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ABSTRACT

Identifying protein enzyme functions, crucial for numerous applications, is chal-
lenging due to the rapid growth in protein sequences. Current methods either
struggle with false positives or fail to generalize to lesser-known proteins and those
with uncharacterized functions. To tackle these challenges, we propose LLaPA:
a Protein-centric Large Language and Protein Assistant for Enzyme Commission
(EC) number prediction. LLaPA uses a large multi-modal model to accurately
predict EC numbers by reformulating the EC number format within the LLM
self-regression framework. We introduce a dual-level protein-centric retrieval: the
protein-level retrieves protein sequences with similar regions, and the chemical-
level retrieves corresponding molecules with relevant reaction information. By
inputting the original protein along with the retrieved protein and molecule into the
LLM, LLaPA achieves improved prediction accuracy, with enhanced generalizabil-
ity to lesser-known proteins. Evaluation on three public benchmarks show accuracy
improvements of 17.03%, 9.32%, and 38.64%. These results highlight LLaPA’s
ability to generalize to novel protein sequences and functionalities. Codes are
provided in the supplement.

1 INTRODUCTION

Understanding the functions of protein enzymes is crucial for unraveling metabolic pathways (Fon-
seca et al., 2019), diagnosing diseases (Hewitt et al., 2004; Voller et al., 1976), advancing personalized
medicine (Sookoian & Pirola, 2015), facilitating industrial applications (Victorino da Silva Amatto
et al., 2022; Bernal et al., 2018; Chapman et al., 2018; Basso & Serban, 2019), understanding biologi-
cal evolution (Campbell et al., 2016), and beyond. Recently, advances in biological technologies have
unveiled a vast array of enzyme protein sequences from organisms spanning the entire tree of life.
However, only a small fraction of the protein has been manually annotated (i.e.,∼ 0.3% (Boutet et al.,
2007) in UniProtKB (The UniProt Consortium, 2023) is manually annotated.) The computational
methods can bridge the sequence-annotation gap, but the critical assessment of protein function anno-
tation (CAFA) study found that ∼ 40% of the computation annotations are incorrect (Radivojac et al.,
2013). Additionally, there exists a portion of proteins that are not similar enough to any characterized
protein to infer function and their function remains unknown (Price et al., 2018a). Therefore, the
functional annotation of understudied and promiscuous proteins remains an overwhelming challenge
in protein science (Jeffery, 2018; Hult & Berglund, 2007).

In the past few years, the enzyme function annotation has been formulated as a multi-label classi-
fication tasks (Gligorijević et al., 2021; Lin et al., 2022; Ryu et al., 2019; Sanderson et al., 2023;
Dalkiran et al., 2018), aiming to predict the Enzyme Commission (EC) number of annotated en-
zymes (Webb & International Union of Biochemistry and Molecular Biology, 1992). The EC number
is a classification ontology for the chemical reactions catalyzed by enzymes. However, the multi-label
classification paradigm suffers from the limited and imbalanced training dataset. Recently proposed
CLEAN framework shows the retrieval-based framework can significantly surpass classification deep
learning frameworks, such as ProteInfer (Sanderson et al., 2023), DeepEC (Ryu et al., 2019), and
DEEPre (Li et al., 2018). Notably, it exhibits remarkable performance on EC numbers represented
by fewer than ten sequences, highlighting the superiority of contrastive learning over multi-label
classification in predicting enzyme function. However, the framework is not engineered to generalize
to proteins with novel functionalities, requiring a certain number of proteins with annotated EC
numbers to maintain its generalizability. There are pioneers (Xu et al., 2023b; Gane et al.) aiming to
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harness the generalizability of LLM and combine LLM with a protein encoder to create an end-to-end
trained large multi-model model for various protein-related tasks. Despite these advancements, their
approach primarily emphasizes linking proteins with textual data, often overlooking biological priors.
This oversight restricts the model’s ability to offer interpretations from a biological standpoint—an
aspect that is essential for advancing biological research.

In this paper, we introduce LLaPA, a protein-centric, framework for multi-modal large language
models (MLLMs) training and inference. In detail, LLaPA enhances MLLMs for protein enzyme
understanding from two perspectives. ❶ Focusing on the Natural Language Prior, we first observed
that the LLM struggles to directly and accurately output EC numbers (i.e., “EC 3.4.11.4”) due to their
specific format—four numbers separated by periods. To counteract this limitation, we redesigned
the EC number format by replacing the period with another symbol that is distant from numbers in
the embedding space. ❷ Embracing the Biological Prior, we build a two-tiered protein-centric
retrieval engine, grounded in two fundamental biological insights: (1) At the protein-level, recognizing
the evolutionary conservation of functionally critical regions within protein sequences, our engine
retrieves a protein with similar regions as the reference to infer the query enzyme’s function. (2)
At the chemical level, acknowledging the intrinsic link between an enzyme’s catalytic actions and
its function, we leverage the retrieved protein to further identify a corresponding molecule. This
molecule acts as an additional reference point, refining our EC number prediction capabilities. By
querying a protein along with two retrieved entities - a protein and a molecule, LLaPA directly
predicts the corresponding Enzyme Commission numbers. Our contributions are summarized below:

⋆ We introduce LLaPA framework, a cutting-edge framework specifically designed for protein
enzyme function prediction. LLaPA stands out by addressing the unique challenges in
protein enzyme function annotation through innovative training and inference strategies
tailored for multi-modal large language models (MLLMs).

⋆ We identified how the traditional format of EC numbers can be problematic for accurate
predictions by large language models (LLMs). To address this, LLaPA introduces a new
encoding scheme that replaces periods with symbols that are more distinct in the embedding
space. This subtle change significantly improves EC number prediction accuracy, indicating
the format’s better compatibility with the LLMs’ self-regression paradigm.

⋆ LLaPA advances the field with its two-tiered retrieval engine, deeply rooted in biological
insights. This engine not only identifies proteins with evolutionary conserved, functionally
critical regions but also pairs these proteins with corresponding molecules. This dual
approach enhances the prediction of Enzyme Commission numbers, leveraging biological
priors at both the protein and chemical levels to refine the model’s predictive accuracy.

⋆ Our extensive testing across four public datasets confirms the effectiveness of our approach.
For example, LLaPA achieves {17.03%, 9.32%, 38.64%} performance improvements on
Halogenase, Price, and New datasets over previous state-of-the-art (SOTA) approaches.

2 RELATED WORK

Large Language Model Large Language Models (LLMs) have demonstrated considerable potential
in biology by leveraging vast biological datasets to advance research and understanding. Genomic
models such as BioBERT (Lee et al., 2020) and DNABERT (Ji et al., 2021) excel in sequence
annotation and gene function prediction. In proteomics, models like ESM-1b (Rives et al., 2019)
improve protein sequence understanding, and TAPE (Rao et al., 2019) facilitates evaluation efficiency
by providing a standardized benchmark. In drug development, AlphaFold3 (Callaway, 2024) proved
superior in finding new drugs. Others, such as SciBERT (Beltagy et al., 2019), a leading language
model, significantly improve the extraction and summarization of essential information. Recent
research focuses on integrating multimodal data (Zhang et al., 2023a) (Wang et al., 2024). For
example, LLaVA (Liu et al., 2024), which connects a vision encoder and an LLM, is the first attempt
to extend instruction-tuning to the language-image multimodal space. The BLIP (Li et al., 2022)
has demonstrated impressive performance in vision-language tasks and also achieved state-of-the-art
zero-shot performance when the models are directly applied to two video-language tasks. In addition,
enhancing model interpretability (Joshi et al., 2021) (Nhlapho et al., 2024), and improving prediction
robustness (Yang et al., 2023) also attract a lot of attention.
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Figure 1: The overview of LLaPA. (A) EC Number reformulation. We reformulate the EC number by analyzing
the distribution of symbols within the embedding space, adopt the use of LLM self-regression for EC number
prediction. (B) During training and inference, it employs two-tiered retrieval engine that encompasses both
protein sequence and molecule retrieval for accurate EC number prediction. (C) For molecule retrieval, we
utilize an expert-curated knowledge base. (D) All gathered information, along with the query protein, is then
processed by an LLM to generate the final prediction.

Enzyme Function Prediction Enzyme function prediction plays a crucial role in the field of biology.
Several ways have been devised to forecast enzyme function, such as those relying on sequence
similarity (Zhang et al., 2017) (Desai et al., 2011) (Altschul et al., 1997), structural similarity
(Altschul et al., 1990), and protein homology (Zhang et al., 2017). InterPro (Paysan-Lafosse et al.,
2022) signatures, position-specific scoring matrices (cheol Jeong et al., 2010), pseudo-amino acid
composition (Chou, 2009), and machine learning techniques (Amidi et al., 2017) such as multi-label
k-nearest neighbour (Huang et al., 2007) and SVM (Mohammad & Nagarajaram, 2011) are all good
ways to figure out what multi-functional enzymes do. Furthermore, the deep learning frameworks that
integrate representation learning and classifier learning have shown significant promise in enzyme
function prediction, such as Proteinfer (Sanderson et al., 2023), DeepEC (Ryu et al., 2019), and
DEEPre (Li et al., 2018). A new paradigm was recently introduced by ProTranslator (Xu & Wang,
2022). It deems the process of using function descriptions to predict the amino acid sequence a
machine translation problem. This pattern was later expanded with a framework for multilingual
translation (Xu et al., 2023a). Additionally, (Yu et al., 2023) introduces a metric learning framework
designed to increase the distance between protein embeddings of differing functions and decrease
it for those with similar functions, achieving state-of-the-art (SoTA) performance. However, their
approach relies solely on a simple triplet loss for contrasting samples and does not integrate biological
priors to enhance generalization for functions without a defined EC number.

3 METHODOLOGY

Overview LLaPA is a framework designed specifically for predicting the function of protein
enzymes, outputting the Enzyme Commission number based on the given protein sequence. First of
all, we reformulate the y that is more friendly for LLM prediction (Section 3.1). Then, for a protein
sequence x with n amino acids, LLaPA initially uses x to identify a reference protein sequence x′,
then retrieves the corresponding molecule m′ related to the catalytic reaction involve x (Section 3.2).
As a result, LLaPA employs x, x′, and m′ to predict the functional annotation y of x (Section 3.3).

Specifically, LLaPA inference adopts a similar design to LLaVA (Liu et al., 2023b;a). With x,
retrieved protein x′ and retrieved molecule m′, LLaPA first apply the pre-trained protein encoder
E(·) to provide protein features zp = E(x) and z′p = E(x′). Next it uses the pre-trained molecular
encoder C(·) to obtain molecular features zm = C(m′). To process these features further, LLaPA
uses two projectors: Wp, which converts zp and z′p into language embedding tokens hp and h′

p, and
Wm, which transforms zm into language embedding tokens hm. These projectors map information
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from proteins and molecules into the language token space, bridging biological and chemical prior
for protein enzyme function understanding. Finally, the query protein x, retrieved protein x′ and
molecule m′ along with corresponding instructions can combine together to obtain the EC number of
the query. For more details about overall pipeline, please refer to Algorithm 1.

3.1 ENZYME COMMISSION NUMBER REFORMULATION

EC 2.7.12.2: mitogen-activated protein kinase kinase

EC 2: Transferases

EC 2.7: Transferring phosphorus-containing groups.

EC 2.7.12: Dual-specificity kinases (those acting on
Ser/Thr and Tyr residues).

EC 2.7.12.2: mitogen-activated protein kinase kinase,
activate MAP kinases through dual phosphorylation on
serine/threonine and tyrosine residues.
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Figure 2: A case of EC number format.

In this section, we introduce the Enzyme Com-
mission (EC) number reformulation. Protein
functional annotations, including EC numbers
and Gene Ontology (GO) terms, exhibit hierar-
chical structures. Especially, the Enzyme Com-
mission (EC) number serves as a numerical sys-
tem for classifying enzymes according to the
chemical reactions they facilitate. Within this
enzyme nomenclature system, each EC num-
ber has four digital numbers, that correspond to
a recommended name for the specific enzyme-
catalyzed reaction it denotes. As shown in Fig-
ure 2, from left to right, the digits correspond
to the reaction class, subclass, and sub-subclass,
and a serial number that is substrate-specific.

However, we’ve observed that while Large Lan-
guage Models (LLMs) struggle to predict the
EC number for given protein sequences. We sus-
pect this limitation may be rooted in the characteristics of the embedding space. To explore this
hypothesis, we began by visualizing the embedding of symbols, including numbers, letters, and the “.”
character. As shown in Figure 1 (A), we noticed that the “.” character is positioned closely to the
numbers in the embedding space. This proximity suggests that predicting the EC number may be
akin to predicting a single, large numerical value. Accurately predicting such a large number presents
a significant challenge (Yuan et al., 2023; Zhang et al., 2020; Sundararaman et al., 2020; Jin et al.,
2024).

Therefore, we first replaced the “.” with the letter “A”, and we got an improvement for predicting
the EC number. Then we further replace “A” with “Z” which is farther away from numbers in
the embedding space, and then get further improvement. Please refer to Section 4 for a detailed
discussion of the demonstration results.

After reformulating the Enzyme Commission (EC) number for large language model (LLM) predic-
tions, we are now able to accurately predict the first three digits of the EC number. This outcome
suggests that the model is capable of understanding protein functions but falls short in identifying the
specific catalytic reaction utilized by the protein, i.e., correctly predicting the four digits of the EC
number. To address this limitation, we require further reference information to assist the model in
pinpointing the precise catalytic reaction associated with the protein.

3.2 INTEGRATING BIOLOGICAL PRIOR KNOWLEDGE BY RETRIEVAL ENGINE

In this section, we introduce a novel two-tiered retrieval engine, a cornerstone of LLaPA integrates
biological prior knowledge to prompt LLMs to predict the four digits of the EC number. This engine
is divided into two specialized modules: the first addresses the retrieval of reference protein sequences,
while the second concentrates on the identification of molecules relevant to chemical reactions.

Protein Prior Knowledge Module - Retrieval of Reference Protein Sequences. A fundamental
principle in understanding protein function is that regions of protein sequences important for function
tend to be conserved through evolution. Consequently, proteins sharing similar regions are likely to
possess similar enzymatic functions and may even catalyze the same reactions. Inspired by this insight
into protein functionality, we employ "mmseq2" (Steinegger & Söding, 2017), a comprehensive
software suite designed for the efficient searching and clustering of extensive protein and nucleotide
sequence datasets based on significant protein-related knowledge. This tool enables us to identify
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the most closely related protein sequence as a reference, thereby aiding the model in accurately
predicting the four digits of the EC number. When given a protein, LLaPA utilizes "mmseq2" to find
the most similar protein sequence, x′, within a specified protein database.

Specifically, input the query protein sequence x to the “mmseq2”. It will search in the specified
protein database and output the x′ with the highest sequence identify cutoff value in the protein
database.

Chemical Reaction Prior Knowledge Module - Retrieval of Corresponding Molecules. The
simplest way to identify a catalytic reaction is by examining the reaction itself. This module
is designed to retrieve a molecule in SMILES format 1 that participates in the catalytic reaction
associated with a given protein. Yet, the task of retrieving the catalytic reaction based solely on
the protein sequence is exceedingly difficult. Fortunately, the "Protein Prior Knowledge Module"
presents an opportunity to bypass the direct retrieval of molecules by protein sequence. Therefore, we
employ the “rhea” (Bansal et al., 2022), an expert-curated knowledgebase of chemical and transport
reactions of biological interest, and the standard for enzyme and transporter annotation in UniProtKB.
Noticeably, the “rhea” necessitates the EC number to fetch the relevant catalytic reaction—the very
information we aim to predict.

During the training phase, as shown on the left side of Figure 1 (B), we directly input the
EC number (i.e., the label) of the protein sequence to the “Molecule Retrieval” module.
During the inference phase (the right side of Figure 1 (B)), the EC number of the input protein
sequence xu is unavailable. Therefore, we first input the protein sequence xu to the “Protein Prior
Knowledge Module” and get a protein sequence m′

u. The protein sequence m′
u from the protein

database has EC numbers. Consequently, we fed its EC numbers into the “Molecule Retrieval”
module.

As depicted in Figure 1 (C), our “Molecule Retrieval” module operates as follows: (1) it randomly
selects one EC number from the input EC numbers; (2) it inputs the selected EC number into the
“rhea”, which then outputs the corresponding catalytic reaction; (3) it selects the first reactant molecule
in the catalytic reaction to be the output molecule m′.

We emphasize that the retrieve logic in the inference phase is reasonable, as proteins with high
sequence identify cutoff values typically exhibit similar enzyme functions Gerlt et al. (2015); Yu et al.
(2023). Therefore, their molecules in the corresponding chemical enzyme reactions should possess
similar catalytic information. For instance, the protein “T1RRJ4” and its corresponding retrieved
protein “Q2XSC6” have the EC numbers “EC 4.2.3.10” and “EC 4.2.3.20”, respectively. Interestingly,
the first reaction molecule for both is “(2E)-geranyl diphosphate”. As depicted in Figure 1 (C), our
“Molecule Search” process randomly chooses an EC number when multiple are available; if only one
EC number exists, that EC number is utilized.

3.3 MODEL ARCHITECTURE AND TRAINING

In this section, we delve into the details of the network architecture designed to underpin the proposed
retrieval engine, the corresponding multi-modal training pipeline, and the techinical details of LLaPA.
We also illustrate the flow of data and the trainable parameters during training in Figure 7(a).

Figure 3: The input sequence employed to train the
model is designed to teach the model to predict the assis-
tant’s responses and to determine the appropriate point
to conclude. Consequently, only the green sequence/-
tokens are utilized in calculating the loss within the
auto-regressive model.

Network Architecture The network architec-
ture is illustrated in Figure 1 (D). LLaPA fea-
tures several key components: an LLM for natu-
ral language processing, a protein encoder, and
a corresponding projector that bridges the pro-
tein encoder with the LLM. Additionally, it in-
cludes a molecule encoder and its own projector
to link the molecule encoder with the LLM. We
use Vicuna-7b (Zheng et al., 2023) as the back-
bone of LLaPA, which is a chat assistant trained
by fine-tuning Llama 2 on high-quality dialog

1The simplified molecular-input line-entry system (SMILES) is a specification in the form of a line notation
for describing the structure of chemical species using short ASCII strings. (Weininger, 1988)
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datasets. To make LLaPA understand protein sequences (i.e., sequence of amino acid tokens, which
are the primary structure of proteins), we employ ESM-2 (Lin et al., 2022) as the protein encoder E(·),
the general-purpose protein language model. For the molecule, we use ChemBERTa (Chithrananda
et al., 2020) as the molecule encoder C(·), a language model pre-trained on a chemical dataset called
PubChem (Kim et al., 2019) that consists of molecules in SMILES format. These two projectors
that connect the protein feature, and molecule feature into language embedding tokens hl are both a
two-layer MLP.

Multi-modal Training For each protein x, we create a single-turn conversation dataset (nq,na).
These are arranged sequentially, with the answers interpreted as the assistant’s responses and the
question as the instruction, denoted as nq . This arrangement follows a unified format for multimodal
instruction-following sequences, as illustrated in Figure 3. We set the trainable parameters as θ,
ninstruct,<i and na,<i as the instruction and answer tokens in each turn before the current prediction
token na. For sequences of length L, we obtain the target answers generating probability na by:

p(na|x, x′,m′,ninstruct,<i,na,<i). (1)

In this formulation, x, x′, and m′ are anchored across all answers. For the sake of clarity, we omit
nsystem−message and all <STOP> tokens, even though they are also taken into consideration in
the conditioning. For the model training, we consider a two-stage instruction-tuning procedure. ①
Feature Alignment. We keep the protein encoder, molecule encoder, and LLM weights frozen, and
maximize the likelihood of Equation 3.3 with trainable parameters θ = {Wp,Wm}. In this way,
protein and molecule features zp, z′p, zm can be aligned with the pre-trained LLM word embedding.
② Parameter Efficient Fine-tuning. We adopt LoRA (Hu et al., 2021) for the training. The LoRA
is an efficient training strategy that maintain high model quality without introducing any delay
during inference or necessitating a reduction in the input sequence length. As a result, we keep
the visual encoder and the weights of the Large Language Model (LLM) frozen, updating the two
projectors {Wp,Wm} and the LoRA parameters (ϕ) in the LLM; i.e., the trainable parameters are
θ = {Wp,Wm, ϕ}.

You are a helpful language and protein assistant.
You are able to understand the protein sequence that the user provides, 
and ouput the corresponding enzyme commission numbers, for example: 3.4.11.4, 3.6.1.4

Protein: <protein>\n
Candidate protein: <protein>\n
One of the generated product: <molecule>\n
List all enzyme commission numbers that are associated with the protein, this protein is
similar with the candidate protein.\n

Figure 4: The multimodal instruction used during LLaPA
LoRA fine-tuning.

Techinical Details. Pretraining: We ad-
hered to the official training guidelines of
LLaVA, employing the Adam optimizer
with an initial learning rate of 5 × 10−5,
which gradually decreases following a co-
sine annealing schedule. Our batch size
was set at 128, and we trained the two pro-
jectors for 5 epochs. LoRA Fine-Tuning:
For fine-tuning with LoRA, we set r = 128
and α = 256. The learning rates were 5 × 10−5 for the two projectors and 2 × 10−5 for LoRA
modules with the same batch size 128 but 10 epochs. LoRA was applied across all linear modules of
LLMs, including [down_proj, up_proj, q_proj, v_proj, k_proj, o_proj, gate_proj]. The pretraining
and fine-tuning of LLaPA were conducted on 8 NVIDIA A6000 GPUs. Retrieval: During training, if
protein retrieval fails (i.e., an available protein reference cannot be retrieved), we default to using
the query protein sequence as the retrieved protein. Similarly, for missing molecule retrievals, we
return zero vectors as the retrieval result. The retrieval database during training is the training set
itself to maintain fair comparison with baselines. During inference, we use the original dataset as
the retrieval base (including 220K protein sequences filtered from the Swiss-Prot database). For
those proteins with multiple EC numbers, we will randomly select one of them for molecule retrieval.
Predicting, The format of LLaPA is designed for easy reformulation, allowing users to substitute
the placeholder “Z” with a period (“.”) to revert to the original, more user-friendly format for read-
ing. Fune-tuning Instruction: We use the instruction for better multimodal optimization during the
fine-tuning stage, we leave the system instruction and multimodal instruction in Figure 4.

4 EXPERIMENTS

In this section, we first introduce the experimental setup (Section 4.1), then show LLaPA’s advance
performance (Section 4.2), and finally show indepth analysis about LLaPA (Section 4.3).
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4.1 EXPERIMENTAL SETUP

In this section, we introduce our experimental setup in terms of datasets, evaluation metric, evaluation
task, and baselines.

Datasets. We selected the Swiss-Prot database (Boutet et al., 2007) as the source of our training
data, a subset of the extensive UniProt dataset known for its thorough human review and curated
annotations. Employing the data filtering approach described in (Yu et al., 2023), we initially secured
approximately 220K protein sequences. Subsequently, we clustered and subsampled these sequences
using mmseq2 (Steinegger & Söding, 2017), applying sequence identity cutoffs of 70% to effectively
filter out homologous sequences. Our assessment of the LLaPA model’s competency in predicting
EC numbers was performed across four well-regarded benchmarks: (1) New-392 (or New) (Yu et al.,
2023), which includes 392 enzyme sequences that span 177 distinct EC numbers. (2) Price-149
(or Price), a collection of protein sequences that were found to be inaccurately or inconsistently
labeled in reputable databases like the Kyoto Encyclopedia of Genes and Genomes (KEGG) by
automated annotation methods. These sequences were later annotated with labels validated through
experiments by Price et al. (2018b). (3) Multi (Yu et al., 2023), a dataset comprising enzymes
associated with rare EC numbers, each represented no more than five times, with the dataset including
over 3, 000 samples and covering over 1, 000 distinct EC numbers. 4. Halogenase (Yu et al.,
2023), a dataset that encompasses various halogenases, either marked as uncharacterized and/or
hypothetical proteins in UniProt or bearing conflicting annotations in scholarly literature. Through
meticulous expert curation and subsequent experimental validations, all halogenase in the dataset
were confidently annotated with EC numbers. The sequence identify between training set and
testing set Halogenase, Multi, New-392, and Price-149 are 39.20%, 58.96%, 48.41%, and
42.66%, respectively. Therefore, the performance improvement in Halogenase and Price-149
can indicate the generalization enhancement.

Evaluation Metric. Initially, we utilize the F-1 score to compare the performance of LLaPA against
other baseline models. Subsequently, to delve deeper into the predictive behavior of LLaPA, we
examine its performance using two different types of accuracy measures.:

Acc-1 =
1

N

N∑
i=1

number of true positive
number of true labels

Acc-2 =
1

N

N∑
i=1

number of true positive
number of predicted labels

, (2)

where Acc-1 represents the ratio of correct predictions to the total number of ground truth instances,
and Acc-2 denotes the ratio of correct predictions to the total number of predicted EC numbers. The
former metric assesses the model’s ability to accurately identify the correct EC numbers, while the
latter evaluates the model’s tendency to predict as many EC numbers as possible.

Tasks. We consider two kinds of tasks, one for Full EC number prediction, which needs to predict
the four digital numbers, and requires the modal to identify the specific catalytic reaction utilized by
the protein, and another is to predict the first three digital numbers of EC numbers that require to
understanding the general understanding of the type of reaction the enzyme catalyzes. While it lacks
the specificity of the full EC prediction, this broader categorization can be beneficial for tasks like
metabolic pathway analysis, where understanding the general role of enzymes can help in mapping
out the interconnections and flow of biological processes.

Baselines. To highlight the exceptional performance of LLaPA, we benchmark it against three
state-of-the-art (SOTA) methodologies: (1) For classification, we employ ESM-2 (Lin et al., 2022),
a leading general-purpose protein language model. We fine-tune ESM-2 using our training data
and then validate its performance across four benchmarks; (2) In terms of retrieval methods, we
utilize CLEAN (Yu et al., 2023), which leverages triplet loss to differentiate proteins across enzyme
substrate classes; (3) For a translation-based approach, we examine BioTranslator (Xu et al., 2023a),
distinguished by its zero-shot learning capability across multiple applications. Comparison with
Structure-Based Protein Predictors: We used RSCB and AlphaFold2 to construct protein structures
from our training data. Since 1% of the proteins in the training set do not have structures, we excluded
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Table 1: The comparison of LLaPA with the state-of-the-art EC number prediction tools.
Halogenase Multi Price New

Acc-1 Acc-2 F1 Acc-1 Acc-2 F1 Acc-1 Acc-2 F1 Acc-1 Acc-2 F1

Full EC Numbers

ESM2-650M (ft) 0.0146 0.5000 0.0155 0.3522 0.0004 0.0412 0.4965 0.0002 0.0403 0.5958 0.0003 0.0276
ESM2-650M (lora) 0.2162 0.0001 0.0367 0.5975 0.0006 0.1054 0.4406 0.0002 0.0275 0.5375 0.0003 0.0205

ESM2-650M (linear) 0.1351 0.5556 0.1577 0.0063 1.0000 0.0084 0.0063 1.0000 0.2322 0.0146 0.5000 0.0155
BioTranslator 0.1081 0.0571 0.0293 0.2131 0.1625 0.1536 0.0604 0.0448 0.0240 0.1020 0.0802 0.0503

CLEAN 0.1622 0.1622 0.2140 0.0686 0.1967 0.0951 0.0592 0.0604 0.0958 0.0696 0.0893 0.0475
GearNet 0.1622 0.1622 0.2140 0.0686 0.1967 0.0951 - - - 0.0696 0.0893 0.2423

GearNet-ESM 0.1923 0.2778 0.1667 0.0339 0.0132 0.0161 - - - 0.2423 0.1935 0.2406
LLaPA 0.3514 0.3514 0.3843 0.1414 0.1571 0.1399 0.3423 0.3423 0.3254 0.5016 0.5040 0.4367

First Three EC Numbers

ESM2-650M (ft) 0.2703 0.4545 0.2806 0.8529 0.9667 0.8627 0.5973 0.8558 0.6296 0.6817 0.8193 0.7241
ESM2-650M (lora) 0.2703 0.0021 0.0562 0.1471 0.0014 0.0140 0.6376 0.0052 0.0898 0.5363 0.0041 0.0414

ESM2-650M (linear) 0.0811 0.5000 0.1216 0.7353 0.9615 0.7500 0.4161 0.9394 0.4703 0.4336 0.8317 0.4746
BioTranslator 0.0811 0.0682 0.0266 0.1311 0.1143 0.0733 0.0470 0.0380 0.0163 0.0459 0.0382 0.0152

CLEAN 0.3783 0.3514 0.3550 0.6264 0.6443 0.6580 0.9399 0.9344 0.9100 0.7806 0.7303 0.7740
GearNet 0.0769 0.1250 0.0769 0.0192 0.0227 0.0346 - - - 0.5529 0.6985 0.5790

GearNet-ESM 0.1538 0.4444 0.1538 0.0192 0.0213 0.0346 - - - 0.6375 0.7276 0.6358
LLaPA 0.9770 0.9460 0.9563 1.0000 0.7842 0.9335 0.9732 0.9664 0.9701 0.9770 0.9460 0.9563

these and used the remaining 99% to train GearNet Zhang et al. (2023c) and ESM-GearNet Zhang
et al. (2023b). We applied these models to this structured dataset. However, none of the proteins
in the Price dataset have structures available in the RSCB and AlphaFold2 databases, and folding
all these proteins using AlphaFold2 is too resource-intensive. Therefore, we evaluated GearNet and
ESM-GearNet only on the Halogenase, Multi, and New datasets.

For the ESM-2 model, we utilized the ESM2-650M variant and subjected it to three distinct fine-
tuning strategies: ESM2-650M (ft), where all parameters were made trainable; ESM2-650M (lora),
where LoRA was applied to the query, key, and value layers, in addition to optimizing an additional
classification head; and ESM2-650M (linear), which involved optimization of only the classification
head. The classification head’s output dimension in ESM-2 corresponds to the total number of
Enzyme Commission (EC) numbers identified within both the training and testing datasets. We
fine-tuned the publicly available BioTranslator model using the same dataset as LLaPA, following
the recommended hyperparameters from its documentation. The goal was to accurately align full EC
numbers (“EC XX.XX.XX.XX”) with their respective protein sequences. For performance evaluation,
we utilized a standard multi-label classification approach with a threshold of 0.5 to calculate metrics.
Regarding the CLEAN model, we utilized the official implementation and followed the suggested
dataset-specific hyperparameters to derive our final results.

4.2 LLAPA ACHIEVES SUPERIOR PROTEIN ENZYME UNDERSTANDING

Referring to Table 1, it’s evident that LLaPA significantly outperforms the baseline models
in predicting "Full EC Numbers" across three datasets, registering F-1 score improvements of
{17.03%, 9.32%, 38.64%} on the Halogenase, Price, and New datasets, respectively. However,
it’s worth noting that BioTranslator surpasses LLaPA in the Multi dataset. Despite this, BioTrans-
lator’s Acc-1 is substantially higher than its Acc-2, suggesting a tendency to over-predict EC
numbers for each protein—a less-than-ideal approach in practical scenarios. In comparison, LLaPA
demonstrates competitive performance with BioTranslator, maintaining a closer alignment between
Acc-1 and Acc-2, which underscores LLaPA’s more dependable predictions.

Furthermore, when focusing on the prediction of the "First Three EC Numbers," LLaPA
consistently surpasses all baselines across every dataset, with F-1 score improvements of
{60.13%, 7.08%, 6.01%, 18.23%}. Additionally, the notable discrepancy between Acc-1 and
Acc-2 within the Multi dataset highlights LLaPA’s limitations in this area, suggesting a need for
more comprehensive data to better grasp the nuances of enzymes associated with rare EC numbers.
4.3 IN-DEPTH ANALYSIS AND ABLATION STUDY

Q1: What does the EC Number Reformulation bring to performance? A1: Generalizability
and Reliability In our ablation study focused on EC Number Reformulation to address Q1, we
contrast LLaPA with its variants: “LLaPA (AAA)” and “LLaPA without reformulation”. In Table 2,
we reveal that modifying the original EC number format by replacing the period (“.”) with a letter

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Ablation study on LLaPA. “LLaPA (AAA)” involves substituting the periods (“.”) in the
standard EC number format with three “A” letters, while “LLaPA w/o reformulation” continues to
utilize the traditional EC number format. Additionally, the exclusion of molecule retrieval during
the inference process is indicated by “LLaPA w/o SMILES”, the omission of protein retrieval is
denoted by “LLaPA w/o protein”, and “LLaPA w/ Original Vicuna” replaces the fine-tuned LLM
with original vicuna model weight.

Halogenase Multi Price New

Acc-1 Acc-2 F1 Acc-1 Acc-2 F1 Acc-1 Acc-2 F1 Acc-1 Acc-2 F1

Full EC Numbers

LLaPA 0.3514 0.3514 0.3843 0.1414 0.1571 0.1399 0.3423 0.3423 0.3254 0.5016 0.5040 0.4367
LLaPA (AAA) 0.1351 0.0676 0.1906 0.1235 0.1030 0.1437 0.2282 0.1141 0.2572 0.4044 0.2086 0.3651

LLaPA w/o reformulation 0.0541 0.0270 0.0852 0.1706 0.1393 0.1446 0.1879 0.0940 0.2084 0.3053 0.1607 0.2892
LLaPA w/o SMILES 0.0000 0.0000 0.0000 0.0519 0.0574 0.0536 0.0000 0.0000 0.0000 0.0145 0.0153 0.0247
LLaPA w/o protein 0.0270 0.0270 0.0360 0.0717 0.0749 0.0921 0.1342 0.1342 0.1502 0.2425 0.2429 0.2238

LLaPA w/ Original Vicuna 0.0000 0.0000 0.0000 0.0525 0.0574 0.0503 0.0000 0.0000 0.0000 0.0109 0.0123 0.0256

First Three EC Numbers

LLaPA 0.9770 0.9460 0.9563 1.0000 0.7842 0.9335 0.9732 0.9664 0.9701 0.9770 0.9460 0.9563
LLaPA (AAA) 1.0000 0.8378 0.9045 1.0000 0.4276 0.7535 1.0000 0.6544 0.7952 1.0000 0.5640 0.7543

LLaPA w/o reformulation 1.0000 0.6305 0.8730 1.0000 0.4891 0.7892 1.0000 0.6689 0.8189 1.0000 0.6305 0.8730
LLaPA w/o SMILES 0.8649 0.8649 0.8649 0.9836 0.5984 0.7939 0.9195 0.9128 0.9141 0.8724 0.8151 0.8360
LLaPA w/o protein 0.4595 0.4595 0.4595 1.0000 0.7186 0.9005 0.9799 0.9732 0.9739 0.9821 0.9422 0.9599

LLaPA w/ Original Vicuna 0.1351 0.1351 0.1351 1.0000 0.5328 0.7627 0.9866 0.9765 0.9866 0.8112 0.7411 0.7720

significantly enhances the model’s ability to generate plausible predictions for the Halogenase
dataset, thereby indicating an improvement in generalizability. Moreover, we observed a marked
reduction in the discrepancy between Acc-1 and Acc-2 following the EC number reformulation.
This trend was consistent across both "Full EC Numbers" and "First Three EC Numbers" predictions,
underscoring an enhancement in the model’s reliability. As illustrated in Figure 1 (A), within the
embedding space, the character “A” is situated further from the numbers compared to the period (“.”),
and “Z” is even more distant from the numbers than “A”. This spatial arrangement in the embedding
space suggests that as the distance from these numbers increases, so too do the generalizability and
reliability of the model’s predictions.

Q2: Why can the EC Number Reformulation improve performance? A2: Better feature quality
In Figure 5, we display UMAP visualizations derived from the EC number features generated by
our model. Each EC number label corresponds to the first digit of the EC number, i.e., the reaction
class. Then we also calculate the Silhouette Coefficient (s-score) to assess the clustering quality of
various EC number formats; a higher Silhouette Coefficient indicates improved clustering quality.
The improved clustering quality indicates the feature quality is better. The results show that replacing
“.” with the letter “A” can improve the cluster quality and replacing “A” with “Z” can further improve
the s-score from 0.187 to 0.301. The improvement indicates the EC number reformulation possesses a
smoother and more clustered latent space with respect to the ground-truth reaction labels. Meanwhile,
the cluster quality improvement aligns with the EC number prediction improvement which implies the
improved EC number features quality bolsters the model’s performance in predicting EC numbers.

Q3: What are retrieved proteins and molecules responsible for? A3: Improve the performance
The comparison of LLaPA against its variations, “LLaPA without SMILES” and “LLaPA without
protein”, provides us with several key takeaways: ❶ For “Full EC Numbers”, it turns out that
information about molecules play a starring role, while information on proteins takes the spotlight for
nailing the “First Three EC Numbers” predictions. For instance, our dual-layer retrieval engine boosts
the F-1 score from virtually nothing (0.0%) and a modest 3.6% to an impressive 38.43%. ❷ The
difference between Acc-1 and Acc-2 stays pretty much the same, indicating that the reliability is
brought by the “EC Number Reformulation”. ❸ The enhancements we see with our retrieval engine
shine brightest with the Halogenase and Multi datasets. This suggests that the extra info we pull
up helps the language model spot and understand proteins it hasn’t met before, showcasing the power
of additional data in uncharted territory.

Q4: What is the ideal protein for the protein retrieval engine? A4: The homologous sequence
matter. To tackle this question, we zoomed in on how adjusting our protein retrieval database
affects our findings. We started by setting sequence identity cutoffs at 10%, 30%, 50%, and 70%,
creating four sub-datasets at varying levels of protein sequence similarity. Next, we tested these
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Silhouette Coefficient: 0.122 Silhouette Coefficient: 0.187 Silhouette Coefficient: 0.301

Figure 5: The UMAP visualizations and corresponding silhouette coefficients for the text embeddings of all
involved EC numbers in both the training and testing datasets.

10% 30% 50% 70% 100%
Sequence Identity Cutoff Value

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

F
1 

Sc
or

e

Halogenase (Full EC Numbers)

10% 30% 50% 70% 100%
Sequence Identity Cutoff Value

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
F

1 
Sc

or
e

Multi (Full EC Numbers)

10% 30% 50% 70% 100%
Sequence Identity Cutoff Value

0.00

0.05

0.10

0.15

0.20

0.25

0.30

F
1 

Sc
or

e

Price (Full EC Numbers)

10% 30% 50% 70% 100%
Sequence Identity Cutoff Value

0.0

0.1

0.2

0.3

0.4

F
1 

Sc
or

e

New (Full EC Numbers)

10% 30% 50% 70% 100%
Sequence Identity Cutoff Value

0.0

0.2

0.4

0.6

0.8

1.0

F
1 

Sc
or

e

Halogenase (First Three EC Numbers)

10% 30% 50% 70% 100%
Sequence Identity Cutoff Value

0.0

0.2

0.4

0.6

0.8

1.0

F
1 

Sc
or

e

Multi (First Three EC Numbers)

10% 30% 50% 70% 100%
Sequence Identity Cutoff Value

0.0

0.2

0.4

0.6

0.8

1.0

F
1 

Sc
or

e

Price (First Three EC Numbers)

10% 30% 50% 70% 100%
Sequence Identity Cutoff Value

0.0

0.2

0.4

0.6

0.8

1.0

F
1 

Sc
or

e

New (First Three EC Numbers)

Figure 6: Extra studies about the protein retrieval database. We apply sequence identity cutoff of 10%, 30%,
50%, 70%, crafting five datasets including the original one, to serve as our protein retrieval database throughout
the training phase. We’ve tracked how the F-1 score shifts when we adjust the cutoff values across four datasets,
focusing on tasks predicting “Full EC Number” and “First Three EC Number”. A higher cutoff value means
we’re including more homologous protein sequences in our analysis.

sub-datasets to observe any shifts in performance. It’s worth mentioning that a 100% cutoff points
to our original dataset, detailed in Section 4.1, which includes 220K protein sequences. The 100%
cutoff dataset also doubles as our default testing retrieval database. Our strategy involved closely
monitoring how the F-1 scores varied with different cutoff values across various datasets, particularly
for predicting the “Full EC Number” and the “First Three EC Numbers”. What we discovered was
quite revealing: incorporating sequences with a higher degree of homology—those closely related
protein sequences—proves to be advantageous, especially when tackling the “Full EC Number”
prediction tasks. This insight highlights the significance of carefully selecting sequences to enhance
the precision of our predictions.

5 CONCLUSION

This paper introduces LLaPA, a multi-modal framework developed to predict enzyme functions by
assigning Enzyme Commission (EC) numbers to protein sequences. Our work represents a pioneering
effort to synergize natural language priors (where punctuation such as "." in numbers can resemble
large numerical values to LLMs due to their proximity in the word embedding space) and biological
priors (emphasizing the evolutionary conservation of functionally critical regions within protein
sequences and the catalytic reactions of the corresponding enzymes) in a unified approach using
multi-modal large language models.

As a result, LLaPA achieves state-of-the-art performance across four public benchmarks, demon-
strating its superiority. This underscores the significance of the EC number format and suggests a
promising method for integrating biological insights through retrieval mechanisms with LLMs to
enhance our understanding of protein enzyme functions. Future directions include a broader explo-
ration of protein function, the integration of our proposed retrieval engine with reasoning capabilities
to further augment retrieval effectiveness, and propose large scale of protein dataset with secondary
structure then compare with structure-based protein predictors.
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A LIMITATION

Our method primarily utilizes datasets that are publicly available, and our validation process does
not include wet lab experiments. This limitation confines the scope of our prediction results. To
achieve a more comprehensive understanding and validation of our findings, future work should
consider incorporating experimental data from wet lab experiments. Such integration would not only
enhance the reliability of our predictions but also bridge the gap between computational predictions
and empirical evidence, potentially leading to more accurate and applicable outcomes in the field.

B METHOD DETAILS

Algorithm 1 LLaPA Training and Inference Pipeline
1: Input: Query protein x.
2: if Training then
3: Input: Query protein label y.
4: end if
5: Output: Predict EC number y.
6: Require: Instruction Template ninstruct.
7: Require: Protein retrieval database PRD.
8: Require: Molecule retrieval database MRD.
9: # Protein retrieval

10: x′ ← ProteinRetrieval(x,PRD),
11: # Molecule retrieval
12: if Training then
13: ŷ← ECNumberExtract(x) # got EC number of x
14: else
15: ŷ← ECNumberExtract(x′) # got EC number of x′

16: end if
17: m′ ← MoleculeRetrieval(ŷ)
18: if Training then
19: Get prediction ȳ← LLaPA(x,x′,m′,ninstruct) and calculate the loss with y to update the

model.
20: else
21: Get prediction ȳ← LLaPA(x,x′,m′,ninstruct)
22: end if

Training and Inference Pipeline. We show the pseudocode of the training and inference pipeline
in Algorithm 1. The ProteinRetrieval retrieves similar protein sequence in protein retrieval
database PRD of give protein x, the ProteinRetrieval retrieves molecule m′ that related with
EC number ŷ, and ECNumberExtract outputs the EC number that corresponding to the input
protein x/x′. LLaPA receive the query protein x, retrieved protein x′ and retrieved molecule m′ to
predict EC number for training or inference. The computation cost for training is arround 18 TFLOPs
and the inference is arround 2 TFLOPs if the batch size is 1. In practice, we use 8 A6000 for training
(batch size is 128) and a single A6000 for inference.

The Flow of Data and the training details. We show the data flow of LLaPA in Figure 7(a) (A).
The (B) and (C) in Figure 7(a) show the model details during model training. In the first stage, only
two modality-specific projectors participate in training, and in the stage two, these LoRA modules
added to the LLM are trained simultaneously with these mode-specific projectors.

The training and the inference details of LLaPA in Line 17-21 of Algorithm 1 are like this: modality-
specific encoder and projector convert each protein x/x′ and molecule m′ into sequences of protein
tokens and molecule tokens, respectively. We then replace the query protein token sequence x
with the special token <protein> in the format “Protein: <protein>\n” in ninstruct (Figure 4). The
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... Protein <Prot> ... Candidata protein <Prot> ... product <SMILES> ... 

Protein Encoder

Projection

Molecule Encoder

Projection

...

EC XX.XX.XX.XX

Language Model

(A) The Flow of Data

Protein
Retrieval

Molecule
Retrieval

Query
Protein

... Protein <Prot> ... Candidata protein <Prot> ... product <SMILES> ... 

Protein Encoder

Projection

Molecule Encoder

Projection

...

EC XX.XX.XX.XX

Language Model

(B) Training Stage One

... Protein <Prot> ... Candidata protein <Prot> ... product <SMILES> ... 

Protein Encoder

Projection

Molecule Encoder

Projection

...

EC XX.XX.XX.XX

Language Model

(C) Training Stage Two

Pretrained
WeightMLP: 

  - down, up, gate
Attention: 
  - q, k, v

(a) The model details of LLaPA include (A) the data flow
process, and (B) and (C) the specifics of the two-stage tr-
-aining procedure.

1.2.1.47 1.2.1.47

(b) The attention weight on proteins and
molecules when predicting the third digit of an
EC number (left) and the last digit of an EC num-
ber (right).

Figure 7: The model details of LLaPA and the attention weight dynamic from the third to the last
digital number of EC numbers.

retrieved protein token sequence, x′ is replaced with <protein> in “Candidate protein: <protein>\n”
in ninstruct. Similarly, the molecule token sequence m′ is replaced with <molecule> in “One of the
generated products: <molecule>\n” of ninstruct.

Specifically, all text in ninstruct is encoded as hl, and x/x′ is encoded by protein encoder E(·), and
then the output is projected by Wp to form token sequence hp and h′

p, The special token <protein>
in hl is then replaced by hp and h′

p Ṡimilarly, molecule m′ is encoded by molecule encoder C(·),
and then the output is projected by Wm to form token sequence hm. The special token <molecule>
in hl is replaced by hm. Finally, the LLM uses hp, hm, and hl to make predictions.

Dataset Details. For the hyperparameters of mmseq2, we used the “mmseqs2 easy-search” com-
mand with a sensitivity setting of “-s 5” and a maximum accepted sequences limit of “–max-seqs 10”.
Default hyperparameters were used for other settings. Our retrieval engine contains 227, 363 proteins
and 14, 162 molecules.

C ADDITIONAL EXPERIMENTS

Attention Weight Change. In Figure 7(b), we visualize the attention weights on proteins and
molecules when predicting the third and last digits of the EC number. The results show that the
attention weight increases when the model predicts the last digit of the EC number, indicating why
the molecule contributes significantly to the full EC number prediction.
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