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Abstract

We introduce transition-counting constraints as a principled
tool to formalize constraints that must hold in every solution
of a transition system. We then show how to obtain transi-
tion landmark constraints from abstraction cuts. Transition
landmarks dominate operator landmarks in theory but require5

solving a linear program that is prohibitively large in practice.
We compare different constraints that project away transition-
counting variables and then further relax the constraint. For
one important special case, we provide a lossless projection.
We finally discuss efficient data structures to derive cuts from10

abstractions and store them in a way that avoids repeated
computation in every state. We compare the resulting heuris-
tics both theoretically and on the IPC benchmarks.

Introduction
Operator counting (Pommerening et al. 2014) is a frame-15

work in classical planning to combine information from dif-
ferent sources. It uses constraints on the number of times
each operator of the task is used. One source of inaccuracy
in this framework is that one planning operator usually in-
duces many transitions. Information on how often an oper-20

ator is used aggregates over these transitions an thus cannot
distinguish different uses of the same operator.

We introduce transition counting as an extension of oper-
ator counting to a more fine grained level. Since the number
of transitions in a planning task is prohibitively large, we25

show how to derive transition-counting constraints from ab-
stractions. Such constraints are more compact and can be
linked to the operator-counting framework as well.

In particular, we investigate transition landmarks based on
cuts in a transition system. These can have an advantage over30

operator landmarks derived from the same information as
they distinguish different uses of the same operator. We then
explore what effect these constraints have on the operator-
counting variables as this is the only way they can interact
with other constraints. Projections of cut-based constraints35

to operator-counting variables can still be large but can be
relaxed further, trading off accuracy for a smaller size.

We also introduce a way of finding cuts in transition sys-
tems based on LM-cut (Helmert and Domshlak 2009) and
an efficient data structure to access them during a search.40

Finally, we empirically evaluate the constraints and their
relaxations on IPC benchmarks.

Background
Classical planning We consider planning task with oper-
ators O and a cost function cost : O → R0 (e.g., Bäckström 45

and Nebel 1995; Haslum et al. 2019). Further details of the
planning framework are not important as we work on the
induced transition systems.

A planning task Π induces a transition system T (Π) =
⟨S,O, T, I,G, cost⟩ with a finite set of states S; the oper- 50

ators O of Π; a finite set of transitions T ⊆ S × O × S
where an individual transition is written as s o−→ s′ and
label(s o−→ s′) = o is used to denote its label; an initial
state I ∈ S; a set of goal states G ⊆ S; and the transition
cost function cost : T → R0 is defined based on the cost 55

function of Π as cost(t) = cost(label(t)).
A sequence of transitions π = ⟨t1, . . . , tn⟩ is an s-plan

for T (Π) iff ti ∈ T with ti = si−1
oi−→ si for 1 ≤ i ≤ n,

s0 = s and sn ∈ G. If s = I , π is a plan for Π. The cost of an
s-plan π = ⟨t1, . . . , tn⟩ is the sum over the transition costs 60

of the sequence, i.e., cost(π) =
∑n

i=1 cost(ti). An s-plan is
optimal if it has minimal cost among all s-plans. The perfect
heuristic h⋆ maps each state s to the cost of an optimal s-
plan and to ∞ if no such plan exists. A function h : S →
R+

0 ∪ {∞} is called an admissible heuristic if h ≤ h⋆. 65

Landmarks In this work we consider disjunctive action
landmarks (Zhu and Givan 2003; Helmert and Domshlak
2009; Büchner, Keller, and Helmert 2021) and call them
landmarks for brevity.Let T be a transition system with op-
erators O and let s be one of its states. We call a set of 70

operators L ⊆ O a landmark for s if for all s-plans π =
⟨t1, . . . , tn⟩ there is an 1 ≤ i ≤ n such that label(ti) ∈ L.

Abstractions An abstraction function α maps all states
of a transition system T to a set of states Sα, and a la-
bel reduction λ maps its operators to a set of labels Oλ. 75

Such abstraction functions induce an abstract transition sys-
tem (or abstraction) T αλ = ⟨Sα,Oλ, Tαλ, Iα, Gα, costλ⟩
where Tαλ = {α(s) λ(o)−−−→ α(s′) | s o−→ s′ ∈ T},
Iα = α(I), Gα = {α(s) | s ∈ G}, and costλ(s ℓ−→ s′) ≤
mino∈λ−1(ℓ) cost(o), where T are the transitions and G the 80

goal states of T (Π). Usually, α is chosen such that T α is
much smaller than T (Π), e.g., as projecting s to a small
subset P of variables. In that case the abstraction is called
a projection (or atomic projection if |P | = 1). A common
choice for λ is exact label reduction that maps operators to 85



the same label iff they have the same cost and induce transi-
tions between the same pairs of abstract states.

An important property of abstractions is that all paths in
T are also feasible in T αλ. Given a sequence of transitions
⟨s0 o1−→ s1, . . . , sn−1

on−→ sn⟩ such that si−1
oi−→ si ∈ T for90

all 1 ≤ i ≤ n, it holds that α(si−1)
λ(oi)−−−→ α(si) ∈ Tα. Put

differently, the cost of an optimal plan in the abstract transi-
tion system is a lower bound on the cost of an optimal plan
in the original transition system. The perfect heuristic for the
abstract transition system (hαλ) is therefore admissible for95

the original transition system.

Operator Counting Consider a set of abstractions A =
{T α1λ1 , . . . , T αnλn}. Each heuristic hαiλi provides an ad-
missible estimate, but to use them in an optimal search al-
gorithm like A⋆ we have to combine them in a way that100

maintains admissibility. Operator counting (Pommerening
et al. 2014) is a framework to admissibly combine admis-
sible heuristics that can be expressed in terms of necessary
plan properties called operator-counting constraints.

We denote with occur(o, π) the number of occurrences105

of operator o ∈ O in a plan π. A set of linear inequalities
over a set of non-negative real-valued and integer variables
Y which includes an integer variable Yo for each o ∈ O (and
any number of additional variables) is an operator-counting
constraint for state s if for all s-plans π there exists a fea-110

sible solution with Yo = occur(o, π) for all o ∈ O. The
objective value of the operator-counting integer/linear pro-
gram can be used as an admissible heuristic for planning. It
is computed by minimizing the function

∑
o∈O cost(o) · Yo

subject to a given set of operator-counting constraints.115

Operator-counting constraints have been derived from
a variety of planning heuristics, including landmarks and
orderings between landmarks (e.g., Büchner, Keller, and
Helmert 2021), the delete relaxation (e.g., Helmert and
Domshlak 2009; Imai and Fukunaga 2014) and net change120

constraints (Bonet 2013). Abstraction heuristics have also
been used before to derive operator-counting constraints.
Pommerening, Röger, and Helmert (2013) introduce post-
hoc optimization constraints which describe the relationship
between operators that are relevant for the abstraction, their125

cost and the heuristic value of the abstraction, and Seipp,
Keller, and Helmert (2021) strengthen post-hoc optimization
constraints by taking saturated costs into account.

Transition Counting
Pommerening et al. (2014) show that cost partitioning (Katz130

and Domshlak 2010) of abstraction heuristics can be en-
coded in the operator-counting framework. They use aux-
iliary variables for the number of times each abstract tran-
sition is used. This turns out to be unnecessary as the same
heuristic can be encoded more compactly without these vari-135

ables but it suggests an extension of the operator-counting
framework to the level of transitions.

Definition 1. Let ⟨S,O, T, I,G, cost⟩ be a transition system
and let s ∈ S. Let Y be a set of non-negative real-valued and
integer variables, including non-negative (integer-valued)140

operator- and transition-counting variables Yo for each o ∈

O and Yt for each t ∈ T along with any number of ad-
ditional variables. We denote the number of occurrences of
operators o ∈ O and transitions t ∈ T in π with occur(o, π)
and occur(t, π). A set of linear inequalities over Y is called 145

a transition-counting constraint for s if for all s-plans π
there exists a feasible solution with Yo = occur(o, π) for
all o ∈ O and Yt = occur(t, π) for all t ∈ T .

A transition constraint set for s is a set of transition-
counting constraints for s where the only common variables 150

between constraints are the counting variables.

By definition, every transition-counting constraint and ev-
ery transition constraint set is an operator-counting con-
straint. (Note that we have to consider a set of transition-
counting constraints as a single operator-counting constraint 155

because they share variables other than Yo.)
If we want transition-counting constraints to be useful in

the operator-counting framework, we have to link the transi-
tion counts to the operator counts.
Definition 2. Consider a transition system T with opera-
tors O and transitions T . The linking constraint is the set of
linear inequalities clink(T ):∑

t∈T
label(t)=o

Yt = Yo for all o ∈ O.

Please observe that the linking constraint is a transition- 160

counting (and thus also an operator-counting) constraint as
the equations obviously holds for any plan.

Using variables for every transition in a planning task Π
is typically intractable but we can do so for small abstrac-
tions of Π. Unless the label reduction is the identity, though, 165

abstractions use labels different from O. The following con-
straint translates between O and Oλ.
Definition 3. Let λ be a label reduction. The translation con-
straint for λ is the set of linear inequalities ctranslate(λ):∑

o∈λ−1(ℓ)

Yo = Yℓ for all ℓ ∈ Oλ.

With this constraint, we can use operator-counting con-
straints from abstractions.
Proposition 1. Let T αλ be an abstraction of planning task 170

Π and let c be an operator-counting constraint for a state
α(s) of T αλ. Then {c, ctranslate(λ)} is an operator-counting
constraint for s in Π.

Proof. Let π be an s-plan and let λ(π) be the sequence that
uses label λ(o) where π uses o. Since T αλ is an abstraction 175

of T (Π), λ(π) is an α(s)-plan. As c is an operator-counting
constraint for α(s) in T αλ, there is a solution of c with Yℓ =
occur(ℓ, λ(π)) =

∑
o∈λ−1(ℓ) occur(o, π). Extending it with

Yo = occur(o, π) also satisfies ctranslate(λ).

Note that ctranslate(λ) can be used to eliminate variables Yℓ 180

from c (replacing Yℓ with
∑

o∈λ−1(ℓ) Yo) so the resulting
constraint is in terms of the original operators.

We can thus derive transition-counting constraints for an
abstraction, link them together with a linking constraint, and



then use Proposition 1 to get an operator-counting constraint185

for the original task. In the remainder of this paper, we thus
usually ignore the fact that a transition system is an abstrac-
tion and just treat it as the only transition system.

Comparing Operator-Counting Constraints
Since auxiliary variables like transition-counting variables190

are not shared between different operator-counting con-
straints, we compare their relative strength solely based on
their solutions for operator-counting variables.
Definition 4. Let c be an operator-counting constraint with
n operator-counting variables Y and m auxiliary variables195

Z. The real-valued operator-counting solutions of c are
SolLP(c) := {Y ∈ Rn | ∃Z ∈ Rm where Y,Z satisfies c}.

We say an operator-counting constraint c1 is implied by
a constraint c2 for real-valued variables if SolLP(c2) ⊆
SolLP(c1). If there are solutions in SolLP(c1) that are not200

in SolLP(c2), we say that c1 is weaker than c2 (or that
c2 is stronger) wrt. real-valued variables. If SolLP(c2) =
SolLP(c1), both constraints imply each other, and we
say they are equivalent wrt. real-valued variables. Us-
ing a stronger operator-counting constraint in an operator-205

counting LP can only increase the objective value, while re-
placing a constraint with an equivalent one will not change
the objective value, even in the presence of other constraints.
A way to show that c1 is implied by c2 for real-valued
variables is to show that the inequalities in c1 are conic210

combinations of the inequalities in c2. For example, c2 :=
{2Yt − Ya ≥ 0, Yb − 2Yt ≥ 0} implies c1 := {Yb ≥ Ya}
because the inequality is the sum of the inequalities in c2.

Analogously to the definitions above we define the set
of integer-valued solutions SolIP(c) and the terms implied,215

weaker, stronger, and equivalent wrt. integer-valued vari-
ables. We know that SolIP(c) ⊆ SolLP(c) ∩ Nn but not
all integer-valued solutions in SolLP(c) are necessarily in
SolIP(c). Consider for example a constraint c := {Ya ≤
2Yt, 2Yt ≤ Yb}. We have SolLP(c) = {Y | Ya ≤ Yb}, and220

Ya = Yb = 1 is a solution in SolLP(c) ∩ Nn. However, this
solution is not in SolIP(c), as there is no integer Yt ∈ N with
Ya = 1 ≤ 2Yt ≤ 1 = Yb.

An important result from Operations Research (e.g., Con-
forti, Cornuéjols, and Zambelli 2014) shows that if the coef-225

ficient matrix of the auxiliary variables is totally unimod-
ular, then integer-valued solutions in SolLP(c) ∩ Nn can
always be extended to an integer-valued solution of c, so
SolLP(c) ∩ Nn = SolIP(c). In that case, if a constraint c1 is
implied by c2 wrt. real-valued variables, it is also implied230

wrt. integer variables, and if it is weaker wrt. integer vari-
ables, it is also weaker wrt. real-valued variables. In such
cases we just use the terms implied and weaker without ref-
erence to integer or real-valued variables.

Cut Landmarks235

We now focus on specific transition-counting constraints
related to landmarks. So far, landmarks are derived with
label propagation in the relaxed task graph (Zhu and Gi-
van 2003; Keyder, Richter, and Helmert 2010), backward-
chaining in the delete relaxation (Hoffmann, Porteous, and240

∑
t∈C

Yt ≥ 1 for all C ∈ C∑
t∈T

label(t)=o

Yt = Yo for all o ∈ O

∑
o∈OC

Yo ≥ 1 for all C ∈ C

∑
o∈OS

Yo ≥ |S|
for all(*) S ⊆ C

(*) depending on X

∑
o∈O

( max
t∈T

label(t)=o

∑
C∈C
t∈C

αC)Yo ≥
∑
C∈C
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Figure 1: Cut-based constraints introduced in the paper.

Sebastia 2004; Richter, Helmert, and Westphal 2008), or as
cuts in a graph justifying cost of a relaxed task (Helmert
and Domshlak 2009). We propose a new method of deriving
landmarks from cuts in (abstract) transition systems.
Definition 5. Let T = ⟨S,O, T, I,G, cost⟩ be a transition 245

system and s a state in S. A set of transitions C ⊆ T is an s-
cut iff there is a subset of states Z ⊂ S with s /∈ Z, G ⊆ Z,
and C = {s1 o−→ s2 ∈ T | s1 /∈ Z, s2 ∈ Z}.

Such cuts induce disjunctive action landmarks that must
hold in every plan for the transition system. 250

Proposition 2. If C is an s-cut then the set of operators
OC := {label(t) | t ∈ C} is a landmark for s.

In this and the following sections we introduce several
constraints based on cuts. Figure 1 collects the most impor-
tant ones in a single place and is meant for quick reference. 255

The first such constraint uses transition-counting constraints
to be more fine-grained than just talking about OC .
Proposition 3. If C is an s-cut then the transition landmark
constraint ctlm(C): ∑

t∈C

Yt ≥ 1

is a transition-counting constraint.
If the transition landmark constraint for a single cut C

is linked to operator counts, it contributes the same in- 260

formation to the operator-counting framework as the land-
mark OC . (We defer proving this statement to Proposition 7,
where we prove it in a more general form.)
Proposition 4. Let C be an s-cut derived from a transition
system T . Then the operator landmark constraint colm(C):∑

o∈OC

Yo ≥ 1

is equivalent to {ctlm(C), clink(T )}.



sI

s1

s2

s3
t1 : a

t2 : b

t3 : c

t4 : a

C1 C2

Figure 2: Example transition system with two cuts C1 and
C2. Transition labels give transition and operator, separated
by a colon.

The advantage of transition landmarks over operator land-
marks becomes clear if we use more than one cut. Consider
the transition system and the two sI -cuts C1 and C2 depicted
in Figure 2. Operator landmark constraints just use the dis-
junctive action landmarks derived from these cuts:

Ya + Yb ≥ 1 colm(C1)

Ya + Yc ≥ 1 colm(C2)

These constraints have a solution Ya = 1 and Yb = Yc = 0.
However, we can see in the transition system that using op-
erator a once will not suffice to solve the task. If we distin-
guish transitions in the constraints, two cuts with different
transitions that are labeled with the same operator can no
longer be resolved with just a single use of the operator. The
transition landmark constraints for the cuts are

Yt1 + Yt3 ≥ 1 ctlm(C1)

Yt2 + Yt4 ≥ 1 ctlm(C2)

Together with the linking constraint clink(T ), in particular the265

equation Yt1 + Yt2 = Ya, the assignment from above is no
longer a solution. In fact, every solution requires a total op-
erator count of at least 2.

Definition 6. Let T be a transition system, s one of its
states, and C a set of s-cuts in T . The transition landmark set270

constraint for C is the transition constraint set ctlm-set(C) :=
{ctlm(C) | C ∈ C} ∪ {clink(T )}.

We get the following connection to operator landmarks as
a corollary of Proposition 4 and the example above.

Proposition 5. Let C be a set of s-cuts derived from a275

transition system T . Then ctlm-set(C) implies colm-set(C) :=
{colm(OC) | C ∈ C} and can be stronger.

Even though the transition landmark set constraint dom-
inates the operator landmark set constraint in terms of
heuristic guidance, it comes with a significant drawback:280

it requires many auxiliary variables and linking constraints
which, as we will see in our experimental evaluation, im-
pair planner performance in practice. We are therefore inter-
ested in projecting out transition-counting variables or ap-
proximating the projection.285

Disjoint Cuts Constraints
If cuts are disjoint, this means every transition occurs in at
most one cut. It is important to note that this only refers to
the transitions. An operator can still be used to label different

transitions occurring in multiple cuts. In our running exam- 290

ple, cuts C1 and C2 are disjoint because they do not share
a transition, even though both cuts mention operator a. In
fact, if the induced landmarks of the cut are disjoint as well,
transition landmark set constraints have no advantage over
operator landmark set constraints. 295

If we consider a set of cuts S (say S = {C1, C2} in our
running example), every plan has to pass through all of the
cuts in S. If cuts in S are pairwise disjoint, this takes |S|
separate transitions. These transitions can only be labeled
with operators in OS := {label(t) | t ∈ C,C ∈ S} = 300⋃

C∈S OC , i.e., the operators mentioned anywhere in S. (In
our example, OS = {a, b, c}.) We can conclude that the sum
of operator-counts for operators in OS must be at least |S|.
In the example, this corresponds to the constraint Ya + Yb +
Yc ≥ 2. This argument holds in general, so the following 305

constraints are operator-counting constraints:
Definition 7. Let S be a set of pairwise disjoint s-cuts. The
disjoint cuts constraint for S is cdc(S):∑

o∈OS

Yo ≥ |S|.

To see the importance of cuts being pairwise disjoint, con-
sider that we add the cut C3 = {t2, t3} to the example. The
disjoint cut constraint for S = {C1, C2, C3} would exclude
plans of length 2, which clearly exist. 310

When comparing disjoint cuts constraints to operator
landmark constraints, we first observe that colm(C) for a cut
C is the same as the cdc(S) for a set of cuts S = {C}. For
larger sets S, the constraint becomes incomparable to op-
erator landmark constraints. We can see this in our running 315

example, where {colm(C1), colm(C2)} = {Ya + Yb ≥ 1, Ya +
Yc ≥ 1} and {cdc({C1,C2})} = {Ya + Yb + Yc ≥ 2}. The as-
signment Ya = Yc = 0 and Yb = 2 satisfies Ya+Yb+Yc ≥ 2
but not Ya + Yc ≥ 1, while the assignment Ya = 1 and
Yb = Yc = 0 satisfies Ya + Yb ≥ 1 and Ya + Yc ≥ 1 but not 320

Ya + Yb + Yc ≥ 2.
We now show that multiple disjoint cuts constraints can

be used to express a constraint equivalent to ctlm-set(C) if cuts
in C are pairwise disjoint. We start by showing that cdc(S) is
implied by ctlm-set(C) for every subset of cuts S ⊆ C. 325

Proposition 6. Let C be a set of pairwise disjoint s-cuts and
S ⊆ C one of its subsets. Then cdc(S) is implied by ctlm-set(C)

but can be weaker, even for S = C.

Proof. To show that cdc(S) is implied, we can sum up con-
straints ctlm(C) for C ∈ S. On the right-hand side, this adds 330

1 for each C ∈ S, resulting in |S|. Sums for different cuts
do not overlap, so each transition-counting variable occurs at
most once on the left-hand side. We can then add constraint
Yt ≥ 0 to include transition-counting variables on the left-
hand side that belong to operators in OS but do not occur in 335

the sum yet. Afterwards, we can use equations from clink(T )

for all o ∈ OS to replace sums of transition-counting vari-
ables with the corresponding operator-counting variables.

To see that cdc(S) for S = C can be weaker than ctlm-set(C)

consider our running example: Ya = Yc = 0 and Yb = 2 is 340

a solution for cdc(C) but not for ctlm-set(C).



While a single disjunctive cuts constraint can be weaker
than the transition landmark set constraint, including such
constraints for all subsets S ⊆ C makes the resulting con-
straint equivalent:345

Proposition 7. Let C be a set of pairwise disjoint s-cuts
in a transition system T . Then ctlm-set(C) and c

dc-set(C)
all :=

{cdc(S) | S ⊆ C} are equivalent.

We refer to the technical report (Anonymized 2023) for
the full derivation and only present a rough sketch here.350

Proof sketch. The coefficient matrix of ctlm-set(C) is totally
unimodular if cuts are pairwise disjoint, so showing equiv-
alence wrt. real-valued variables is sufficient. For this case,
we consider combinations of constraints ctlm(C), clink(T ), and
Yt ≥ 0, similar to the approach in the proof of Proposition 6.
However, instead of considering one specific combination,
we consider all conic combinations by multiplying the co-
efficient matrix with the extreme rays of a cone D that de-
scribes conditions for all Yt reaching a coefficient of 0. For a
set of multipliers α, the resulting combination of inequalities
is the constraint ccutcost(C,α) :∑

o∈O
( max

t∈T
label(t)=o

∑
C∈C
t∈C

αC)Yo ≥
∑
C∈C

αC

and ctlm-set(C) is equivalent to {ccutcost(C,α) | α ≥ 0}.
We show that for disjoint cuts, a vector α can only be

an extreme ray of the cone D if it is binary, so ctlm-set(C)

is equivalent to {ccutcost(C,α) | α ∈ {0, 1}|C|}. Each binary
vector α corresponds to a subset Sα ⊆ C with Sα = {C ∈
C | αC = 1}. We can then see that

max
t∈T

label(t)=o

∑
C∈C
t∈C

αC =

{
1 o ∈ OSα

0 otherwise
and

∑
C∈C

αC = |Sα|.

This shows that ccutcost(C,α) exactly matches cdc(Sα). Thus
{ccutcost(C,α) | α ∈ {0, 1}|C|} is equivalent to cdc-set(C).

Say two cuts C1, C2 are share an operator if OC1
∩

OC2
̸= ∅, i.e, some operator is used as a label in both of355

the cuts. For a set of cuts S, consider the graph GS where
each C ∈ S is a node and there is an edge between two
cuts iff they share an operator. We say S is connected if GS

has a single connected component. We now show that we
only have to consider connected subsets S ⊆ C. If S is not360

connected, consider a connected component S1 of GS and
S2 = S \ S1. In that case, OS1

and OS2
are disjoint, so

cdc(S1) + cdc(S2) = cdc(S), i.e., cdc(S) is implied by the other
two constraints. Together with Proposition 7 we get the fol-
lowing result:365

Theorem 1. Let C be a set of pairwise disjoint s-cuts in a
transition system T . Then ctlm(C) and c

dc-set(C)
connected := {cdc(S) |

S ⊆ C, S is connected} are equivalent.

While ctlm(C) and c
dc-set(C)
connected express the same restriction

on the operator-counting variables they differ in size. In370

a transition system with transitions T , and with a set of

cuts C, ctlm(C) has |C| + |O| inequalities and |O| + |T |
variables. The equivalent disjoint cuts set constraint has
O(2|C|) inequalities but only |O| variables. In transition
systems with a large number of transitions, this can pay 375

off. Additionally, the constraint can easily be relaxed by
dropping some of the disjunctive cuts constraints to get a
weaker but more compact representation. In one extreme,
only atomic subsets (cdc-set(C)

atomic := {cdc(S) | S ⊆ C, |S| = 1})
are considered and the constraints relaxes to colm-set(C). 380

In the other extreme all connected subsets are considered
and the constraint is equivalent to ctlm(C). But there are
options in between, for example c

dc-set(C)
atomic,max := {cdc(S) |

S ⊆ C, |S| = 1 or S is a maximally connected subset of C}.
This constraint has at most 2|C| constraints and dominates 385

the operator landmark set constraint.

Overlapping Cuts Constraints
To get a better understanding of ctlm-set(C), let us first con-
sider how a transition-counting LP combines the constraints
ctlm(C) for C ∈ C. A known result for operator counting 390

states that combining operator-counting constraints in an
operator-counting LP is equivalent to optimal operator cost
partitioning over heuristics that each consider one constraint
individually (Pommerening et al. 2015). This result gener-
alizes to transition cost partitioning (Keller et al. 2016) in a 395

straightforward way.
Let

∑
C∈C costC ≤ cost be the transition cost partition

computed by this combination. Assigning different costs to
two transitions t1, t2 ∈ C can never be useful, as the cheap-
est way of satisfying a single cut is to use its cheapest transi-
tion. Assigning negative costs to a transition also cannot be
useful as there is no upper limit how often a transition within
a cut can be used. Assigning negative costs would make the
heuristic value for this cut arbitrarily low, so it cannot be
part of an optimal cost partition. Finally, assigning non-zero
costs costC(t) > 0 for some transition t /∈ C can never
be beneficial. We can thus limit attention to cost functions
costC defined as

costC(t) =
{
αC if t ∈ C

0 otherwise

for some αC ≥ 0.
The operator-counting constraint ctlm-set(C) also contains

the linking constraint in addition to the constraints discussed
above. In the context of cost partitioning, it has the effect of
restricting the transition cost functions to the operator cost
function of the planning task. In our case, this requires that

cost(o) ≥ max
t∈T

label(t)=o

cost(t)

≥ max
t∈T

label(t)=o

∑
C∈C

costC(t) = max
t∈T

label(t)=o

∑
C∈C
t∈C

αc

In the proof of Proposition 7 we saw that ctlm-set(C) is
equivalent to {ccutcost(C,α) | α ≥ 0}. This is true even for
overlapping cuts and the argument above gives an intuition 400



on why this is the case: vectors α correspond to non-negative
transition cost partitions over the cuts, and the coefficients of
variables Yo correspond to cost functions that are just high
enough to guarantee admissibility.

Finding Cuts in Transition Systems405

So far, we assumed a set of cuts C was given. We now show
one method to extract C from a transition system. The inten-
tion is to use sufficiently small abstractions but the method
works on any transition system.

The number of all possible cuts grows exponentially in the410

number of states, which quickly becomes prohibitive even in
small transition systems, so we focus on generating informa-
tive cuts that cover different parts of the transition system.
Cuts having large overlaps are more likely to be satisfied
with a small set of transitions. Likewise, cuts that contain415

both cheap and expensive transitions are more likely to be
satisfied by a cheap transition, wasting the cost of the more
expensive ones. We thus prefer cuts that only overlap in ex-
pensive transitions.

Our method is an adaption of LM-Cut (Helmert and420

Domshlak 2009), where cuts in a justification graph are
found as the boundary to an incrementally increasing goal
zone. One difference is that in LM-Cut the justification
graph can change from one iteration to the next, whereas in
our case the transition system remains stable. Also, our al-425

gorithm tracks costs of individual transitions where LM-cut
uses operator cost functions.

Given a transition system T = ⟨S,O, T, I,G, cost⟩, we
maintain a goal zone Z ⊆ S and a cost function rem that
tracks the remaining costs of all transitions. These are ini-430

tialized to Z = G and rem = cost. We then generate cuts by
iterating the following loop until termination:
1. Add states to Z from which any state in Z can be reached

on a 0-cost path under cost function rem.
2. Compute the cut C = {s o−→ s′ ∈ T | s /∈ Z, s′ ∈ Z}.435

3. Terminate if C = ∅.
4. Reduce the remaining costs of each transition t ∈ C. We

consider two variants here:
• disjoint variant: Set rem(t) = 0.
• overlapping variant: Decrease rem(t) by the cost of440

the cheapest transition in C, i.e., by mint′∈C rem(t′).

The top of Figure 3 shows an example of the generated
goal zones and cuts. In every iteration, the remaining cost of
at least one transition is updated from a positive value to 0
and the source of that transition will be added to Z in the445

next iteration. This can only happen at most |S| times, so
the loop is guaranteed to terminate.

The disjoint variant adds all source states of the transi-
tions in the cut to the goal zone in the next iteration. Con-
sequently, a transition can occur in at most one cut and the450

resulting cuts are pairwise disjoint. In the overlapping vari-
ant, expensive transitions can occur in multiple cuts.

Let Zi be the goal zone in iteration i, Ci be the generated
cut, and Si = {s | s o−→ s′ ∈ Ci}. It is easy to see that Ci

is an s-cut for all states s ∈ S \ Zi. This includes the set Si455

but interestingly it also includes Sj for all j > i. We can use

s0 s1

s2

s3

s4

t1 : a

t2 : b t3 : b

t4 : c

t5 : c

t6 : d

C = {{t4, t5}, {t1, t3}, {t1, t2}}

S = {s4, s3, s2, s1, s0}

Figure 3: Transition system with cost(t1) = 2 and
cost(ti) = 1 for i > 1. Boxes around states show the goal
zone after each iteration. Transitions entering a goal zone
are part of the cut. In the disjoint variant, the dashed cut is
not found. Below is the set C of discovered cuts and our data
structure mapping states s ∈ S to sets of s-cuts.

this connection to efficiently store the cuts: We store all cuts
in a list [C1, . . . , Cn] in the order they were created. We then
store an index is into this list for every state s, where is is the
last iteration in which s ∈ Si. The bottom of Figure 3 has 460

an example of this data structure. If we want to retrieve the
set of s-cuts for some state s, this is just the first is entries
of the list. The index is zero for all states sg that are in the
goal zone initially: none of the computed cuts are sg-cuts for
such state. Dead-end states sde that have no path to the goal 465

use index n. Technically, all cuts are sde-cuts for such states
because the fact that every sde-plan passes through a cut is
vacuously true for all cuts if there are no sde-plans.

When considering disjoint cuts constraints, we are also in-
terested in subsets of cuts S ⊆ C where C is a set of s-cuts. 470

Different states s use different sets C and thus have differ-
ent choices for S. However, as before, we can create a list
of all possible choices of S ordered in a way that all subsets
involving only C1, . . . Ci come before the first subset involv-
ing Ci+1. We can then quickly identify the relevant subsets 475

S for each state s. This is useful as we can set up a single
linear program in which we only have to enable/disable con-
straints when switching from one state to another.

Even if not all subsets should be considered, this approach
can be helpful. For example, consider the case, where we 480

want to consider only maximally connected subsets S ⊂ C.
We can order the maximally connected subsets involving
only cuts C1, . . . Ci before any set involving Ci+1 again.
States in Si have a maximally connected component Xi

that includes Ci. If Ci+1 shares an operator with Ci, then 485

states in Si+1 will contain a maximally connected compo-
nent {Ci+1} ∪ Xi. This is a superset of Xi, so Xi is not
maximally connected for states in Si+1. Collecting the pre-
fix of the list up to the entry for Si+1 will thus collect more
sets than just the maximally connected ones. However, this 490

collection is still limited and supports efficient incremental
computation, so we also use it in our experiments. We call it
c

dcset(C)
max and analogously define c

dcset(C)
atomic,max



Our algorithm not only generates cuts but also partitions
transition costs between them. Let αC = mint∈C rem(t)495

be the minimal cost of a transition in the cut at the time it
is discovered. For these values of α the functions costC as
defined in the previous section form a cost partitioning of
the original cost function.

This is particularly interesting in the overlapping variant500

of the algorithm, where cuts are created according to h∗-
layers in the transition system: The first cut is induced by a
goal zone Z1 consisting of all states s with h∗(s) = 0. Then
in each step the cut Ci separates states s ∈ Zi with h∗(s) <∑

j≤i αCj
from states with a higher heuristic value. States s505

in Si have exactly the goal distance h∗(s) =
∑

j≤i αCj
.

Consider ccutcost(C,α) for these values of α in a state s ∈
Si. The right-hand side simplifies to

∑
j≤i αCj

= h∗(s).
For each transition t = s o−→ s′ on the left-hand side,∑

C∈C
t∈C

αC = h∗(s)−h∗(s′). The cost function expressed in510

the coefficients on the left-hand side of ccutcost(C,α) can then
be interpreted as costsat(o) = maxs o−→s′∈T (h

∗(s)− h∗(s′)),
the saturated cost function in the transition system. Con-
straint ccutcost(C,α) for this choice of α thus is the saturated
post-hoc optimization constraint (Pommerening, Röger, and515

Helmert 2013):
∑

o∈O costsat(o)Yo ≥ h∗(s).
The above result implies that for the right set of cuts,

ctlm-set(C) dominates saturated post-hoc optimization. We can
show with an example that this dominance can be strict: In
Figure 3, the saturated post-hoc optimization constraint is520

2Ya+Yb+Yc ≥ 3. It has a solution at Yc = 3, Ya = Yb = 0
which does not satisfy the transition landmark Yc ≥ 1.

Many other ways of discovering cuts are possible. For ex-
ample, one could also start from the initial state and generate
landmarks in a forward direction. Another possible improve-525

ment would be to consider a beyond-goal zone as in LM-cut,
of states that can only be reached after reaching a goal state.
The graph could also be limited to states reachable from s
when computing landmarks for s. This can be useful for ex-
ample in state s1 in Figure 3 where {t3} is an s1-cut but530

both variants of our method only find {t1, t3}. Using this
cut would make efficient storage and re-use of the linear
program during search more difficult though. We leave the
exploration of other cut generation methods for future work
and focus on the two variants described above.535

Connections to other Abstraction Heuristics
Figure 4 shows how the different constraints introduced
here are related. For sets of pairwise disjoint cuts C, the
constraints c

dc-set(C)
X generally get stronger, the more sub-

sets S ⊆ C restriction X considers. We have shown that540

if all (connected) subsets are used, the constraints can get
as strong as ctlm-set(C) and reduce to colm-set(C) when only
atomic subsets are used. We also have shown examples
where cdc-set(C)

atomic and c
dc-set(C)
max are incomparable. All cut-based

constraints are implied by ctlm-set(C) which can also be used545

for overlapping cuts in contrast to cdc-set(C).
So far these arguments can all be made with a single ab-

straction. As our overall aim is to extract constraints from

h∗gOCPnnOCPctlm-set(C)

c
dc-set(C)
all = c

dc-set(C)
connected

c
dc-set(C)
atomic = colm-set(C) c

dc-set(C)
max

sPhO
<<< or

(2)
=

(1)=

<

<

<

<>

(2)
<

Figure 4: Relation of different cut-based constraints to each
other and to other heuristics based on cost-partitioned ab-
stractions. An edge marked < from c to c′ denotes that c
is is implied by c′ and sometimes weaker. Edges marked
= are between constraints that are equivalent wrt. operator-
counting variables. The constraints marked <> are incom-
parable. Limitations: (1) only for disjoint cuts, (2) only for
sufficiently many cuts.

many small abstractions and combine them in operator-
counting LP/IPs, we also compare this to other heuris- 550

tics that do so. In the previous section, we have seen that
ctlm-set(C) implies the saturated post-hoc optimization con-
straint if C contains sufficiently many cuts.

Finally, we try to find an upper bound on the heuristic
quality and show that it can be tight. Combining constraints 555

from different cuts in an operator-counting LP corresponds
to optimal general cost partitioning. We have already seen
that negative costs cannot contribute to our cut-based con-
straints. Since our constraints are operator-counting con-
straints, using all constraints from a single abstraction in a 560

single operator-counting LP gives an admissible estimate for
that abstraction. This value cannot exceed the cost of a short-
est path in the abstraction. Non-negative cost partitioning of
abstraction heuristics (called nnOCP in Figure 4) combines
the cost of shortest paths in each abstraction, so our heuris- 565

tics are limited by it.
For sufficiently many cuts, we can show that the operator-

counting LP for ctlm-set(C) is optimal for its transition sys-
tem under all non-negative cost functions: Consider a non-
negative cost function cost and the set C of all s-cuts. Then 570

there is one set S ⊆ C that separates heuristic layers ac-
cording to cost. Any solution to the transition landmark con-
straints must pass through all those cuts and thus cause at
least cost h∗, i.e., min{

∑
o∈O cost(o)Yo | ctlm-set(C)} ≥

h∗(s, cost). This means that if we combine constraints 575

ctlm-set(C) for several abstractions in one operator-counting
LP and include sufficiently many cuts in all cases, the re-
sulting heuristic matches nnOCP over those abstractions.

Experimental Evaluation
We implemented transition counting and our cut genera- 580

tion method for en Fast Downward version 22.06 (Helmert
2006). We use its operator-counting heuristic with CPLEX
22.1.1 as the LP solver to evaluate operator-counting LPs for
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Coverage 732 755 743 783 807 805 803

Table 1: Number of solved tasks with different constraints.

our various constraints on the 1827 problems from the opti-
mal tracks of the international planning competitions 1998–585

2018. Experiments are conducted on Intel Xeon Silver 4114
processors running on 2.2 GHz with a time limit of 30 min-
utes and a memory limit of 3.5 GiB. We will publish our
code, data and benchmarks upon acceptance.

In this section, we write disj and ovlp for cuts discovered590

with the disjoint and overlapping variant of our cut gener-
ation algorithm. We use transition systems induced by the
projections to all interesting patterns up to size 2 with exact
label reduction (Pommerening, Röger, and Helmert 2013).
We found that they yields best results among projection-595

based pattern generators implemented in Fast Downward.
Our baseline is ctlm-set(disj) which represents the full in-

formation of a given set of disjoint cuts. Comparing it to
ctlm-set(ovlp) shows the potential of allowing cuts to over-
lap. To avoid the prohibitive number of auxiliary variables,600

we consider projections to operator-counting variables:
c

dc-set(disj)
all , cdc-set(disj)

connected , cdcset(disj)
max , cdc-set(disj)

atomic , and c
dc-set(disj)
atomic,max.

Table 1 shows how many problems we solve with the dif-
ferent operator-counting constraints. Reaching the time limit
is the main reason for failure in these experiments, even for605

constraints with relatively few inequalities like c
dcset(disj)
max .

We first observe that ctlm-set(disj) solves the fewest tasks
among all tested configurations. Moreover, the ones it solves
are generally solved the slowest. This confirms that the
amount of variables in these constraints is too large. With610

ctlm-set(ovlp) we have the same number of variables and a com-
parable number of constraints but the heuristic quality is im-
proved, leading to fewer state expansions. The cuts discov-
ered with the overlapping variant are not guaranteed to be
stronger than the ones by the disjoint variant. Theoretically615

the heuristic for ctlm-set(ovlp) does not dominate the one for
ctlm-set(disj) but in practice, it always led to fewer expansions.

For disjoint cut sets, we have shown that cdc-set(disj)
all and

c
dc-set(disj)
connected are equivalent to ctlm-set(disj). Our experiments con-

firm this by yielding the same number of expanded states.620

Moreover, we find that projecting away auxiliary variables
is beneficial, as c

dc-set(disj)
all usually solves the problems sig-

nificantly faster than ctlm-set(disj). The speed improvement is
even more pronounced when considering c

dc-set(disj)
connected which

only includes the constraints for connected subsets of disj.625

While the weaker constraints c
dcset(disj)
max , c

dc-set(disj)
atomic and

c
dc-set(disj)
atomic,max yield weaker heuristics, they still solve more prob-

lems than the other approaches. This is no surprise, as the
number of connected subsets of disj can still be exponential

in |disj|, while the number of inequalities for the weaker con- 630

straints is linear in |disj|. This speeds up the solver times for
evaluating the heuristic in each state at the expense of heuris-
tic quality. The difference in terms of coverage and plan-
ning time is marginal between these methods, with c

dcset(disj)
max

coming out on top followed by c
dc-set(disj)
atomic . Even though these 635

two are incomparable in theory, in practice c
dcset(disj)
max always

expands fewer states than c
dc-set(disj)
atomic suggesting that cases

where c
dc-set(disj)
atomic strengthens the LP are rare.

We also observe that cdcset(disj)
max expands more states than

c
dc-set(disj)
connected in only 3 out of the 47 domains. It is hence a much 640

cheaper relaxation that does not lose much information in
practice. However, given that cdc-set(disj)

atomic results in compara-
ble performance as cdcset(disj)

max , the benefit of transition count-
ing over operator counting is limited for this particular set of
cuts. We still believe the approach is worth pursuing further, 645

as we have seen cases in our examples throughout the paper
where transition counting adds information. Examples like
the one in Figure 2 seem natural to us and not like rare ex-
ceptions. A direction worth exploring would be alternative
cut generation methods to create more informed cuts. 650

Conclusion
We introduced transition counting, an extension to the
operator-counting framework. Transition-counting con-
straints can be formulated in any transition system but in-
teresting planning tasks induce transition systems with a 655

prohibitive amount of transitions. Our linking and transla-
tion constraints offer effective ways to formulate transition-
counting constraints based on smaller abstractions with
fewer transitions. They can then be used together with other
operator-counting constraints for the full planning task. 660

Transition-counting constraints based on cuts can differ-
entiate multiple uses of the same operator in different con-
texts. They dominate the landmark constraints derived from
the same cuts, even if transition-counting variables are pro-
jected out. Projections to operator-counting variables such 665

as c
dc-set(C)
connected for pairwise disjoint cuts contain the same in-

formation as ctlm-set(C) but at a different size trade-off. Their
relaxations give up some accuracy for a smaller size.

Experimentally, we have seen that just considering max-
imally connected subsets of C (cdc-set(C)

max ) had the best trade- 670

off despite being an aggressive relaxation of cdc-set(C)
connected. While

we saw that distinguishing transitions in cuts can improve
the heuristic value, this happened only rarely in practice
and operator landmarks based on the same cuts perform al-
most as good. This might be an effect of our cut generation 675

method. New ways of extracting cuts from abstractions, par-
ticularly ones that generate an interesting set of overlapping
cuts, could lead to improved performance.

Another interesting line of future work is to add additional
transition-counting constraints, such as for example (some 680

relaxation of) state-equation constraints (van den Briel et al.
2007; Bonet 2013), or to consider larger abstractions.
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Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. LP-based Heuristics for Cost-optimal Planning. In
Proc. ICAPS 2014, 226–234.730

Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks Revisited. In Proc. AAAI 2008, 975–982.
Seipp, J.; Keller, T.; and Helmert, M. 2021. Saturated Post-
hoc Optimization for Classical Planning. In Proc. AAAI
2021, 11947–11953.735

van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen,
T. 2007. An LP-Based Heuristic for Optimal Planning. In
Proc. CP 2007, 651–665.
Zhu, L.; and Givan, R. 2003. Landmark Extraction via Plan-
ning Graph Propagation. In ICAPS 2003 Doctoral Consor- 740

tium, 156–160.


