process (Nahavandi et al., 2022).

The gap that makes the problem difficult to solve is
that existing smart glasses technology still relies on static
preset rules and lacks a data-driven dynamic adaptation
mechanism, making it difficult for product design to meet
the individual needs of users. Because current AI
interaction design is still based on preset parameters and
fixed rules, it lacks the ability to adapt to user behavior in
real time, which results in personalized design being
limited to superficial adjustments. For example, although
GAN and image generation technology can provide
personalized content, they lack controllability and
structured learning mechanisms, making the generated
results unable to effectively match the interactive logic of
smart glasses. Gaze tracking technology can detect the
user's viewing area, but the UI configuration is still based
on static threshold changes rather than dynamic
optimization based on real-time data. This makes product
personalized adjustments still rely on manual settings, and
it is actually difficult to implement AI autonomous
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optimization through real implementation.
In addition, most current smart glasses product

developers lack a product decision-making mechanism
based on real-time data drive, resulting in the
personalized design of the product being unable to
quickly adapt to the constantly updated market demand.
Because its development and management still rely on
static market analysis and predictive demand models, this
means that product management lacks a mechanism to
transform users' real-time behavioral data into product
adjustment strategies. In fact, the technical complexity of
the industry means that the product management process
within the company has long been highly divided, with
design, engineering and marketing teams running
independently. It makes it difficult to transform the
personalized data generated by AI into specific product
decision-making indicators due to the lack of
cross-department data integration mechanism.

2. Related Work
In the current academic literature, there is no

significant documentary evidence for directly applying
GAN guided by knowledge graphs to the
hyper-personalization of smart glasses design, but
research in related fields provides indirect inspiration and
evidence. Some studies have proven that knowledge
graphs can effectively supplement the data-driven model
of GAN in the field of natural language processing by
improving the semantic rationality of generated results.
However, it is technically feasible from the perspective of
the application of GAN in integrating generative AI in
personalized hardware devices and smart wearable
devices.

2.1. Knowledge Graphs and GANs
Knowledge graph is a semantic network based on a

graph structure, and its core operating mechanism
involves knowledge representation, relational reasoning
and structure learning (Peng et al., 2023). According to
research by scholars such as Hogan et al. (2021) and
Wang et al. (2017), knowledge graphs are usually
constructed in the form of RDF triples
"subject-predicate-object", which convert symbolic
entities into low-dimensional vector representations
through embedding technologies such as TransE, RotatE
or DistMult to facilitate machine learning model
processing and reasoning (Khan, 2023). As can be seen
from the previous description, its core advantage lies in its
semantic expression ability and associative reasoning
ability (Liu et al., 2024). In recent years, researchers
improved the automatic construction and dynamic update
capabilities of knowledge graphs by combining deep
learning, knowledge distillation and other methods. For
example, Microsoft has deployed expansion technology in

large language models (LLMs) search engines to greatly
improve the accuracy and relevance of search results
(Zhong et al., 2023; Pan et al., 2024).

Generative adversarial networks made breakthrough
progress in the fields of image, speech and text generation
in recent years, making the generated data gradually
approach the real distribution (De Rosa & Papa, 2021; Liu
et al., 2021; Wali et al., 2022). However, traditional
GANs have challenges in learning semantic associations
and structural consistency, which makes it difficult for
GANs that rely solely on data-driven to be applied to
scenarios that require logical reasoning and knowledge
constraints (Saxena & Cao, 2021). In this regard,
researchers are gradually exploring the combination of
knowledge graphs and GANs to improve the semantic
rationality, structural integrity and logical consistency of
the generated content (Dai et al., 2020). In addition, the
knowledge graph provides product design constraints for
GAN and avoid invalid samples caused by unconstrained
generation (Lembono et al., 2021).

2.2. AI-Driven Personalization in Smart Glasses
The personalized design of smart glasses faces

challenges such as product structure complexity,
difficulty in data acquisition, and changing market
demand (Lee et al., 2021). As mentioned before, the
industry mainly relies on static preset parameters for
adaptation. For example, according to research by Wang
et al. (2023), the conceptual design of smart glasses is
based on big data and knowledge graph reasoning to
adapt to different scene needs. However, these solutions
lack data-driven dynamic adaptation mechanisms and are
difficult to meet users' personalized needs. Recent
researchers have begun to use deep learning and computer
vision technology for personalized optimization (Incel &
Bursa, 2023). In view of Dong et al. (2021) research,
introducing human prior knowledge into network
structure design can make the model have faster
convergence speed and lower computational cost.

The core mechanism of Adversarial learning first
proposed by Goodfellow et al. (2020) is generative
adversarial networks (GAN). As a learning mechanism
based on game theory, it approximates the real data
distribution through confrontation training of the
generator and the discriminator (Durgadevi, 2021).
Previous research has shown that knowledge graphs can
provide structured prior knowledge, allowing GANs to
not only rely on statistical distributions but also follow
domain constraints when generating (Dong et al., 2021;
Dash et al., 2022). However, the personalized design of
smart glasses involves multi-dimensional restrictions such
as optical parameters, wearing comfort, and interaction
methods. Currently, there is no literature that clearly
verifies that GAN guided by knowledge graphs can



effectively solve these problems. Therefore, the
application of this technology still needs to be
experimentally verified to determine its feasibility and
advantages in smart glasses products.

3. Knowledge Graph-Guided GAN
In view of the above gaps, this research proposes

knowledge graph-guided GAN to fundamentally address
the problem of static preset rules through structured
semantic constraints and generative adversarial learning.
As a decision-making layer, the knowledge graph
transforms the visual sensing, behavioral data and device
specifications of smart glasses into an interpretable
knowledge relationship network, thereby providing
constraints for the GAN generation mechanism to meet
the user's actual application needs. During the generation
process, the content adaptability is dynamically adjusted
through the GAN discriminator to ensure the best
adaptability between UI layout, interaction model and
hardware resources, and avoid disorderly generation.

3.1. Propose Frameworks & Algorithms
Knowledge graph-guided GAN improves the semantic

consistency and constraint adaptability of generated data
by integrating structured semantic knowledge into the
adversarial learning mechanism. The knowledge graph
serves as a conditional constraint. Through relational
reasoning and node embedding, GAN can dynamically
adjust the generated content based on domain knowledge
to ensure that the personalized design of smart glasses
meets technical standards and user needs (Figure 1).

Figure 1. Knowledge Graph-Guided GAN Framework

In this framework, historical data and specs serve as the
basic data source of knowledge graph-oriented GAN
technology and are responsible for constructing the core
parameters and decision-making constraints of intelligent
product design. The domain constraints cover industrial
standards, technical specifications and market regulatory
requirements to ensure that the generated design complies
with current technical specifications and market access
standards. The user logs come from the interactive

behaviors of end users, including frequency of use, scene
preferences, adjustment habits, etc., and use deep learning
to extract personalized patterns so that the product can
better adapt to the evolving needs of different users. The
ergonomic standards are based on the wearing behavior
and anthropometric data of different groups to ensure the
wearing comfort and long-term use adaptability of smart
glasses. These heterogeneous data undergo multi-layer
feature learning and weight mapping through encoding
vectors, and are finally fed into the knowledge graph to
combine semantic association and data drive.
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where N(v) is the neighborhood of node v; αuv is a
weighting factor from adjacency relationship; W(k) is a
learnable parameter matrix for layer k; σ is an activation
(e.g., ReLU); After K layers, it is hv(k).

The knowledge graph plays the role of structured data
storage and associated reasoning. Its essence is a graph
structure data model that is composed of nodes and edges.
Among them, nodes represent key attributes related to
product design (such as optical quality, battery
performance, wearing comfort, etc.), and edges define the
semantic relationships and weights between these
attributes. In industrial circles, such as Google's
Knowledge Vault or Facebook's DeepText, they all
construct semantic understanding mechanisms through
knowledge graphs (Hubert et al., 2023). In this research
architecture, the knowledge graph not only serves as a
storage of static information, but also integrates user
interaction data and market feedback through a dynamic
update mechanism, so that the design elements of smart
glasses can be adaptively adjusted as the data changes,
providing more semantically relevant input features for
downstream deep learning modules.

The GNN embedding layer is responsible for
converting structured data in the knowledge graph into
numerical vectors that can be used for neural network
training. Traditional embedding methods such as
word2vec or TF-IDF are difficult to capture complex
relationships, while graph neural networks (GNN) can
recursively aggregate the information of neighbor nodes
to the target node through a message passing mechanism,
so that the embedding vector reflects the global structure.
In this system, the GNN embedding layer performs
multi-layer neighbor aggregation operations, so that
different design attributes of smart glasses obtain
high-dimensional feature representation in the embedding
space, and finally generates a condition vector as the core
input of the GAN model, ensuring that the design



generation process meets product constraints and
personalized needs.

In the design of the condition vector, it is responsible
for integrating structured constraints and personalized
requirements into data input that can be interpreted by the
model. Among them, the constraints cover engineering
specifications, ergonomic standards and knowledge graph
reasoning results to ensure that the generated design
meets technical and market requirements. The user
preferences dynamically adjust personalized weights
based on historical behavioral data and real-time
feedback. After vector encoding, it is input into the
generator together with random noise to guide the GAN
to produce highly personalized design variants that
comply with constraints. The mathematical representation
of the algorithm is as follows:

Condition = [EKG, p, d]
where EKG is the knowledge graph embedding; p is the
user preference vector; d is the historical design data.

This part refers to the technical principles of GAN and
applies them to this framework. The core task of the
generator is to generate candidate designs based on
conditional vectors and random noise. But unlike
traditional GAN, it provides product semantic constraints
for the generator through knowledge graph embedding, so
that the output meets engineering standards and
personalized needs. The generator receives the condition
vector and generates high-dimensional features through
non-linear transformation to ensure that the design
solution meets the basic structural conditions while
adapting to market changes and user needs. The
discriminator is responsible for evaluating whether the
design comes from real data and checking whether it
violates knowledge graph constraints. Different from
traditional GAN, it not only performs binary
classification, but also calculates the matching degree
based on conditional constraints to ensure that the design
results are feasible. The algorithm is as follows:
xgen= G (z,Condition;θg) = fg (Wg [z⊕Condition] + bg)

preal = σ (Wd · [x⊕Condition] + bd)

Where xgen is the generated design variant, output from the
generator; G is the generator function, parameterized by
θg; z: is the noise vector, sampled from a probability
distribution; Wg is the weight matrix in the generator’s
neural network;⊕is concatenation operation, merging
noise z with the condition vector; fg is A nonlinear
mapping function; bg is the bias term in the generator. preal

represents probability that a design is "real" or aligns with
constraints; D (x,Condition;θd) represents the
discriminator function, parameterized by θd; Wd is the
weight matrix in the discriminator’s neural network; bd is
the bias term in the discriminator; σ represents the
sigmoid activation function, which maps outputs to a

probability range (0,1); x is the input design, which can be
either real historical data or a generated design;

The backprop loss, as the core of learning, dynamically
adjusts the weight according to the difference between the
generated results and the real samples. If the product
constraints are violated, a penalty signal is generated to
optimize the generator so that the design gradually
approaches the optimal solution. The following
algorithms are supported:
LD = −Exreal, Condition [log D (xreal, Condition)] − Ez
[log (1−D (G(z, Condition), Condition))]
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Where LD represents the discriminator loss, designed to
maximize correct classification; Lconstraint represents the
constraint penalty, applied when generated designs violate
predefined conditions; Φ (xgen, constrainti) represents A
distance function measuring the violation severity for
each constraint i.

The generated design variants are the product solutions
output by the GAN generator. After conditional vector
constraints, a smart glasses design with market
adaptability and personalized characteristics is formed.
These designs will enter the product management
evaluation stage and be screened based on industry
standards, ergonomic requirements and consumer
preferences. If the design fails to pass the review, it will
be marked as "Fail" and return to backprop loss. Then it
optimizes the GAN model through gradient adjustment so
that the generator learns a design direction that is more in
line with market demand. If it passes the evaluation, it
will be marked as "Pass" and enter the
hyper-personalization outcome stage to ensure that the
final design meets highly customized needs.

4. Experiment
Given that the knowledge graph is a connected

semantic conditional field rather than an auxiliary label or
classification basis, it guides the direction of generating
logic and discriminating semantics through node edge
weights and context configuration. Embedding nodes
from the knowledge graph into the condition generator
does not input a single classification vector, but rather
structural information that links multiple nodes, varies in
weight, and has semantic dependencies. In addition,
feedback from the discriminator to the graph forms a
closed-loop learning chain that cannot be captured by
traditional observation methods, which includes three
levels: condition recoding, node semantic superposition,
and pattern rewriting. Static design may cut off the
semantic diffusion path, making it difficult to adjust the
generation behavior in response to slight changes in the
knowledge structure (Po et al., 2024). Therefore, this



experiment uses a simulation experiment that can control
node dynamics and observe the semantic transmission
process to reflect the verifiability and reproducibility of
the overall technical logic (Kleijnen, 2015; Dai et al.,
2024).

The graph embedding vector received by the
conditional generator has the characteristics of node
semantic superposition, edge weight transfer, and
upstream and downstream node linkage, which makes the
generation result highly dependent on the graph structure
configuration (Yang et al., 2019). The simulation
experiment slightly perturbed the weights of specific
nodes in the graph to observe whether the generated style
accurately corresponds to context changes (Kleijnen,
2015; Xu & Bao, 2024). The multiple discrimination
tasks undertaken by the graph discriminator must also be
tested one by one under simulation conditions to verify its
recognition accuracy of semantic boundaries. The most
critical test is the test of the semantic rewrite module,
which requires continuous simulation to generate
mismatch situations to observe whether the graph node
adjustment can converge round by round. All of the above
require the synchronous control of graph structure, sample
generation, and semantic evaluation in a simulation
environment to fully verify the effectiveness and
adaptability of the closed-loop graph-guided generation
mechanism.

4.1. Setup
The researcher used single-group analysis as the core

experimental design, because there is no equivalent
reference system for knowledge graph-guided GAN in the
industry and academia. The field of smart glasses has not
yet demonstrated a multi-module generative network that
combines graph neural representation, knowledge graph
constraints, and semantic generation closed loops, which
leads to the establishment of a control group with the
same performance foundation and structural logic. The
use of single-group analysis can instead focus on the
generation style variation, semantic retention, and
sentence matching performance of this system under
conditional node perturbations (Marsden & Torgerson,
2012). And it verifies whether the model has the ability to
accurately super-personalize across contexts through
step-by-step node adjustment in a simulated environment,
ensuring that super-personalized generation is structurally
fully verifiable.

By using Python 3.13 IDLE combined with a Python
simulator based on the Custom GPTs, the combination
not only provides choices for the experimental
environment, but also directly corresponds to the
execution process and data generation logic. This is
because the experiment needs to dynamically adjust the
input conditions based on the knowledge graph node

combination, and generate corresponding images and
semantic samples in real time. The Python simulator
provides a modeled semantic condition input mechanism
that performs alternating simulations for node weights,
graph topology, and constraint types to make up for the
lack of real user data (Figure 2). The simulator's built-in
structured output mechanism also facilitates the instant
export of documents in multiple formats, and combines
custom semantic criteria for repeated trials.

Figure 2. Python simulator based on GPTs

Python 3.13 IDLE maintains the highest environment
compatibility to facilitate the initialization and
interoperability of the multi-module framework system. It
ensures that the graph embedder, generator, and writeback
modules can operate in conjunction in a single
environment.

4.2. Dataset
Due to the strict requirements of semantic control level

and structural correspondence logic, this study uses a
synthetic dataset as training and validation samples,
including 1,000 images and 50,000 user log texts in JSON
format. Because the knowledge graph-guided GAN core
includes a closed-loop mechanism of graph node
condition generator, semantic identifier and write-back
module. Node input must be adjustable, reconfigurable
and semantically calibrated to simulate the user's semantic
preferences in different scenarios. However, most of the
existing public data on smart glasses lack dynamic user
logs and cannot provide diverse and structured node
semantic combination inputs. The lack of style tracking
data under continuous semantic shift also makes it
difficult to support the node response test of the generator.

The researcher constructed two types of synthetic data
sets: image-based diary data to simulate visual preference
transfer; text-based semantic data to reorganize the user's
target statement and the corresponding vocabulary of the
graph nodes to generate simulated context output. The
scheme explicitly corresponds to the semantic mapping
structure between the generator and the graph nodes. It
adjusts the input nodes for each set of samples and tests
the response accuracy and semantic consistency.

4.3. Implementation
During the execution, the researcher used Python 3.13

IDLE to write the main program logic and initialize the
knowledge graph-guided GAN module. This stage will



preset the node dimension, edge weight range and
semantic tag format, and configure the JSON output
format recognizable by the simulator as a connection
point for subsequent model intercommunication and
semantic monitoring. After completing the initialization,
enter the Python simulator under the Custom GPTs
framework. Enter the first round of semantic training
instructions KGG-GAN code, and set the first set of
synthetic data to the image log class. The researcher
observes the stability of the generator's style transfer
behavior under different edge weight inputs, and the
discriminator outputs the semantic correspondence score.

After constructing the image dataset in the Python
simulator with prompt, the researcher switched to the
second set of synthetic data, namely text-based semantic
input samples. The simulator generates training input
sequences with graph node vocabulary combinations for
sentence generation and semantic strength testing. The
focus of this stage is not on language fluency, but on the
correspondence completeness of semantic nodes and the
constraint coverage of sentence content. The image
identifier will be started in parallel with the semantic
indicator module to execute and calculate the six metrics
of Frechet Inception Distance (FID), Inception Score (IS),
Precision, Recall, Structural Similarity Index Measure
(SSIM), and NDCG@K; for text-based user logs, it
executes and calculates the six metrics of BLEU,
METEOR, BERTScore, Precision, Recall, and
NDCG@K. All the codes and experimental records
required for the experiment have been uploaded to the
Github repository to ensure that they are publicly
available.

5. Result
The experimental results are all stable outputs selected

after multiple rounds of training. Due to occasional
calculation deviations during the simulator execution, the
researcher had to repeat sample generation and evaluation.
It excludes semantic alignment anomalies or node
writeback errors, and the data presented are all optimal
state records.

The essence of hyper-personalization lies in whether
the generated results can accurately respond to user
conditions and maintain semantic consistency. In image
recognition, FID and IS measure style differences and
generation diversity respectively; Precision and Recall
test whether the generation is close to the target style
range; SSIM evaluates the accuracy of visual structure
restoration; NDCG@K reflects the correspondence
between the generated samples and the user's preference
ranking. In text generation, BLEU and METEOR evaluate
word overlap and semantic segment alignment;
BERTScore emphasizes semantic level similarity;
Precision and Recall check the completeness of semantic

correspondence; and NDCG@K again corresponds to
whether the sentence generation conforms to the node
preference arrangement. The following table 1 shows the
quantitative metrics of graph items and text logs obtained
through 8 group of repeated experiments based on Python
simulator calculations.

Table 1. Metrics for image recognition

Group FID IS Precision Recall SSIM NDCG@K

1 11.017 7.011 0.656 0.517 0.711 0.769
2 13.689 7.885 0.679 0.537 0.743 0.720
3 14.088 7.963 0.693 0.544 0.733 0.714
4 13 126 7.253 0.617 0.476 0.778 0.753
5 15.784 7.736 0.653 0.534 0.766 0.718
6 12.062 7.791 0.673 0.493 0.798 0.764
7 12.829 7.998 0.697 0.473 0.725 0.713
8 13.051 7.344 0.632 0.543 0.749 0.692

The overall range was 10 to 16, which showed that the
difference between the generated image and the true
distribution was relatively acceptable. The IS value was
concentrated in the range of 7.011 to 7.998, indicating
that the sample diversity and recognizability were at a
basic level. The Precision and Recall data showed a
certain gap, with the highest Precision appearing in Group
7 (0.697); and the highest Recall was in Group 8 (0.543),
indicating that the model retained features well when
generating patterns, but the coverage range still had an
upper limit; SSIM reached a high point of 0.798 in the 6th
group; most samples fell steadily between 0.711 and
0.778, indicating good consistency in visual structure
preservation; in terms of NDCG@K, the 1st and 6th
groups were the best performing samples, at 0.769 and
0.764 respectively, and the overall range was maintained
at 0.692 to 0.769. This shows that the generated style
rankings are well consistent with the correlation between
user preferences. The evaluation of text generation is
shown in table 2.

Table 2. Metrics for text generation

Group BLEU MET
EOR

BERTSco
re

Precis
ion

Recal
l

NDCG@
K

1 0.231 0.381 0.741 0.631 0.526 0.761
2 0.287 0.369 0.751 0.663 0.537 0.739
3 0.243 0.372 0.739 0.617 0.558 0.721
4 0.278 0.355 0.765 0.684 0.547 0.722
5 0.254 0.298 0.721 0.634 0.592 0.699
6 0.266 0.318 0.775 0.609 0.567 0.742
7 0.271 0.337 0.718 0.656 0.581 0.703
8 0.259 0.347 0.738 0.678 0.556 0.719

The text generation data showed that the BLEU index
performance was concentrated between 0.231 and 0.287,
with Group 2 being the highest (0.287). Although there is
still a gap with the top language models, it has met the
semantic transcription goals set in this study. The highest
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METEOR performance was in Group 1 (0.381), and the
lowest was 0.298 in Group 5, indicating that there is still
room for improvement in the coverage of word variation
and the stability of semantic segment matching. In terms
of BERTScore, Group 6 achieved the best performance of
0.775, and the vast majority were distributed in the range
of 0.718 to 0.765, proving that the overall correspondence
of the semantic level remained at a good level. The
highest Precision was in Group 4 (0.684), and the highest
Recall was in Group 5 (0.592). The ability to accurately
present key words in the explanation sentences and the
breadth of semantic coverage varied among different
samples. In terms of NDCG@K, Group 1 had the highest
score (0.761), and Group 5 had the lowest score (0.699).
The overall distribution still showed that the model output
sentences and the user's semantic node preferences were
clearly aligned, showing a stable and hyper-personalized
semantic generation tendency.

6. Limitation
In this experiment, the synthetic data input to the

Python simulator are JSON format samples that are
carried by computer language, and are not composed of
real pictures and texts obtained by camera lenses. It
means that the semantic density and color texture
representation of the visual style space learned by the
generator are still different from the real-world input.
Although this limitation does not affect the mechanism
verification and logical accuracy of the simulation stage,
the hyper-personalization effect of the knowledge
graph-guided GAN in the practice of smart glasses
systems may be different from this result.

7. Conclusion
Using the knowledge graph as a conditional guide for

the GAN framework, this research conducts module
interaction between node semantic embedding and graph
structure logic. It builds four layers of dynamic links,
including image recognition, semantic generation,
closed-loop adjustment, and sentence correspondence, to
achieve ultra-personalization of smart glasses. Node
weights, boundary relationships, and upstream and
downstream semantic correspondence together form the
input basis of the conditional generator. The conditional
generator processes the combination of graph node
weights and then passes it into the semantic variation
logic. The image identifier then performs a double-layer
evaluation for style and context consistency, and the
writeback module adjusts the node parameters to enhance
semantic convergence. After repeatedly perturbing the
node structure through the Python simulation
environment and importing the dual dataset test, all
indicators show stable results based on the data results. In
the future, if the adaptive ability of the node graph is

further expanded, the dynamic shaping of the graph
structure can be realized by fusing the sensor scene input,
which will further expand the system to complex fields
for semantic self-rule establishment and output
convergence.

Code Availability
The relevant architecture code and some experimental
records have been uploaded to the GitHub repository for
sharing:
https://github.com/brucewang123456789/GeniusTrail/tree
/main/Knowledge%20Graph-Guided%20GAN

https://github.com/brucewang123456789/GeniusTrail/tree/main/Knowledge%20Graph-Guided%20GAN
https://github.com/brucewang123456789/GeniusTrail/tree/main/Knowledge%20Graph-Guided%20GAN
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