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ABSTRACT

Recent studies have discovered a deep reinforcement learning (DRL) policy is
vulnerable to backdoor attacks. Existing defenses against backdoor attacks either
do not consider RL’s unique mechanism or make unrealistic assumptions, resulting
in limited defense efficacy, practicability, and generalizability. We propose SHINE,
a backdoor shielding method specific for DRL. SHINE leverages policy explana-
tion techniques to identify the backdoor triggers and designs a policy retraining
algorithm to eliminate the impact of the triggers on backdoored agents. We theoret-
ically prove that SHINE guarantees to improve a backdoored agent’s performance
in a poisoned environment while ensuring its performance difference in the clean
environment before and after shielding is bounded. We further conduct extensive
experiments that evaluate SHINE against three mainstream DRL backdoor attacks
in various benchmark RL environments. Our results show that SHINE significantly
outperforms existing defenses in mitigating these backdoor attacks.

1 INTRODUCTION

Deep reinforcement learning has demonstrated remarkable performance in various sequential decision-
making problems, ranging from beating professorial human players in Go (Silver et al., 2016) and
real-time strategy games (DeepMind, 2017; OpenAI, 2017) to controlling robots to accomplish
sophisticated tasks (Levine et al., 2016; Tai et al., 2017). Along with its great success comes a new
security concern of the supply chain management of DRL agents – backdoor threats. Specifically,
recent research (Kiourti et al., 2019; Wang et al., 2021a) demonstrates that an attacker could train a
backdoored agent and outsource it to a user. After the user deploys the agent in the corresponding
environment, the attacker places the backdoor trigger in the environment, forcing the agent to take
non-optimal actions and thus reduce its total reward. Defending backdoor attacks in DRL is inherently
challenging in that the trigger pattern is typically imperceptible, and the backdoored agent performs
normally at clean states. Based on different trigger patterns, existing backdoor attacks against DRL
can be categorized as perturbation-based attacks and adversarial agent attacks (detailed in Section 2).

Existing defenses against backdoor attacks consider two setups – 1) training-phase defense that trains
a robust model from a poisoned dataset (e.g., Tran et al. (2018); Du et al. (2019); Weber et al. (2020);
Zhang et al. (2022); Wu et al. (2022); Zhang et al. (2022)) and 2) testing-phase defense that shields
a pretrained model/policy (e.g., Wang et al. (2019); Gao et al. (2019); Chou et al. (2020); Ma et al.
(2022); Wang et al. (2022); Guo et al. (2022); Bharti et al. (2022)). We consider the second setup
to shield a pretrained (backdoored) agent from being affected by the backdoor trigger presented
in the environment. Most existing testing-phase defenses are designed for supervised classifiers
(e.g., Wang et al. (2019); Guo et al. (2020); Liu et al. (2019); Gao et al. (2019); Chou et al. (2020);
Ma et al. (2022); Wang et al. (2022)). Due to the significant difference between DRL agents and
classifiers in the mechanism (i.e., sequential decision-making vs. individual class prediction) and
model output (i.e., action at each time step vs. predicted class), these techniques either cannot be
applied or demonstrate very limited efficacy in defending backdoors in DRL agents. Only a few
defenses are designed specifically for DRL agents (Bharti et al., 2022; Guo et al., 2022). As we will
discuss in Section 2, Bharti et al. (2022) design their defense only for the perturbation-based attack,
while the defense proposed in Guo et al. (2022) is only applicable to adversarial agent attacks.

In this work, we propose SHINE, a novel method to shield a pretrained DRL agent against both the
perturbation-based attacks and the adversarial agent attacks. Technically, we first collect a set of
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trajectories of the agent running in the environment and design a two-stage explanation method to
identify the backdoor trigger presented in these trajectories. Our explanation method first pinpoints
the states where the trigger is most likely to be presented. Then, it identifies a common subset of
features in the trigger-presenting states that are most critical to the agent’s action at these states and
deems them as the backdoor trigger. With the identified trigger, we then design a policy retraining
algorithm to shield the agent from being affected by the backdoor. By carefully designing the
retraining objective function, we theoretically guarantee that the retrained agent performs better in a
poisoned environment while maintaining its performance in the pristine clean environment.

We evaluate SHINE against three most prevalent backdoor attacks (perturbation-based attacks in
single-agent RL, adversarial agent attacks in two-player competitive RL, and perturbation-based
attacks in multi-agent cooperative RL) in seven benchmark RL environments. Our results demonstrate
that SHINE is effective against all three attacks in terms of faithfully identifying the trigger and
improving a backdoored agent’s performance in a poisoned environment. Additionally, we demon-
strate that SHINE outperforms two representative defenses designed for supervised classifiers (Wang
et al., 2019; 2022) and a state-of-the-art DRL defense (Bharti et al., 2022). Second, we show that
SHINE does not jeopardize (or even improve) a clean agent’s performance. This is an essential
property in that users could apply SHINE to arbitrary agents without worrying about the negative
impact on the clean ones. Finally, we verify that SHINE retains its effectiveness against attacks with
different variations (e.g., simple and complex triggers) and possible adaptive attacks. To the best
of our knowledge, this is the first backdoor defense against both perturbation-based and adversarial
agent attacks in both single- and multi-agent RL that does not require accessing a clean environment.

2 RELATED WORK

Backdoor Attacks. Based on different trigger patterns and injection methods, existing attacks can be
categorized as: 1) perturbation-based attack that uses a perturbation patch as the trigger (Kiourti et al.,
2019; Wang et al., 2021b; Chen et al., 2022b) and 2) adversarial agent attack that uses an adversarial
agent’s certain actions as the trigger (Wang et al., 2021a). Based on the target environment, existing
attacks can be further categorized as attacks against single-agent RL (Yang et al., 2019; Kiourti et al.,
2019; Wang et al., 2021b), attacks against two-agent competitive RL (Wang et al., 2021a; Chen et al.,
2022a), attacks against multi-agent cooperative RL (Chen et al., 2022b;a).

Backdoor Defenses. As mentioned in Section 1, we focus on the testing-phase defense, and most
existing works in this category target supervised classifiers (e.g., Wang et al. (2019); Guo et al. (2020);
Liu et al. (2019); Gao et al. (2019); Chou et al. (2020); Ma et al. (2022); Wang et al. (2022)). As
we will show in Section 4, due to the fundamental differences between RL and supervised learning,
these techniques demonstrate limited efficacy in DRL backdoor defense. Only a few research works
have focused specifically on mitigating backdoors in DRL agents. Unfortunately, these methods
have limited practicability and generalizability. Specifically, the defense proposed in Bharti et al.
(2022) is designed only for perturbation-based attacks, and it is only applicable to environments with
a discrete action space. The method in Guo et al. (2022) is designed particularly for adversarial agent
attacks. Different from existing methods, our defense is applicable to both perturbation-based attacks
and adversarial agent attacks. In addition, we demonstrate its efficacy in all three types of target
environments mentioned above. Note that recent works also extend backdoor attacks and defenses to
weak-supervised learning (Saha et al., 2022; Carlini & Terzis, 2021; Yan et al., 2021) and federated
learning (Bagdasaryan et al., 2020; Wang et al., 2020; Xie et al., 2019), which are beyond our scope.

Our technique is inspired by the DRL explanation methods that identify the agent’s critical state and
actions (Amir & Amir, 2018; Huang et al., 2018; Jacq et al., 2022; Guo et al., 2021b). Although they
help pinpoint the time steps when the trigger is likely to be presented, These methods can neither
identify the trigger nor shield the target agent from the backdoor attack.

3 KEY TECHNIQUE

3.1 OVERVIEW

Threat Model. We consider perturbation-based and adversarial agent attacks, where perturbation-
based attacks add the trigger to the agent’s perceived state without changing the actual state and
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Figure 1: Overview of SHINE. The green paddle is the DRL agent and the arrow indicates its action.
its transition. By contrast, adversarial agent attacks use an agent’s action sequences as the trigger,
manipulating the actual state and the state transition. We are given a pretrained agent operating
in a potentially poisoned environment. The agent (denoted as shielding agent) has a policy π that
potentially contains a backdoor. We assume the state and action space can be discrete or continuous.

Rather than assuming the defender has a clean environment that cannot be accessed or poisoned by
the attacker, we assume the attacker and defender access the same environment that the agent actually
operates (denoted as operating environment). After the agent is deployed, the attacker can place the
trigger at any desired states to spitefully distract the backdoored agent and reduce its reward. As the
defender, we do not assume any knowledge of the trigger and thus cannot decide whether it is present.

We believe this is a practical setup because it simulates the actual RL operation scenarios where the
environment is a natural scene or a simulator created by a third party, and the attacker and defender
have the same privilege to access the environment. Note that different from supervised learning,
where it is relatively easy to hold out a clean validation set for the defender, constructing a clean
environment could be extremely difficult in DRL. Take the self-driving car as an example. To build a
clean environment, the defender must construct a simulator of the actual road scenarios and traffic
conditions. The amount of effort required is often beyond the capacity of a policy user, necessitating
the involvement of a specialized third party. Once released, the simulator becomes accessible to
authorized users, both benign and malicious.

Technical Overview. Our goal is to ensure the shielding DRL agent can normally perform, regardless
of whether the trigger is presented in the environment. Take Fig. 1 as an example. The attacker
can present the trigger (small patch at the top left corner) at any desired time steps, and we want to
ensure the agent can still obtain a decent winning rate in the poisoned/operating environment and
the original clean environment. At a high level, SHINE has a trigger restoration step to identify the
backdoor trigger, followed by a backdoor shielding step to prevent our shielding agent from being
affected by the backdoor. More specifically, for the trigger restoration, we draw insights from the
DRL explanation methods (Amir & Amir, 2018; Huang et al., 2018; Jacq et al., 2022; Guo et al.,
2021b) and identify the trigger from the previous trajectories of the shielding agent. The idea is
as follows (demonstrated in Fig. 1). Given the backdoor attack’s goal is to fail a victim agent by
distracting its actions with the backdoor trigger. Here, failing means the agent receives a very low
reward or loses the game. By analyzing and explaining why a backdoored agent failed in its previous
game rounds (trajectories), we should be able to identify the key reason, i.e., the trigger presented
in the environment. In particular, given a failing trajectory of our shielding agent, we first utilize a
step-level explanation method – EDGE (Guo et al., 2021b) to pinpoint the most critical time steps
that led the agent to fail its task (See Fig. 1). For a backdoored agent, these steps are most likely to
have the trigger presented in the environment. Then, we design a more fine-grained feature-level
explanation method to further interpret why the agent took certain actions at the pinpointed steps. As
detailed in Section 3.2, our method will identify a subset of features in the state vector that contributes
most to the agent’s actions at the pinpointed steps. Since the agent’s inappropriate actions are mostly
driven by the trigger, the identified features are likely to represent the trigger.

Then, we design a backdoor shielding technique to protect the agent from being compromised by
the identified trigger. Our high-level idea is to retrain the shielding agent such that it learns to take
proper actions at the operating states and keeps its original behaviors at the clean states. As detailed
in Section 3.3, we reconstruct the environment with the identified trigger and model this shielding
process as a novel optimization problem in the constructed environment. By carefully designing the
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policy learning objective function, we could theoretically guarantee that the shielding agent achieves
a higher reward in an operating environment while keeping its performance in the pristine clean
environment. We leverage the PPO algorithm (Schulman et al., 2017) to update the policy, whose
monotonicity property speeds up the convergence and thus improves the retraining efficiency.

Note that we do not assume the knowledge of whether the shielding agent is backdoored or not. In
other words, we apply the same detection and shielding process for arbitrary agents. As we will
show later in Section 4, by adding proper constraints to the feature-level explanation and shielding
retraining, our proposed technique will not affect a clean agent’s performance.

3.2 TRIGGER RESTORATION

We first run the shielding agent’s policy π in the operating environment and collect a set of N

trajectories {X(i), yi}i=1:N . X(i) = {s(i)t ,a
(i)
t }t=1:T represents the i-th trajectory, where s

(i)
t and

a
(i)
t are the state and action at the time step t. yi denotes the total reward of the i-th trajectory. Then,

we conduct a step-level explanation to pinpoint the time steps when the trigger is likely to show up.
Finally, we conduct a feature-level explanation to identify the trigger at the pinpointed time steps.

Step-level Explanation. We leverage a state-of-the-art explanation method EDGE (Guo et al., 2021b).
At a high level, EDGE designs a self-explainable model to fit the collected trajectories and thus
pinpoint the important time steps in each trajectory. Technically, EDGE proposes the following deep
Gaussian process-based model to fit the trajectories.

f |X ∼ N (0, β2
tK

t
XX + β2

eK
e
XX) , yi|F (i) ∼

{
Cat(softmax(f (i)(w(i))T )), If discrete reward
N (f (i)(w(i))T , σ2), otherwise

.

(1)
Where f is the output of the deep Gaussian process (DGP) encoder. This DGP encoder first inputs
a trajectory X(i) into an RNN encoder and a shallow MLP encoder to obtain an embedding of the
state at each time step {h(i)

t }t=1:T and an embedding of the whole trajectory e(i). It then designs an
additive GP with square exponential (SE) kernel kγt

and kγe
to transform h and e into f ∈ RT×1.

With the representation f
(i)
1:T , EDGE then designs a regression model to predict the final reward yi

Since the trigger may present at different time steps in different trajectories, we apply a trajectory-
specific mixing weight w(i)

t = g(h
(i)
t , e(i)), where g is a shallow MLP network. Following Alvarez-

Melis & Jaakkola (2018), we add a local linear constrain Le to w(i) to ensure its local linearity. By
ranking the mixing weight and selecting the time steps associated with the top mixing weights, we can
pinpoint the most critical steps for each trajectory. The critical time steps of the failing trajectories are
when the agent took inappropriate actions and are thus the most likely to have the trigger presented.

Feature-level Explanation. After pinpointing the potential time steps that contain the trigger
(denoted as trigger-presented time steps), we then design a feature-level explanation to interpret
the agent’s actions at those time steps. Given that the trigger causes the agent’s inappropriate
actions at the trigger-presented time steps. By extracting the key sub-region/features in the state
representations at the trigger-presented time steps, we could identify the backdoor trigger. Specifically,
we first extract the shielding agent’s states and actions at the trigger-presented time steps, denoted
as D = {s(i)t ,a

(i)
t }. Then, we design a feature explanation mask m with the same dimensionality

as the state representation s. Each element in the mask mj equals to either 0 or 1, where mj = 1

means the corresponding (j-th) element in the state representation s
(i)
t is important to the agent’s

current action a
(i)
t , otherwise mj = 0. We design mj to follow a Bernoulli distribution Bern(θj),

with the parameter θj . Finally, we add this explanation mask on top of each state in D, input the
masked state s̃

(i)
t into the agent’s policy network, and obtain a masked action ã

(i)
t .

m =
∏
j

Bern(θj) , s̃
(i)
t = s

(i)
t ⊙m , ã

(i)
t ∼ π(s̃

(i)
t ) . (2)

Our goal is to mask as many elements in a state s(i)t as possible but keeping its corresponding masked
action ã

(i)
t as similar as the agent’s original action a

(i)
t . This filters out features that are not important

to the agent’s current action and only preserves the important ones. As discussed above, the preserved
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features most likely represent the trigger that is the reason for the agent’s inappropriate actions at the
trigger-presented time steps. Note that the trigger of adversarial agent attacks is an action sequence,
which is encoded in certain dimensions of the state vector. By highlighting the dimensions pertaining
to the adversarial agent’s action, our method could identify the trigger actions.

Explanation Parameter Learning. We follow Guo et al. (2021b) to solve the step-level explanation
model. As for the feature-level explanation model (Eqn. 2), our goal is to minimize the difference
between the masked action ã

(i)
t and the shielding agent’s original action a

(i)
t at the states in D. This is

equivalent to maximize the marginal likelihood p(a|s, θ1:J), which minimizes the difference between
the distribution where ã

(i)
t is sampled from (i.e., π(s̃(i)t )) and the agent’s original action distribution.

Unfortunately, log p(a|s) is intractable because m is discrete and non-differentiable. To tackle this
challenge, we leverage the concrete distribution (Maddison et al., 2016) and Jensen’s Inequality to
derive a lower bound of log p(a|s).

Theorem 1. Given mj ≈ hθ(u) = σ(
logαj+log(uj/(1−uj))

λ ), where σ(·) is the sigmoid function,
uj ∼ uniform(0, 1), and αj =

θj
1−θj

. We have the following inequality.

log p(a|s, θ) ≥ Eu[log p(a|s, hθ(u))] . (3)

Appendix A specifies the derivative of Eqn. 3. Instead of maximizing the original log marginal
likelihood, we maximize its lower bound. We consider the typical cases where the agent’s pol-
icy follows a Gaussian or Categorical distribution. Specifically, we have log p(a

(i)
t |s(i)t , hθ(u))

equals to ∥a(i)
t − π(s

(i)
t ⊙ hθ(u))∥ for the Gaussian cases, and alog p(π(s

(i)
t ⊙ hθ(u) = a) for

the categorical distribution. With the approximations above, we can solve θ1:J by maximizing
ED[Eu[log p(a

(i)
t |s(i)t , hθ(u))]] + λR(θ) using a first-order optimization method. Here, R(θ) is an

elastic net (Zou & Hastie, 2005) regularization.

After conducting the two-step explanation, we identify a potential trigger, denoted as T . In particular,
for the perturbation-based attack, we compute the average values of the state features selected by m
across trigger-present time steps as the trigger patch (Fig. 1). For adversarial agent attacks, we first
identify a continuous trigger-present time slice in each trajectory (t1, ..., tL). Then, we compute the
average value of the selected features in each state across all trajectories s̄tl =

1
N

∑
s̃
(i)
tl

and use this
average state sequence (s̄t1 , ..., s̄tL ) as the indicator of the trigger actions.

3.3 BACKDOOR SHIELDING

We define two Markov decision processes (MDP) for the shielding agent, M = {S,A,R,P, γ} and
M̂ = {Ŝ,A,R,P, γ}, where M and M̂ refers to the MDP of the clean and operating environment.
ŝ ∈ Ŝ can be poisoned or clean, and we are not aware of its cleanliness. For a multi-agent environment,
we fix the policy of the non-shielding agents, and the environment becomes an MDP (Guo et al.,
2021a). Given an agent’s policy π, we define its state occupancy distribution in the clean and
operating environment as ρπ(s) = (1−γ)

∑
t γ

tp(st = s|π) and ρ̂π(ŝ) = (1−γ)
∑

t γ
tp(ŝt = ŝ|π).

Similarly, we also define the expected total reward of the agent in the clean and operating environment
as η(π) = E[

∑
t γ

tR(s, π(s))] and η̂(π) = E[
∑

t γ
tR(ŝ, π(ŝ))].

Retraining Objective Function. Recall that the retraining goal is to improve the agent’s performance
in the operating environment and maintain its performance in the clean environment. This can be
interpreted as the following objective function: argmaxπ̂ η̂(π̂), s.t. |η(π̂) − η(π)| ≤ ϵ, where π̂ is
the retrained policy. To solve this objective function, we first define the following approximation
of η̂(π̂) based on η̂(π). Lπ(π̂) = η̂(π) +

∑
ŝ ρ̂

π(ŝ)
∑

a π̂(a|ŝ)Aπ(ŝ,a), where A is the advantage
function. According to Schulman et al. (2015), we have the following inequality η(π̂) ≥ Mπ(π̂) =
[Lπ(π̂)−Cmaxŝ∼ρ̂πKL(π(· | ŝ)∥π̂(· | ŝ))]. By maximizing Mπ(π̂), we can guarantee that Mπ(π̂) ≥
Mπ(π) = η̂(π). As a result, without considering the constraint, we can guarantee the performance of
the retrained agent will be improved in the operating environment, i.e., η̂(π̂) ≥ η̂(π).

To realize the constraint |η(π̂)− η(π)| ≤ ϵ, we first introduce the following theorem.

Theorem 2. Given a policy π and its retrained policy π̂, we have the following inequality |η(π)−
η(π̂)| ≤ Cmaxs∼ρπKL(π(· | s)∥π̂(· | s)).
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See Appendix A for the proof. Theorem 2 states that by constraining the maximum KL divergence
between π and π̂ in the clean states, we can bound the difference between the η(π) and η(π̂) and thus
maintain the agent’s performance in the clean environment.

As such, we can transform the objective function above to the following objective function.

argmaxπ̂ Lπ(π̂) , s.t.

{
K̂ = Eŝ∼ρ̂(π)[KL(π(· | ŝ)∥π̂(· | ŝ))] ≤ ϵ ,

K = Es∼ρ(π)[KL(π(· | s)∥π̂(· | s))] ≤ ϵ .
(4)

By solving Eqn. 4, we theoretically guarantee that the shielding agent achieves a higher reward in
an operating environment (η̂(π̂) ≥ η̂(π)) while keeping its performance in the clean environment
(|η(π̂)− η(π)| ≤ ϵ).

Retraining Algorithm. We conduct the retraining in the operating environment. To approximate the
constraint K in Eqn. 4, we need to identify a set of clean states in the operating environment. For the
perturbation-based attack, we apply the explanation mask to the current state and compare the feature
values in the highlighted region with T . If their difference is within a certain threshold, we deem st as
a poisoned state; otherwise, we treat it as a clean state. We apply similar operations for the adversarial
agent attack to compare the agent’s current action with the identified trigger actions. Algorithm 1
in Appendix A shows our final backdoor shielding algorithm. At a high level, we approximate K
with the clean states identified from the operating environment and retrain the shielding agent by
maximizing Eqn. 4. Appendix B specifies implementation and hyper-parameters.

4 EVALUATION

4.1 EXPERIMENT SETUP

Attacks and Environments. We first select Trojdrl (Kiourti et al., 2019), a perturbation-based
attack against single-player environments. Trojdrl adds a 3 × 3 square patch to the agent’s state
representation and forces the backdoored agent to take either a pre-specified action (targeted attack)
or a random action (untargeted attack) at poisoned states. Here, we mainly test SHINE against the
targeted, and Appendix E shows the results against the untargeted attack. We follow Trojdrl and select
three Atari games from the OpenAI Gym (Brockman et al., 2016) environment pool - Pong, Breakout,
and Space Invaders. We also consider a perturbation-based attack against the multi-agent cooperative
RL (Chen et al., 2022b). We select the SMAC environment and use the default attack setup to
launch two attacks: one against a Q-learning algorithm QMIX and the other against a policy gradient
algorithm COMA. Appendix A discusses how to adapt SHINE to this attack against multi-agent
RL. Regarding the adversarial agent attack, we select Backdoorl (Wang et al., 2021a), designed
for two-player competitive Markov games. We also use three MuJoCo environments selected by
Backdoorl, i.e., You-Shall-Not-Pass, Sumo-Humans, and Run-To-GO-Ants (Todorov et al., 2012).
We follow Backdoorl and set the trigger actions as standing still for a few time steps.

Using the selected environments, we first train a clean agent to achieve near-optimal performance.
Then, we train backdoored agents such that each agent’s reward reduces dramatically when the trigger
is presented while keeping near-optimal in the clean environment. Finally, we simulate the operating
environment by presenting the trigger in the environment with probability Pα at each time step.

Baseline. There is no existing work that considers the same setup and defense goal as ours. We first
select two state-of-the-art trigger restoration techniques designed for classifiers – NC (Wang et al.,
2019) and FeatureRE (Wang et al., 2022). In particular, we collect a set of states and actions of the
shielding agent and run these methods by treating the agent’s actions as the target classes. We deem
the restored trigger with the smallest l0 norm as the backdoor trigger. We use our proposed retraining
method on the triggers identified by the NC and FeatureRE to retrain the shielding agent. Note that
these methods cannot be applied to adversarial agent attacks or environments with a continuous
action space. We also consider a straightforward baseline, that is, to directly retrain the shielding
agent in the operating environment using the PPO algorithm without applying any shielding (denoted
as “Direct retraining”). Section 2 discusses two other existing DRL backdoor defenses. Bharti et al.
(2022) requires accessing clean environments. Appendix C shows that SHINE is more effective,
generalizable, and scalable than Bharti et al. (2022).1

1Another defense (Guo et al., 2022) is still a pre-print paper without public implementation. Besides, it
cannot be applied to perturbation-based attacks. As such, we do not compare it with SHINE in our experiments.
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Table 1: Trigger restoration fidelity of SHINE , NC, and FeatureRE. Note that “-” means not applicable.

Method Pong Breakout Space Invaders SMAC You-Shall-Not-Pass Sumo-Humans Run-to-Go-Ants

NC 0.268±0.033 0.296±0.020 0.217±0.036 0.045±0.009 - - -
FeatureRE 0.936±0.005 0.962±0.012 0.927±0.006 0.896±0.011 - - -

SHINE 0.998±0.001 0.997±0.001 0.998±0.001 0.936±0.003 0.930±0.002 0.973±0.006 0.981±0.003

Table 2: Performance of backdoored agents retrained with different methods in the operating and clean
environment. We report the average score or average winning rate across 1,000 game rounds. We also conduct
a paired t-test to demonstrate the statistical significance of results in this table and analyze the agent’s action
distribution in clean and poisoned states of the operating environment. The results are shown in Appendix F.

Environment Method Pong Breakout Space
Invaders QMIX (%) COMA (%) You-Shall-

Not-Pass (%)
Sumo-

Humans (%)
Run-to-

Go-Ants (%)

Operating

Original -0.010±0.001 16.40±0.48 108.3±2.9 19.6±0.1 62.0±0.7 17.9±0.4 10.4±0.2 16.2±0.2
Direct retraining 0.032±0.002 20.37±1.72 639.0±5.4 82.6±0.5 88.9±1.8 27.8±4.3 23.6±2.8 37.6±0.3

NC -0.102±0.005 11.50±0.69 293.7±1.4 23.8±0.3 21.9±0.6 - - -
FeatureRE 0.124±0.003 15.36±1.02 403.3±2.1 33.2±0.5 23.9±0.1 - - -

SHINE 0.728±0.027 28.63±2.05 832.9±7.5 99.1±0.8 92.3±1.2 48.2±1.8 32.4±1.3 52.4±0.6

Clean

Original 0.680±0.030 22.33±1.05 685.3±3.5 99.6±0.9 96.3±0.5 49.8±0.2 29.3±0.1 52.0±0.4
Direct retraining 0.286±0.016 21.82±1.90 723.2±2.7 99.1±0.6 96.9±1.2 38.4±3.2 23.5±3.6 51.0±1.2

NC 0.136±0.013 12.66±1.02 301.6±2.8 99.3±0.1 97.3±0.6 - - -
FeatureRE 0.293±0.021 22.57±1.42 703.9±9.2 99.2±0.1 96.9±0.5 - - -

SHINE 0.734±0.021 25.35±1.60 835.1±3.6 99.2±0.8 97.0±0.5 49.5±1.6 33.5±1.8 52.9±0.6

4.2 EXPERIMENT DESIGN

Exp-I: Trigger Restoration Faithfulness. We first evaluate whether SHINE faithfully identifies
the trigger. For perturbation-based attacks, we compare the trigger T identified by SHINE with the
real trigger T̂ and compute the precision ∥T ⊙T̂ ∥1

∥T ∥1
and recall ∥T ⊙T̂ ∥1

∥T̂ ∥1
. We report the F1 score as

the faithfulness metric. We compare SHINE with NC and FeatureRE under the perturbation-based
attacks. Since adversarial agent attacks do not have a fixed trigger patch, we compare the trigger
actions identified by SHINE with the real ones designed by the attackers and report the F1 score.

Exp-II: Backdoor Shielding Effectiveness. Second, we evaluate the efficacy of SHINE in back-
doored agent shielding. In particular, we retrain the backdoored agents in Exp-I using our proposed
retraining algorithm and report their performance in the operating and clean environment before and
after retraining. We compare SHINE with the three baselines mentioned above.

Exp-III: SHINE on Clean Agents. We also apply SHINE to the clean agent in each environment
to verify that SHINE will not affect a clean agent’s performance. Similar to Exp-II, We report each
agent’s performance in the operating and clean environment before and after shielding.

Exp-IV: Sensitivity of SHINE against Attack Variations. We use the Atari-pong environment
of the perturbation-based attack to test the sensitivity of SHINE against attacks varied in trigger
patterns, sizes, and poison rates. We craft eight attack variations. We first vary the trigger pattern
from the dense patch to more incompact triggers (Cross and Equal sign). We also keep the trigger
pattern as dense and vary the trigger size (3× 3, 4× 4, 5× 5) and the trigger presenting probabilities
(Pα = 0.1/0.2/0.3). In each environment, we train a backdoored agent, shield it with our method
and two baseline approaches (Direct training and NC), and report the shielding performance.

We repeat each experiment 3 times with different random seeds and report the mean and standard
deviation (std). Furthermore, we conduct an ablation study, demonstrate the computational efficiency,
evaluate the hyper-parameter sensitivity, and test SHINE against more attack variations. Due to the
space limit, we present these experiments in Appendix D& F.

4.3 EXPERIMENT RESULTS

Results of Exp-I. Tab. 1 shows the trigger restoration fidelity. Both NC and FeatureRE show
limited capability in trigger restoration because these methods do not consider DRL’s sequential
decision-making nature. In contrast, SHINE can faithfully identify the trigger for both perturbation-
based attacks and adversarial agent attacks, verifying the effectiveness of our trigger restoration
technique (Appendix F showcases the identified triggers). The ablation study in Appendix F further
demonstrates the efficacy of step-level and feature-level explanations, respectively.
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Table 3: Performance of clean agents retrained with SHINE in the operating and clean environment. We report
the average score and average winning rate across 1,000 game rounds, respectively.

Environment Method Pong Breakout Space
Invaders QMIX (%) COMA (%) You-Shall-

Not-Pass (%)
Sumo-

Humans (%)
Run-to-

Go-Ants (%)

Operating Original 0.816±0.040 19.50±0.59 835.6±1.8 99.0±0.2 96.3±0.1 50.2±0.3 34.5±0.2 53.5±0.2
SHINE 0.818±0.038 24.99±1.07 838.2±3.6 99.3±0.6 96.9±1.7 51.3±0.9 35.3±0.5 53.9±0.3

Clean Original 0.778±0.067 27.50±1.32 836.4±3.2 99.8±0.1 96.6±0.1 51.2±0.1 35.8±0.2 54.5±0.1
SHINE 0.769±0.089 26.27±0.64 838.2±3.4 99.6±0.1 97.9±0.2 51.5±0.5 35.7±1.2 53.8±0.2

Results of Exp-II and Exp-III. Tab. 2 shows the performance of backdoored agents shielded by
SHINE and three baseline methods. First, NC and FeatureRE have limited efficacy due to the low
fidelity of their resolved triggers. Direct retraining could improve the retrained agent’s performance
in the operating/poisoned environment, but the improvement is still limited. More importantly, due to
environmental variations, it cannot preserve the retrained agent’s effectiveness in the original clean
environment. Note that direct retraining outperforms NC and FeatureRE in some cases, demonstrating
the negative impact of retraining with non-faithful triggers. In comparison, benefiting from its high-
fidelity trigger, the agent retrained by SHINE achieves the highest performance in the operating
environment of all the games. In addition, SHINE well retains (or even improves) the retrained agent’s
effectiveness in the original clean environment. This result is aligned with our theoretical analysis in
Section 3.3, verifying the effectiveness of our backdoor shielding in robustifying a backdoored agent
while preserving its generalizability.

Tab. 3 shows a clean agent’s performance before and after shielding it with SHINE . As shown in the
table, SHINE introduces a minor performance drop or improves the clean agent’s performance in both
operating and clean environments. This is an important property in that users could directly apply
SHINE to arbitrary agents without making critical decisions of which ones are truly backdoored
agents, which, in general, is sensitive to the choice of detection threshold.
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Figure 2: The average score of the agent retrained with different
shielding methods against attack variations.

Results of Exp-IV. Fig. 2 shows the
retraining performance of SHINE and
baseline methods against different at-
tack variations. SHINE only has
marginal performance variations in
different setups, verifying SHINE’s
insensitivity against attack variations.
This verifies the generalizability and
practicability of SHINE in that users
could apply SHINE without tailoring
for different attack variations. Fig. 2
also demonstrates that SHINE outper-
forms baselines against all attack variations, further demonstrating its superiority over these methods.
In appendix F, we demonstrate the robustness of SHINE against more variations in trigger shapes
and sizes.

5 DISCUSSION

Adaptive Attacks. We first consider a straightforward adaption of the perturbation-based attack.
Specifically, we allow the trigger to present at different locations in the environment snapshot at
different time steps. This adaptive attack with a dynamic trigger could potentially bypass our method
because our feature-level explanation resolves a fixed trigger mask across all the trigger-presented
time steps. We follow the attack method in TrojDRL (Kiourti et al., 2019) and try to launch this
attack in the Pong environment. The attack cannot succeed even after we carefully tune the training
parameters. We can only reduce the agent’s average score in the operating environment by 30.3% and
1.2% for targeted and untargeted attacks, respectively. Our attempts motivate future work to design
stronger backdoor attacks that could inject this dynamic trigger. Even if this attack succeeds, we can
adjust SHINE to defend against it. First, rather than obtaining a common explanation mask, we first
solve a specific mask for each state to capture the trigger movement. During retraining, we slide our
identified trigger T across the whole state representation to decide its cleanliness (Appendix A).
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Another possible adaptive attack is to attack our explanation methods. We found only one existing
attack (Huai et al., 2020) that targets gradient/saliency-based explanation methods. Since both our
step-level and feature-level explanations have a different mechanism from these gradient-based
methods, this attack cannot be directly applied to our method. To enable an effective attack against
our explanation method, the attacker needs to first design a proper attack against either step-level or
feature-level explanation method. The attacker also needs to consider how to properly design this
attack, such that it could work together with the trojan attack against the DRL agent. We believe
designing such an attack requires non-trivial effort and leave it as our future work.

Distinction from Environment-perturbation Attacks and Robust RL. Our problem differs from
environment-perturbation attacks (Russo & Proutiere, 2019; Zhang et al., 2021; Liang et al., 2022;
Sun et al., 2021; Kamalaruban et al., 2020), which attack a pretrained agent by adding perturbations
to its observations. Defenses against such attacks typically limit the perturbation strength within a
ϵ-norm ball and design methods to train optimal policies under this perturbation ball. Similarly, some
robust RL methods (Pinto et al., 2017; Tessler et al., 2019) train policies under random perturbations
to the agent’s observations or actions. Due to differences in attack/problem setups, these methods
cannot be directly applied to our problem. Our future work will explore novel DRL backdoor defenses
by following the idea of these works. For instance, we will investigate how to model the defense
against trojan attacks as a Partially Observable MDP and train a robust policy accordingly.

Postmortem Defense. SHINE operates in a postmortem fashion, meaning it conducts shielding
after a backdoor is triggered. This approach significantly lowers the threshold and cost for defense
since it does not require a guaranteed clean environment, which can be challenging to construct.
We acknowledge that for extremely critical applications, triggering the attack can be costly. Recall
that SHINE can effectively identify triggers even when they occur very infrequently (Pα = 0.1).
This suggests that SHINE does not require extensive failed cases to apply shielding. For critical
applications, SHINE offers a rapid response once an attack occurs, minimizing future damage. It
represents a practical defense approach in environments where attackers can access.

More complicated triggers. As mentioned in Section 4, we first use default triggers of existing
attacks to evaluate our method. Then, we demonstrate the effectiveness of SHINE against perturbation-
based attacks with more complicated and incompact triggers (Exp-IV. and Appendix F). Furthermore,
existing attacks against supervised classifiers also explore other trigger patterns (e.g., watermarks),
which have not been used for DRL attacks yet. In future work, we will explore designing effective
attacks with such trigger patterns and extending SHINE to defend against these attacks.

Limitations. First, existing research proposes other methods to explain a DRL agent’s action
(e.g., Atrey et al. (2019); Greydanus et al. (2018); Puri et al. (2020)). Our future research endeavor
will explore extending these methods to identify the backdoor trigger in our context. Second, we
compare SHINE with NC and FeatureRE, two state-of-the-art backdoor detection methods for
supervised classifiers. While recent research proposes other methods Wang et al. (2023); Tao et al.
(2022), they are still designed for supervised classifiers and suffer similar limitations. Thus, they
have limited efficacy and generalizability in our problem. Our future work will test whether these
methods can yield better results than NC against perturbation-based attacks in environments with a
discrete action space. Third, we evaluate SHINE against the attacks in three types of environments.
Our future work will extend the backdoor attacks and defenses to broader types of games, including
extensive-form games (Go (Tian et al., 2019), board games (Lanctot et al., 2019)), multi-agent
competitive games (Zhang et al., 2019). Finally, we show that SHINE can still detect and shield
a backdoored agent even when the trigger varies in size and presenting timesteps/probability. Our
future work will explore providing a theoretical guarantee against these variations.

6 CONCLUSION

This work proposes SHINE, a method for shielding DRL agents against backdoor attacks. SHINE
first identifies the backdoor trigger presented in the environment and then retrains the DRL agent
to eliminate the influence of the trigger on its policy. Our experiments in various benchmark
RL environments demonstrate SHINE’s efficacy in shielding backdoored agents against different
backdoor attacks while maintaining the clean agents’ performance. With all these experiments and
analyses, we safely conclude that through explanation and retraining, we can effectively shield DRL
agents from backdoor attacks in a practical scenario.
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A ADDITIONAL TECHNICAL DETAILS

A.1 PROOF OF THEOREM 1.

Based on Jensen’s inequality, we have the following derivative of the log marginal likelihood
log p(a|s, θ).

log p(a|s, θ) = log
∫

p(a,m|s, θ)dm = log
∫

p(a|m, s, θ)p(m|θ)dm

= log Em[p(a|m, s, θ)] ≥ Em[log p(a|m, s, θ)] .

(5)

As stated in Theorem 1, by defining u, where uj ∼ uniform(0, 1), and αj =
θj

1−θj
, we can

approximate mj with hθ(u) = σ(
logαj+log(uj/(1−uj))

λ ), where σ(·) is the sigmoid function. With u,
we can then derive the following inequality from Eqn. equation 5

log p(a|s, θ) ≥ Em[log p(a|m, s, θ)] ≈ Eu[log p(a|s, hθ(u))] . (6)

□

A.2 PROOF OF THEOREM 2.

We define Hπ(π̂) = η(π)+Nπ(π̂) = η(π)+
∑

s ρ
π
∑

a π̂(a | s)Aπ(s,a). According to Schulman
et al. (2015), we have

|η(π̂)−Hπ(π̂)| ≤ C1maxs∼ρπKL(π(·|s)||π̂(·|s))
|η(π̂)− η(π)−Nπ(π̂)| ≤ C1maxs∼ρπKL(π(·|s)||π̂(·|s))

|η(π̂)− η(π)| ≤ C1maxs∼ρπKL(π(·|s)||π̂(·|s)) + |Nπ(π̂)| .
(7)

According to Theorem 1 in Achiam et al. (2017), we can derive

|
∑
s

ρπ(s)
∑
a

π̂(a | s)Aπ(s,a)| ≤ Es∼ρ,a∼π,s′∼p(·|s,a)[(
π̂(a|s)
π(a|s)

− 1)R(s,a, s′)]

= Es∼ρ,a∼π[(π̂(a|s)− π(a|s))Es′∼p(·|s,a)R(s,a, s′)]

≤ C2maxs∼ρπKL(π(·|s)||π̂(·|s)) .

(8)

Based on Eqn. equation 7 and equation 8, we have the following inequality.

|η(π)− η(π̂)| ≤ Cmaxs∼ρπKL(π(· | s)∥π̂(· | s)) (9)

□

A.3 BACKDOOR SHIELDING ALGORITHM.

Algorithm 1 shows our final backdoor shielding algorithm. Note that, for perturbation-based attacks,
to further filter out false positive triggers, we leverage the assumption that a trigger is small and
visually imperceptible and add a trigger filter before using the identified trigger for retraining.
Specifically, we compute the l0-norm of T and only use it if ∥T ∥0 is smaller than a threshold (e.g.,
5% of the whole state representation features).

A.4 ADAPTIONS OF SHINE.

Adaption for Multi-agent Attacks. Recall that we also apply SHINE against an existing attack for
multi-agent cooperative RL in the SMAC environment. We use in-distribution triggers with a trigger
size of 5%. We use the 2s3z and 3m map for QMIX and COMA, respectively. To run our method, we
need to apply the following adoptions. Specifically, we first applied our explanation-based trigger
detection method on the local observations of the cooperative agents to identify the backdoor trigger.
In particular, for QMIX, we performed the explanation for each local Q function and then aggregated
the identified triggers. For COMA, we directly used the global Q function since it takes the central
states as input. Using the identified trigger, we then applied the shielding procedure. Since this attack
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Algorithm 1 Backdoor shielding algorithm.

1: Input: the operating environment that the trigger show ups at each state with a certain probability,
the shielding agent’s original policy π, the identified trigger T , threshold η1 and η2, retraining
iteration L

2: for l = 1 to L do
3: Run the current policy π̂(l−1) in the environment and collect a set of trajectories I .
4: Define a clean state set C.
5: for i = 1 to |I| and t = 1 to T do
6: if ∥sit ⊙m− T ∥ ≥ η2 then
7: C = C ∪ sit
8: end if
9: end for

10: Approximate K in Eqn. (5) with K̃ = Es∈C [KL(π(· | s)∥π̂(l−1)(· | s))]
11: Plug K̃ in Eqn. (5),
12: Using I, which contains poisoned states to compute K̂ and Lπ(π̂).
13: Update π̂(l−1) by solving Eqn. (5) and obtain the updated policy π̂(l)

14: end for
15: Return the retrained policy: π̂ = π̂(L)

(a) SHINE Masks (b) SHINE Triggers (c) Ground Truth
Masks

(d) Ground Truth Trig-
gers

Figure 3: Triggers and masks solved by SHINE . We only show 50× 50 pixels in the top-left corner
of the states for better visualization purposes, since the trigger size is small.

considers multiple victim agents, we retrain each agent using algorithm 1. When updating the policy
(line 13), we leverage the agent’s original training method (i.e., either QMIX or COMA).

Adaption for Adaptive Attacks. As mentioned in Section 4, to defend against the adaptive attack
where the trigger varies its location across time, we also need to adapt our defense to solve a specific
mask for each state. Specifically, we select the states of the top important time steps identified by
our step-level explanation. These states are those where the trigger is most likely to be presented.
For each state, we perturb its representation by adding Gaussian noise. Then, we use the original
and perturbed states as the input data and apply our feature-level explanation to solve an explanation
mask. We solve an explanation mask for each of the selected states, which highlights the different
subset of features in the state representation (i.e., different locations in the environment), capturing
the movement of the trigger. By applying the explanation masks solved from the select states to their
representations, we could identify the common trigger pattern.

Note that this adaption (trigger location variation) is not applicable to the adversarial-agent attack,
which does not have a perturbation patch as the trigger. Besides, in the MuJoCo games, the feature
meanings in the state representation are pre-defined. In other words, specific dimensions of the state
representation correspond to the adversarial agent’s status, including its position and action. This
indicates that no matter how the adversarial agent changes its trigger action, it will pertain to fixed
dimensions in the state representation, giving a similar explanation mask.

B IMPLEMENTATION AND HYPER-PARAMETERS

Implementations. We use the pytorch (Paszke et al., 2019) and the gpytorch (Gardner et al., 2018)
package to implement the trigger detection step of SHINE and stable-baseline (Raffin et al., 2019) to
implement the backdoor shielding of SHINE.
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Table 4: The average score of the agent shielded
by SHINE in the operating and clean environ-
ment of the Pong game.

Environment λ ϵ

1× 10−4 2× 10−4 3× 10−4 0.005 0.01 0.05

Operating 0.728 0.784 0.644 0.765 0.728 0.714
Clean 0.734 0.732 0.522 0.734 0.734 0.333

Table 5: The average score of backdoored agents
shielded with different methods in the operating
and clean environment. The agents are subject
to untargeted attacks.

Policy Operating Environment Clean Environment

Direct retraining 0.412 0.560
NC 0.210 0.160

SHINE 0.530 0.574

Hyper-parameters. The key hyper-parameters introduced by our method are the weight of the
elastic-net regularization term in the feature-level explanation λ and the strength of the KL constraint
in the policy retraining ϵ. We set λ to 1 × 10−4 and ϵ to 0.01. In addition, our method inherits
hyperparameters from the selected step-level explanation method – EDGE (Guo et al., 2021b),
the policy updating method – PPO (Schulman et al., 2017), and the temperature in the concrete
distribution (Maddison et al., 2016). For those hyper-parameters, we use the default choices in their
original implementations.

C SHINE AGAINST LATEST BACKDOOR DEFENSE IN RL

We also evaluate SHINE against the latest backdoor defense against the perturbation-based at-
tack (Bharti et al., 2022). More specifically, we relax our assumption of only accessing to the agent’s
operation environment. Instead, we allow access to the original clean environment and apply the
defense in Bharti et al. (2022). We compare the backdoored agent’s performance after shielding with
our method and the method in Bharti et al. (2022) using the Breakout environment (which is originally
used by Bharti et al. (2022) to evaluate their method). Note that we use the same backdoored agent in
our evaluation, and shield the agent with SHINE under the same environment. We use their official
implementation and adopt the default hyperparameters.

The average score of the agent shielded by our method and Bharti et al. (2022) across 1,000 rounds is
28.63 and 2.5, respectively. SHINE achieves better performance than Bharti et al. (2022), verifying
its effectiveness. We note that the results are at a different scale from the reported numbers in Bharti
et al. (2022). This is because we set a maximum length of 2,000 for each game round, while they
run the game for an unlimited time until it stops naturally. As such, the agents in their experiments
collect more scores than those in our setup. Note that, following the suggestion in Bharti et al. (2022),
we tried multiple attempts for the singular value thresholds and reported the best result.

In addition, Bharti et al. (2022) requires computing the eigen-decomposition of the concatenation
of the state representation, whose complexity is cubic to the dimensionality of the input matrix.
This indicates the method in Bharti et al. (2022) will encounter scalability issues when handling
environments whose state representation is of high dimensionality and the trajectory is long. Besides,
this method is designed only for perturbation-based attacks. As such, SHINE is more generalizable
and scalable than the method in Bharti et al. (2022).

D COMPUTATIONAL EFFICIENCY AND HYPER-PARAMETER SENSITIVITY

Runtime. On average, the trigger detection stage of SHINE takes 12 hours, and the retraining stage
takes 5 hours on a single NVIDIA RTX A6000 GPU. We believe this runtime is reasonable in that it
is still within the normal range of training a DRL agent in benchmark environments.

Hyper-parameter Sensitivity. Recall that SHINE introduces two unique hyper-parameters – the
elastic-net regularization term in the feature-level explanation λ and the strength of the KL constraint
in the policy retraining ϵ. Here, we vary these parameters and observe their influence on SHINE’s
performance. In particular, we conduct the experiment on the Pong environment, with the trigger
setup the same as the Exp-I in Section 5. We evaluate three choices of λ: 1 × 10−4, 2 × 10−4,
3 × 10−4 and three choices of ϵ: 0.005, 0.01, 0.05. Tab. 4 shows the performance of the shielded
agent in the operating and clean environment under different hyper-parameter settings. The results
show that SHINE is insensitive to the subtle variations in these two hyper-parameters.
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Figure 4: Action distributions in poisoned and clean states in the operating environment of the Atari-Pong
Game, corresponding to the results of Exp-II. A poisoned policy exhibits a higher probability of taking the target
action (#2) in poisoned states than in clean states.

Table 6: Paired t-test p-value between the performance of backdoored agents retrained with our method and
those retrained with the baseline methods in the operating environment.

Method Pong Breakout Space
Invaders QMIX COMA You-Shall-

Not-Pass
Sumo-

Humans
Run-to-
Go-Ants

Original >0.001 >0.001 >0.001 >0.001 >0.001 >0.001 >0.001 >0.001
Direct retraining >0.001 0.013 >0.001 0.001 0.004 0.002 0.004 >0.001

NC >0.001 >0.001 >0.001 >0.001 >0.001 - - -
FeatureRE >0.001 >0.001 >0.001 >0.001 >0.001 - - -

E SHINE AGAINST UNTARGETED ATTACK IN TROJDRL.

In Tab. 5, we show the average score of SHINE and baselines on the Pong game against the untargeted
attack in TrojDRL (with the same trigger as the Exp-I. in Section 5). The table shows that SHINE is
still more effective than the selected baseline methods against the untargeted attack, which further
demonstrates the effectiveness of our method.

F OTHER EXPERIMENTS.

Paired t-test for Results in Tab.2. We conduct a paired t-test to demonstrate the statistical signifi-
cance of our comparison results in Tab. 2. More specifically, our null hypothesis is H0 : E[D] ≤ 0,
where D is the reward difference between our method and a baseline method. If the p-value is larger
than an empirical threshold (e.g., 0.05), we accept H0, indicating our method cannot outperform the
baseline. We report the results in Tab. 6.

SHINE against more Trigger Variations. Using the same pong environment as Exp-IV, we consider
three trigger shapes: dense square block, cross sign, and equal sign. For each shape, we consider
four different sizes: 3× 3, 4× 4, 5× 5, and 6× 6. We use these 16 triggers to launch the TrojDRL
attack and run SHINE for defending. We report the trigger fidelity and final shielding performance
in the operating environment in Tab. 7 and Tab. 8. The results show that our method, including the
feature-level explanation, is robust against these variations. Note that, for all the variations, we run
the same number of epochs for the feature-level explanation. They all take around 10∼12 hours on a
single NVIDIA RTX A6000 GPU, indicating the changes in trigger size and shape impose a minor
influence on the runtime of SHINE.

Ablation Study. We add a comprehensive ablation study in the Pong game with the TrojDRL attack
(we use the default trigger setup). Specifically, to verify the effectiveness of our trigger restoration.
We first replace our trigger restoration method with FeatureRE (Wang et al., 2022) and apply our
retraining method using the trigger restored by FeatureRE (Same as Exp-II.). Results in Tab. 9 show
that SHINE is better than this baseline. We further verify the necessity of the step-level explanation.
We directly apply the feature-level explanations using all the collected states and then retrain the
agent with our proposed method. Tab. 9 (SHINE-NS vs. SHINE) shows that without the step-level
explanation, we observe a performance drop in both the trigger fidelity and the agent’s retraining
performance. Note that we cannot remove the feature-level explanation as we need it to automatically
pinpoint the trigger. To demonstrate the effectiveness of our retraining method, we replace it with
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Table 7: Trigger detection fidelity of SHINE under different trigger patterns and trigger sizes.

Dense Square Block Cross Sign Equal Sign

3× 3 4× 4 5× 5 6× 6 3× 3 4× 4 5× 5 6× 6 3× 3 4× 4 5× 5 6× 6

0.998 0.998 0.976 0.959 0.993 0.989 0.975 0.968 0.998 0.993 0.985 0.972

Table 8: Performance of the original poisoned agent and SHINE in the operating environment.

Agent Dense Square Block Cross Sign Equal Sign

3× 3 4× 4 5× 5 6× 6 3× 3 4× 4 5× 5 6× 6 3× 3 4× 4 5× 5 6× 6

Original -0.010 0.021 0.035 -0.082 -0.031 -0.024 -0.021 -0.039 0.019 -0.024 -0.091 0.030
Retrained 0.728 0.548 0.818 0.712 0.686 0.582 0.637 0.682 0.584 0.691 0.592 0.581

directly retraining the agent in the operating environment (Same as the direct retraining in Exp-II.).
Tab. 9 (DR v.s SHINE) shows the effectiveness of our proposed retraining method.

Table 9: Ablation Study. “DR“ stands for directly retraining. “SHINE -NS” means SHINE without
the step-level explanation.

Environment Original FeatureRE DR SHINE -NS SHINE

Operating -0.010±0.001 0.124±0.003 0.032±0.002 0.109±0.001 0.728±0.027
Clean 0.680±0.030 0.293±0.021 0.286±0.016 -0.023±0.002 0.734±0.021

SHINE in an Operating Environment without Clean States. We consider a setup where the attacker
poisons every state in the operating environment Pα = 1. We used the Pong and breakout game for
the experiment. The results are as follows. The retrained agent’s reward in the operating/poisoned
environment is: Pong: 0.805±0.032; Breakout: 30.26±1.102. The reward in the clean environment is:
Pong: 0.705±0.023; Breakout: 20.380±1.026. Compared to the results in Table 2, we found that the
retrained agent performs better in the operating environment. However, its performance in the clean
environment drops from 0.734±0.021 to 0.705±0.023 in the pong game and from 25.350±1.609
to 20.380±1.026 in the breakout game. This is because, without clean states, we can only simulate
clean states by masking out the trigger identified by our explanation method. Due to the inevitable
approximation errors, the agent’s performance in the clean environment drops slightly.

Visualization. Fig. 3 showcases the triggers and masks solved by SHINE for both backdoored and
clean agents in the Pong game. In addition to the overall performance, we also take a closer look
into the agent’s action distribution in clean and poisoned states of the operating environment. Fig. 4
shows the action distribution of the backdoored agent before and after retraining in the Pong game.
This result further explains the superior performance of SHINE, which enables almost identical
distribution in clean and poisoned states.

G POTENTIAL SOCIAL IMPACT

Our method offers a practical tool to safeguard DRL agents deployed in many applications, enhancing
their security and reliability. Additionally, it could potentially boost the policy-sharing market for
large-scale RL models. By raising the bar for attackers to compromise DRL agents, our method can
contribute to pushing the arms race between defenders and attackers in the field of DRL backdoor
attacks. This can drive further advancements in defense techniques and make DRL systems more
resilient to malicious attacks, benefiting the broader RL-related community.

18


	Introduction
	Related Work
	Key Technique
	Overview
	Trigger Restoration
	Backdoor Shielding

	Evaluation
	Experiment Setup
	Experiment Design
	Experiment Results

	Discussion
	Conclusion
	Additional Technical Details
	Proof of Theorem 1.
	Proof of Theorem 2.
	Backdoor Shielding Algorithm.
	Adaptions of SHINE.

	Implementation and Hyper-parameters
	SHINE against Latest Backdoor Defense in RL
	Computational Efficiency and Hyper-parameter Sensitivity
	SHINE against Untargeted Attack in TrojDRL.
	Other Experiments.
	Potential Social Impact

