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ABSTRACT

Understanding the dose-response relation between a continuous treatment and the
outcome for an individual can greatly drive decision-making, particularly in areas
like personalized drug dosing and personalized healthcare interventions. Point
estimates are often insufficient in these high-risk environments, highlighting the
need for uncertainty quantification to support informed decisions. Conformal
prediction, a distribution-free and model-agnostic method for uncertainty quan-
tification, has seen limited application in continuous treatments or dose-response
models. To address this gap, we propose a novel methodology that frames the
causal dose-response problem as a covariate shift, leveraging weighted conformal
prediction. By incorporating propensity estimation, conformal predictive systems,
and likelihood ratios, we present a practical solution for generating prediction
intervals for dose-response models. Additionally, our method approximates local
coverage for every treatment value by applying kernel functions as weights in
weighted conformal prediction. Finally, we use a new synthetic benchmark dataset
to demonstrate the significance of covariate shift assumptions in achieving robust
prediction intervals for dose-response models.

1 INTRODUCTION

How can we determine the optimal dose for a patient to ensure the best therapeutic outcome? What
is the impact of discounts in an online store on sales? What impact does CO2 concentration have
on local climates? At the core of each of these questions lies a shared causal idea: understanding
the dose-response relation under continuous treatments to inform decision-making. In many cases,
these decisions bear significant consequences, where relying solely on point estimates may be insuffi-
cient (Feuerriegel et al., 2024). Particularly in high-stakes situations, augmenting predictions with
uncertainty quantification (UQ) can significantly improve decision-making processes (Feuerriegel
et al., 2024). For instance, while the estimated causal effect of a continuous treatment may appear
positive, prediction intervals could suggest a largely negative outcome for a specific individual. Such
insights are crucial for deciding interventions. To tackle this, conformal prediction (CP) offers
a robust solution for UQ, being both distribution-free and model-agnostic, with formal coverage
guarantees (Vovk et al., 2022).

In this work, we seek to extend CP to UQ in dose-response models, aiming to aid decision-makers
with more informed estimates to tackle such questions. We introduce a novel approach for deriving
prediction intervals in the continuous treatment setting using weighted conformal prediction by
combining propensity estimation with weighted conformal predictive systems. Furthermore, with the
aid of a novel synthetic benchmark, we show how viewing the problem as a covariate shift approach
provides coverage across all treatment values to help create more individualized dose-response curves.

2 BACKGROUND

In this paper we expand upon the potential outcomes framework introduced in Rubin (2005), otherwise
known as the Rubin framework to accommodate continuous treatments. Consider a continuous
treatment variable T ∈ [tL, tU ] with a lower bound tL and upper bound tU , observed covariates
X , and potential outcomes Y (t) ∈ R representing the outcome that would be observed under
treatment level t. The Conditional Average Dose-Response Function (CADRF) is defined as ν(x, t) =
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E[Y (t)|X = x], the expected value over the Individual Dose-Response Functions (IDRF) for all
individuals with observed X . Similar to Conditional Average Treatment Effects (CATE), to estimate
the CADRF we make the following standard assumptions (Rubin, 2005; Hirano & Imbens, 2004):

• Unconfoundedness: Y (t) ⊥⊥ T |X, ∀t ∈ T . This assumption states that, conditional on
the observed covariates, the treatment assignment is independent of the potential outcomes.
In other words, there are no unobserved confounders that influence both the treatment
assignment and the outcome.

• Overlap or positivity: 0 < P (T = t|X = x) < 1, ∀t ∈ T with x ∈ X . The overlap
assumption ensures that for every covariate value x, there is a positive probability of
receiving any treatment level. This is crucial for estimating treatment effects across the
entire range of treatment levels.

• Consistency: Y = Y (t) with probability 1. This assumption links the observed outcomes to
the potential outcomes, stating that the observed outcome is equal to the potential outcome
corresponding to the treatment received.

Quantifying the IDRF requires observing the Y (t) for all possible treatment values. These treatment
values are all counterfactuals and thus impossible to observe as we only can observe Y for a single
treatment value t at a time. Furthermore for estimating the CADRF, likewise with CATE estimation,
the distribution of the treatment assignment can bias the estimation (Hirano & Imbens, 2004). This
distribution of the treatment assignment is called the propensity distribution, which was initially
defined for binary treatments. Hirano & Imbens (2004) introduced the generalized propensity score
(GPS) for continuous treatments that aims to unbias the CATE estimation for continuous treatments.
The GPS is defined as π(ti|x) = fT |X(T = ti|X = x), which is the evaluation of T = ti on
the conditional probability density function T |X (Hirano & Imbens, 2004). If the treatment is
independent of X , i.e. there are no confounders that influence treatment assignment, then fT |X is
equal for all possible X . Furthermore, the treatment assignment is considered uniformly assigned
between lower tL and upper tU possible treatment if fT |X represents the density function of the
uniform distribution between tL and tU . The GPS can then be used to mimic the randomly assigned
treatment to estimate the unbiased CADRF (Wu et al., 2024).

The simplest method to estimate the CADRF is using an S-learner where a single learner is fit on
both the covariates X and the treatment T to estimate Y . This approach provides a CADRF for each
specific sample by keeping the covariates X constant and changing T to all different treatment values.
However, if the treatment in the data is not uniformly assigned then the epistemic error can increase
for specific treatment values ti and X = x in low overlap regions or where π(ti|x) becomes very
small. Consequently inferring T = ti in these regions would yield unreliable model estimates which
should be communicated to ensure correct usage of a CADRF model.

The estimated ÎDRF can also be seen as follows: ÎDRF = ν(x, t)+ϵa,IDRF (x, t)+ϵe,IDRF (x, t).
The aleatoric uncertainty is symbolized by ϵa,IDRF (x, t) created by the inherent variability between
individuals having the same covariates. ϵe,IDRF (x, t) symbolises the epistemic uncertainty coming
from model specification and finite samples. Estimating both uncertainties creates the opportunity to
estimate the ranges of the ÎDRF :

Problem Definition To accurately estimate the ÎDRF for all possible treatment values we require
correctly estimating both uncertainties for all treatment values equally, or more formally; for a specific
significance level α, lower treatment bound tL, upper treatment bound tU , and covariates X , we
require prediction intervals C(t,X) such that

P(Y (t) ∈ C(X, t)) ≥ 1− α, ∀t ∈ [tL, tU ] (1)

This requirement necessitates prediction intervals that guarantee coverage for each possible treatment
value individually.

3 RELATED WORK

Our proposed solution combines three different domains: propensity score methods, conformal
prediction, and treatment effect or dose-response modelling.
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Propensity score methods, introduced by Rosenbaum & Rubin (1983), have become widespread
in causal inference, especially in observational studies. These methods aim to balance confounders
across treatment groups, reducing bias in treatment effect estimates. Hirano & Imbens (2004) gen-
eralized this propensity score to continuous instead of binary treatments, introducing the generalized
propensity score and building the foundation for causal inference with continuous exposures. Wu
et al. (2024) used the generalized propensity score for matching continuous treatments to debias
the treatment assignment and more accurately estimate the average dose-response curve for all
treatment values. Other approaches adapt machine learning techniques to dose-response modelling.
For instance, Athey et al. (2019) developed generalized random forests for heterogeneous treatment
effect estimation, adaptable to continuous treatments.

To provide UQ, this work adapts conformal prediction. Conformal prediction is a model-agnostic
method introduced by Vovk et al. (2022) that constructs prediction intervals with guaranteed finite-
sample coverage under distribution-free assumptions. Conformal prediction uses conformity scores
to assess uncertainty. Various improvements, such as the adaptive version by Romano et al. (2019),
have increased the flexibility and applicability to even heteroscedastic settings. Additionally, Lei et al.
(2018) and Papadopoulos et al. (2002) introduced split conformal prediction, significantly improving
computational efficiency. For scenarios involving covariate or distribution shifts, Tibshirani et al.
(2019) introduced weighted conformal prediction to ensure coverage under mismatched training and
testing data distributions, with additional work by Gibbs & Candes (2021; 2024) and Barber et al.
(2023). By reweighting the calibration samples similar to weighted conformal prediction, Guan
(2023) introduced localized conformal prediction where the prediction intervals are determined by
calibration samples localized around the test sample. Vovk et al. (2019) also introduced conformal
predictive systems (CPS); an extension of full conformal prediction that allows extracting predictive
distributions instead of prediction intervals. More recently, Jonkers et al. (2024a) combined previous
concepts, introducing weighted conformal predictive systems to also account for covariate shifts.

In causal inference, conformal prediction has mainly been applied to binary treatments. For instance,
Lei & Candès (2021) were among the first to apply conformal prediction to treatment effects estima-
tion in randomized experiments and confounded or observational data. Jonkers et al. (2024b) and Alaa
& Ahmad (2024) extended this approach to the potential outcomes framework, providing uncertainty
to quantify individual treatment effects. However, the use of conformal prediction in continuous
treatment settings remains largely unexplored. Schröder et al. (2024) proposed a conformal prediction
framework for prediction intervals of treatment effects for continuous treatment interventions. How-
ever, their approach mainly covers single-treatment interventions and is computationally intensive,
requiring optimization per confidence level, treatment, and sample where they provide prediction
intervals for a single treatment value. For a more in-depth analysis of Schröder et al. (2024), see
Appendix E.

Our goal is to achieve predictive coverage across the entire range of the treatment variable in
estimating the dose-response curve. To our knowledge, no existing UQ methods offer conformal
prediction guarantees for dose-response models with continuous treatments. To address this gap, we
propose a novel methodology that seeks to provide this coverage by integrating weighted conformal
prediction with propensity score weighting thereby guaranteeing coverage for any treatment value in
continuous treatment dose-response models.

4 METHOD

4.1 INTRODUCTION TO CONFORMAL PREDICTION

Before delving into our proposed method, we provide a formal introduction to conformal predic-
tion (Jonkers et al., 2024a; Tibshirani et al., 2019). Conformal prediction offers a powerful method
for constructing prediction intervals with guaranteed finite-sample coverage under distribution-free
assumptions (Vovk et al., 2022). The key insight of conformal prediction lies in its use of a noncon-
formity measure to quantify the degree to which a new observation differs from previously observed
data.

Let us consider a regression problem with the training data being n independent and identically
distributed (i.i.d.) data pairs Z1 = (X1, y1), ..., Zn = (Xn, yn), where Xi ∈ Rd represents a
vector of d features and yi ∈ R the corresponding label. Consider Zn+1 = (Xn+1, yn+1) a new
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exchangeable point being the test observation to evaluate and provide prediction intervals. Conformal
prediction aims to construct a prediction interval Ĉ(Xn+1) such that

P{yn+1 ∈ Ĉ(Xn+1)} ≥ 1− α (2)

for a pre-specified significance level α ∈ (0, 1) where the probability is calculated over the points
Zi, i = 1, ..., n .

To achieve this, we first define a nonconformity measure S((X, y), Z1:n) that quantifies how different
the pair (X, y) is from a multiset Z1:n = {Z1, ..., Zn} of data points. The lower the nonconformity
measure, the more the pair conforms to the multiset Z1:n. The most commonly used nonconformity
measure is the absolute error S((X, y), Z1:n) = |y − µ̂(X)| with µ̂ an estimator fitted on Z1:n.

Next, for each possible value y ∈ R that yn+1 could be, we compute the nonconformity scores:

Ry
i := S((Xi, yi), {(X1, y1), ..., (Xi−1, yi−1), (Xi+1, yi+1), ..., (Xn, yn), (Xn+1, y)}), i = 1, ..., n

(3)
Ry

n+1 := S((Xn+1, y), {(X1, y1), ..., (Xn, yn)}) (4)

Finally, we construct the prediction interval containing all y where (Jonkers et al., 2024a)

Ĉ(Xn+1) =

{
y ∈ R :

#{i = 1, ..., n+ 1 : Ry
i ≥ Ry

n+1}
n+ 1

≥ 1− α

}
(5)

Tibshirani et al. (2019) presented conformal prediction slightly differently by using quantile functions
instead, which will be more convenient for weighted conformal prediction later on. Tibshirani
et al. (2019) defines the 1− α quantile function as follows, where FR(y) represents the distribution
of nonconformity scores Ry

i consisting of a sum of point masses δa with mass at a where Ry ∼
FR(y) (Tibshirani et al., 2019). FR(y) can then be used to calculate probabilities:

Quantile(1− α;FR(y)) = inf{Ry
i : P{Ry ≤ Ry

i } ≥ 1− α} (6)

FR(y) =
1

n+ 1

n∑
i=1

δRy
i
+

1

n+ 1
δ∞ (7)

Finally, we construct the prediction interval containing all y where

Ĉ(Xn+1) = {y ∈ R : Ry
n+1 ≤ Quantile (1− α;FR(y))} (8)

This procedure guarantees that P (yn+1 ∈ Ĉ(Xn+1)) ≥ 1− α for any exchangeable distribution of
the data and any choice of nonconformity measure (Tibshirani et al., 2019).

4.1.1 INDUCTIVE CONFORMAL PREDICTION

The previously mentioned conformal prediction approach is computationally heavy as it requires
fitting n · #{R} + 1 estimators µ̂. Inductive or split conformal prediction (ICP), introduced
by Papadopoulos et al. (2002), tackles this computation issue by splitting the training sequence
Z1:n = {Z1, ..., Zn} into two sets: the proper training set Z1:m = {Z1, ..., Zm} and the calibration
set Zm+1:n = {Zm+1, ..., Zn}. A single regression model µ̂ is fit on the proper training set while the
nonconformity scores (e.g., Ri = |yi − µ̂(Xi)|, i = m+ 1, ..., n) are generated from the calibration
set. These scores are sorted in descending order denoted as R∗

1, ..., R
∗
n−m. Then, for a new sample

with features Xn+1, a point prediction is made ŷn+1 = µ̂(Xn+1). Finally, given a target coverage of
1− α, the prediction interval becomes

Ĉ(Xn+1) = [ŷn+1 −R∗
s , ŷn+1 +R∗

s ] (9)

where s = ⌊α(n−m+ 1)⌋ represents the 1− α quantile of the ordered nonconformity set with size
n−m (Jonkers et al., 2024a).
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4.1.2 WEIGHTED CONFORMAL PREDICTION

Evaluating and requiring coverage guarantees for the dose-response model at all possible treatment
values changes the test distribution compared to the training distribution. In the training data, all
treatment values are sampled according to their (conditional) training distribution, which can be
determined by other variables in the case of confounding. However, every treatment value is possible
in testing, and thus, every treatment sample can be sampled. This mimics sampling a new test
sample with the treatment value from a uniform distribution, which can be vastly different from the
treatment distribution in the training data. Standard conformal prediction only guarantees coverage
if the joint distribution of the new sample Zn+1 and Z1:n remains the same under permutations,
which is called the exchangeability assumption (Vovk et al., 2022; Tibshirani et al., 2019). This issue
is called covariate shift; The features Xn+1 come from a different distribution compared to X1:n,
while the relation between X and y remains the same. More formally: Xi ∼ PX , i = 1, ..., n and
Xn+1 ∼ P̃X where P̃X ̸= PX while yi ∼ PY |X , i = 1, ..., n.

Weighted conformal prediction provides a solution to tackle this issue (Tibshirani et al., 2019).
However, their main assumption is that the likelihood ratio between the training PX and the test
covariate distribution P̃X is known, defined as

w(x) =
dP̃ (x)

dP (x)
(10)

The rationale is that they reweight the distribution of nonconformity scores FR(y) to make the
nonconformity scores more exchangeable with the test population by using the following weights in
equation 7 (Tibshirani et al., 2019):

pwi (Xn+1) =
w(Xi)∑n

j=1 w(Xj) + w(Xn+1)
pwn+1(Xn+1) =

w(Xn+1)∑n
j=1 w(Xj) + w(Xn+1)

(11)

FR(y) =

n∑
i=1

pwi (Xn+1)δRy
i
+ pwn+1(Xn+1)δ∞ (12)

Consequently, these weights adjust the distribution of nonconformity scores to give more weight to
nonconformity scores that are more likely in the test set and vice versa while in standard conformal
prediction, every Ri has equal weight. Also, note that the weights pw(x) are normalized, cancelling
out any constant terms resulting in w(x) being proportional to w(x) ∝ dP̃ (x)

dP (x) . An extension to split
weighted conformal prediction can be done similarly as in section 4.1.1 (Tibshirani et al., 2019).

4.1.3 CONFORMAL PREDICTIVE SYSTEMS

In some cases, providing a prediction interval often does not suffice and a complete predictive distri-
bution is required. The extension proposed by Vovk et al. (2019) produces a predictive distribution
by arranging p-values, created using specific conformity measures, into a probability distribution
function. A requirement to create a Conformal Predictive System (CPS) is to use a specific type
of conformity measures 1 which include monotonic measures. Then, given the training data Z1:n

and observed test sample Xn+1, we define an example of this specific conformity measure S and
conformity scores Ry

i similar as in equations 3 and 4:

S((X, y), Z1:n) = y − µ̂(X) (13)

With µ̂ an estimator fitted on the training set Z1:n. Ry
i and Ry

n+1 are then similarly defined as in
equation 3 for a CPS. Then, as defined in Vovk et al. (2022) we can define a predictive distribution Q
for value y, using a distribution of nonconformity scores FR(y) of y to calculate P, similarly to the
quantile function in equation 6 as follows:

QR(y, ϕ) = PFR(y){Ry < Ry
n+1}+ ϕ · PFR(y){Ry = Ry

n+1} (14)

Where ϕ is a random number sampled from a uniform distribution between 0 and 1 to ensure a
smooth predictive distribution. Using the same approach as section 4.1.2, these conformal predictive

1For the specific definition see Vovk et al. (2020)
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systems can be expanded to weighted conformal predictive systems by adjusting FR(y) to account
for the covariate shift (Jonkers et al., 2024a).

Additionally, conformal predictive systems also suffer from computational issues, therefore Vovk et al.
(2020) introduced split conformal predictive systems to tackle the same issues in a way analogous to
section 4.1.1.

4.2 PROPOSED METHODOLOGY: PROPENSITY WEIGHTED CONFORMAL PREDICTION

Taking into account the background knowledge of conformal prediction, we first need to formally
define the target distribution to tackle our problem definition. A CADRF model ν̂(X,T ) is trained on
triples (X,T, Y ) with X d-dimensional observed covariates X ∈ Rd ∼ PX and continuous treatment
variables T ∈ [tL, tU ] ∼ PT |X to predict responses Y ∈ R ∼ PY |T,X . PX represents the covariate
distribution, PT |X represents the observational conditional treatment distribution given confounders
X , and PY |T,X represents the outcome distribution. PT |X = PT if there are no confounders for
T. A CADRF model will be used to query the dose-response for all T ∈ [tL, tU ], creating an
interventional distribution P̃T . As every treatment value t is equally likely

::
in

:::
this

:::::
query

:
we can define

P̃T = P̃T |X = Uniform(tL, tU ).

To attain marginal coverage across the interventional test set for a CADRF we can use weighted
conformal prediction (Tibshirani et al., 2019). This requires defining the weights w for Xi and
treatment value t using equation 11, which we will call the global (g) propensity (p) weights wg,p:

wg,p(Xi, Ti) =
dP̃X,T (Xi, Ti)

dPX,T (Xi, Ti)
=

dP̃T |X(Xi, Ti)dP̃X(Xi)

dPT |X(Xi, Ti)dPX(Xi)
=

dP̃T |X(Xi, Ti)dPX(Xi)

dPT |X(Xi, Ti)dPX(Xi)

=
dP̃T |X(Xi, Ti)

dPT |X(Xi, Ti)
=

fU(tL,tU )(Ti)

π(Ti|Xi)
=

1[tL,tU ](Ti)

tU−tL

π(Ti|Xi)
∝
1[tL,tU ](Ti)

π(Ti|Xi)

(15)

with 1[tL,tU ](Ti) the indicator function for Ti ∈ [tL, tU ].

We
:::
For

:::::::::
simplicity,

:::
we assume that there is no distribution shift for X and thus P̃X(Xi) = PX(Xi)

::::
(The

::::::::
covariate

::::
shift

::::::::
approach

:::
for

:::
X

::
is

:::::::
detailed

::
in

::::::::
Appendix

:::::
D.1). Additionally, fU(tL,tU ) is the

probability density function for the uniform distribution. We also define the propensity function
π(Ti|Xi) as the probability density function for PT |X(Ti) as specified in Section 2. To gener-
ate the prediction intervals at treatment value t for a new sample Xn+1 the weights change to
wg,p(Xn+1, t) =

1
π(t|Xn+1)

. According to the weighted exchangeability defined in (Tibshirani et al.,
2019), this guarantees marginal coverage over the interventional distribution, for all T ∈ [tL, tU ],
and X ∼ PX . Tibshirani et al. (2019) also suggested a method to attain local coverage around a
predetermined target point x0 using weighted conformal prediction. Consequently, this can provide
varying prediction intervals for different values of x0 providing another heteroscedastic approach.
The proposed weights, which we call the local (l) weights wl, utilize kernel functions with bandwidth
parameter h:

wx0

l (Xi) ∝ K

(
Xi − x0

h

)
(16)

These weights then guarantee

Px0
{Yn+1 ∈ Ĉ(Xn+1;x0)} ≥ 1− α (17)

This assures coverage around x0, but x0 must be determined beforehand. Additionally, if a new x0

must be evaluated, a new calibration procedure must be performed which should be considered when
applying it to general regression use cases. However, for this work, the target interventional treatment
distribution is known in advance and can all be computed before deployment. Consequently, for a
target treatment value t we can define wt

l (Ti) ∝ K(Ti−t
h ) instead.

The local weights guarantee coverage where dP̃T (Ti)/dPT (Ti) ∝ K(Ti−t
h ). To adjust the local

weights for a CADRF model we need to be aware of the covariate shift introduced by evaluating the in-
terventional distribution and thus must combine wg,p with wlocal to achieve weighted exchangeability.
These new weights are defined as wl,p for target treatment t:

wt
l,p(Xi, Ti) ∝

1[tL,tU ](Ti)K
(
Ti−t
h

)
π(Ti|Xi)

(18)

6
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To generate the prediction intervals for target treatment t for a new sample Xn+1 the weights are then
wt

l,p(Xn+1, t) =
1[tL,tU ](Ti)K((t−t/h))

π(t|Xi)
=

1[tL,tU ](Ti)

π(t|Xi)
, which is equal to wt

g,p(Xn+1, t). By using
these weights in a weighted conformal prediction framework, we provide a solution to the problem
definition in Section 2.

:::::::::
Theoretical

::::::::
coverage

::::::
results

::
of

::::
our

::::::::
approach

:::
are

:::::
shown

::::
and

::::::::
discussed

::
in

::::::::
Appendix

::
A.

:

5 EXPERIMENTS

5.1 SYNTHETIC DATA

We evaluate the proposed approach on synthetic data as evaluating the true individual dose-response
curve requires knowing the counterfactuals which is not feasible in real-world data.

We used three experimental setups using synthetic data, each having different scenarios that change
specific parameters. Setup 1 is inspired by Wu et al. (2024) and Setup 2 follows the experimental setup
of Schröder et al. (2024). Both Setup 1 and 2 are clarified in Appendix B. Setup 3 is novel, proposed
by us, which mimics a situation where, for every scenario, two different possible dose-response
functions are possible that each depends on the covariates, resulting in heavy confounding and thus
limited overlap.

For each scenario (over the different setups), 5000 samples were generated using 50 different random
seeds resulting in 50 datasets for each scenario. These datasets were split into 25% test (1250), 25%
calibration (1250), and 50% training (2500) samples. For each scenario, two different α (significance
values) were evaluated (i.e., 0.1 and 0.05 for a confidence of 90% and 95% resp.). Each sample in the
test set is evaluated using 40 treatment values t0 at equal intervals between the 2% and 98% training
treatment value quantile to include varying treatment overlap regions and to mimic the uniform
treatment sampling. In the results, the coverage of all treatment values and all samples in the test set
are aggregated to a single mean coverage for each experiment, resulting in 50 mean coverage results
for every method and scenario.

5.1.1 SETUP 3

Setup 3 is a new experimental setup proposed in this work to underline the importance of compensating
for confounding in UQ for CADRF. The covariates are independently sampled from a normal
distribution. The treatment T is confounded by two variables, determining the mean of the treatment
assignment distribution:

X1, X2, X3 ∼ Normal(0, 5) T ∼ Normal(X2 + 0.1 ·X1, 4)

The two scenarios have slightly different outcome distributions, as shown in Table 1. The idea is
the same for both scenarios; The individual dose-response function is truly conditional and thus
equal treatment values between different individuals or samples do not necessarily translate to each
other. In total, there are four different possible dose-response functions depending on the covariates.
Furthermore, there is heavy confounding resulting in limited samples where T − X2 yields high
values that in turn create large outcome values. This creates an opportunity for high epistemic
uncertainty and limited overlap. For scenario two, the aleatoric uncertainty is also heteroscedastic
based on X3 forcing solutions to look beyond the treatment value to quantify uncertainty.

Scenario Outcome Distribution

1 Y ∼ sign(X3) · (2(T −X2))
2 + 33T · sign(X1) + Normal(0, 2)

2
Y ∼ sign(X3) · (2(T −X2))

2 + 33T · sign(X1)

+ (sign(X3)+1)
2 · Normal(0, 30) + Normal(0, 2)

Table 1: The outcome distributions for setup 3

7
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5.2 IMPLEMENTATION

In the case of synthetic data, the true propensity distribution, also known as the oracle distribution, is
available. However, in real-world applications, the true propensity distribution is mostly unknown.
As a result, any method that relies on propensity is evaluated using both the oracle propensity
distribution and an estimated propensity distribution in the experiments, denoted as "Oracle" and
"Propensity" in the results respectively. The latter can be approximated by

::::::::
estimated

:::::::::
distribution

::
in

:::
this

::::
work

::
is

:::::::
obtained

:::::
using

:::
the

:::::::::
Conformal

:::::::::
Prediction

::::::
System

::::::
(CPS), leveraging conformal prediction,

specifically CPS
::::::
though

::::
other

:::::::::
propensity

:::::::::
estimators

:::::
could

::::
also

::
be

::::
used. Do note that CPS quantifies

total uncertainty and thus also includes the epistemic uncertainty while ideally only the aleatoric un-
certainty is included. Additionally, this propensity distribution estimate is not completely guaranteed
to be equal to the true conditional propensity distribution, which we theoretically need to get complete
finite sample guarantees of validity. Although, in practice, this can still be a valid approximation. A
learner is trained on the covariates X to predict the treatment assignment T , deemed the propensity
learner. Subsequently, a CPS is calibrated for this learner using the calibration set as it is more
practical to extract an empirical density distribution compared to standard conformal prediction. This
::::
Since

:
CPS produces an empirical density distribution being a sum of Dirac delta distribution similar

to FR, thus we require the use of kernel density estimation (KDE) to extract
:
is

::::::
applied

:::
to

:::::
derive

:
a

continuous propensity density function for a treatment value t, given covariates Xi. Do note that KDE
interpolates the density and depending on the KDE parameters may introduce additional epistemic
error, which is a drawback of estimating the propensity in this manner. The implementation for
the propensity estimation is shown

:::
and

::
a

:::::::::::
computational

:::::::::
discussion

:::
for

::::::
Global

:::
and

::::::
Local

:::::::::
Propensity

::::
WCP

::
is
::::::::
presented

::
in
:::::::::
Appendix

:::
C.1

:::
and

::::
our

:::::::::
propensity

::::::::
estimation

:
in Appendix C.2.

For the evaluation, several
:::::::
baseline methods were tested and compared, including Gaussian Process,

CatBoost with Uncertainty (Duan et al., 2019), Standard Conformal Prediction,
:::
and

:
Locally Weighted

Conformal Prediction (WCP Local),
:
,
:::::
using

::::::
weights

::::
wl).::::

For
:::
the

:::::::
proposed

:::::::::
propensity

::::::::
methods

::
we

:::::::
included

::::
both

:::::::::
variations,

:::::
using

::::
their

:::::::::
respective

::::::::
weights:

:
Global Propensity-Weighted Conformal

Prediction (WCP Global Oracle and WCP Global Propensity ),
::::
using

:::::
wg,p)

:
and Local Propensity-

Weighted Conformal Prediction (WCP Local Oracle and WCP Local Propensity
:
,
:::::
using

::::
wl,p). The

Gaussian Process was included in the comparison due to its widespread use for UQ in regression
problems assuming a normal error distribution (Fiedler et al., 2021). All other approaches were based
on the CatBoost model

::::
used

:
a
::::::::
CatBoost

::::::
model

:::
for

:::
the

::::
base

:::::::
CADRF

:::::::
learner, chosen for its strong

out-of-the-box performance (Dorogush et al., 2018). As a result, the "CatBoost with Uncertainty"
method was incorporated as a baseline for comparison of UQ.

The propensity learner employed in the propensity-weighted approaches was a
CatboostRegressor with 4000 iterations and default hyperparameters. Similarly, the
CADRF models were based on CatBoost

:
a
::::::::
CatBoost

::::::
model

:
with 5000 iterations and default

hyperparameters. The CatBoost with Uncertainty approach used the same underlying CatBoost
model as the CADRF

::::
other methods to ensure consistency. For the locally weighted conformal

approaches, a Gaussian kernel (Theodoridis, 2015) was employed to represent local coverage. The
bandwidth parameter for the kernel was set as h = 2 · (0.2 · σπ̂)

2, where σπ̂ denotes the standard
deviation of the estimated propensity distribution

:
.

5.3 RESULTS

Figure 1 presents the coverage bar plots across all methods for Setup 3 Scenario 1 on the test
set. Evaluations on all other

::::
More

::::::::::
evaluations

:::
and

::::::::
CADRF

::::::
RMSE

:::
on

:::
all setups and scenarios

can be found in Appendix F. The bar plots in Figure 1 clearly illustrate the impact of covariate
shift in the treatment on coverage guarantees for methods that did not account for this shift. All
propensity-weighting methods assumed uniform treatment sampling during evaluation, mimicking
the interpretation of a dose-response curve for decision-making for all treatment values, keeping their
coverage guarantees.

As can be seen in Figure 1, the global propensity-weighting method shows a high variance in coverage
across different experiments. This variance arises due to the calibration process, which considers all
possible treatment values between tL and tU , including those with minimal or no overlap. Depending
on the calibration and test set split, certain samples may receive a significantly large likelihood ratio,
thereby assigning considerable weight to those values according to Equation 12. This inflates the size
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Figure 1: Barplot of the mean coverage calculated over 40 treatment values in 50 experiments for
setup 3 scenario 1. Black dotted line is the ideal coverage.

of the prediction intervals, leading to conservative estimates. The oracle estimates are also notably
more conservative, as they tend to provide narrower propensity distributions. This increases the
frequency of large likelihood ratios when compared to the estimated propensity distribution, where the
epistemic uncertainty of the propensity learner is also taken into account by the CPS procedure. On
the contrary, for a new sample, the local propensity method uses calibration samples with treatment
values close to the predefined value t0 and weighting the propensities as well. Our presented approach
uses more comparable calibration samples rather than the entire dataset, resulting in more conditional
prediction intervals, provided there are enough calibration samples. Our method thus combines
the strengths of both the local and the propensity weighting techniques. These trends are further
supported in Figure 2, which shows the prediction intervals for all weighting methods alongside the
treatment assignment distribution for a specific test observation. This example highlights the necessity
of the uniform treatment sampling assumption for the evaluation of dose-response curves, as both the
local weighting method and standard conformal prediction produce inaccurate prediction intervals in
regions with low treatment overlap. In these regions, there is insufficient data to support predictions
for the model, making these predictions unreliable. Consequently, propensity-weighted methods
produce much larger prediction intervals in these areas to compensate for this lack of data support. If
there is almost no support or extremely low propensity values, then the propensity-weighted methods
provide intervals with an infinite width to show that there is no support in these regions. It is important
to note, however, that these intervals may be overly conservative if the model has indeed generalized
effectively in such regions. The only way to validate this is through additional data collection in these
areas to confirm the model’s performance.

Note that Schröder et al. (2024) also introduced a conformal prediction method to provide prediction
intervals in the continuous treatment setting. However, we did not include a direct comparison in this
study due to the high computational complexity of their approach, which would require several years
to complete the same experiments we executed in a matter of hours. For a more detailed comparison,
including a discussion of the difference in assumptions and methodologies, see Appendix E.

Implementing local propensity weighting in practice is less straightforward as it involves calibrating
for a set of predefined treatment values and either storing these models for later use during inference
or performing this action in parallel. This has the advantage that it allows conditional prediction
intervals to be calculated more quickly during inference. However, a drawback is that evaluating a
treatment value not included in the predefined set requires recalibration, and must be considered for
inference. Still, this approach is particularly useful in fields like drug dosing, where treatment ranges
are often predefined and personalized CADRF is highly relevant or where inference of new treatment
values is not time-critical. Additionally, an important factor to consider is the effective sample size
n̂ in local propensity weighting (Tibshirani et al., 2019; Jonkers et al., 2024a). Reweighting FR(y)
can significantly reduce the effective sample size, which increases variability in empirical coverage
compared to standard conformal prediction. This issue is especially pronounced in regions with
low treatment overlap, where the effective sample size can become extremely small. However, as
prediction intervals with infinite length are possible using weighted conformal prediction, these
infinite intervals additionally provide information to the user where the model cannot be trusted
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Figure 2: CADRF UQ Example on Setup 3 Scenario 1 using estimated propensity

adding an interpretability layer to the UQ. In the current work, only an S-learner was used as a
CADRF estimator which could influence the epistemic error, so in future work, more specialised
dose-response models can be used to reduce the interval widths and provide even more informative
prediction intervals.

Our current approach can be readily extended by incorporating other conformal prediction frameworks
that support weighted conformal prediction, such as adaptive conformal prediction (Romano et al.,
2019) or weighted conformal predictive systems (Jonkers et al., 2024a). Additionally, the weighting
can be further expanded or changed to account for other types of covariate shifts in a similar manner
or serve different purposes such as evaluating interventions of causal effects, thus broadening the
applicability of the proposed method

:
,
::
as

:::::::
detailed

::
in

::::::::
Appendix

::
D.

6 CONCLUSION

In this work, we have introduced a novel approach to weighted conformal prediction for UQ in dose-
response models, utilizing propensity estimation and kernel functions as weights for the likelihood
ratio. Alongside a newly proposed synthetic dataset, our approach highlights the necessity of
compensating for the covariate shift in the treatment assignment when evaluating dose-response
models across all possible treatment values. This is achieved by assuming uniform treatment
sampling during testing, similar to methods used in discrete treatment effect estimation. Additionally,
by leveraging conformal predictive systems to estimate propensity distributions, we offer a practical
solution to implement UQ in continuous dose-response estimation for various practical use cases.

Our contribution not only adds to the field of dose-response modelling but also facilitates delivering
reliable, individualized dose-response functions. Our approach has the potential to aid decision-
making for personalized dosing in fields such as marketing, policy-making, and healthcare. With this
UQ for continuous treatments, we are one step closer to achieving truly personalized interventions
that optimize outcomes for individuals.
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A
:::::::
FINITE

:::::::::
SAMPLE

:::::::::::::
COVERAGE

::::::::::::::
GUARANTEES

:::
For

::::::::::::
counterfactual

::::::::
prediction

::::::::
intervals,

:::
the

::::
ideal

::::
goal

::
is

::
to

:::::::
achieve

::
the

:::::::::
following

::::::
general

:::::::::
conditional

:::::::
coverage

:::::::::
guarantee:

:

PY∼PY |T=t,X=x
(Y (t) ∈ Ĉ(x, t)|X = x) ≥ 1− α,where t ∈

::::::::::::::::::::::::::::::::::::::::::::::::

[tL, tU
::::

] (19)

:
,
:::::
which,

:::::
under

:::
the

::::::
strong

::::::::::
ignorability

:::::::::
assumption

:
,
::
is

:::::::::
equivalent

::
to:

:

PY∼PY |T=t,X=x
(Y ∈ Ĉ(x, t)|X = x, T = t) ≥ 1− α.

:::::::::::::::::::::::::::::::::::::::::::

(20)

::::::::
However,

::::::::::
constructing

:::::::::
non-trivial

:::::::::
prediction

:::::::
intervals

::::
with

::::
such

::::::::::
conditional

:::::::::
guarantees

::
is

::::::::
generally

:::::::::
impossible

::::::
without

:::::::::
additional

::::::::
modeling

::::::::::
assumptions,

:::
as

:::::
shown

::
in

::::::::::::::::::::::
Foygel Barber et al. (2021)

:
.
::::
Even

:::::
under

:::
the

::::::
relaxed

::::::::::
conditional

:::::::::
guarantee,

:::::
where

:::::::::::
conditioning

::
is
::::
only

:::
on

:::
the

::::::::
treatment

::::::
value,

::
as

::
in

:::::
binary

::::::::
treatment

:::::::
settings

::::::::::::::::::
(Lei & Candès, 2021):

:

PY∼PX×PY |T=t,X
(Y ∈ Ĉ(X, t)|T = t) ≥ 1− α,

:::::::::::::::::::::::::::::::::::::::

(21)

::
the

::::::::
problem

::::::
persists

:::::
when

:::
the

::::::::
treatment

:::::::
variable

:
t
::
is

::::::::::
continuous.

A.1
:::::::::
PROPOSED

::::::::::::
FRAMEWORK

::
To

:::::::
address

:::
this

:::::::::
challenge,

::
we

::::::::
introduce

::
a

:::::::::
distribution

::::
shift

::
in
:::
the

::::::::
treatment

:::::::
variable

:::
by

::::::
moving

::::
from

::
the

::::::::::
generalized

:::::::::
propensity

::::::::::
distribution

::
to

:
a
::::::::::::
user-specified

:::::::::::
interventional

::::::::::
distribution,

:::::::::::::
Tn+1 ∼ P̃T |X .

:::
We

::::
then

:::::::
leverage

::::
the

::::::::
weighted

:::::::::
conformal

:::::::::
prediction

::::::
(WCP)

::::::::::
framework

::
to
:::::::::

construct
::::::::
prediction

:::::::
intervals.

:::::
This

::::::::
approach

::::::
allows

::
us

::
to

:::::
build

::
on

:::::
prior

:::::::::
theoretical

::::::::
coverage

::::::
results

:::::
under

::::
both

:::::
oracle

:::
and

::::::::
estimated

:::::::::
likelihood

::::::::::::::::::::::::::::::::::::::::::::
functions(Tibshirani et al., 2019; Lei & Candès, 2021).

:

::::
Table

::
2
:::::::
outlines

:::
the

::::
two

:::::::::::
interventional

:::::::::::
distributions

:::::::
utilized

::
in

:::
this

::::::
work:

:::::
global

::::::::::
propensity,

::::
local

:::::::::
propensity,

:::
and

:::::::::::
δ-propensity

::::::
(Dirac

:::::
delta).

::::
The

:::::
latter

::::::::::
corresponds

::
to

::
a

::::
hard

::::::::::
intervention.

::::::::
Relaxing

::
the

:::::::::::
δ-propensity

::
to

:::
the

:::::
local

:::::::::
propensity

:::::::
enables

:::
the

::::::::::
construction

::
of

:::::::::
non-trivial

:::::::::
prediction

:::::::
intervals

:::
(see

::::::::::
Remark4).

:::::::::
Notably,

:::::
when

::::::::::
T ∈ {0, 1},

::::
our

::::::::
approach

::::::
under

:::::::::::
δ-propensity

::::::
aligns

::::
with

:::
the

:::::::::::
counterfactual

::::::::
inference

::::::::::
framework

::
for

::::::
binary

:::::::::
treatments

::::::::
proposed

::
in

:::::::::::::::::
Lei & Candès (2021)

:
.

Table 2:
:::::::::
Translation

::
of

:::::::
general

::::::::::::
interventional

::::::::::
distribution

:::::::::
framework

::
to

:::::
WCP

:::::::
global,

:::::
local,

:::
and

::::::::::
δ-propensity.

:::::::
General

: ::::::
Global

::::::::::
propensity

:::::
Local

:::::::::
propensity

: :::::::::::
δ-propensity

::::
P̃T |X :::::::::::::::

Uniform(tL, tU ): ::::::::::::::::::::

1[tL,tU ](T )K(T−t
h )∫ tU

tL
1[tL,tU ](T )K(T−t

h )dT :::::::
δ(T − t)

:::::::
w(X,T )

: ::::::::

1[tL,tU ](T )

π(T |X) : ::::::::::::::

1[tL,tU ](T )K(T−t
h )

π(T |X) : :::::

δ(T−t)
π(T |X)

:::::::
ŵ(X,T )

: ::::::::

1[tL,tU ](T )

π̂(T |X) : ::::::::::::::

1[tL,tU ](T )K(T−t
h )

π̂(T |X) : ::::::

δ(T−t)
π̂(T |X):
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A.2
::::::::::::
PROPOSTION:

::::::::::::::
FINITE-SAMPLE

:::::::::::::
GUARANTEES

Proposition 1 (following Tibshirani et al. (2019); Lei & Candès (2021)).
::::::
Assume

:::::::::::::::::::::::::::::::::
(Xi, Ti, Yi)

i.i.d.∼ PX × PT |X × PY |T,X ,
::::::::::
i = 1, ..., n;

:::
the

:::::::::
likelihood

::::
ratio

:::::::::::::::::
w(X,T ) ∝ dP̃T |X

dPT |X
;
:::
and

::
the

:::::::::
estimated

:::::::::
likelihood

:::::
ratio

:::::::::
ŵ(X,T ).

::::::::
Using

:::::
WCP

:::
to

::::::::
construct

:::::::::
Ĉ(X,T ),

::::
the

::::::::
following

::::::::::
finite-sample

:::::::
bounds

:::::
apply:

:

:::
S1.

::::::
(Oracle

::::::::::
Likelihood

:::::
Ratio)

:
If

::::::::::::::
ŵ(·, ·) = w(·, ·),

:::
i.e.

:::::
oracle

:::::::::
likelihood

::::
ratio

::::::::
function;

::::
then,

:

1− α ≤ P(X,T,Y )∼PX×P̃T |X×PY |T,X
{Y ∈ Ĉ(X,T )}

::::::::::::::::::::::::::::::::::::::::::

(22)

:::
S2.

::::::
(Finite

:::::::
Sample

:::::
with

:::::::::
Regularity

:::::::::::
Conditions)

:
If
:::::::::::::::
ŵ(·, ·) = w(·, ·);

::::
the

:::::::::::::
non-conformity

:::::
scores

:::
Si ::::

have
:::
no

:::
ties

::::::
almost

:::::::
surely;

::::::::::
P̃T |X × PX::

is
:::::::::
absolutely

::::::::::
continuous

::::
with

::::::
respect

::
to

:::::::::::
PT |X × PX ;

::::
and

:::::::::::::::::::::::::::::::::::::
(E(X,T )∼PX×PT |X [w(X,T )r])

1
r ≤ Mr < ∞

:::::
where

::::::
r > 0

::::
and

:::
Mr

::::::
denotes

:::
the

:::::
upper

::::::
bound

::
of

:::
the

:::
r-th

:::::::
moment

::
of

:::
the

:::::::::
likelihood

:::::
ratio;

::::
then,

:

1− α ≤ P(X,T,Y )∼PX×P̃T |X×PY |T,X
{Y ∈ Ĉ(X,T )} ≤ 1− α+ cn

1
r−1

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(23)

:::::
where

:
c
::
is

:::
an

:::::::
arbitrary

:::::::
positive

:::::::
constant

:::::::::
depending

:::
on

:::
Mr:::

and
::
r.
:

:::
S3.

:::::::::
(Estimated

:::::::::
Likelihood

::::::
Ratio)

:
If
::::::::::::::
ŵ(·, ·) ̸= w(·, ·);

:::::::::::::::::::::::::::::::::::::::::
∆w = 1

2E(X,T )∼PX×PT |X [|ŵ(X,T )− w(X,T )|];

:::::::::::::::::::::::::::::::::::::
(E(X,T )∼PX×PT |X [ŵ(X,T )r])

1
r ≤ Mr < ∞;

:::
and

::::::
further

::::::::
assuming

:::
the

:::::
same

::::::::::
assumptions

::
as

::
in

:::
S2.

:
;
::::
then,

:

1− α−∆w ≤ P(X,T,Y )∼PX×P̃T |X×PY |T,X
{Y ∈ Ĉ(X,T )} ≤ 1− α+∆w + cn

1
r−1

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(24)

Proof.
:::
We

:::
can

::::::::::
reformulate

::::
our

::::::::
problem

::
as

::
a
::::::::
covariate

::::
shift

::::::::
scenario

:::
by

:::::::
treating

:::
the

::::::::
treatment

::::::
variable

:::
as

:::
part

::
of

:::
the

:::::::::
covariates,

::::
i.e.,

:::::::
defining

:::::::::::
X∗ = [X,T ].

::::::
Under

:::
this

:::::::::::::
transformation:

:

•
:::
The

:::::
proof

:::
for

::::::
setting

:::
S.1

::::::
follows

:::::::
directly

::::
from

::::::::
Theorem

:
2
::
in
:::::::::::::::::::
Tibshirani et al. (2019)

:
.

•
:::
The

:::::
proof

::::
for

::::::
setting

::::
S.2

:::::
aligns

::::
with

::::::::::
Proposition

::
1
:::

in
::::::::::::::::::
Lei & Candès (2021).

:::::::
While

::::
their

::::
work

:::::::
focuses

::::::::
explicitly

:::
on

::::::::::::
split-weighted

::::::::::::
conformalized

:::::::
quantile

:::::::::
regression

::::::
(CQR)

:::::::::::::::::
(Romano et al., 2019)

:
,
:::

the
:::::::::

argument
:::::::
extends

::
to
::::::

WCP
:::::::
because

::
it
:::::
only

:::::::
depends

:::
on

:::
the

:::::::
weighted

::::::::::::::
exchangeability

::
of

::::::::::::
nonconformity

::::::
scores

:::
and

:::
the

:::::::::::
boundedness

:::
of

:::
the

::::::::
likelihood

::::
ratio

:::::::
function.

:

•
::::::::
Similarly,

:::
the

:::::
proof

::
for

::::::
setting

:::
S.3

::::::
follows

::::
from

::::::::
Theorem

:
3
::
in
::::::::::::::::::
Lei & Candès (2021),

:::::
along

::::
with

::
its

::::::::::::
corresponding

:::::::::
derivation.

:

Remark 1.
:
r
::::::::
specifies

:::::
which

:::::::
moment

::
of

:::
the

::::::::
likelihood

:::::
ratio

::::::::
w(X,T )

:
is
:::::

being
::::::::::

considered.
::::::

Larger
:
r
::::::::::
corresponds

::
to

:::::::
stricter

::::::::
regularity

:::::::::
conditions

::
on

::::::::
w(X,T ).

::::
Mr ::::::

defines
:::
the

:::::
upper

:::::
bound

:::
on

:::
the

:::
r-th

::::::
moment

::
of

::::::::
w(X,T ),

::::::::
ensuring

:::
the

::::::::
likelihood

::::
ratio

::::
does

:::
not

:::::
grow

:::
too

::::
large

::::
and

::::::
remains

::::::::::::
well-behaved.

Remark 2.
::::
Note

::::
that

:::
the

::::
term

::::::
cn

1
r−1 ,

:::::::::
represents

:::
the

:::::
upper

::::::
bound

::
of

:::
the

::::::::::
expectation

::
of

::::::::
maximum

:::::
weight

:::::::::::
(probability),

::::
i.e.,

::::::::::::::::::::::::::::
E
[
maxi∈[1,...,n]∪{∞} p

w
i (Xn+1)

]
,
:::::
which

:::::
under

:::
no

::::::::
covariate

::::
shift

::
is

::::
equal

::
to

::::

1
n+1 ::

the
::::::
upper

:::::
bound

::
of

::::::::::
unweighted

:::::::::
conformal

:::::::::
prediction.

Remark 3.
:::
The

::::::::::
bounding

::::::::::
condition

:::::::::
assumed

::::
in

:::::
S.2

:::
and

:::::
S.3

::
in

:::::::::::
Proposition

::
1,

:::::::::::::::::::::::::::::
(E[w(X,T )r])

1
r ≤ Mr < ∞,

::::::::::
that

::::::::::::::::::::
E[w(X,T )r] < ∞

::::::::::
implies

::::::::
that

:::::::::::::::::::::::::::::
P(X,T )∼PX×PT |X (w(X) < ∞) = 1

::::
and

::::::::::::
E[w(X)] < ∞

::::::::::::::::::
(Lei & Candès, 2021)

:
,
:::
i.e.

:::::::::::
PX × P̃T |X :

is

::::::::
absolutely

:::::::::
continuous

::::
with

:::::::
respect

::
to

::::::::::
PX × PT |X .

:
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Remark 4.
:::
For

::::::
setting

:::
S.1

:
,
:::
the

::::::
overlap

:::
or

::::::::
positivity

:::::::::
assumption

::::
can

::
be

::::::::
violated,

:::
i.e.,

::::::::::

dP̃T |X
dPT |X

= ∞

::
in

:::::
terms

::
of

:::
the

::::::::::::
interventional

::::::::::
distribution.

:::::::::
However,

::::
this

::::::
results

::
in

:::
the

::::::
trivial

:::::::
interval

:::::::::
(−∞,∞),

::::
since

:::::::::::::::::::::
w(Xi) = 0,∀i ∈ [1, ..., n]

::::
and

:::::::::::::
w(Xn+1) = ∞

:::::::
resulting

::
in
:::::::::::::::::::::::::
pwi (Xn+1) = 0,∀i ∈ [1, ..., n]

:::
and

::::::::
pwn+1 = 1.

:

Remark 5.
::::
Since

::::::::
inductive

:::
(or

::::
split)

:::::::::
conformal

:::::::::
prediction

:
is
::
a
::::::
special

::::
case

::
of

:::::::::
conformal

:::::::::
prediction,

:::::::::
Proposition

::
1
::::
also

::::::
applies

::
to

::::::::
inductive

:::::::::
conformal

:::::::::
prediction,

:::::
which

:::
we

:::
use

::
in

:::
our

:::::::::::
experiments.

Remark 6.
::::
With

::
an

::::::::
estimated

:::::::::
likelihood

::::
ratio

:::::
under

::::::::
weighted

:::::
CQR,

:::
our

::::::::
approach

::::
also

:::::::
follows

::
the

:::::::::
asymptotic

::::::
double

:::::::::
robustness

:::::
result

:::
(see

::::::::
Theorem

:
1
::::::::::::::::::
(Lei & Candès, 2021)

:
).
:

B SYNTHETIC DATA

B.1 SETUP 1

For setup 1, inspired by Wu et al. (2024), six independent covariates are sampled from various
distributions representing both continuous and discrete values:

X1, X2, X3, X4 ∼ Normal(0, 1)
X5 ∼ Uniform[−2, 2] (Integer)
X6 ∼ Uniform(−3, 3)

The treatment value is confounded by all variables in this setup and thus determined by a treatment
function Tµ. All scenarios share the same treatment function except for scenario 3, where a quadratic
term was added. The treatment functions are shown in Table 3.

Scenario Treatment function

1, 2, 4, 5, 6, 7, 8 Tµ = −0.8 +X1 + 0.1X2 − 0.1X3 + 0.2X4 + 0.1X5 + 0.1X6

3 Tµ = −0.8 +X1 + 0.1X2 − 0.1X3 + 0.2X4 + 0.1X5 + 0.1X6 +
3
2X

2
3

Table 3: The treatment functions for all scenarios in setup 1.

The true assigned treatment value T is then sampled from a treatment assignment distribution to add
randomness and ensure some overlap in the simulated data. This treatment assignment distribution is
different for various scenarios to evaluate the differences in the assumed distributions. The various
functions are shown in Table 4

Scenario Treatment T Treatment Assignment Distribution

1 9Tµ + 17 Normal(0, 5)
2 15Tµ + 22 StudentT(df = 2)

3 9Tµ + 15 Normal(0, 5)
4 49 eTµ

1+eTµ
− 6 Normal(0, 5)

5 42 1
1+eTµ

+ 18 Normal(0, 5)
6 7log(|Tµ|+ 0.001) + 13 Normal(0, 4)
7 7Tµ + 16 Normal(0, 1)
8 7Tµ + 16 20 · Beta(α = 2, β = 8)

Table 4: The propensity functions per scenario for Setup 1

Now, given both the covariates X and the assigned treatment T the outcome function is defined as a
random variable sampled from a normal distribution with a variance of 5, with the mean a function
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dependent on both the treatment and the covariates:

Y ∼ −1− (2X1 + 2X2 + 3X3
3 − 20X4 − 2X5 + 20X6)

− 0.1T (1−X1 +X4 +X5 +X2
3 ) + 0.132|T |3sin(X4) + Normal(0, 5)

B.2 SETUP 2

Setup 2 tests the different treatment assignment distributions in the two different scenarios, which
is the same experimental setup as proposed by Schröder et al. (2024). The covariates are sampled
from a discrete uniform distribution. The treatment is sampled from the treatment assignment
distributions shown in Table 5. The outcome function is sampled from a normal distribution with a
mean determined by a sinus function based on both X and T :

X ∼ Uniform[1, 4] (Integer)
Y ∼ sin ((0.05π)(T −X)) + Normal(0, 0.1)

Scenario Treatment Assignment Distribution

1 T ∼ p · Uniform(0, 5X) + (1− p)Uniform(5X, 40), p ∼ Bernoulli(0.3)
2 T ∼ Normal(5X, 10)

Table 5: The propensity functions per scenario for Setup 2

C PROPENSITY DISTRIBUTION ESTIMATION
::::::::::::
ALGORITHM

:::::::::::::::
PSEUDOCODE

:::::
AND

::::::::::::::::::
COMPUTATIONAL

::::::::::
ANALYSIS

C.1
:::::::::::::::::
PROPENSITY-BASED

::::::::::
WEIGHTED

::::::::::::
CONFORMAL

:::::::::::
PREDICTION

:::::::::::::
PSEUDOCODE

::::::::
Algorithm

::
1
:::::::
presents

:::
the

:::
fit

::::::::
procedure

:::
for

:::::
both

:::
the

:::::
Local

::::
and

:::
the

::::::
Global

:::::::::
Propensity

:::::
WCP,

:::::
using

::::
their

::::::::
respective

:::::::
weights

::::
wt

l,p::::
and

::::
wt

g,p:::
for

:::
an

:::::
array

::
of

::::::::
treatment

::::::
values

:::
we

::::
want

:::
to

:::::::
evaluate

:::::
teval.

:::
The

::::::::::
pseudocode

::
is

::::::
written

:::
for

:::
any

::::::
Kernel,

::::::::
although

::
in

:::
the

::::::::::
experiments,

:::
we

::::
used

:::
the

::::::::
Gaussian

:::::
kernel

::
as

::::::::
presented

::
in

:::
the

::::::::::::
methodology

:::::::
section.

::::
The

::::::::::
pseudocode

::::::::
assumes

:::::
either

:
a
::::::::

pre-fitted
::::::::::

propensity
:::::::
estimator

::̂
π
::
or

::::::
having

::::::
access

::
to

::
an

::::::
Oracle

::::::::
estimator.

::::
The

::::::
method

:::::
used

::
to

::
fit

:::
the

:::::::::
propensity

::::::::
estimator

::
in

:::
this

:::::
paper

::
is

::::::::
presented

::
in

:::::::::
Appendix

::::
C.2.

:::::::::
Algorithm

:
2
::::
then

:::::::
presents

::::
how

:::
the

:::::::::
prediction

:::::::
intervals

::
for

::
a
:::::::::::

significance
::::
level

:::
α

:::
are

:::::::::
generated

:::::
using

::::
both

::::::
Local

::::
and

::::::
Global

:::::::::
Propensity

::::::
WCP

::
as

:::
the

:::::::::::::
implementation

::
is

:::
the

::::
same

:::
for

:::::
both

:::::::
methods.

:::::
The

:::
get

:
_

::::::
interval

:::::::
function

::
is

:::
the

:::::::::
prediction

::::::
interval

:::::::
function

::
of

:::
the

:::::
WCP

:::::::
method.
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Algorithm 1
::
Fit

:::
and

::::::::
calibrate

:::::
Local

::
or

::::::
Global

:::::::::
Propensity

:::::
WCP

1:
:::::
Input:

:::::::
Training

:::::::::
covariates

::::
Xtr,

:::::::::
calibration

:::::::::
covariates

:::::
Xcal,:::::::

training
:::::::
outcome

::::
ytr,

:::::::::
calibration

:::::::
outcome

:::::
ycal, :::::::

training
:::::::::
treatment

::::::
values

::::
Ttr,

::::::::::
calibration

::::::::
treatment

::::::
values

:::::
Tcal,:::::::::

calibrated
::::::::::::::::
PropensityEstimator

::
or

::::::
oracle

::̂
π,

::
to

:::::::
evaluate

:::::::::
treatments

::
in

::::
array

:::::
teval,:::::

kernel
:::
K,

:::::::
CADRF

::::::
learner

:̂
µ
:

2:
::
Fit

:::::::
CADRF

::̂
µ
:::
on

::::::::
(Xtr, Ttr)::

to
::::::
predict

:::
ytr

3:
::::::::
Calculate

::::::::::
propensities

:::::::::::::
πcal = π̂(Xcal)

4: if Global Propensity WCP then
5:

::::::::
Calculate

:::::::
weights:

::::::::::::
wg,p = 1/πcal

6:
:::::
Define

:::::::
WCP

::
as

:::::::::
Weighted

::::::::::
Conformal

:::::::::
Prediction

::::
with

:::::::
learner

::̂
µ
::::

and
:::::::

weights
:::::
wg,p:::

on
::::::::::::::
(Xcal, Tcal, ycal)

7:
:::::::
Calibrate

::::::
WCP

:

8: else if Local Propensity WCP then
9: for t in teval do

10:
::::::::
Calculate

:::::::
weights:

:::::::::::::::::::
wt

l,p = K(Tcal, t)/πcal

11:
:::::
Define

:::::::
WCPt::

as
:::::::::

Weighted
:::::::::
Conformal

:::::::::
Prediction

:::::
with

::::::
learner

::̂
µ
::::

and
:::::::
weights

::::
wt

l,p:::
on

::::::::::::::
(Xcal, Tcal, ycal)

12:
:::::::
Calibrate

:::::::
WCPt

13: end for
14: end if
15:

:::::::
Output:

:::::::::
Calibrated

::::::
models

::::::::::::::::
{WCPt : t ∈ teval}:::

for
:::::
Local

:::::::::
Propensity

:::::
WCP

::
or

:::::
WCP

:::
for

::::::
Global

:::::::::
Propensity

::::
WCP

:

Algorithm 2
::::::
Provide

::::::::::
uncertainty

:::::::
estimates

::::::
Local

:::
and

::::::
Global

:::::::::
Propensity

:::::
WCP

1:
:::::
Input:

:::
Test

:::::::
sample

:::::
Xn+1,

:::::::::
calibrated

:::::::::::::::::
PropensityEstimator

::
or

:::::
oracle

::̂
π,

::
k
::
to

:::::::
evaluate

:::::::::
treatments

::
in

::::
array

:::::
teval,:::::

kernel
:::
K,

:::::::
CADRF

:::::::
learner

::̂
µ,

::::::::
calibrated

::::::
WCPt:::

for
:::
all

:
t
::
in

:::::
teval,::::::::::

significance
::
α

2:
::::::::
Calculate

:::::::::::::::
πn+1 = π̂(Xn+1)

3:
::::::::
Calculate

::::::
weights

::::::::::
w = 1/πcal

4: for t in teval do
5:

::::::
Predict

::::::::
outcome:

:::::::::
µ̂(Xn+1, t):

6:
:::::
Obtain

:::::::::
prediction

:::::::
interval:

:::::::::::::::::::::::::::::::::::::::
Ĉt

n+1 = get_interval(WCPt, (Xn+1, t), α, w
t)

7: end for
8:

:::::::
Output:

::::::::
Prediction

:::::::
intervals

:::::::::::::::::::

[
Ĉ

teval,1
n+1,α, . . . , Ĉ

teval,k
n+1,α

]

C.2
:::::::::::
PROPENSITY

:::::::::::::
DISTRIBUTION

:::::::::::
ESTIMATION

:::::::::::::
PSEUDOCODE

Algorithm 3 presents the propensity distribution estimation using Conformal Predictive Systems
(CPS). This results in a propensity distribution array πarr with the calculated propensity density for
each sample in Xcal. exp is the exponential function and len(X) denotes the length of the array X .

Algorithm 3 Estimating the Propensity Distribution

1: Input: training
:::::::
Training covariates Xtr, calibration covariates Xcal, training treatment values

Ttr, calibration treatment values Tcal, Kernel Density Estimator KD
2: fit

::
Fit

:
propensity learner on Xtr to predict Ttr

3: calibrate CPS on
:::::::
Calibrate

::::
CPS

:::::
using

:
Xcal and Tcal

4: Define
:::::::
Initialize πarr with

:
as

:::
an

::::
array

:::
of length len(Xcal)

5: for i = 1 to len(Xcal) do
6: fit KD(

::
Fit

::::
KD

::
on

:
CPS(Xcal,i))

7:
:::
Set πarr[i] = exp(KD(Tcal,i))

8: end for
9: return πarr:::::::

Output:
:::::::::
Propensity

::::
array

:::
πarr:
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C.3
:::::::::::::::
COMPUTATIONAL

::::::::::
OVERHEAD

:::
The

::::::::::::
computational

:::::::::
overhead

::
is

:::::::
greatest

:::
for

::::::
Local

:::::::::
Propensity

:::::
WCP

::::
due

:::
to

:::
the

:::::::::
evaluation

:::::
over

:::::::
multiple

::::::::
treatment

::::::
values,

::
so

:::
we

::::
will

:::::
focus

::
on

::::
this

:::::::
version.

:::
Let

:::
m

:::::
denote

:::
the

:::::::
number

::
of

::::::::
treatment

:::::
values

::
in

:::
the

:::::::::
evaluation

:::::
array

::::
teval.:::

In
:::
this

:::::
case,

:::
the

::::::::::::
computational

:::::::
overhead

:::::::::
compared

::
to

:::::::
standard

:::::::
weighted

:::::::::
conformal

:::::::::
prediction

:::::::
(WCP)

:::::
scales

:::::::
linearly

:::::
with

:::
the

:::::::
number

::
of

:::::::::
treatment

::::::
values,

::::
i.e.,

:::::::::::
O(m · WCP),

::::::
where

::::
WCP

:::::
refers

::
to
:::
the

::::
cost

::
of

:::::::
standard

::::::::
weighted

:::::::::
conformal

:::::::::
prediction.

::
In

::::::::
addition,

:::::::::
calculating

:::
the

::::::::::
propensities

:::
πcal:::

on
::
the

:::::::::
calibration

:::
set

:::::
incurs

:::
an

::::::::
additional

::::::::::::
computational

::::
cost,

:::::
which

:::::::
depends

::
on

:::
the

:::
size

:::
of

:::
the

:::::::::
calibration

::
set

::::
and

::
the

:::::::
chosen

::::::::
propensity

:::::::::
estimator.

::::
This

::::
step

:::
can

::
be

::::
done

::::
once

::::::::::
beforehand,

::
so

::
it

::::
does

:::
not

::::
need

::
to

:::
be

:::::::
repeated

::::::
during

::::
each

:::::::::
evaluation.

:

:
If
:::
the

::::::::
treatment

::::::
values

::
in

::::
teval:::

are
::::::
known

:::
and

:::::
fixed,

:::
the

::::::::::
calibration

::
for

:::::
each

::::::::
treatment

:::::
value

:::
can

::
be

::::::::::
precomputed

::::
and

::::::
stored,

:::::::
resulting

:::
in

:::::
saved

::::::
WCPt:::::::

models.
::::
This

::::::
means

::::
that,

::::::
during

::::::::
inference,

:::
the

:::::::::::
computational

::::::::
overhead

::
is
:::::::
reduced

::
to

::::::::::
calculating

:::
the

:::::::::
propensity

:::
for

:
a
::::::
single

:::
new

:::::::
sample

::::
once

:::
and

:::::::::
performing

::
m

::::::::::
predictions

::::
using

:::
the

::::::::
CADRF,

:::::::
followed

:::
by

::::::::
retrieving

:::
the

::::::::
prediction

::::::::
intervals

::
for

::::
each

::::::::
treatment

::::
value

:::::
using

:::
the

::::::::::::
pre-calibrated

:::::::
WCPt. :::::

Thus,
:::
the

::::::::
inference

::::::::
overhead

:
is
::::::
O(m)

:::
for

:
a
:::::
single

::::::::
inference,

:::::::::
consisting

::
of

::
a

:::::::::
propensity

:::::::::
calculation

::::
and

::
m

::::::::::
predictions

:::
and

:::::::
interval

:::::::::
retrievals.

::
In

:::
the

:::
case

:::
of

:
a
::::::::
non-static

::
or

::::::::::
on-demand

::::
teval,:::

the
:::::::
overhead

::
is
:::::::
additive

::
as

:::
we

::::
need

:::::::::::
O(mẆCP )

:::::::::
calibrations

:::
and

::::::
directly

:::::::::
afterward

:::::
O(m)

:::
for

:::
the

::::::::
inference.

:

:
If
:::::
there

::
is

::
no

::::::
Oracle

:::::::::
propensity

::::::::
estimator,

:::
we

::::
need

::
to

::
fit

:::
the

:::::::::
propensity

::::::::
estimator,

::::::
which,

::
in

:::
our

:::::
case,

:::
also

::::::::
involves

:::::
fitting

:::
the

::::::
Kernel

:::::::
Density

:::::::::
Estimator

::::::
(KDE)

:::
for

::::
each

:::::::
sample

::
in

:::::
Xcal, ::

as
:::::::
detailed

::
in

::::::::
Algorithm

::
3.
:::::

This
:::::::::
introduces

::
an

:::::
extra

::::
layer

::
of

::::::::::::
computational

:::::::::
overhead,

:::::
which

:::::::
depends

:::
on

:::
the

:::
size

::
of

:::
the

:::::::::
calibration

:::
set

:::
and

:::
the

::::::
output

::
of

:::
the

:::::
CPS,

:::::
which

::
is

::
an

::::::::
empirical

::::::::::
distribution

::
of

:::
the

::::::::
treatment

:::::
values

:::
for

::::
xcal.::::

The
:::::
KDE

:::::
fitting

::::
step

:::::
needs

::
to

::
be

:::::::::
performed

:::
for

::::
each

:::::::
element

::
of

:::::
Xcal, :::::::

resulting
::
in

:
a

:::::::::
complexity

::
of

:::::::::::::::::
O(len(Xcal) · KDE),

::::::
where

::::::::
len(Xcal) ::

is
:::
the

::::::
number

::
of

:::::::::
calibration

:::::::
samples

::::
and

::::
KDE

::::::
denotes

:::
the

::::
cost

::
of

:::::
fitting

:::
the

:::::
KDE.

:

D
::::::::::::::
EXTENSIONS

:::::
AND

:::::::::::::::
APPLICATIONS

::::
OF

:::::::::::
WEIGHTED

::::::::::::::
CONFORMAL

:::::::::::::::::
DOSE-RESPONSE

:::::::::
CURVES

::::
Here,

::::
we

::::::
discuss

::::::::
possible

:::::::::
extensions

::::
and

::::
how

:::
the

::::::::
proposed

:::::::
method

::::
can

:::
be

::::::
applied

:::
to

::::::
various

::::::::::
applications.

:

D.1
:::::::::::
EXTENSIONS

:::
The

:::::::
paper’s

::::::
current

::::::
setup

:::::::
assumes

:::
no

::::::::
covariate

:::::
shift

:::
in

:::
the

:::::::
features

:::
X

::::::::
between

:::
the

::::::::
training,

:::::::::
calibration,

::::
and

::::
test

::::
set,

::::
i.e.,

::::::::::
PX = P̃X ,

:::
to

::::::::
simplify

:::
the

:::::::::
derivation

:::
of

::::
the

::::::::::::::
propensity-based

:::::::
weights.

:::::::::
However,

::
in

:::::::::
real-world

:::::::::::
applications,

::::::::
covariate

:::::
shifts

:::
are

::::::
much

:::::
more

:::::::
common

::::
and

:::
can

::::::
hamper

:::
the

:::::::::
coverage

::::::::
guarantee

:::
of

:::::::::
conformal

::::::::::
prediction,

::::
and

::::
also

::::
thus

::::
our

::::::::
proposed

:::::::
method

:::::::::::::::::::
(Tibshirani et al. (2019)

:
).
:::

If
:::
we

::::::
assume

:::::::::
PX ̸= P̃X::

in
::::::::

equation
:::
15,

:::
we

:::::::
observe

::::
that

:::
this

::::::
results

::
in

:::::
adding

::
a
:::::::::::
multiplicative

::::
term

::::
that

::::::::
represents

:::
the

:::::::::
likelihood

::::
term

:::
for

:::
the

:::::::
covariate

::::
shift

:::
in

::
X .

:::
As

:::::
such,

::::
both

:::
wt

l,p::::
and

::::
wg,p :::

can
::
be

:::::
easily

::::::::
adjusted

::
to

::::
cover

::
a
:::::::
covariate

::::
shift

::
in
:::
the

::::
test

::
set

::
if

:::
the

:::::::
covariate

::::
shift

:
is
::::::
known

:::
or

:::
can

::
be

:::::::::
calculated,

:::::::::
analogous

::
to

:::::::::::::::::::
Tibshirani et al. (2019)

:
,
:::::::
resulting

::
in
:::
the

:::::::::
following

::::
new

:::::::
weights:

wg,p(Xi, Ti) ∝
1[tL,tU ](Ti)

π(Ti|Xi)

dP̃X

dP̃X
:::::::::::::::::::::::::::

(25)

:::
and

wt
l,p(Xi, Ti) ∝

1[tL,tU ](Ti)K
(
Ti−t
h

)
π(Ti|Xi)

dP̃X

dP̃X
::::::::::::::::::::::::::::::::::

(26)

::::::::::
Furthermore,

::::::::
because

:::
the

:::::::
method

:::
is

::::
built

::::::
using

:::::::::
conformal

:::::::::
prediction,

::::
the

::::::
whole

::::::::
approach

::
is

:::::::::::::
model-agnostic.

:::
As

:::::
such

:::
any

:::::::
possible

::::::::
CADRF

:::::
model

::::
that

::::::::
provides

:
a
::::::::::::

dose-response
:::::

curve
:::::

given
::::::
features

::::
and

::::::::
treatment

:::
can

::
be

:::::
used

:::
and

::::
thus

::
is

:::
not

::::::
limited

::
to

:::
the

::::::::
presented

:::::::
CADRF

::::::::
approach

::
in

:::
this

:::::
paper.
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D.2
:::::::::::::
APPLICATIONS

:::
The

::::::
classic

::::::::::
application

::
is

::
in

::::
drug

::::::
dosing,

::::::
where

:::
the

::::
goal

::
is

::
to

::::::::
construct

::
a

::::::::::::
dose-response

:::::
curve

:::
for

::::
every

:::::::::
individual

::
to

::::::::
facilitate

::::::::::::::
decision-making

::::
when

:::::::::::
determining

::
an

:::::::
optimal

::::
dose

:::
for

:
a
::::

new
:::::::
patient.

::
In

:
a
:::::::
clinical

::::
trial,

:::::::::
especially

:::::
phase

:
1
::::

and
:::::
phase

::
2

:::::
where

:::
the

:::::::
optimal

::::
dose

::
is
:::::
being

::::::::::
determined,

:::
the

:::::::
weighted

:::::::::
conformal

::::::::::::
dose-response

:::::
curve

::::
can

::::
also

:::
act

::
as

::
a

:::
tool

:::
to

::::::
analyse

:::
the

::::::
results

:::::::::::
individually

::::
while

::::::
having

:::
an

:::::::
estimate

::
of

:::
the

::::::::::
uncertainty

:::::::
estimates

::::
that

::
is

:::
not

:::::
biased

:::
by

:::
the

::::::::
treatment

:::::::::
assignment

::::::::::
distribution.

::
It
:::::::::

quantifies
::::::::::
uncertainty

:::
for

::::::::
individual

:::::::::::
predictions,

::::::::::::
compensating

:::
for

:::
any

::::::::
treatment

:::::::::
distribution

:::::
bias.

::::::::::::
Furthermore,

:::
it

:::::::::
highlights

:::::
areas

::::
with

::::::::::
insufficient

::::
data

:::::::
support

:::::
with

::::::
infinite

::::::::
prediction

::::::::
intervals,

:::::::
guiding

::::::::
decisions

:::::
about

:::::::
whether

::::::
further

:::::
trials

::
or

:::::::::
treatments

:::
are

:::::::::
necessary

:::
for

::::::
specific

::::::
patient

:::::::::
subgroups.

:::
In

:::
the

::::::
regions

::::::
where

::::
there

::
is

:::::::
support,

:::
the

:::::
model

::::::::::
predictions

:::::::
provide

::
the

:::::::
CADRF

:::::::
estimate

:::
for

:::
this

::::::
patient

:::
and

:::
the

::::::::::
uncertainty

::::::
regions

:::::
show

::::
how

:::
the

:::::::
outcome

::::::
would

::::
vary.

:

::::::::
Treatment

::
is

:::
not

:::::::
limited

::
to

:::::::::
healthcare.

:::::::::
Treatment

:::
can

:::
be

::::::::::
generalized

::
as

:::
any

:::::::::::
intervention

::
or

:::::
action

:::::
which

:::::
opens

:::::::::::
applications

::
in

:::::
other

::::::::
domains.

::::
For

::::::::
example,

::
in
:::::::::

predictive
:::::::::::
maintenance,

::::
the

:::::
model

:::
can

:::::::
optimize

::::::::
decisions

:::
by

:::::::::
estimating

::
the

:::::
effect

:::
of

::::::::
operating

:::::::
pressure

::
on

:::
the

:::::::::
remaining

:::::
useful

:::
life

::
of

::::::::
equipment

::::
like

::::::
valves.

::::::::
Similarly,

::
in

:::::
sales,

::
it

:::
can

::::
help

::::::::
determine

:::
the

::::
ideal

::::::::
discount

::
for

:::::::
specific

:::::
clients

::
to

::::::::
maximize

:::
the

::::
sold

:::::
units,

::::::::::::
demonstrating

::::::::
flexibility

::
in

::::::
various

::::::::
domains.

:

D.3
:::::::::::::::
EXPLAINABILITY

:::
The

::::::::::
application

:::::::
potential

:::
is

:::
also

::::
not

::::::
limited

::
to
::::::

actual
:::::::::
treatments

::::
and

:::::::::::
interventions.

:::::
The

::::::
method

:::
can

::::
also

:::
be

:::::
used

:::
for

:::
the

::::::::::::
explainability

:::
of

::
a
:::::::

model.
:::::::::

Suppose
:::
we

:::::
fitted

::
a
:::::::::

regression
:::::::

model,
::::::::
regressing

::::::::::::::::
X = [X1, ..., Xm]

::
on

:::
Y .

:::
X

::
is

::::::::
observed

:::::
data;

::::
thus,

::::
any

::::::
feature

:::
can

:::
be

::::::::::
confounded

:::
or

::::::
biased.

:::
By

::::::::::
considering

::
a
::::::
feature

:::
Xi:::

as
:
a
:::::::::

treatment
::
to

::::::::::
"intervene"

::
in

::
a

::::::
model,

::::
this

::::::
method

::::
then

:::::::
provides

:::::::::
uncertainty

::::::::::::
quantification

:::
on

:
a
::::::
Ceteris

:::::::
Paribus

:::::
curve

::
of

::
a
:::::
model

:::
in

:
a
::::::
similar

:::::::
manner

::
to

:
a

:::::::::::
dose-response

:::::
curve

:

2
:
.
::::
This

:::::
curve

:::
can

::::
then

:::
give

::::::::
unbiased

:::::::::
uncertainty

::::::::
estimates

::
of

:::
the

:::::
"true"

:::::::
outcome

::
for

:::
an

::::::::
individual

::::::
sample

::
if
::::
that

::::::
sample

:::::
would

:::::
have

:::
had

:::::
other

:::::
values

:::
for

:::
this

::::::::
particular

:::::::
feature.

:

::
An

::::::::
example

::
is

::::::
shown

::
in

::::::
Figure

::
3

:::::
using

:::::
Local

:::::::::
Propensity

:::::
WCP.

:::::
This

:::::::
example

::
is

::::::::
generated

:::::
using

::
the

:::::::
Boston

:::::::
Housing

::::
data

:::::::
available

:::::
native

:::
in

::::::
sklearn

:::::::::::::::::::
(Pedregosa et al., 2011)

:
,
::::
split

:::
into

:
a
:::::::
training

:::
and

:::::::::
calibration

::
set

:::::
using

::
a

:::::
75/25

:::::
split.

::
A

::::::::::::::::
CatBoostRegressor

:::::
using

:::
300

::::::::
iterations

::
is

:::::
fitted

::
on

::
a
::::::
training

:::
set,

:::
and

::
a

::::::::
propensity

::::::::::::::::
CatBoostRegressor

::::
with

:::
the

:::::
same

:::::::
number

::
of

::::::::
iterations

::
is

::::
fitted

:::
on

:::
the

::::::
training

:::
set.

::
A
:::::

CPS
::
is

::::
used

::::
and

::::::::
calibrated

:::
on

:::
the

::::::::::
calibration

:::
set

:::
for

:::
the

:::::::::
propensity

::::::::::
distribution

::::::::
estimate,

::::::
similar

::
to

:::
the

:::::::::::
experimental

::::
setup

:::
in

:::
this

:::::
paper.

::::
No

:::::::::::::
hyperparameter

::::::
tuning

:
is
:::::::

applied
:::
for

:::::::::
simplicity,

::
so

::::
note

:::
that

:::
the

::::::::
epistemic

::::::::::
uncertainty

:::::
could

::
be

::::::
further

:::::::
reduced.

::::
The

::::::
chosen

::::::
feature

:::
for

:::::::::
generating

:
a

:::::
ceteris

:::::::
paribus

:::::
curve

:
is
::::::::
MedInc,

:::
the

::::::
median

:::::::
income,

::
an

:::::::::
important

::::::
variable

:::
in

::::::::
predicting

:::
the

::::::
median

:::::
house

:::::
value

::
in

:::
this

:::::::
dataset.

::::
The

:::::
figure

::
is

:::
for

::
a

:::::
single

::::
data

::::::
sample

::::::
where

::
all

:::::
other

::::::::
variables

::
of

:::
this

::::::
sample

:::
are

::::
kept

:::::::
constant

::::::
except

:::
for

::::
our

::::::::::
"treatment"

:::::::
MedInc.

:::
In

::::::
Figure

::
3,

::
it
::
is

::::::::
apparent

:::
that

:::
the

::::::::
prediction

::::::::
intervals

::
go

:::
to

::::::
infinity

:::
for

:::::::
MedInc

::::::
values

::::::
below

:
1
::::
and

:::::
above

::::
6.5.

:::::
This

::::::::
indicates

:::
that

::::
there

::
is

::::::::::
insufficient

::::::
overlap

:::
to

:::::::
evaluate

::::
this

::::::
sample

:::
for

:::::
these

::::::
values

::
of

::::::::
MedInc,

::::::
clearly

:::::::
showing

:
a
::::
bias

::
in

:::
the

::::
data

::::::::::
distribution

::
of

::::::::
MedInc,

:::::
given

:::
the

:::::
other

:::::::
features.

:::::::::::::
Consequently,

:::
the

:::::::::
predictions

::
for

::
a
::::::
sample

:::::
with

::::
these

:::::::
features

::::
but

::::
with

::
a

:::::::
MedInc

::
of,

:::::
e.g.,

:
8
::::::

cannot
:::

be
::::::
trusted

:::
as

:::
the

:::::
model

::
is

:::::
simply

::::::
doing

::
an

:::::::::::
interpolation

::
in

::
an

::::::::::::
out-of-bounds

:::::::
region.

::
In

:::
the

:::::::
regions

::::
with

:::::::
support,

:::
i.e.,

::::::
around

::::::::::::::::::
1.5 < MedInc < 6.5,

:::
we

:::
see

::::
that

:::
the

::::::
model

:::::
shows

::
a

:::::
linear

:::::::
relation

::::
with

:::
the

::::::
median

::::::
house

::::
value

::::
with

::::::::
relatively

::::
small

::::::::::
uncertainty

:::::::
bounds.

::::
This

:::::::
analysis

:::
can

:::
be

::::
done

:::
for

::::
any

::::
other

:::::::::
regression

:::::
model

::
in

:
a
:::::::
likewise

:::::::
manner.

:

E COMPARISON TO SCHRÖDER ET AL.

In comparison to the work of Schröder et al. (2024), our approach differs in several key aspects. First,
the aim of their work is different from ours. The aim of Schröder et al. (2024) is to provide prediction
intervals for the causal effect of treatment interventions where the treatment value is continuous. In
our work, the goal is to provide prediction intervals for dose-response models instead of treatment
interventions, answering a different causal question. However, adjusting our work to interventions

2
::
A

:::::
Ceteris

::::::
Paribus

::::
curve

::::::::
visualizes

:
a
::::::
model’s

:::::::::
predictions

::::
while

::::::
keeping

::
all

::::::
features

:::::::
constant

:::::
except

::
for

:::
one

::::::::
explanatory

:::::::
variable.

::::
The

:::::
x-axis

::::::::
represents

::
the

:::::::::
explanatory

:::::::
variable,

:::
and

:::
the

:::::
y-axis

:::::
shows

:::
the

::::::::::
corresponding

::::::::
predictions.
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Figure 3:
::
A

::::::
Ceteris

::::::
Paribus

:::::
curve

:::::::::
generated

::::
with

:::::
Local

:::::::::
Propensity

:::::
WCP.

is possible; In the case of soft interventions, the target distribution propensity changes and thus
substituting the current uniform distribution in the weights w(x) with the new target propensity
distribution covers the soft intervention case. For hard interventions, this is an evaluation for a single
treatment value which is similar to the local propensity method, but for only that target treatment
value. Secondly, their approach differs in their conformal prediction approach where they want to
provide correct prediction intervals for a single sample, single α value, and single treatment using
a mathematical solver based on the proposed weighted conformal prediction by Gibbs & Candes
(2021). Thirdly, they frame the propensity or covariate shift differently as either a Dirac distribution
for a hard intervention, or a different propensity distribution in the case of a soft intervention. This
is a direct consequence of their aim to quantify the causal effect of a single intervention, compared
to providing a dose-response model in our case which requires a uniform assumption. Fourthly, the
experimental setup of Schröder et al. (2024) does not address the impact of a treatment covariate
shift as shown by Figure 5 and Figure 6 where even standard conformal prediction (CP) achieves
the required empirical coverage. Lastly, we also approach the propensity estimation in cases with
unknown propensity as an uncertainty quantification problem and tackle it with conformal predictive
systems. In the end, our approach offers a different solution on continuous treatment effects through
dose-response modelling.

F ADDITIONAL RESULTS
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Figure 4: Barplot of the mean coverage calculated over 40 treatment values in 50 experiments for
setup 3 scenario 2. Black dotted line is the ideal coverage.
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Figure 5: Barplot of the mean coverage calculated over 40 treatment values in 50 experiments for
setup 2 scenario 1. Black dotted line is the ideal coverage.
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Figure 6: Barplot of the mean coverage calculated over 40 treatment values in 50 experiments for
setup 2 scenario 2. Black dotted line is the ideal coverage.
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Figure 7: Barplot of the mean coverage calculated over 40 treatment values in 50 experiments for
setup 1 scenario 1. Black dotted line is the ideal coverage.
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Figure 8: Barplot of the mean coverage calculated over 40 treatment values in 50 experiments for
setup 1 scenario 2. Black dotted line is the ideal coverage.
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(b) α = 0.05

Figure 9: Barplot of the mean coverage calculated over 40 treatment values in 50 experiments for
setup 1 scenario 3. Black dotted line is the ideal coverage.
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Figure 10: Barplot of the mean coverage calculated over 40 treatment values in 50 experiments for
setup 1 scenario 4. Black dotted line is the ideal coverage.
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Figure 11: Barplot of the mean coverage calculated over 40 treatment values in 50 experiments for
setup 1 scenario 5. Black dotted line is the ideal coverage.
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Figure 12: Barplot of the mean coverage calculated over 40 treatment values in 50 experiments for
setup 1 scenario 6. Black dotted line is the ideal coverage.
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Figure 13: Barplot of the mean coverage calculated over 40 treatment values in 50 experiments for
setup 1 scenario 7. Black dotted line is the ideal coverage.
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Figure 14: Barplot of the mean coverage calculated over 40 treatment values in 50 experiments for
setup 1 scenario 8. Black dotted line is the ideal coverage.
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Figure 15:
::::
Plot

::
of

::::
the

:::::::
CADRF

:::::::
RMSE

::::
with

:::
±

::::::
RMSE

::::::::
standard

::::::::
deviation

::::::
across

:::
all

:::::::
repeated

::::::::::
experiments

:::
for

:::
the

::::::::::
considered

::::::::
treatment

::::::
values

:::
for

:::::
setup

::
2

:::
and

:::::
setup

::
3.
::::

As
::::
All

:::::
WCP

:::
and

:::
CP

:::::::
methods

:::
use

:::
the

::::
same

:::::
fitted

::::
base

::::::::
CatBoost

:::::::
CADRF

::::::
learner

::::
they

:::
are

::::::::::
represented

::
by

::::
"CP

:::
and

::::::
WCP".
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Figure 16:
::::
Plot

::
of

::::
the

:::::::
CADRF

:::::::
RMSE

::::
with

:::
±

::::::
RMSE

::::::::
standard

::::::::
deviation

::::::
across

:::
all

:::::::
repeated

::::::::::
experiments

:::
for

:::
the

:::::::::
considered

:::::::::
treatment

:::::
values

:::
for

:::::
setup

:::
1,

::::::::
scenarios

::
1

::
to

::
4.

::::
As

:::
All

:::::
WCP

:::
and

::
CP

::::::::
methods

:::
use

:::
the

:::::
same

:::::
fitted

::::
base

::::::::
CatBoost

::::::::
CADRF

::::::
learner

::::
they

:::
are

::::::::::
represented

:::
by

::::
"CP

:::
and

::::::
WCP".
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Figure 17:
::::
Plot

::
of

::::
the

:::::::
CADRF

:::::::
RMSE

::::
with

:::
±

::::::
RMSE

::::::::
standard

::::::::
deviation

::::::
across

:::
all

:::::::
repeated

::::::::::
experiments

:::
for

:::
the

:::::::::
considered

:::::::::
treatment

:::::
values

:::
for

:::::
setup

:::
1,

::::::::
scenarios

::
5

::
to

::
8.

::::
As

:::
All

:::::
WCP

:::
and

::
CP

::::::::
methods

:::
use

:::
the

:::::
same

:::::
fitted

::::
base

::::::::
CatBoost

::::::::
CADRF

::::::
learner

::::
they

:::
are

::::::::::
represented

:::
by

::::
"CP

:::
and

::::::
WCP".
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