
DEFT: Efficient Fine-Tuning of Diffusion Models by
Learning the Generalised h-transform

Alexander Denker∗
University College London
a.denker@ucl.ac.uk

Francisco Vargas*
University of Cambridge
fav25@cam.ac.uk

Shreyas Padhy*
University of Cambridge
sp2058@cam.ac.uk

Kieran Didi*
University of Cambridge
ked48@cam.ac.uk

Simon Mathis*
University of Cambridge
svm34@cam.ac.uk

Vincent Dutordoir
University of Cambridge
vd309@cam.ac.uk

Riccardo Barbano
Atinary Technologies

rbarbano@atinary.com

Emile Mathieu
University of Cambridge
ebm32@cam.ac.uk

Urszula Julia Komorowska
University of Cambridge
ujk21@cam.ac.uk

Pietro Lio
University of Cambridge
pl219@cam.ac.uk

Abstract

Generative modelling paradigms based on denoising diffusion processes have
emerged as a leading candidate for conditional sampling in inverse problems. In
many real-world applications, we often have access to large, expensively trained
unconditional diffusion models, which we aim to exploit for improving conditional
sampling. Most recent approaches are motivated heuristically and lack a unify-
ing framework, obscuring connections between them. Further, they often suffer
from issues such as being very sensitive to hyperparameters, being expensive to
train or needing access to weights hidden behind a closed API. In this work, we
unify conditional training and sampling using the mathematically well-understood
Doob’s h-transform. This new perspective allows us to unify many existing meth-
ods under a common umbrella. Under this framework, we propose DEFT (Doob’s
h-transform Efficient FineTuning), a new approach for conditional generation that
simply fine-tunes a very small network to quickly learn the conditional h-transform,
while keeping the larger unconditional network unchanged. DEFT is much faster
than existing baselines while achieving state-of-the-art performance across a variety
of linear and non-linear benchmarks. On image reconstruction tasks, we achieve
speedups of up to 1.6×, while having the best perceptual quality on natural images
and reconstruction performance on medical images. Further, we also provide initial
experiments on protein motif scaffolding and outperform reconstruction guidance
methods.

1 Introduction

Denoising diffusion models are a powerful class of generative models where noise is gradually added
to data samples until they converge to pure noise. The time reversal of this noising process then

∗equal contributions

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

DEFT Reverse Diffusion

Figure 1: DEFT reverse diffusion setup. The pre-trained unconditional diffusion model sθt and the
fine-tuned h-transform hϕ

t are combined at every sampling step. We propose a special network to
parametrise the h-transform including the guidance term ∇x̂0

ln p(y|x̂0) as part of the architecture.
Here x̂0 denotes the unconditional denoised estimate given sθt (xt). During training, we only need
to fine-tune hϕ

t (usually 4-9% the size of sθt) using a small dataset of paired measurements, keeping
stθ fixed. During sampling, we do not need to backpropagate through either model, resulting in
speed-ups during evaluation.

allows noise to be transformed into samples. This process has been widely successful in generating
high-quality images [28] and has more recently shown promise in designing protein backbones
that have been validated in experimental protein design workflows [77]. Recently, there has been
much interest in conditioning the time reversal process, in order to generate samples that are subject
to an observed condition. Conditional sampling requires the posterior score ∇x ln pt(x|Y = y),
given some observation y. As diffusion models typically approximate the score of the underlying
distribution, i.e., sθ

∗

t (x) ≈ ∇x ln pt(x), a pre-trained diffusion model can be leveraged using Bayes’
theorem

∇x ln pt(x|Y = y) ≈ sθ
∗

t (x) +∇x ln pt(Y = y|x), (1)

to approximate the posterior score. The time-dependent likelihood ∇x ln pt(Y = y|x) is often
termed guidance due to its interpretation to guide the reverse process to the conditioned inputs, and is
unfortunately analytically intractable. To tackle this problem, several approximations for the guidance
have been proposed; see, for example, [12, 22, 29, 56, 65, 69] and further discussion in Appendix B.
Instead of relying on the decomposition (1), another line of work aims to learn the posterior score
directly [5, 27], which requires expensive training for new conditional sampling tasks, and access to
large amounts of paired data points.

In the setting of conditional generation with diffusion models, our primary goal is to leverage large
pre-trained foundation models which are prevalent in applications, but which typical front-end users
are not able to backpropagate through, making approaches like [12, 22] infeasible. This might be
due to their prohibitive computation times or because they lie behind an API preventing the usage of
autodiff frameworks.

In this work, we propose a unified framework for conditional generation using Doob’s h-transform, a
well-known result in the stochastic differential equations (SDE) literature [14, 55, 61, 78]. Under
this framework, we propose DEFT (Doob’s h-transform Efficient FineTuning), an algorithm that
estimates the time-dependent likelihood directly from data, i.e., h∗ = ∇x ln pt(Y = y|x), while
being able to leverage an existing pre-trained unconditional model. We learn the guidance term
(h-transform) efficiently using 1) smaller networks, and 2) a small training dataset of paired data
points and corresponding observations. Furthermore, through connections to stochastic control, we
propose a novel network architecture for general-purpose fine-tuning, which, in conjunction with our

2

proposed loss, achieves competitive results across a series of inverse problems in imaging and protein
design, while having a much lower computational cost.

2 Conditioning diffusions via the h-transform

In this section, we explore the formal mechanism to condition the boundary points of an SDE
mathematically, and connect it to existing methodologies for conditioning diffusions in generative
modelling. For a more rigorous background to denoising diffusion models, see Appendix A. Let us
first recap the score-based generative modelling framework of [68]; we start with a forward SDE,
which progressively transforms the target distribution P0 (e.g. P0 = pdata)

dXt = ft(Xt) dt+ σtdWt, X0 ∼ P0, (2)

with drift ft and diffusion σt. Under some regular assumptions, there exists a corresponding reverse
SDE with corresponding drift b̄t [2], that allows us to take samples from PT (typically N (0, I)) and
denoise them to generate samples from P0,

dXt =
(
ft(Xt)− σ2

t∇Xt
ln pt(Xt)

)
dt+ σtdWt, XT ∼ PT , (3)

where the time flows backwards, and b̄t = ft(Xt) − σ2
t∇Xt ln pt(Xt). The goal of conditional

sampling is to condition the reverse SDE on a particular observation, i.e., to produce samples that
satisfy constraints. For example, we might want to use (3) to generate samples where we already
know some dimensions of the sample (e.g. knowing some pixels of the image a-priori in image
inpainting). Doob’s h-transform [55, 14] provides a formal mechanism for conditioning an SDE to
hit an event at a given time. We will show that existing methods for conditional generative modelling
arise as approximate instances of this proposed framework. Formally, we have:
Proposition 2.1. (Doob’s h-transform [55]) Consider the reverse SDE in Eqn. (3). The conditioned
process Xt|X0 ∈ B is a solution of

dHt =
(
bt(Ht)− σ2

t ∇Ht
ln p0|t(X0 ∈ B|Ht)

)
dt+ σtdWt, HT ∼ PT , (4)

with a backward drift bt(Ht) = ft(Ht) − σ2
t∇Ht

ln pt(Ht), such that Law (Hs|Ht) =
ps|t,0(xs|xt,x0 ∈ B) and P(X0 ∈ B) = 1.

Note, that we will refer to the conditional process with Ht and to the unconditional process with Xt.
Doob’s h-transform shows that by conditioning a diffusion process to hit a particular event X0 ∈ B
at a boundary time, the resulting conditional process is itself an SDE with an additional drift term
(shown in the blue box above). Furthermore, the resulting SDE will hit the specified event within a
finite time T . The function h(t,Ht) ≜ P 0|t(X0 ∈ B |Ht) is referred to as the h-transform [55, 14].
See also Appendix C.3 for a discussion about the connection to reconstruction guidance methods.

Rather than conditioning an SDE on a deterministic event, one is often interested in a posterior arising
from noisy observations (e.g. noisy inverse problems)

Y = noisy(A(X0)), X0 ∼ pdata, (5)

where A is a forward operator, “noisy” describes a noise process and unlike the classical h-transform,
we are not enforcing a deterministic condition such as A(X0) = Y . We typically assume we can
evaluate and sample from the likelihood p(y|X = x0). Our goal is to sample from the posterior
p(x0|Y = y) = p(y|x0)pdata(x0)/p(y). Sampling from the posterior p(x0|Y = y) can be
achieved by a generalisation of the h-transform that build on results in [75], given as follows:

Proposition 2.2. (Generalised h-transform) Given the following backwards SDE with marginals pt

dXt = bt(Xt) dt+ σt dWt, XT ∼ PT , (6)

then it follows that the backward SDE

HT ∼ Qft
T [p(x0|y)] =

∫
pT |0(x|x0)p(x0|y)dx0

dHt =
(
bt(Ht)− σ2

t ∇Ht
ln py|t(Y = y|Ht)

)
dt+ σt dWt, (7)

3

satisfies Law (H0) = p(x0|Y = y) with py|t(Y = y|·) =
∫
p(Y = y|x0)p0|t(x0|·)dx0. We

recover guidance based diffusions via bt(Ht) = ft(Ht)− σ2
t∇Ht

ln pt(Ht).

Here Qft
T [π(x0)] =

∫
pT |0(x|x0)π(x0)dx0 is the transition operator of the forward process. Note,

that the initial distribution Qft
T [p(x0|y)] of the controlled SDE differs from the unconditional SDE.

However, in Proposition G.2 we show that for the VP-SDE the difference between them gets
exponentially small for increasing T . To summarise, the above result gives a generalisation of the
h-transform that allows sampling from posteriors; notice that it recovers the traditional h-transform
in the no-noise setting. Whilst this more general formulation of the h-transform has been explored in
unconditional generative modelling [78], this is the first work to cast conditional generative modelling
in this light. We refer to the term in blue as the generalised h-transform henceforth.

Proposition 2.2 provides theoretical backing to methodologies such as DPS [12] or ΠGDM [65],
in which the reverse SDE (7) is used to solve noisy inverse problems. For a careful derivation of
Proposition 2.2 see Appendix D. While prior works have explored using Bayes’ rule to decompose the
conditional score, we provide rigorous arguments for intermediate steps, and carefully formalise the
connection between conditional generative modelling and the h-transform, providing a concise result.
This framework is flexible enough to also encompass prior work on conditional score matching, see
e.g., [5, 27], and the discussion Appendix H.

3 Learning the generalised h-transform

Prior works either learn the posterior score from scratch, see e.g. [5, 27], or use approximations to
the generalised h-transform, see e.g. [12, 32]. Instead, we propose a method to learn the generalised
h-transform. We refer to this process as fine-tuning, as the pre-trained unconditional network remains
unchanged and only the approximation to the generalised h-transform is learned. Our main result is
given in the following theorem, where we give several representations of the generalised h-transform.

Theorem 3.1. (Representations of conditional SDE sampling) For a given y ∼ noisy(A(x0)), let
Q be the path measure of the conditional SDE

dHt =
(
ft(Ht)− σ2

t (∇Ht
ln pt(Ht) + ht(Ht))

)
dt+ σt dWt, (8)

where HT ∼ Qft
T [p(x0|y)]. The generalised h-transforms admits the following representations:

1) The path measure induced by the h-transformed SDE satisfies dQ∗ = dPdp(x0|y)
dP0

, where P
is the path measure of the unconditioned SDE and P0 is it’s time 0 marginal.

2) The h-transform admits a denoising score matching representation

h∗
t = argmin

ht∈H
Ly

SM(ht)

Ly
SM(ht) := E

X0∼p(x0|y)
t∼U(0,T),Ht∼pt|0(xt|x0)

[∥∥∥(ht(Ht)+∇Ht
ln pt(Ht))−∇Ht

ln pt|0(Ht|X0)
∥∥∥2]

3) The h-transform admits the following stochastic control formulation

h∗
t = argmin

ht∈H

{
Ly

SC(ht) := EQ

[
1

2

∫ T

0

σ2
t ||ht(Ht)||2dt

]
− EH0∼Q0

[ln p(y|H0)]

}
,

where Q is the path measure for the conditional SDE being controlled.

4) The path measure induced by the h-tranformed SDE solves the a Schrödinger bridge
problem with boundary conditions Q0 = Qft

T [p(x0|y)] ≈ N (0, I), QT = p(x0|y) and
with the unconditional process P as its reference.

Here, 4) and 1) follow directly from [7, 73]. For the proof 2) see Appendix D.2 and for 3) see
Appendix G. Under appropriate conditions on the likelihood, the space of admissible controls H

4

can be taken to be the set of C1-vector fields with linear growth in space; see [48]. In the following
sections, we will discuss the representations in 2) and 3) in more detail.

3.1 DEFT: Fine-tuning by score matching

The score matching objective in Theorem 3.1 2) offers a simulation-free loss function to estimate the
generalised h-transform. While the theorem’s formulation focuses on learning the h-transform for
a specific measurement y, this loss function can naturally be extended and amortized over the full
range of measurements, i.e.,

min
h∈H

Ey∼Y [Ly
SM(h)], (9)

to obtain h∗
t (x,y) = ∇x ln pt(y|x). Further, for settings where the operator may vary, we can

additionally amortise over the forward operator A ∼ p and learn h∗
t(x,y,A) = ∇x ln pt(y|x,A).

We exploit this to amortise over inpainting masks, see Section 4.1, and motif scaffolding, see
Section 4.3. For the DDPM [28] discretisation of the SDE and a pre-trained epsilon matching model
ϵθ

∗

t , the fine-tuning objective (9) reduces to

min
ϕ

E(X0,Y),ϵ,t

[
∥(hϕ

t (Ht,Y) + ϵθ
∗

t (Ht))− ϵ∥2
]
, (10)

with Ht =
√
ᾱtX0 +

√
1− ᾱtϵ, (X0,Y) ∼ p(x0,y), ϵ ∼ N (0, I), where hϕ

t represents the neural
network used to approximate the generalised h-transform. Note that the loss function (10) only
requires evaluation of the pre-trained model, without needing to backpropagate through the weights
θ∗, which is often quite expensive and sometimes impossible in closed APIs. Training under the
DDPM discretisation can be performed according to Algorithm 5. Sampling with DEFT is further
explained in Algorithm 6, and pictorially represented in Figure 1. As an additional insight into the
behaviour of the h-transform that makes it more flexible and capable of modelling non-linear tasks
than standard reconstruction guidance methods, we show that the h-transform can be interpreted as a
correction term for the Tweedie estimate [20]. We can express the conditional Tweedie’s estimate as

E[x0|xt,y] ≈ x̂0(xt,y)

=
xt −

√
1− ᾱt

(
hϕ∗

t (xt,y) + ϵθ
∗

t (xt)
)

√
ᾱt

= x̂0(xt)−
√
1− ᾱt√
ᾱt

hϕ∗

t (xt,y),
(11)

where x̂0(xt) is the unconditional Tweedie estimate. Equation (11) highlights that the h-transform
can also be interpreted as a correction factor to the unconditional denoised estimate, similar to [52, 80].

3.2 Connections to variational inference and stochastic control

A limitation to the fine-tuning objective with DEFT is that it requires a small dataset of paired
datapoints and measurements. In this section, we propose an alternative approach by expressing
the solution to the conditional sampling problem as a stochastic optimal control objective, which is
highlighted in Theorem 3.1 3). This allows us to learn the h-transform by optimising a variational
inference-type problem. Importantly, this stochastic control objective only requires the availability
of a single noisy observation y instead of a paired fine-tuning dataset. Further, the stochastic
control objective can even be used in other conditional sampling tasks, for example in reward tilted
distributions, i.e. where the goal is to sample from π(x) ∝ er(x)pdata(x). Here er(x) serves the same
purpose as the likelihood, but there is no explicit measurement y [18].

However, the stochastic control objective is not directly applicable for high-dimensional training, as
the complete chain {Ht}t must be kept in memory and backpropagated through or adjoint methods
have to be used [36]. In Appendix G.3, we discuss several alternatives and present experiments
for scaling up the above objective, e.g., methods like VarGrad [53] and Trajectory Balance [42].
VarGrad allows to detach the trajectory from the gradient computation, drastically reducing the
memory footprint. We discuss concurrent work in G.1 and G.2. Further, we show initial experiments
for conditional sampling in G.4. The stochastic control objective serves as a conceptual bridge
between sampling from unnormalised densities using diffusion models [74, 75, 81] and conditional
score-based generative modelling.

5

3.3 Likelihood-informed inductive bias

If the likelihood is differentiable, we can impose an inductive bias on the h-transform approximation.
Specifically, the generalized h-transform can be expressed as an expectation, and we can apply the
DPS approximation [12] as follows

∇xt ln py|t(y|xt) = ∇xt lnEx0∼p(x0|xt)[p(y|x0)] ≈ ∇xt ln p(y|E[x̂0|xt])

≈ ∇xt
ln p(y|x̂0(xt)),

where we use Tweedie’s estimate based on the pre-trained unconditional diffusion model in the last
step. The DPS approximation has been validated in many different conditional sampling tasks, so it
would make for a good initialisation of the learned h-transform. However, the DPS approximation
requires the Jacobian of the unconditional model, which is expensive to compute and known to be
poorly conditioned. Further, in applications where we only have access to the forward pass of the
unconditional model, the Jacobian is infeasible to compute. Similar to [50], we found that omitting
this term still leads to an expressive architecture, while greatly reducing the computational cost. Thus,
we propose the following network architecture

hϕ
t (xt,y) = NNϕ

1 (xt, x̂0(xt),∇x̂0
ln p(y|x̂0(xt)), t) + NNϕ

2 (t)∇x̂0
ln p(y|x̂0(xt)), (12)

to parametrise the h-transform, where the last layer of NNϕ
1 is initialised with 0 and NNϕ

2 is initialised
to output 1. This initialisation provides a computationally efficient approximation to the h-transform,
which still guides the sampling.

This type of network architecture has been proposed within the sampling community to apply
diffusion models to normalising constant estimation [49, 74, 81]. The theoretical connection to
stochastic control in Section 3.2, motivates us further to adapt the architectures from the sampling
field to the conditional generative modelling setting. We ablate the different components of our
proposed architecture in Appendix F.1 and find that the additional components greatly improve
performance empirically.

4 Experiments

We evaluate the DEFT framework from Section 3.1 on both linear and non-linear natural and medical
image reconstruction tasks, as well as the motif scaffolding problem in protein design. Further, in
Appendix H.2 we provide a comparison of the conditional training framework with DEFT on the
FLOWERS [47] image dataset. We provide our code https://github.com/alexdenker/DEFT.

4.1 Image reconstruction

We test a wide variety of both linear and non-linear image reconstruction tasks on the 256× 256px
ImageNet dataset [58]. We make use of a pre-trained unconditional diffusion model with ∼ 500M
parameters [16]2. We perform all our evaluations on a 1k subset of the validation set3. For all inverse
problems under consideration, the h-transform was trained on a separate 1k subset of the validation
set. For linear inverse problems, we compare against ΠGDM [65], DDRM [32], DPS [12] and
RED-diff [44]. Additionally, we evaluate I2SB [39]. The performance of I2SB can be seen as an
upper-bound to DEFT, as it is a conditional diffusion trained on the complete ImageNet dataset. For
non-linear tasks, we only compare against DPS and RED-diff as both ΠGDM and DDRM are not
directly applicable to non-linear forward operators. For DEFT we make use of the DDIM sampling
scheme with 100 time steps [64]. For the comparison methods we used the same hyperparameters as
in [44] without further tuning, including the number of sampling steps (1000 for DPS and RED-Diff,
20 for DDRM and 100 for ΠGDM).

We compute PSNR and SSIM, which are commonly used distortion measures, along with perceptual
metrics such as Learned Perceptual Image Patch Similarity (LPIPS) [83], Kernel Inception Distance
(KID) [8], and top-1 classifier accuracy of a pre-trained ResNet50 model [26]. There is a well-known
tradeoff between optimising distortion metrics versus perceptual quality, and depending on the task,
one may wish for better performance along one axis at the cost of the other. For natural image tasks

2Checkpoints are available at https://github.com/openai/guided-diffusion
3https://bit.ly/eval-pix2pix

6

https://github.com/alexdenker/DEFT
https://github.com/alexdenker/DEFT
https://github.com/openai/guided-diffusion
https://bit.ly/eval-pix2pix

Ground truth DPS ΠGDM DDRM RED-diff DEFT

Figure 2: Results for inpainting. We show the ground truth with the inpainting mask superimposed.
Table 1: Results on inpainting and 4x super-resolution. Best values are shown in bold, second best
values are underlined. We report both the total time to sample 1k images, and the time per sample
in seconds. The time to sample includes the training time for DEFT. These tasks aim to generate
"natural"-looking images and therefore perceptual similarity metrics (KID, LPIPS and top-1) are
more relevant. I2SB (grey column) can be considered an upper bound on performance.

Inpainting Super-resolution
DPS ΠGDM DDRM RED-diff DEFT I2SB DPS ΠGDM DDRM RED-diff DEFT I2SB

PSNR (↑) 21.27 20.30 20.72 23.29 22.18 23.26 24.83 25.25 25.32 25.95 24.92 23.95
SSIM (↑) 0.67 0.82 0.83 0.87 0.85 0.86 0.71 0.73 0.72 0.75 0.71 0.64
KID (↓) 15.28 4.50 2.50 0.86 0.29 0.238 10.01 10.9 14.0 10.0 1.78 0.004
LPIPS (↓) 0.26 0.12 0.14 0.10 0.09 0.068 0.16 0.15 0.23 0.25 0.12 0.11
top-1 (↑) 58.2 67.8 68.6 72.0 71.7 74.5 71.5 71.02 63.9 66.7 71.9 71.6

Time (hrs) (↓) 30.72 2.83 0.33 7.86 5.2 N/A 30.72 2.83 0.33 7.86 5.2 N/A
Time per sample (s) (↓) 100.6 10.2 1.22 28.3 4.36 N/A 100.6 10.2 1.22 28.3 4.36 N/A

involving in-painting and super-resolution, it is common to prefer "natural"-looking images, which
score better on perceptual similarity, whereas for tasks involving (medical) image reconstruction it
is standard to prefer a lower distortion metric [9]. Further, we calculate the total time (including
training for DEFT) for evaluation 1k validation images in the "Time (hrs)" row. Furthermore, we
report the effective time taken to sample a single image in the "Time per sample (s)" row. This time
is calculated by fitting the largest batch size of validation images that fit on a single A100 GPU and
dividing the time taken for the batch by the batch size.

Inpainting First, we evaluate DEFT on the linear inverse problem of image inpainting. We make
use of the inpainting masks for the 1k subset used by [59]2, which includes masks that obscure
20%−30% of the image. Results are shown in Table 1, including the computational time for sampling
all 1000 validation images. For DEFT, this computational time additionally includes the 3.9 hrs of
training time of the h-transform additionally with the 1.2 hrs of evaluation. Even with the added
training time, we reduce the overall computational time for DEFT, compared to DPS and RED-diff.
A visual comparison is provided in Figure 2. Further, in Figure 8 in the Appendix, we show the
diversity of samples using different initial seeds. Even though ΠGDM and DDRM are faster methods,
they perform significantly worse, and are only applicable for linear inverse problems. Inpainting is
a task that prefers "natural"-looking image samples, and DEFT outperforms all other methods on
perceptual metrics such as LPIPS and KID, being a close second on top-1 accuracy.

Super-resolution For another linear inverse problem, we evaluate 4x noiseless super-resolution.
Here, the forward operator is given by a bicubic downsampling. The results are presented in Table 1.
While DEFT has a lower PSNR compared to the baseline methods, we see significant improvement
on perceptual quality metrics (KID, LPIPS, and top-1 accuracy). We show visual results in Figure 9.

High dynamic range For the first non-linear tasks, we make use of the high dynamic range (HDR)
task described in [44]. Here, the forward operator is given by A(x) = clip(2x;−1, 1), where x
denotes the RGB image scaled to the range [−1, 1]. The results are presented in Table 2. We observe

7

Ground truth Measurements DPS RED-diff DEFT

Figure 3: Results for non-linear deblurring. We show both the ground truth, the measurements and
samples for DPS, RED-diff and DEFT. DEFT is able to reconstruct high-quality images.
Table 2: Results on different non-linear image reconstruction tasks. Best values are shown in bold,
second best values are underlined.

HDR Phase retrieval Non-linear Deblurring
DPS RED-diff DEFT DPS RED-diff DEFT DPS RED-diff DEFT

PSNR (↑) 7.94 25.23 28.51 9.99 10.53 13.03 17.57 21.21 25.16
SSIM (↑) 0.21 0.79 0.89 0.12 0.17 0.32 0.39 0.53 0.79
KID (↓) 272.5 1.2 0.10 93.2 114.0 80.89 12.89 66.8 0.34
LPIPS (↓) 0.72 0.1 0.04 0.66 0.6 0.52 0.42 0.42 0.09
top-1 (↑) 4.0 68.5 74.0 1.5 7.2 13.1 30.2 23.5 69.9

Time (hrs) (↓) 30.7 7.9 5.2 30.7 7.9 5.2 30.9 8.1 5.2
Time per sample (s) (↓) 100.4 28.3 4.4 100.6 28.4 4.4 101.2 30.4 4.6

that DPS struggles with this specific non-linear tasks, while DEFT achieves good results. We show a
visual comparison in the Appendix, see Figure 10.

Phase retrieval The goal in phase retrieval is to recover the image from intensity measurements
only, i.e., the forward operator is given by A(x) = |Fx|, with F as the Fourier transform. We
study the same 2x oversampling setting as in [12, 44]. Phase retrieval is a challenging non-linear
inverse problem, as the forward operator is invariant to translations, global phase shifts and complex
conjugation. In Figure 7 in the appendix, we show samples for different initial seeds and observe a
wide variety of image quality. We also observe this behaviour for the baseline methods. However,
DEFT is able to achieve better performance compared to RED-diff and DPS, see also Table 2.
However, there is room for further improvement to achieve good reconstructions on a consistent basis.

Non-linear deblurring The non-linear deblurring task was originally proposed by [12]. Here, the
forward operator is defined by a trained neural network [70], resulting in a highly non-linear blur.
Quantitative results are presented in Table 2. This non-linear reconstruction task was also evaluated
for RED-diff in [44]. However, we found that the forward operator of the original implementation4

leads to a nearly trivial reconstruction task. In Appendix F.2, we show results with the code from [44],
while Table 2 shows the results with our implementation of the forward operator. Further, in Figure 3
we provide a visual comparison, where DEFT is able to recover the ground truth quite faithfully.

Ablation: Size of fine-tuning dataset As DEFT requires a dataset for fine-tuning, we ablate the
number of training samples. We trained DEFT on a subset of 10, 100 and 200 ImageNet images for
Inpainting. We see improvements of all metrics, when training on a larger dataset. The results are
presented in Table 3. For the KID, we outperform RED-diff (KID: 0.86) even when trained on only
200 images. However, even with 10 images, we perform quite competitively, showcasing that our
method is very sample-efficient when it comes to learning a conditional transform.

4https://github.com/NVlabs/RED-diff/tree/master

8

https://github.com/NVlabs/RED-diff/tree/master

Table 3: Varying the size of the fine-tuning dataset for DEFT for Inpainting on ImageNet.

DEFT on ImageNet for Inpainting
Number of images 10 100 200 1000

PSNR (↑) 20.87 20.99 22.11 22.18
SSIM (↑) 0.83 0.84 0.847 0.85
KID (↓) 1.85 0.978 0.401 0.29
LPIPS (↓) 0.123 0.112 0.096 0.09
top-1 (↑) 68.8 69.6 70.6 71.7

Ground truth DPS RED-diff DEFT

Figure 4: Reconstructions for computed tomography on LoDoPab-CT

4.2 Computed tomography

Table 4: Results for CT on AAPM and LODOPAB-
CT and sampling time per image on a single GeForce
RTX 3090. Best values are shown in bold, second best
values are underlined. For DEFT we use 100 DDIM
steps, while RED-diff and DPS use 1000 time steps.

AAPM LoDoPab-CT
DPS RED-diff DEFT DPS RED-diff DEFT

PSNR 33.11 34.85 34.73 34.16 34.95 35.81
SSIM 0.885 0.865 0.887 0.846 0.849 0.876
Time (s) 208.9 83.4 16.3 156.8 70.1 13.8

We are evaluating DEFT both on the 2016
American Association of Physicists in
Medicine (AAPM) grand challenge dataset
[45], and the LoDoPab-CT dataset [35],
for details see Appendix E.1. For the un-
conditional models we make use of the at-
tention U-Net architecture [16]. For the
model trained on AAPM, we use exactly
the same architecture (≈ 374 params.) as
in [11], while for LoDoPab-CT we use a
smaller model (≈ 133M params.). For the
forward operator, we use a parallel-beam
radon transform with 60 angles and add Gaussian noise with σy = 1.0, which corresponds to approx.
3.5% relative noise. We compare against DPS [12] and RED-diff [44], where the parameters were
obtained using a grid search on a subset of the validation set to maximise the PSNR. In Table 4
we present PSNR and SSIM, in addition to the sampling time, and provide a visual comparison
Figure 4. For both datasets, we choose the same DEFT architecture with about 23M parameters.In
the Appendix F, we perform an ablation regarding the parametrisation of DEFT, see Table 6. In
particular, these results show the necessity of providing the unconditional Tweedie estimate x̂0 as
input to the h-transform in (12). We observe almost a 8dB difference in PSNR for models without
the Tweedie estimate and the log-likelihood term.

4.3 Conditional protein design: motif scaffolding

We evaluate DEFT on the contiguous motifs of the RFDiffusion benchmark [77]. In this motif
scaffolding task, we sample protein Cα atom coordinates x ∈ Rd such that the generated backbone
contains a targeted motif, i.e. a subset of Cα coordinates y ∈ Rn, similar to an image outpainting
task. The forward operator is therefore given by y = A(x) = Ax, where A ∈ {0, 1}n×d denotes a
masking matrix which only selects the n observed Cα coordinates.

We leverage the pretrained Genie diffusion model which is an unconditional model for protein
backbone generation [37]. To apply DEFT to it, we use a downsized version of the unconditional
base model as our h-transform model which only uses 200k instead of the original 4.1M parameters.
To adopt this model to the DEFT algorithm, we modify the SE(3)-invariant encoder by adding
additional conditional pair feature networks for the motif coordinates as well as the unconditional
Tweedie estimate x̂0, similar to the setting in the previous experiments. As per Section 3.3, we add a
time-dependent likelihood approximation term to the h-transform network. We train the h-transform

9

network on the same SCOPe dataset as in [17]. More details on the training details can be found in
App. E.2. We compare DEFT against DPS [12] and a previously published version of Genie that
was trained in an amortised fashion [17]. The guidance parameter of DPS was tuned over 5 different
experiment runs. The amortised model serves here as an upper limit of how well DEFT can perform
with Genie as a base model.

The overall in-silico success, defined by scRMSD < 2Å and motifRMSD < 1Å, is provided in
Figure 5. In the Appendix, we provide a detailed breakdown of these results, see Figure 13. Further,
in Figure 14 and Figure 15 we provide a comparison of the task 1YCR for the different methods. We
observe that DEFT outperforms DPS, solving 10 out of the 12 tasks compared to only 5 tasks for
DPS. While it has lower success rates than the amortised model, it still solves all but two tasks in that
benchmark with only 9% of the parameter count and significantly shorter training time compared to
the amortised model (800 epochs for DEFT vs 2100 epochs for amortised). The low performance of
DPS indicates that the base Genie model is limiting the performance here and may partly explain the
performance difference between DEFT and amortised training. Exploring DEFT with a more capable
base model is therefore another promising avenue for research. Excitingly, the lower training time
and data requirements of DEFT enable fine-tuning a model on specific protein families for particular
applications, a task that is left for future work.

5T
PN 3IX
T

1Y
CR

7M
RX

_6
0

7M
RX

_8
5

4Z
YP

5T
RV

_sh
ort

5T
RV

_m
ed

6E
6R

_sh
ort

6E
6R

_m
ed

6E
XZ

_sh
ort

6E
XZ

_m
ed

0

20

40

60

in
-s

ilic
io

 su
cc

es
s

Amortised
DPS

DEFT 9%
DEFT 4%

Figure 5: Comparison of DPS, DEFT and amortised
training for motif scaffolding for 12 contiguous targets.
4% and 9% are the relative sizes of the h-transform
compared to the unconditional model.

METRIC DPS DEFT AMORTISED

% Success (↑) 1.3 9.2 24.5
% scRMSD < 2 Å(↑) 44.3 28.9 42.
% mRMSD < 1 Å(↑) 4.1 24.0 45.8

Table 5: RFDIFF benchmark met-
rics (averaged over the 11 tar-
gets, 100 samples each). Success:
scRMSD < 2Å, motifRMSD < 1Å.
Details in Sec. 4.3.

5 Conclusion

We presented a unified mathematical framework, based on Doob’s h-transform, to better understand
and classify different conditional diffusion methods. Under this framework, we proposed DEFT,
a novel parameter-efficient conditional fine-tuning method that does not require backpropagation
through large pre-trained score networks, resulting in efficient sampling. We evaluated DEFT on
several image reconstruction tasks and showed that it reliably outperformed standard methods, both
in time, reconstruction quality and perceptual similarity metrics. While DEFT requires additional
training on a small dataset of paired measurements, we find that it is still faster than many existing
baselines due to being able to use fewer sampling steps during evaluation, and not needing to
backpropagate during evaluation.

Limitations and future work The DEFT framework uses a (small) fine-tuning dataset, in contrast
to zero-shot conditional sampling approaches, e.g., DPS [12] or ΠGDM [65]. Fine-tuning on
small datasets may have the risk of overfitting to biases inherent in the data. In contrast to zero-
shot conditional sampling, DEFT assumes no knowledge of the forward operator. However, the
forward operator can be incorporated as an inductive bias within the network architecture to improve
performance. We also proposed a zero-shot approach through the optimal control loss in Section 3.2,
which only needs a single observation y to learn the h-transform. Though we show promising results
scaling this approach to the MNIST dataset in Appendix H, the computational burden of simulating
the full SDE at each iteration is still high, which might make this optimal control loss infeasible for
high-dimensional data. However, there is promising recent work on partial trajectory optimisation
[79], which may reduce the computational burden of the stochastic control objective, making it
competitive with existing methods.

10

Acknowledgements

Alexander Denker acknowledges support by the EPSRC programme grant EP/V026259/1. Shreyas
Padhy is funded by the University of Cambridge Harding Distinguished Postgraduate Scholars
Programme.

References
[1] Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A

unifying framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

[2] Brian D.O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

[3] Simon Arridge, Peter Maass, Ozan Öktem, and Carola-Bibiane Schönlieb. Solving inverse
problems using data-driven models. Acta Numerica, 28:1–174, 2019.

[4] Dominique Bakry, Ivan Gentil, Michel Ledoux, et al. Analysis and geometry of Markov diffusion
operators, volume 103. Springer, 2014.

[5] Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Schönlieb, and Christian Etmann. Conditional
image generation with score-based diffusion models. arXiv preprint arXiv:2111.13606, 2021.

[6] Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on diffusion-
based generative modeling. In NeurIPS 2022 Workshop on Score-Based Methods, 2022.

[7] Espen Bernton, Jeremy Heng, Arnaud Doucet, and Pierre E Jacob. Schrödinger bridge samplers.
arXiv preprint, 2019.

[8] Mikolaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying
mmd gans. arXiv preprint arXiv:1801.01401, 2018.

[9] Yochai Blau and Tomer Michaeli. The perception-distortion tradeoff. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 6228–6237, 2018.

[10] Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis.
Transactions on Machine Learning Research, 2022. ISSN 2835-8856.

[11] Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models
for inverse problems using manifold constraints. In NeurIPS, 2022.

[12] Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul
Ye. Diffusion posterior sampling for general noisy inverse problems. In ICLR, 2023.

[13] Kevin Clark, Paul Vicol, Kevin Swersky, and David J. Fleet. Directly fine-tuning diffusion
models on differentiable rewards. In The Twelfth International Conference on Learning Repre-
sentations, 2024. URL https://openreview.net/forum?id=1vmSEVL19f.

[14] Valentin De Bortoli, Arnaud Doucet, Jeremy Heng, and James Thornton. Simulating diffusion
bridges with score matching. arXiv preprint arXiv:2111.07243, 2021.

[15] Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion Schrödinger
bridge with applications to score-based generative modeling. NeurIPS, 2021.

[16] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
NeurIPS, 2021.

[17] Kieran Didi, Francisco Vargas, Simon V Mathis, Vincent Dutordoir, Emile Mathieu, Urszula J
Komorowska, and Pietro Lio. A framework for conditional diffusion modelling with applications
in motif scaffolding for protein design. arXiv preprint arXiv:2312.09236, 2023.

[18] Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky TQ Chen. Adjoint matching:
Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control.
arXiv preprint arXiv:2409.08861, 2024.

11

https://openreview.net/forum?id=1vmSEVL19f

[19] Vincent Dutordoir, Alan Saul, Zoubin Ghahramani, and Fergus Simpson. Neural diffusion
processes. In ICML, pages 8990–9012. PMLR, 2023.

[20] Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical
Association, 106(496):1602–1614, 2011.

[21] James R Fienup. Phase retrieval algorithms: a comparison. Applied optics, 21(15):2758–2769,
1982.

[22] Marc Anton Finzi, Anudhyan Boral, Andrew Gordon Wilson, Fei Sha, and Leonardo Zepeda-
Núñez. User-defined event sampling and uncertainty quantification in diffusion models for
physical dynamical systems. In ICML, pages 10136–10152. PMLR, 2023.

[23] Wendell H Fleming and Raymond W Rishel. Deterministic and stochastic optimal control,
volume 1. Springer Science & Business Media, 2012.

[24] Xizewen Han, Huangjie Zheng, and Mingyuan Zhou. Card: Classification and regression
diffusion models. NeurIPS, 35:18100–18115, 2022.

[25] Andreas Hauptmann, Jonas Adler, Simon Arridge, and Ozan Öktem. Multi-scale learned
iterative reconstruction. IEEE transactions on computational imaging, 6:843–856, 2020.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[27] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop
on Deep Generative Models and Downstream Applications, 2021.

[28] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS,
33:6840–6851, 2020.

[29] Ajil Jalal, Marius Arvinte, Giannis Daras, Eric Price, Alexandros G Dimakis, and Jon Tamir.
Robust compressed sensing mri with deep generative priors. NeurIPS, 34:14938–14954, 2021.

[30] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

[31] Hilbert J Kappen. Linear theory for control of nonlinear stochastic systems. Physical review
letters, 95(20):200201, 2005.

[32] Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
models. In ICLR Workshop on Deep Generative Models for Highly Structured Data, 2022.

[33] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR 2015,
2015.

[34] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http:
//yann.lecun.com/exdb/mnist/.

[35] Johannes Leuschner, Maximilian Schmidt, Daniel Otero Baguer, and Peter Maass. Lodopab-ct,
a benchmark dataset for low-dose computed tomography reconstruction. Scientific Data, 8(1):
109, 2021.

[36] Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David K. Duvenaud. Scalable
gradients and variational inference for stochastic differential equations. In Symposium on
Advances in Approximate Bayesian Inference, pages 1–28. PMLR, 2020.

[37] Yeqing Lin and Mohammed Alquraishi. Generating novel, designable, and diverse protein
structures by equivariantly diffusing oriented residue clouds. In Proceedings of the 40th Inter-
national Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pages 20978–21002. PMLR, 23–29 Jul 2023.

12

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

[38] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

[39] Guan-Horng Liu, Arash Vahdat, De-An Huang, Evangelos A. Theodorou, Weili Nie, and
Anima Anandkumar. I2sb: image-to-image schrödinger bridge. In Proceedings of the 40th
International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

[40] Xingchao Liu and Lemeng Wu. Learning diffusion bridges on constrained domains. In ICLR,
2023.

[41] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

[42] Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory
balance: Improved credit assignment in gflownets. NeurIPS, 35:5955–5967, 2022.

[43] Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward Hu, Katie Everett, Dinghuai
Zhang, and Yoshua Bengio. Gflownets and variational inference. arXiv preprint
arXiv:2210.00580, 2022.

[44] Morteza Mardani, Jiaming Song, Jan Kautz, and Arash Vahdat. A variational perspective on
solving inverse problems with diffusion models. In ICLR, 2024.

[45] Cynthia H McCollough, Adam C Bartley, Rickey E Carter, Baiyu Chen, Tammy A Drees, Phillip
Edwards, David R Holmes III, Alice E Huang, Farhana Khan, Shuai Leng, et al. Low-dose ct
for the detection and classification of metastatic liver lesions: results of the 2016 low dose ct
grand challenge. Medical physics, 44(10):e339–e352, 2017.

[46] Xiangming Meng and Yoshiyuki Kabashima. Diffusion model based posterior sampling for
noisy linear inverse problems. arXiv preprint arXiv:2211.12343, 2022.

[47] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large
number of classes. In Indian Conference on Computer Vision, Graphics and Image Processing,
Dec 2008.

[48] Nikolas Nüsken and Lorenz Richter. Solving high-dimensional Hamilton–Jacobi–Bellman
PDEs using neural networks: perspectives from the theory of controlled diffusions and measures
on path space. Partial Differential Equations and Applications, 2(4):1–48, 2021.

[49] Angus Phillips, Hai-Dang Dau, Michael John Hutchinson, Valentin De Bortoli, George
Deligiannidis, and Arnaud Doucet. Particle denoising diffusion sampler. arXiv preprint
arXiv:2402.06320, 2024.

[50] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using
2d diffusion. In ICLR, 2023.

[51] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 8821–8831. PMLR, 18–24 Jul 2021.

[52] Sriram Ravula, Brett Levac, Ajil Jalal, Jon Tamir, and Alex Dimakis. Optimizing sampling
patterns for compressed sensing MRI with diffusion generative models. In NeurIPS 2023
Workshop on Deep Learning and Inverse Problems, 2023.

[53] Lorenz Richter, Ayman Boustati, Nikolas Nüsken, Francisco Ruiz, and Omer Deniz Akyildiz.
Vargrad: a low-variance gradient estimator for variational inference. NeurIPS, 33:13481–13492,
2020.

[54] Lorenz Richter, Julius Berner, and Guan-Horng Liu. Improved sampling via learned diffusions.
arXiv preprint arXiv:2307.01198, 2023.

[55] L Chris G Rogers and David Williams. Diffusions, Markov processes and martingales: Volume
2, Itô calculus, volume 2. Cambridge university press, 2000.

13

[56] Litu Rout, Negin Raoof, Giannis Daras, Constantine Caramanis, Alex Dimakis, and Sanjay
Shakkottai. Solving linear inverse problems provably via posterior sampling with latent diffusion
models. NeurIPS, 36, 2024.

[57] Francois Rozet and Gilles Louppe. Score-based data assimilation. arXiv preprint
arXiv:2306.10574, 2023.

[58] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. IJCV, 115:211–252, 2015.

[59] Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David
Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion models. In ACM SIGGRAPH
2022 conference proceedings, pages 1–10, 2022.

[60] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad
Norouzi. Image super-resolution via iterative refinement. TPAMI, 45(4):4713–4726, 2022.

[61] Simo Särkkä and Arno Solin. Applied stochastic differential equations, volume 10. Cambridge
University Press, 2019.

[62] Mathis Simon V, Julia Komorowska Urszula, Jamnik Mateja, and Lio Pietro. Normal mode diffu-
sion: Towards dynamics-informed protein design. The 2023 ICML Workshop on Computational
Biology. Baltimore, Maryland, USA, 2023. C, 2023.

[63] Vignesh Ram Somnath, Matteo Pariset, Ya-Ping Hsieh, Maria Rodriguez Martinez, An-
dreas Krause, and Charlotte Bunne. Aligned diffusion schrödinger bridges. arXiv preprint
arXiv:2302.11419, 2023.

[64] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
ICLR, 2021.

[65] Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion
models for inverse problems. In ICLR, 2022.

[66] Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438–12448, 2020.

[67] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In ICLR,
2021.

[68] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In ICLR,
2021.

[69] Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems in medical
imaging with score-based generative models. In ICLR, 2022.

[70] Phong Tran, Anh Tuan Tran, Quynh Phung, and Minh Hoai. Explore image deblurring via
encoded blur kernel space. In Proceedings of the IEEE/CVF CVPR, pages 11956–11965, 2021.

[71] Belinda Tzen and Maxim Raginsky. Theoretical guarantees for sampling and inference in
generative models with latent diffusions. In Conference on Learning Theory, pages 3084–3114.
PMLR, 2019.

[72] Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia,
Nathaniel Lee Diamant, Alex M Tseng, Tommaso Biancalani, and Sergey Levine. Fine-
tuning of continuous-time diffusion models as entropy-regularized control. arXiv preprint
arXiv:2402.15194, 2024.

[73] Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and Neil Lawrence. Solving Schrödinger
bridges via maximum likelihood. Entropy, 23(9):1134, 2021.

14

[74] Francisco Vargas, Will Sussman Grathwohl, and Arnaud Doucet. Denoising diffusion samplers.
In ICLR, 2023.

[75] Francisco Vargas, Andrius Ovsianas, David Fernandes, Mark Girolami, Neil D Lawrence, and
Nikolas Nüsken. Bayesian learning via neural Schrödinger–Föllmer flows. Statistics and
Computing, 33(1):3, 2023.

[76] Francisco Vargas, Shreyas Padhy, Denis Blessing, and Nikolas Nüsken. Transport meets
variational inference: Controlled monte carlo diffusions. In ICLR, 2024.

[77] Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E
Eisenach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo
design of protein structure and function with rfdiffusion. Nature, pages 1–3, 2023.

[78] Mao Ye, Lemeng Wu, and Qiang Liu. First hitting diffusion models for generating manifold,
graph and categorical data. In NeurIPS, 2022.

[79] Dinghuai Zhang, Ricky Tian Qi Chen, Cheng-Hao Liu, Aaron Courville, and Yoshua Bengio.
Diffusion generative flow samplers: Improving learning signals through partial trajectory
optimization. arXiv preprint arXiv:2310.02679, 2023.

[80] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF ICCV, pages 3836–3847, 2023.

[81] Qinsheng Zhang and Yongxin Chen. Path integral sampler: A stochastic control approach for
sampling. In ICLR, 2022. URL https://openreview.net/forum?id=_uCb2ynRu7Y.

[82] Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential
integrator. arXiv preprint arXiv:2204.13902, 2022.

[83] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 586–595, 2018.

[84] Linqi Zhou, Aaron Lou, Samar Khanna, and Stefano Ermon. Denoising diffusion bridge
models. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=FKksTayvGo.

15

https://openreview.net/forum?id=_uCb2ynRu7Y
https://openreview.net/forum?id=FKksTayvGo

A Background on diffusion formulations

A.1 Recap - continuous and discrete diffusion formulations

The discretised DDPM versions with various discrete time schedules amount to the time-dependent
OU process

dXt = −
β(t)

2
Xtdt+

√
β(t) dWt, (13)

where choosing different time schedules amounts to choosing different functions β(t). This process
gives rise to the following transition probabilities

p(x, t|x0, 0) = pt|0(x|x0) (14)

= N

(
x0e

−
∫ T
0

β(s)
2 ds, I

∫ T

0

β(t)e−
∫ T−t
0

β(s)dsdt

)
(15)

= N
(
x0e

−
∫ T
0

β(s)
2 ds,

(
1− e−

∫ T
0

β(s)ds
)
I
)
, (16)

see also Appendix B in [67]. With ᾱ(t) = e−
∫ T
0

β(s)ds, this is the familiar form ([28]):

p(x, t|x0, 0) = pt|0(x|x0) = N
(
x0

√
ᾱ(t), (1− ᾱ(t))I

)
, (17)

with ᾱ(t) time-dependent and we can therefore choose different functional forms for the noise
schedule by either choosing the transition parameters β(t) or the cumulative parameters α(t).

If we define the noise schedule in terms of β(t), the time-dependent OU process is immediately
apparent (see (13)). If we define the noise schedule in terms of ᾱ(t), the mean and variance of the
corresponding OU process can simply be obtained from

β(t) = − d

dt
[ln ᾱ(t)] . (18)

A.2 Score, noise and mean diffusion formulations

The score-based model used for generation at inference time can be parametrised to model different
quantities. The three most common one are the score, the noise and the mean. Using the score
based SDE formulation we parametrise the network as the score that is the network approximates the
quantity:

∇x ln pt(xt) ≈ sθt (xt) (19)

Moving on to the DDPM formulation one typically trains a noise prediction network instead which is
proportional to the score

sθt (xt) = −
1√

1− ᾱ(t)
ϵθt (xt). (20)

This formulation is typically preferable for training as it is known to learn a less stiff vector field [82].

Finally in its most naive form DDPM also admits a mean matching formulation

µθ
0(xt, t) =

1
√
αt

(
xt −

1− αt√
1− ᾱ(t)

ϵθt (xt)

)
, (21)

whilst not the ideal parametrisation for direct training, it is a useful expression/macro, for expressing
the sampling updates more succinctly.

In this work we parametrise ϵθt directly with our novel architecture for finetuning, using a noise
matching objective as in DDPM, however we allude to and use the above parametrisations across our
propositions and novel architectures. See Algorithm 1 for training and Algorithm 2 for sampling.

16

B Related Work Discussion

A common distinction to all the works we will discuss in this section is that they all either train the
conditional network from scratch or they initialise the conditional network with a pretrained score
and fully train a conditional network. This is in stark contrast to DEFT which completely freezes the
unconditional score and trains a highly efficient network to learn the h-transform which ranges from
4− 17% in total parameter size of the pretrained unconditional score network.

Classifier free guidance Methodologies such as classifier free guidance [27] do not model the
forward operator explicitly. As a result, if these methods are applied to settings such as motif-
scaffolding or image out-painting (where the conditioning is on a subset of the random variable),
these methodologies would only denoise the scaffolding and the missing image patches. This is
different to our approach which adds noise to both motif and scaffolding and then proceeds to denoise
both jointly as part of the same space. In a way, one can view RFDiffusion’s conditional training as
an application of classifier-free guidance to this subset conditioning setting.

Image 2 Image Schrödinger Bridges (I2SB [39]) I2SB and more generally aligned Schrödinger
Bridges [63] are a recently proposed class of conditional generative models based on ideas from
Schrödinger bridges. The premise of these methods is that they aim to learn an interpolating diffusion
between a clean data sample and a altered or corrupted data sample. This is in contrast to our
framework: we consider an unconditioned SDE and condition it to hit an event at a particular time,
thus learning an interpolating distribution between noise and an un-corrupted target distribution. This
results in several algorithmic differences:

• At its core, I2SB treat Y = A(X0) + η and X0 as source and target distributions re-
spectively; thus, at sampling time, Y is provided to the learned SDE which generates
approximate samples from Law (X0). However, in our approach, the source distribution
is N (0, I) and we pass Y to the score network to then obtain approximate samples from
Law (X0).

• The score network in I2SB is a function only of Xt and not Y = A(X0) + η. This means
that in I2SB, the network is parametrised as ϵθt (Xt), whilst in our setting we parametrise
as ϵθt (Xt,A(X0) + η,A). In the case of completion tasks like motif-scaffolding or image
out-painting, our paramerisation looks something like ϵθt (Xt,X

mask
0 ,mask). This makes

the task much easier for the network as we effectively provide it with a binary variable
indicating which parts of the image are conditioned and which are not. In I2SB, the network
must learn this on its own. Furthermore, as we show in Prop. H.1, adding this to the network
parametrisation is essential to allow recovering the true conditional score.

• The training procedure in I2SB uses the diffusion bridge p(xt|x0,y) to add noise to both
the source and target distributions, whilst our forward process is given by the transition
density of an OU process p(xt|x0) and is identical to standard DDPM/VP-SDE [28, 68]
noise adding procedures.

• Finally and most importantly I2SB does full fine-tuning firstly initialising with a pretrained
score and training all parameters of this large pretrained network to learn an unconditional
network, this requires longer training times and significantly larger networks as they must
be at least the same size as the unconditional score network.

To summarise: whilst both methodologies employ similar mathematical methodologies (e.g. Dif-
fusion Bridges [14]), their ideations and resulting methods are fundamentally different: on one
side, [39] learns an interpolating distribution between the unconditioned p(x0) and conditioned
p(y|x0) samples. On the other, we learn a denoising procedure that directly samples from the poste-
rior p(x0|y); via this, we derive and explain most popular approaches for conditioning denoising
diffusion models as part of our framework.

It’s important to highlight that another akin approach to I2SB, also based on the h-transform but
leveraging VP-SDes, was recently proposed in [84].

CDE [5] Similar to classifier free guidance. CDE [5] trains a conditional network from scratch
without leveraging a pretrained unconditional score. For more details on CDE please see our detailed
discussion in Appendix H.

17

First Hitting Diffusions A line of generative modelling methods proposed in [40, 78] utilise the
h-transform for unconditional generative modelling in the following settings:

• Hitting the target distribution pdata in a finite amount of time [0, T] via time reversing an
h-transformed VP-SDE conditioned to hit 0 at time T .

• Constraining a diffusion process at time T to lie in a subset of the reals Ω ⊆ Rd.

Whilst the aforementioned work uses a similar methodology and theory the focus is more in line with
unconditional generative modelling rather than our setting which seeks to sample from the posterior
arising in an inverse problem / conditional generative modelling.

RFDiffusion As highlighted in Alg. 3 and in contrast to AMORTISED TRAINING, RFDiffusion [77]
does not noise the motif coordinates X [M]

0 with the forward OU-Process, instead it directly aims to
sample from p(X

[\M]
t |X [M]

0) and estimate this score while keeping the motif fixed. We can relate
this approach to our amortised learning of Doob’s h-transform, by noting that RF diffusion can be
understood as learning the marginal conditional score

p(x
[\M]
t |x[M]

0) =

∫ ∝h(t,xt)pt(xt)︷ ︸︸ ︷
p(xt|x[M]

0) dx
[M]
t . (22)

This can be viewed as RFDiffusion estimating a marginal counterpart of our amortised h-transform
approach. See Algs. 3 and 4 for more details on how these approaches differ in a pseudo-code
implementation.

C Doob’s h-transform

C.1 Doob’s h-transform intuition

Doob’s transform provides a formal mechanism for conditioning a stochastic differential equation
(SDE) to hit an event at a given time. The h-transform drift decomposes into two terms via Bayes
rule, a conditional and a prior score

∇Ht lnP 0|t(X0 ∈ B |Ht) = ∇Ht lnP t|0(Ht |X0 ∈ B)−∇Ht lnPt(Ht), (23)

whereby the conditional score ensures that the event is hit at the specified boundary time, while
the prior score ensures it is time-reversal of the correct forward process [14]. Doob’s h-transform
adds a new drift to the SDE which amounts to two terms (via Bayes Theorem), a conditional and an
unconditional score

∇ lnP 0|t(X0 ∈ B|·) = ∇ lnP t|0(·|X0 ∈ B)−∇ lnPt(·). (24)

Interestingly, these two terms provide for a unique intuition: the Doob’s transform SDE is the time
reversal of the forward SDE corresponding to (3), that is the time reversal of the forward SDE

dXt = bt(Xt) dt+ σtdWt, X0 ∼ P 0(·|X0 ∈ B), (25)

coincides with the Doob transformed SDE (4) [14]. Thus we can view Doob’s transform as the
following series of steps:

1. Time reverse the SDE we want to condition ((4) to (25)).
2. Impose the condition via ancestral sampling from the conditioned distribution/posterior.
3. Time reverse once more to be in the same time direction as we started.

C.2 Example: Truncated normal

Here for illustrative purposes we frame the problem of sampling from a truncated normal distribution
as simulating an SDE that is given by Doob’s h-transform.

Let’s remind that a 1d truncated normal distribution had a density p(x|a, b) ∝ 1x∈(a,b)(x)N (x|µ, σ2).
Now, let’s assume a data distribution p0(x) = N (µ, σ2) which is noised with an OU pro-
cess (13). Thus we have that p(x0|xt) = N (x0|µ̂0|t(xt), σ̂0|t(xt)

2) is Gaussian, and so is

18

p(xt) = N (xt|µ̂t, σ̂
2
t). Let’s add the constraint that the process hit at time t = 0 the event

X0 ∈ (a, b).

dHt = β(t)

(
Ht

2
+∇Ht

lnP t(Ht)−∇Ht
lnP 0|t(X0 ∈ (a, b) |Ht)

)
dt+

√
β(t) dWt,

(26)

We have that the h-transform is given by

h(t,Ht) = P 0|t(X0 ∈ (a, b)|Ht) =

∫
1x∈(a,b)(x0)p0|t(x0|Ht)dx0

=

∫
1x∈(a,b)(x0)N (x|µ̂0|t(Ht), σ̂0|t(Ht)

2)dx0

=
1

σ̂0|t(Ht)

ϕ
(

Ht−µ̂0|t(Ht)

σ̂0|t(Ht)

)
Φ
(

b−µ̂0|t(Ht)

σ̂0|t(Ht)

)
− Φ

(
a−µ̂0|t(Ht)

σ̂0|t(Ht)

) (27)

where ϕ(ξ) = 1√
2π

exp
(
− 1

2ξ
2
)

is the pdf of a standard normal distribution, Φ(ξ) =
1
2

(
1 + erf(ξ/

√
2)
)

its cumulative function. The corrective drift term due to the h-transform can then
be computed via autograd. The unconditional score term can be computed in closed form.

C.3 Doob’s h-transform classical noiseless setting

We now consider events of the form X0 ∈ B which are described by an equality constraintA(X0) =
y with A a known measurement (or forward) operator and y an observation, which is a common
setup in inverse problems such as inpainting or super-resolution.

Corollary C.1. Consider the reverse SDE (3), then it follows that

dHt = (bt(Ht)− σ2
t∇Ht

lnP 0|t(A(X0) = y |Ht)) dt+ σtdWt, (28)

with bt(Ht) = ft(Ht) − σ2
t∇Ht

ln pt(Ht) satisfies Law (Hs|Ht) = Law (Xs|Xt,A(X0) = y)
thus Law (H0) = Law (X0|A(X0) = y).

Sampling from (28) directly provides samples x ∼ pdata which also satisfy A(x) = y. Crucially,
this SDE is guaranteed to hit the conditioning in finite time, unlike prior equilibrium-motivated
approaches [12, 19, 22, 24, 46, 65].

Reconstruction guidance To get better insight into the challenge of sampling via Doob’s h-
transform in (28) let us re-express the h-transform as

P 0|t(A(X0) = y |Ht) =

∫
1A(x0)=y(x0)p0|t(x0|Ht)dx0, (29)

where in the case of denoising diffusion models p0|t(x0|·) is the transition density of the reverse SDE
(3). In practice, one does not have access to this transition density – i.e. we can sample from this
distribution, but we cannot easily get its value at a certain point. This makes it difficult to approximate
the integral. To alleviate this, a strand of recent works [12, 22, 57, 65] have proposed to apply a
Gaussian approximation of p0|t(x0|·) ≈ N (x0 | E[X0|Xt = ·],Γt) leveraging Tweedie’s formula
and the pre-trained score network. This line of work is referred as reconstruction guidance. We
note that whilst proposing to approximate the quantity P 0|t(A(X0) = y|·), they do not make the
connection to Doob’s transform and thus are unable to provide guarantees on the conditional sampling
that Cor. C.1 provides. Overall, the Gaussian-based approximations of Doob’s h-transform lead to
reconstruction guidance-based approaches

dHt =
(
bt(Ht) + σ2

t∇Ht
||y −AE[X0|Xt = Ht]||2Γt

)
dt+ σtdWt,XT ∼ PT , (30)

where Γt acts as a guidance scale [57, 62], and A is a matrix if A is linear otherwise A =
dA(E[X0|Xt = Ht]).

19

D Proofs

D.1 Proof of Proposition 2.2

Proof. Starting from the unconditioned reverse SDE

dXt = bt(Xt) dt+ σt dWt, XT ∼ PT = Qft
T [p(x0)], (31)

we consider its reversal, the forward SDE, but we change its initial from distribution p(x0) to the
target posterior p(x0|y), i.e.,

dHt = ft(Ht) dt+ σt dWt, H0 ∼
p(y|x0)pdata(x0)

p(y)
, (32)

where bt(Ht) = ft(Ht)− σ2
t∇Ht

ln pt(Ht).

Now let us use pt|y(x|y) =
∫
p(xt|x0)dp(x0|y) to denote the marginal of the above SDE and as

before pt to denote the marginal of the reference starting at the data distribution. Then it follows that

pt|y(x|y) = pt(x)p(y)
−1

∫
pt|0(x|x0)

pt(x)
p(y|x0)pdata(x0)dx0 (33)

= pt(x)p(y)
−1

∫
p0|t(x0|x)p(y|x0)dx0 (34)

and thus the score of the reference starting at the posterior is given by:

∇x ln pt|y(x|y) = ∇x ln pt(x) +∇x ln

∫
p0|t(x0|x)p(y|x0)dx0 (35)

Now that we have the score of the SDE in Equation 32 we can reverse it yet another time to obtain
the conditional backwards SDE:

HT ∼ Qft
T [p(x0|y)] =

∫
pT |0(x|x0)p(x0|y)dx0

dHt =
(
ft(Ht)− σ2

t

(
∇Ht ln pt(Ht) +∇Ht ln py|t(Y = y|Ht)

))
dt+ σt dWt,

dHt =
(
bt(Ht)− σ2

t∇Ht
ln py|t(Y = y|Ht)

)
dt+ σt dWt, (36)

Where it is very important to notice that the backward SDE starts a the terminal distribution of the
conditional forward SDE Qft

T [p(x0|y)] and not PT = Qft
T [p(x0)], for a VP-SDE this happens to

approximately be N (0, I) in both cases (i.e. Qft
T [p(x0|y)] ≈ Qft

T [p(x0)] ≈ N (0, I)) however more
generally it is not and one needs to be careful.

Note that this remark highlights that the score used in DPS [12] (i.e. ∇x ln pt|y(x|y)) is in fact
the score of an OU process starting at p(x0|y) notice the cancellation going from Equations (33)
to (34) was only possible since the prior in our target posterior is the initial distribution for the
forward SDE (in their case an OU-process) with marginal pt, these considerations are subtle yet
important and omitted in prior works. Whilst this is akin the relationship motivated in DPS as
∇x ln pt|y(x|y) = ∇x ln pt(x) +∇x ln pt(y|x), DPS fails to convey that this is in fact the score of
a VP-SDE with the posterior p(x0|y) as its initial distribution.

D.2 Proof of Theorem 3.1 2)

Proof. The idea of the proof is similar to Proposition H.1. Here, we directly proof the amortised
variation from Equation (9). First, we state the well known score matching identity for the posterior
score:

∇xt
ln pt(x|y) =

∫
∇xt

ln pt|0(xt|x0)p0|t(x0|xt,y)dx0.

Via the mean squared error property of the conditional expectation we get the minimiser as

E
[
∇Ht

ln pt|0(Ht|X0)−∇Ht
ln pt(Ht)

∣∣∣Y = y,Ht = x
]

20

Then

h∗
t (x,y) =

∫
(∇x ln pt|0(x|x0)−∇x ln pt(x))p0|t(x0|Ht = x,Y = y)dx0

=

∫
∇x ln pt|0(x|x0)p0|t(x0|Ht = x,Y = y)dx0 −∇x ln pt(x)

= ∇x ln pt(x|y)−∇x ln pt(x) = ∇x ln pt(y|x).

E Experimental details

E.1 Image Experiments

In the image experiment, we use the DDPM [28] formulation for the diffusion model with N = 1000
steps, a linear β-schedule with β0 = 10−4 and βN = 2 · 10−2. In all our imaging experiments the
h-transform was implemented according to the parametrisation in Section 3.3 using an attention
U-Net [16] for NNϕ

1 . The network NNϕ
2 in the residual pathway was implemented as a small three

layer fully connected network with SiLU activation functions, predicting a single scalar value. The
final layer in NNϕ

1 was initialised with zeros. All weights in NNϕ
2 where initialised with zeros, expect

for the bias in the last layer, which was initialised to 0.01. We found that this initialisation was
stable over all imaging tasks, i.e., close to the unconditional model. All tasks on ImageNet were
noiseless, i.e., the log-likelihood p(x|y) would be a Delta function. However, for the guidance term
∇x̂0

ln p(y|x̂0) we always approximated the log-likelihood using a Gaussian with σy = 1.0.

Computed Tomography The 2016 American Association of Physicists in Medicine (AAPM) grand
challenge dataset [45] contains CT scans of 10 patients. We only make use of the abdomen scans. We
use the scans of 9 patients to train both the unconditional model and the h-transform. The remaining
patient, i.e., id L035 with 87 slices, is used for testing only. We used a bilinear interpolation to resize
the images to 256× 256px. The unconditional model follows the same architecture as in [11] with
about 374M parameters. The model was trained for 300 epochs using the Adam optimiser [33]. We
used exponential moving average on the weights as in [66] with a parameter of 0.999.

The LoDoPab-CT dataset [35] is a collection of human chest CT scans. We resize the images to
256 × 256px using a bilinear interpolation. The training set contains 35820 images and was used
to train the unconditional diffusion model. The validation set contains 3522 images and was used
to train the h-transform model and for a hyperparameter search for DPS and RED-diff. Finally, we
take 178 images (every 20th) from the test set to compute the final results. The unconditional model
is an attention U-Net [16] with about 133M parameters. The unconditional model was trained for
75 epochs, corresponding to about 671625 gradient steps using the Adam optimiser [33]. We used
exponential moving average on the weights as in [66] with a parameter of 0.999.

For both datasets we used the same parametrisation for the h-transform, with an attention U-Net
[16] and a residual path as in Section 3.3. The h-transform has about 23M parameters. Thus, the
h-transform is about 6% and 17% the size of the unconditional model for AAPM and LoDoPab-CT,
respectively. For LoDoPab-CT, the h-transform was trained on a set of 3522 images, while for AAPM
we trained the h-transform on the same dataset as the unconditional model. The forward operator A
is linear and we added Gaussian noise with standard deviation σy = 1.0. Thus, the gradient of the
log likelihood reduces to

∇x̂0
ln p(y|x̂0) = −

1

2σ2
y

A∗(Ax̂0 − y),

where A∗ denotes the backprojection. Here, instead of the backprojection, we made use of the filtered
backprojection, which is a common technique for computed tomography [25].

Inpainting We made use of the pre-trained ImageNet dataset. For this task, we also amortised over
the different sampling masks. We implemented the h-transform using an attention U-Net [16] as the
base network NN1 with an initial convolution with 13 channels, i.e., the noisy image xt, the denoised
estimate x̂0, the observation y (where the missing pixels filled with zeros), the mask M and the cheap

21

guidance term ∇x̂0
ln p(y|x̂0). The pre-trained unconditional score model has 550M parameters,

and we use a fine-tuning network with 23M parameters (4.2% of the size). The fine-tuning network
was trained for 200 epochs using a batch size of 16, and the Adam optimiser with a learning rate of
5e−4 and annealing.

Super-resolution We made use of the pre-trained ImageNet dataset. We implemented the h-
transform using an attention U-Net [16] as the base network NN1 with an initial convolution with 9
channels, i.e., the noisy image xt, the denoised estimate x̂0, the observation y bilinear upsampled to
the original size and the cheap guidance term ∇x̂0

ln p(y|x̂0). The pre-trained unconditional score
model has 550M parameters, and we use a fine-tuning network with 23M parameters (4.2% of the
size). The fine-tuning network was trained for 200 epochs using a batch size of 16, and the Adam
optimiser with a learning rate of 5e−4 and annealing.

HDR For HDR the forward operator is given byA(x) = clip(2x;−1, 1) for the RGB image scaled
to [−1, 1]. This leads to a reduction of high intensity values. We approximated the cheap guidance
term

∇x̂0
ln p(y|x̂0) ≈ 0.5(A(x̂0)− y),

and found this to achieve good results. The pre-trained unconditional score model has 550M
parameters, and we use a fine-tuning network with 23M parameters (4.2% of the size). The fine-
tuning network was trained for 200 epochs using a batch size of 16, and the Adam optimiser with a
learning rate of 5e−4 and annealing.

Phase retrieval The h-transform was again implemented as an attention U-Net [16] as the base
network NN1. The observations in phase retrieval corresponds to the magnitude values of the Fourier
transform. In our initial experiments, we feed these observation directly into the model. However,
this model failed to create convincing reconstruction. Instead we used two rough reconstruction. For
the first initial reconstruction, we used the phase of the unconditional Tweedie estimate x̂0 and the
magnitude of the observation to construct an image. For the second initial reconstruction, we ran 350
steps of an ER algorithm [21] with a random initialisation. Further, we used the cheap guidance term
∇x̂0
∥y −A(x̂0)∥22, calculated using torch autograd. The h-transform had about 23M parameter, i.e.,

4% of the size of the unconditional model.

Non-linear Deblurring For non-linear deblurring we found that there was little improvement when
using the cheap guidance term∇x̂0

∥y −A(x̂0)∥22, calculated using torch autograd. As the forward
operator is defined by a trained neural network this additional autograd term adds to the computational
expense. We found that the DEFT provided results of a similar quality, with a reduced computational
burden, by using A(A(x̂0) − y) as a rough approximation. The pre-trained unconditional score
model has 550M parameters, and we use a fine-tuning network with 23M parameters (4.2% of the
size). The fine-tuning network was trained for 200 epochs using a batch size of 16, and the Adam
optimiser with a learning rate of 5e−4 and annealing.

E.2 Protein Motif Scaffolding

Diffusion process We use a discrete-time DDPM [28] formulation for the diffusion model with
N = 1000 steps and cosine β-schedule [16].

Noise model The denoising model εθ is adapted from the Genie diffusion model [37]. In Genie,
the denoiser architecture consists of an SE(3)-invariant encoder and an SE(3)-equivariant decoder.
While the network uses Frenet-Serret frames as intermediate representations, the diffusion process
itself is defined in Euclidean space over the Cα coordinates. Similar to AlphaFold2, the denoiser
network consists of a single representation track that is initialised via a single feature network and a
pair representation track that is initialised via a pair feature network. These two representations are
further transformed via a pair transform network and are used in the decoder for noise prediction
via IPA [30].

To evaluate unconditional sampling-based methods, we used a pre-trained version of the unconditional
Genie model.

22

To evaluate the AMORTISED approach (Alg. 4), we perform a minor modification to the unconditional
Genie model as described in [17]: we add an additional conditional pair feature network that takes
the motif frames as input with the ground truth coordinates for the motif and 0 as values for all other
coordinates that are not part of the motif. The output of this motif-conditional pair feature network
is concatenated with the output of the unconditional pair feature network to form an intermediate
dimension of twice the channel size compared to the unconditional model before being linearly
projected down to the channel size of the unconditional model. From then onward the output is
processed by the remaining Genie components as in the unconditional model. The implementation is
therefore similar to the image case, where the motif features are presented as additional input and the
model learns to use these for reconstructing the motif. This minor alteration of the Genie architecture
means that the amortised network has 4.162M parameters while the unconditional Genie networks
have 4.087M parameters (∼ 1.8% fewer). In 80% of the training steps for the amortised model, we
pass a condition to the network. The other 20% contains an empty mask consisting of only 0’s.

For the DEFT implementation, we follow a similar way of feeding in the additional inputs via
conditional pair feature networks, but as part of the downsized h-transform model as described in the
main text.

Metrics We measure the performance of the methods across two axes: designability and success
rate. To assess whether a particular protein scaffold is designable, we run the same pipeline as [37],
consisting of an inverse folding generated Cα backbones with ProteinMPNN and then re-folding the
designed sequences via ESMFold. The considered metrics and their corresponding thresholds are the
following:

• scTM > 0.5: This refers to the TM-score between the structure that’s been designed and
the predicted structure based on self-consistency as previously described. The scTM-score
ranges from 0 to 1. Higher scores indicate a higher likelihood that the input structure can be
designed.

• scRMSD < 2 Å : The scRMSD metric is akin to the scTM metric. However, it uses the
RMSD (Root Mean Square Deviation) to measure the difference between the designed and
predicted structures, instead of the TM-score. This metric is more stringent than scTM as
RMSD, being a local metric, is more sensitive to minor structural variances.

• pLDDT > 70 and pAE < 5: Both scTM and scRMSD metrics depend on a structure prediction
method like AlphaFold2 or ESMFold to be reliable. Hence, additional confidence metrics
such as pLDDT and pAE are employed to ascertain the reliability of the self-consistency
metrics.

In addition, we want to judge whether the motif scaffolding was successful or not. Therefore, similar
to previous work by [77], we calculate the motifRMSD between the predicted design structure and
the original input motif and judge samples with < 1 Å motifRMSD as a successful motif scaffold.

We follow previous work and call a sample a "success" if scRMSD < 2 Å and motifRMSD < 1 Å .
Similar to previous work we call a task "solved" if among 100 samples for this task at least 1 sample
is a success.

F Additional Results

F.1 Ablation of the DEFT parametrisation

The parametrisation of the h-transform is motivated by the sampling theory in Section 3.3. We
evaluate different parametrisations of this choice for the CT experiment on LoDoPab-CT. For all
architecture choices, we used the same training setup. For quantitative results, see Table 6. In
particular, we see that the naive choice NNϕ

1 (x, A
∗y, t) only achieves a PSNR of 26.62dB. Note,

that we do not input the observations directly into the network, but first transform them using the
backprojection, which is a standard technique for computed tomography reconstruction [3]. In CT
the observations correspond to sinograms and have a different geometry to the images. In difference,
if we add the unconditional Tweedie estimate x̂0 to the model architecture, we get an improvement
to 34.04dB. This shows that it is beneficial to supply the h-transform with the information of the
unconditional diffusion model. Further, given our architecture, i.e., adding the additional information

23

0 200 400 600 800 1000
time steps

0.00
0.01
0.02
0.03
0.04

LoDoPab-CT

0 200 400 600 800 1000
time steps

0.000
0.015
0.030
0.045
0.060

AAPM

Trained residual scaling NN2(t)

Figure 6: The trained residual scaling network NNϕ
2 in the DEFT architecture (see Section 3.3) for

computed tomography reconstruction on LoDoPab-CT and AAPM.

Table 6: PSNR and SSIM for computed tomography on LoDoPab-CT with different parametrisation
of the h-transform.

Parametrisation PSNR SSIM

NNϕ
1 (x, x̂0,∇x̂0

ln p(y|x̂0), t) + NNϕ
2 (t)∇x̂0

ln p(y|x̂0) 35.81 0.876

NNϕ
1 (x,∇x̂0

ln p(y|x̂0), t) + NNϕ
2 (t)∇x̂0

ln p(y|x̂0) 35.74 0.875

NNϕ
1 (x, x̂0, A

∗y, t) 34.04 0.851

NNϕ
1 (x, A

∗y, t) 26.62 0.724

Method PSNR (↑) SSIM (↑) LPIPS (↓) Time in hrs (↓)
RED-diff 45.00 0.98 1.2e−3 7.9
DEFT 64.64 0.99 1.0e−5 5.2

Table 7: Results on the non-linear blurring operator from [44], where both methods achieve very
high reconstruction and perceptual clarity due to the operator resulting in a trivial forward operation,
rather than a non-linear blur. On this task, we still find DEFT to outperform RED-diff, with less time
taken overall.

of the log-likelihood term, achieves a PSNR of 35.81dB. Further, we show the learning residual
scaling network NNϕ

2 in Figure 6. We observe a similar behaviour for all tasks,i.e., at the start of
sampling t ≈ 1000 the scaling network assigned a small weighting to the guidance part, which
increases during sampling (t→ 0).

F.2 Non-linear Deblurring: Implementation from [44]

We find that the original implementation of the non-linear forward operator from the codebase
provided in [44] results in an almost trivial reconstruction task, due to incorrect loading of weights
for the neural network used for the non-linear deblurring. As a result, both RED-diff and DEFT
can achieve highly performant results on this trivial task, as shown in Table 7. For the non-linear
deblurring tasks in the main text in Table 2, we load the weights for the neural network correctly, and
see much lower performance, corresponding to the difficulty of the non-linear task.

G Generalised h-transform and Stochastic Control

Thanks to our formal framework in this section we develop a new VI objective for learning the
conditional score in the noisy inverse problems setting. That is by minimising the following ELBO

24

Ground Truth Sample #1 Sample #2 Sample #3 Sample #4

Figure 7: Example reconstructions for phase retrieval. Phase retrieval has many local minima, which
fully satisfy the data consistency constraints (e.g., complex conjugate, global phase sign). We often
see flipped (and perturbed) images as our reconstruction. In some instances, even only one colour
channel is flipped. This leads to a strong diversity of samples.

Ground truth Sample #1 Sample #2 Sample #3 Sample #4

Figure 8: Diversity of samples for inpainting. On the left, we show the inpainting mask as a overlay
over the ground truth.

with respect to an additional fine-tuning network, one can learn the conditional score

h∗ = argmin
f

EQ

[
1

2

∫ T

0

σ2
t ||h(Ht)||2dt

]
− EH0∼Q0

[ln p(y|H0)], (37)

where Ht follows the unconditioned score SDE with an added control h. This objective provides a
way to learn the conditioned SDE from the unconditioned one, without making Gaussian approxima-
tions. We formalise this connection in the following proposition.
Proposition G.1. The following stochastic control problem

h∗ = argmin
f

EQ

[
1

2

∫ T

0

σ2
t ||h(Ht)||2dt

]
− EH0∼Q0

[ln p(y|H0)] (38)

with

HT ∼ Qft
T [p(x0|y)]

dHt =
(
ft(Ht)− σ2

t (∇Ht
ln pt(Ht) + ht(Ht))

)
dt+ σt dWt, (39)

25

Measurements DPS ΠGDM DDRM RED-diff DEFT

Figure 9: Results for 4x super-resolution.

Ground truth Measurements RED-diff DEFT

Figure 10: Results for non-linear HDR. Similar to [44], we found that DPS does not converge to a
good solution, returning often black or images not consistent with the ground truth. Given that the
forward operator A(x) = clip(2x| − 1, 1) has a zero gradient for |x| ≥ 0.5 the guidance term is
often not informative.

is minimised by the conditional score SDE in Equation (28), that is

h∗
t (x) = ∇x lnEX0∼p0|t(·|x)[p(y|X0)] = ∇x ln py|t(y|x). (40)

Furthermore, h∗ solves an associated half-bridge problem [7] with the SDE in Eqn. (3) as its
reference process and p(x0|y) as its source distribution.

Proof. The derivation for this objective is inspired by the sequential Bayesian learning scheme
proposed in Lemma 1, Appendix B of [75].

Let P denote the distribution for the forward SDE in Eqn. (25). Now consider the following variational
problem termed a half-bridge [7, 15, 73].

Q∗ = argmin
Q:Q0=p(x0|y)

DKL(Q||P) (41)

where the constraint enforces that at time 0 we hit the target posterior p(x|y) then via standard results
in half bridges we know that the above optimisation problem has an unconstrained formulation (e.g.

26

see [74]) that is dQ∗ = dPdp(x|y)
dP0

Now following [75] we notice that we can cancel the pdata prior
in the posterior term:

dP
dp(x|y)
dP0

= dP
dp(x|y)
dpdata

= dP
dp(y|x)
dp(y)

(42)

and thus:
Q∗ = argmin

Q
DKL(Q||P)− EH0∼Q0 [ln p(y|H0)] (43)

with QT = Law (XT) ≈ N (0, I) when X0 ∼ p(x|y). Furthermore, we can parametrise P as :

dXt =
(
ft(Xt)− σ2

t∇Xt ln pt(Xt)
)
dt+ σtdWt, X0 ∼ Qft

T [pdata(x0)] (44)

and thus Q as

HT ∼ Qft
T [p(x0|y)]

dHt =
(
ft(Ht)− σ2

t (∇Ht
ln pt(Ht) + ht(Ht))

)
dt+ σt dWt, (45)

then via Girsanov Theorem we can re-express the KL term in Eqn. (43) as

h∗ = argmin
h

EQ

[
1

2

∫ T

0

σ2
t ||h(Ht)||2dt

]
− EH0∼Q0

[ln p(y|H0)]. (46)

Now noticing that Eqn. (46) is a standard stochastic control problem [48, 31] we can characterise its
minimiser as (using Theorem 2.2 in [48] and the Hopf-Cole transform [23])

h∗
t (x) = ∇x lnEX0∼p0|t(·|x)[p(y|X0)], (47)

and thus the SDE in Eqn. 45 with h∗
t hits the target posterior p(y|x0) at time 0 as it is the minimiser

of half-bridge posed in Eqn. (41).

Notice that in the case of a VP-SDE, the stochastic control objective reduces to:

argmin
h

EQ

[∫ T

0

βt

2
||h(Ht)||2dt

]
− EH0∼Q0 [ln p(y|H0)] (48)

Discretisation of inverse problem objective Following [74] we will discretise the objective
presented in Eqn. (48). Let us consider the pre-trained score SDE with an added tuning network:

HT ∼ N (0, I)

dHt = −βt(Ht + 2sθ(Ht) + 2hϕ(Ht)) dt+
√
2βt dWt, (49)

now using an exponential-like discretisation [10] (Ideally we want to discretise in the same way we
trained the model):

HtK ∼ N (0, I)

Htk−1
=
(√

1− αkHtk + 2(1−
√
1− αk) (sθ∗(Htk) + hϕ(Htk))

)
+
√
αkεk, (50)

where αk = 1− exp
(∫ tk

tk−1
βsds

)
, note we will denote the distribution of the above discrete time

chain as qϕ. Now if we follow the sketch in Proposition 3 of [74] the discretised objective then
becomes:

argmin
ϕ

EH∼qϕ

[
2

K∑
k=1

λ2
k

αk
||hϕ(k,Htk)||2 − ln p(y|H0)

]
(51)

where λk = 1 −
√
1− αk. For a more stable/simple objective following [74] we can make the

approximation λk = 1−
√
1− αk ≈ αk/2 for small time steps. This leads to the following iteration

(which is possibly more akin to the training update being used):
HtK ∼ N (0, I)

Htk−1
=
(√

1− αkHtk + αk (sθ∗(Htk) + hϕ(Htk))
)
+
√
αkεk, (52)

and objective:

argmin
ϕ

EH∼qϕ

[
K∑

k=1

αk

2
||hϕ(k,Htk)||2 − ln p(y|H0)

]
. (53)

27

Discrete Time Intuition For further intuition, we will provide a discrete-time derivation as to how
this objective arises. Consider the following discrete-time VP-SDE (i.e let. pk+1|k(htk+1

|htk) =

N (htk+1
|
√
1− αkhtk , αk)) starting from the posterior:

p(ht1:tk) =
p(y|h0)pdata(h0)

p(y)

K∏
k=1

pk+1|k(htk+1
|htk) (54)

Now applying Bayes rule and [2, Section 5] pk+1|k(htk+1
|htk) =

puncnd
k|k+1(htk

|htk+1
)puncnd

k+1 (htk+1
)

puncnd
k (htk

)
and

telescoping to cancel the marginals we have:

p(ht1:tk) =
puncndK (hT)p(y|h0)̸ pdata(h0)

p(y) ̸ pdata(h0)

K∏
k=1

puncndk|k+1(htk |htk+1
) (55)

=
puncndK (hT)p(y|h0)

p(y)

K∏
k=1

puncndk|k+1(htk |htk+1
), (56)

where puncndk|k+1(htk |htk+1
) is the transition density of the unconditional score SDE and puncndk (htk)

correspond to its marginals. Now we would like to learn a backwards process that matches the above
process (reverses the VP-SDE starting from the posterior). We can do so by minimising the KL:

DKL(q
ϕ||p) ∝ Eq

[
ln

∏
k q

ϕ
k|k+1(htk |htk+1

)∏
k p

uncnd
k|k+1(htk |htk+1

)
− ln p(y|h0)

]
(57)

where we can approximate the score transition via:

puncndk−1|k(htk |htk+1
) ≈ N (htk−1

|
√
1− αkhtk + 2(1−

√
1− αk)sθ∗(htk), αk)

and parametrise the new conditional denoiser as

qϕk−1|k(htk |htk+1
) = N (htk−1

|
√
1− αkhtk + 2(1−

√
1− αk) (sθ∗(htk) + hϕ(htk)) , αk)

making these two substitutions will lead to the objective in Eqn. (53).

G.1 Related Work

Fine-tuning diffusion models via a optimal control perspective, e.g., devolved in [6], has received a lot
of attention in recent years. In particular, in the context of fine-tuning with respect to a differentiable
reward function, i.e., considering a tilted posterior [18],

π(x0) =
er(x0)pdata(x0)

Z
, (58)

where er(x0) serves an equivalent role to the likelihood p(y|x0) in our setting.

The DRaFT framework [13] proposes a heuristic method to estimate the h-transform by only opti-
mising the reward function. We want to highly that concurrently [72] develop the same stochastic
control formulation as we do, and arrive at the same insight that the optimal starting distribution is
given by pT = Qft

T [π], however, they chose to learn this distribution which we argue is not necessary
for diffusion models due to the mixing property of the OU process leading to a negligible error by
approximating Qft

T [π] ≈ N (0, I) with a Gaussian.

G.2 Connection to [18] - Value Function Bias

In [18], it is argued that minimising the stochastic control objective does not lead to hitting the
posterior p(x0|y) at time t = 0 due to bias introduced by the value function. We can apply
Proposition G.1 to the tilted posterior π(x0) from (58) which yields the following objective:

h∗ = argmin
h

EQ

[
1

2

∫ T

0

σ2
t ||h(Ht)||2dt

]
− EH0∼Q0 [r(H0)] (59)

28

with
HT ∼ Qft

T [p(x0|y)]
dHt =

(
ft(Ht)− σ2

t (∇Ht ln pt(Ht) + ht(Ht))
)
dt+ σt dWt, (60)

then by Theorem 2.1 in [71] the optimal transition density of the controlled process is given by (s ≤ t
and let h̃(xt) = ln py|t(y|xt)):

p∗s|t(x|y) = eh̃(x,s)−h̃(y,t)prefs|t(x|y) (61)

where the log of h-transform h̃ (note we have used h̃ to denote the log of the h-transform) coincides
with the negative of the value function in [18, 71]. Then for s = 0 and t = T this induces the
following joint distribution:

p∗0,T (x|y) = er(x)−lnZ−h̃(y,T)prefs|t(x|y)pT (y) (62)

where [18] argue that in general the term e−h(y,T) induces a bias such that when we marginalise out
y , p∗0(x) is not the tilted distribution, more precisely:

p∗0(x) = er(x)−lnZ
∫

e−h̃(y,T)pref0|T (x|y)pT (y)dy ̸=
er(x)pdata(x)

Z
(63)

However, let’s look more closely as to why this is the case; first let us re-express the h-transform at
time T as a ratio of densities:

eh̃(y,T) =

∫
dπ

dpdata
(y0)p

ref
0|T (y0|yT)dy0 (64)

=

∫
er(y0)pdata(y0)

Zpdata(y0)
pref0|T (y0|yT)dy0 (65)

=
1

prefT (yT)

∫
π(y0)p

ref
T |0(yT |y0)dy0 (66)

=
Qft

T [π](yT)

prefT (yT)
(67)

substituting back into (62) and marginalizing we have:

p∗0(x) = er(x)−lnZ
∫

pref0|T (x|y)pT (y)
prefT (y)

Qft
T [π](y)

dy (68)

now notice pT (y) is the distribution we simulate our stochastic control from which in our case we
have chosen to be pT = Qft

T [π] making the cancellation

p∗0(x) = er(x)−lnZ
∫

pref0|T (x|y)p
ref
T (y)dy =

er(x)pdata(x)

Z
(69)

Leading us to the following remark

Remark 1. The choice of setting pT = Qft
T [π] leads to removing the value function bias [18] in

Equation 63 . Note the authors of [18] pursue a different avenue for removing this bias by altering
the noise of the controlled SDE.

Proposition G.2. (Value function bias when approximating Qft
T [π] ≈ N (0, I)) In practice, we

often do not have access to Qft
T [π] and thus we may make an approximation with some tractable

distribution pT , then we can bound the value function bias as follows∥∥∥∥p∗0(x)− er(x)pdata(x)

Z

∥∥∥∥
TV

≤
∥∥∥pT −Qf

T [π]
∥∥∥
TV

, (70)

then in the VP-SDE with a time homogenous βt = β based diffusion model (for simplicity), where
chose pT = N (0, I) we can obtain a tight bound,∥∥∥∥p∗0(x)− er(x)pdata(x)

Z

∥∥∥∥
TV

≤ Ce−βT (71)

for some constant C > 0, thus the value function bias [18] is exponentially small for score based
diffusion models.

29

Proof. Applying Theorem 17 from [15] we have:∥∥∥∥p∗0(x)− er(x)pdata(x)

Z

∥∥∥∥
TV

=
∥∥∥P ft+h∗

t
0 [N (0, I)]− P

ft+h∗
t

0 [Qf [π]]
∥∥∥
TV

(72)

≤
∥∥∥N (0, I)−Qf

T [π]
∥∥∥
TV

= Ce−βT , (73)

the final equality follows from the mixing properties of the OU process [4], where

P
ft+h∗

t
0 [µ](x) =

∫
p∗0|T (x|y)µ(x)dy (74)

Finally we want to highlight that the benefits of Proposition G.2 can only be leveraged in score
matching settings where we have a clear characterisation of the forward process and we are able to
tractably characterise p∗0 however in settings such as flow matching [38, 41] and stochastic interpolants
[1] where the forward process is not explicitly characterised we wither have to learn p∗0 like in [72] or
use a memoryless noise schedule as proposed in [18].

G.3 Scaling up the Control Objective

Naively trying to minimise Eqn. (37) is demanding, as the full chain has to be kept in memory, which
is infeasible for high dimensional problems. To alleviate this problem, one could make use of the
stochastic adjoint sensitivity method [36], in which an adjoint SDE is solved to estimate the gradients
of the stochastic control loss in Theorem 3.1 3). This method has the advantage of a constant memory
cost. However, the computational cost increases as both the reverse SDE and the adjoint SDE must
be simulated. Instead, we discuss two alternative approaches to reduce the memory requirements.

VarGrad We can make use of a VarGrad [53, 54] type loss to reduce the memory requirements. In
contrast to the KL loss of Eqn. (37), then the VarGrad loss is given by:

Dlogvar(Q,P;W) = EH
gt
0:T∼W

[(
ln

dQ
dP

(Hgt
0:T)− E

[
ln

dQ
dP

(Hgt
0:T)

])2
]
, (75)

where Q and P are defined as in the proof of Proposition G.1, i.e., Q is given by the conditional SDE
and P is given by the unconditional SDE. The RND in Eqn. (77) is evaluated at the trajectory of a
reference process W = Law(Hgt

0:T), given by

HT ∼ Qft
T [p(x0|y)]

dHt =
(
ft(Ht)− σ2

t (∇Ht ln pt(Ht) + gt(Ht))
)
dt+ σt dWt. (76)

The Radon–Nikodym derivative (RND) in Eqn (75) can be evaluated as (Using the RND for time
reverse SDEs see Equation 64 in [76]):

ln
dQ
dP

(Hgt
0:T) = −

1

2

∫ T

0

σ2
t ∥ht(H

gt
t)∥2dt+

∫ T

0

σ2
t (g

⊤
t ht)(H

gt
t)dt− ln p(y|xgt

0)

+

∫ T

0

σth
⊤
t (H

gt
t)dWt, (77)

for the reference process W. The core advantage of VarGrad is that we can choose this reference
process. In particular, the choice gt = stop_grad(ht) gives us a way to detach the trajectories, saving
us from having to score all gradients in memory.

Trajectory Balance An alternative to the VarGrad loss in Eqn. (75) is the following trajectory
balance [42, 43] loss

LW
TB(Q,P; k) = EH

gt
0:T∼W

[(
ln

dQ
dP

(Hgt
0:T)− k

)2
]
, (78)

where k ∈ R is a learnable parameter and W is the same reference process as above. We again choose
gt = stop_grad(ht) This loss is also motivated by a valid divergence, see [48]. In difference to the
VarGrad loss (75), the inner expectation is exchanged with k, which approximates a running mean.
In practice, we optimise k and and ht at the same time.

30

0 100 200 300
Gradient steps

103

2 × 102

3 × 102

4 × 102

6 × 102

Stoch. optimal control loss
EM-backprop
VarGrad
Trajectory Balance

0 100 200 300
Gradient steps

10.0

12.5

15.0

17.5

20.0
PSNR

Figure 11: Left: Tracking the stochastic optimal control loss (37) for the three methods. Right: Mean
PSNR of samples.

Trajectory Subsampling We observed that backpropagating gradients for only a random subset of
discrete timesteps in the RND can be an effective strategy. This subsampling reduces memory costs
at the expense of increased variance and the introduction of a small bias. Nevertheless, the reduced
memory usage per example enables larger batch sizes, which can mitigate these effects. Notably, we
found that backpropagating for only 20% of the timesteps still achieves comparable performance.

G.4 Stochastic Optimal Control - Experiments

We provide some initial proof of concept experiments on the MNIST dataset [34] of handwritten
digits. In particular, we make use of a parallel beam Radon transform with 5 angles as the forward
operator and perturb the observations with 10% additive Gaussian noise. All SDEs are discretised
using an Euler-Maruyma scheme and the integrals are estimated using simple quadrature rules. We
use a non-equidistant time grid according to a square root function, i.e., let 0 = t0 ≤ · · · ≤ tK−1 = 1
be an equidistant grid of [0, 1] for K time points. We then use t20, t

2
1, . . . , t

2
K−1 as the time points for

evaluating the SDEs. This gives us a finer discretisation closer to t = 0. The unconditional MNIST
model is based on the attention U-Net architecture [16] with about 3M parameters. The h-transform
is implemented using the same DEFT parametrisation as in Section 3.3 with about 70 000 parameters.
We compare EM-backprop, i.e., directly backpropagting through the discrete SDE solver (see e.g.
[36]), with VarGrad and TrajectoryBalance from Section G.3. For EM-backprop we use a batch
size of 16 and use 60-80 time steps. Instead, for VarGrad and TrajectoryBalance we were able
to use a batch size of 26 and 80-140 time steps. For training we used a single GeForce RTX 3090
and the training time took about 1h. The results are presented in Figure 11, where the loss trajectory
of Eqn. (37) and the mean PSNR of samples is shown. Both VarGrad and TrajectoryBalance
are able to minimise the stochastic optimal control objective to the same extend as EM-backprop.
Further, in Figure 12 we provide an overview of the TrajectoryBalance training. Here, we observe
that k is working as a estimator of the mean RND with a lower variance.

H Amortised Conditional Training

In this section, we discuss an objective for learning the full conditional score at training time in an
amortised fashion instead of enforcing the constraint during inference time as before in reconstruction
guidance approaches. This objective is akin to CDE [5] with the difference that we propose amortising
over the the forward operator, for example in image inpainting or motif-scaffolding.

Note that since P 0|t(Y = y|Xt = x) = P t|0(x|Y = y)p0(Y = y)/pt(Xt = x), we can
re-express the Doob’s transformed SDE of a reversed OU process as:

dHt = −βt

(
Ht + 2∇Ht lnP t|0(Ht|Y = y)

)
dt+

√
2βt dWt, HT ∼ Law (XT) .

31

0 100 200 300
Gradient steps

103

105

107
Trajectory Balance loss

0 100 200 300
Gradient steps

150

200

250

300

350

400
Mean RND and k

mean RND
k

Figure 12: Training using TrajectoryBalance. Left: The trajectory balance objective loss (78)
over training steps. Right: The mean RND and the trained k. We see that k follows the mean RND.
However, it has a smaller variance.

Proposition H.1. The minimiser of

f∗=argmin
h

E (X0,Y)∼p(x0,Y)
t∼U(0,T),Ht∼pt|0(xt|x0)

[
||h(t,Ht,y)−∇Ht

ln pt|0(Ht|X0)||2
]
, (79)

is given by the conditional score f∗
t (x,y) = ∇x ln pt|0(x|Y = y).

Proof. Via the mean squared error property of the conditional expectation the minimiser is given by:

h∗
t (x,y) = E

[
∇Ht ln pt|0(Xt|X0)|Y = y,Ht = x

]
(80)

Then:

h∗
t (x,y) =

∫
∇x ln pt|0(x|x0)p0|t(x0|Ht = x,Y = y)dx0

=

∫ ∇xpt|0(x|x0)

pt|0(x|x0)

pt|0(Ht = x|x0,Y = y)p(x0|Y = y,)

p(Ht = x|Y = y)
dx0

=
1

p(Ht = x|Y = y)

∫ ∇xpt|0(x|x0)

pt|0(x|x0)
pt|0(Ht = x|x0)p(x0|Y = y)dx0

=
1

p(Ht = x|Y = y)
∇x

∫
pt|0(x|x0)p(x0|Y = y)dX0

=
1

p(Xt = x|Y = y)
∇xp(Xt = x|Y = y) (81)

= ∇x ln p(Xt = x|Y = y),

where we use that pt|0(Ht = x|x0,Y = y) = pt|0(Ht = x|x0) as Ht is independent from Y
given X0.

As with DEFT, for settings where A varies like in image completion we sample A randomly and
amortise it over our learned h-transform, i.e. estimating h∗

t (x,y,A).

We refer to this approach as amortised learning for conditional sampling, since practically the neural
network approximating the (conditional) score is amortised over A and y, instead of learning a
separate network for each condition. This approach is also reminiscent of ‘classifier free guid-
ance’ [27] where the score network is amortised over some auxiliary variable (e.g. as in text-to-image
models [51]), or of RFDiffusion [77] where proteins are designed given a specific subset motif, or
similar to [5]. See also Appendix B for a discussion of related conditional training methodologies.

32

Note that conditional amortised learning is different to ‘classifier free guidance’ as A is assumed to
be known (e.g. an inpainting mask). Also note that due to its formulation, classifier guidance would
be unable to noise a subset of X (the motif) as we do and would instead be more akin to RFDiffusion.

H.1 Relationship to Conditional denoising estimator (CDE)

Conditional denoising estimator (CDE) [5] is the adaptation of [27, 60] to inverse problem-like
settings, deriving a variation of classifier-free guidance to a measurement model styled scenario.
Whilst they do not focus on the measurement model, they estimate a very similar quantity as our
Proposition 2.5

fCDE(x,y) = ∇x ln pt|0(x|Y = y) (82)

In contrast to to the amortised conditional training:

famortised(x,y,A) = ∇x ln pt|0(x|Y = y,A = A) (83)

when explicitly considering the distribution over the measurement model, one can see that the
quantities are related to one another via marginalizing the measurement model pA. This introduces
several practical and conceptual differences:

• If we consider in/out painting as an example, the score network estimating fCDE is not
explicitly aware of where in the image the missing pixels are. As a result, it must perform
inference overA (effectively marginalizing it) in order to know where to complete the image.
This is clearly a much harder task for a single network to learn than conditioning on A
where we provide this information.

• Viewed under the lens of the h-transform, fCDE can be viewed as amortising the event
A(X0) = y for random A. It therefore falls under the soft constraint settings since
A(X0)|X0 is not a delta. Our quantity famortised is amortising over A(X0) = y for
deterministic A and is therefore part of the more classical hard constraint domain of Doobs
transform. We believe amortising over these simpler deterministic events can offer an
advantage in making the problem easier to learn.

H.2 Comparison to h-transform fine-tuning

We compare the amortised training framework against our h-transform fine-tuning on the FLOWERS
dataset. The preprocessing procedure consisted of centrally cropping the image to size 64× 64, and
rescaling to pixel values [−1, 1]. The dataset is split into three parts containing 6149, 1020 and 1020
images each. We use the first part to train the unconditional and amortised model. The second part is
used for the h-transform fine-tuning. The third part is used for evaluation.

For this experiment, we choose both an inpainting and an outpainting task. For the inpainting task a
random 18× 18px patch from the image is removed. In difference, for outpainting only a random
18 × 18px patch remains and the rest of the image is removed. Thus, the outpainting tasks tests
better the generational capabilities of our framework. For the unconditional and amortised model,
we use a standard attention U-Net [16] in the discrete DDPM framework. Both the unconditional
and the amortised model have about 24M parameters. There is a minor difference due the fact that
the unconditional network has 3 input channels and the amortised model has 7 input channels, i.e.,
the noisy image, the observations and the mask. The h-transform is implemented according to the
parametrisation in Section 3.3 with an attention U-Net [16] for NNϕ

1 . In total, the h-transform has
about 4M parameters, i.e., about 18% of the size of the amortised model. We evaluate three different
settings for the amortised model:

• AMORTISED (20X, FULL DATA): trained on the full training dataset for 1200 epochs,
• AMORTISED (2X): trained on the fine-tuning dataset for 700 epochs,
• AMORTISED (1X): trained on the fine-tuning dataset with the same computational budget as

DEFT (300 epochs).

We trained all models on a single GeForce RTX 3090. Training time for AMORTISED (20X, FULL
DATA) and the unconditional model was about 50h. The training time for AMORTISED (2X) was
4.5h, while the fine-tuning and AMORTISED (1X) took about 2.5h.

33

Table 8: Comparing the full amortised training with our conditional fine-tuning objective on the
Flowers dataset for inpainting, outpainting and blur.

INPAINTING OUTPAINTING BLUR
PSNR SSIM KID PSNR SSIM KID PSNR SSIM KID

AMORTISED (20X, FULL DATA) 27.81 0.936 0.000057 12.14 0.221 0.028 23.02 0.734 0.0196
AMORTISED (2X) 25.22 0.912 0.0016 10.84 0.192 0.0821 22.66 0.716 0.0289
AMORTISED (1X) 16.28 0.806 0.006 9.985 0.173 0.1 21.75 0.705 0.0374
DPS [12] 26.29 0.897 0.0036 11.88 0.215 0.0389 22.51 0.683 0.0624
DEFT 26.18 0.916 0.0019 11.18 0.160 0.11 23.16 0.709 0.0529

2 4 6 8 10
scRMSD

1

2

3

4

m
ot

ifR
M

SD

(10-40/B19-27/10-40)

Designable: 28%
Success: 12%

1YCR - P53 helix that binds to Mdm2

0.0

0.2

0.4

0.6

0.8

1.0

pL
D

D
T

0.0 2.5 5.0 7.5 10.0 12.5
scRMSD

0

2

4

6

8

m
ot

ifR
M

SD

(10-40/P254-277/10-40)

Designable: 45%
Success: 44%

3IXT - RSV F-protein Site II

0.0

0.2

0.4

0.6

0.8

1.0

pL
D

D
T

2 4 6 8 10
scRMSD

2

4

6

8

m
ot

ifR
M

SD

(10-40/A422-436/10-40)

Designable: 4%
Success: 2%

4ZYP - RSV F-protein Site 4

0.0

0.2

0.4

0.6

0.8

1.0

pL
D

D
T

2 4 6 8 10 12
scRMSD

2

4

6

m
ot

ifR
M

SD

(10-40/A163-181/10-40)

Designable: 3%
Success: 0%

5TPN - RSV F-protein Site V

0.0

0.2

0.4

0.6

0.8

1.0

pL
D

D
T

2.5 5.0 7.5 10.0 12.5 15.0
scRMSD

1

2

3

4

5

m
ot

ifR
M

SD

(0-65/A45-65/0-65)

Designable: 4%
Success: 0%

5TRV_med - De novo designed protein

0.0

0.2

0.4

0.6

0.8

1.0

pL
D

D
T

2.5 5.0 7.5 10.0 12.5
scRMSD

1

2

3

4

5

m
ot

ifR
M

SD

(0-35/A45-65/0-35)

Designable: 9%
Success: 2%

5TRV_short - De novo designed protein

0.0

0.2

0.4

0.6

0.8

1.0

pL
D

D
T

2 4 6 8 10 12
scRMSD

1

2

3

4

5

m
ot

ifR
M

SD

(0-65/A23-35/0-65)

Designable: 17%
Success: 5%

6E6R_med - Ferredoxin Protein

0.0

0.2

0.4

0.6

0.8

1.0

pL
D

D
T

2 4 6 8 10
scRMSD

1

2

3

4

5

m
ot

ifR
M

SD

(0-35/A23-35/0-35)

Designable: 18%
Success: 6%

6E6R_short - Ferredoxin Protein

0.0

0.2

0.4

0.6

0.8

1.0
pL

D
D

T

2 4 6 8 10
scRMSD

1

2

3

4

m
ot

ifR
M

SD

(0-65/A557-571/0-65)

Designable: 21%
Success: 12%

6EXZ_med - RNA export factor

0.0

0.2

0.4

0.6

0.8

1.0

pL
D

D
T

2 4 6 8 10
scRMSD

1

2

3

4

m
ot

ifR
M

SD

(0-35/A557-571/0-35)

Designable: 28%
Success: 22%

6EXZ_short - RNA export factor

0.0

0.2

0.4

0.6

0.8

1.0

pL
D

D
T

2 4 6 8 10 12
scRMSD

2

4

6

m
ot

ifR
M

SD

(0-38/B25-46/0-38)

Designable: 5%
Success: 1%

7MRX_60 - Barnase ribonuclease inhibitor

0.0

0.2

0.4

0.6

0.8

1.0

pL
D

D
T

2.5 5.0 7.5 10.0 12.5
scRMSD

2

4

6

m
ot

ifR
M

SD

(0-63/B25-46/0-63)

Designable: 12%
Success: 4%

7MRX_85 - Barnase ribonuclease inhibitor

0.0

0.2

0.4

0.6

0.8

1.0

pL
D

D
T

Figure 13: Full results for DEFT (9% model). For each task, we show the full scatter plot of scRMSD
and motifRMSD for all 100 samples. The colour indicates the pLDDT confidence score of the
re-folded structure with ESMFold. Samples with pLDDT ≥ 0.7 are outlined.

Results are presented in Table 8. With a same computational budget, DEFT outperforms the amortised
model on all tasks. Training the amortised model with a larger computational budget, recovers a
similar performance to DEFT. Finally, in the scenario of full access to the complete dataset and large
computational budget the amortised model is able to outperform both DEFT and DPS.

34

2.5 5.0 7.5 10.0 12.5
scRMSD

1

2

3

m
ot

ifR
M

SD

(10-40/B19-27/10-40)

Designable: 41%
Success: 29%

1YCR - P53 helix that binds to Mdm2

0.0

0.2

0.4

0.6

0.8

1.0

pL
D

D
T

Amortised

2.5 5.0 7.5 10.0 12.5
scRMSD

1

2

3

4

5

m
ot

ifR
M

SD

(10-40/B19-27/10-40)

Designable: 36%
Success: 0%

1YCR - P53 helix that binds to Mdm2

0.0

0.2

0.4

0.6

0.8

1.0

pL
D

D
T

DPS

2 4 6 8 10
scRMSD

1

2

3

4

m
ot

ifR
M

SD

(10-40/B19-27/10-40)

Designable: 28%
Success: 12%

1YCR - P53 helix that binds to Mdm2

0.0

0.2

0.4

0.6

0.8

1.0

pL
D

D
T

DEFT 9%

Figure 14: Comparison of the amortised model, DPS and DEFT (9%) on the task 1YCR. We see the
general trend for DPS that for low guidance scales the samples have high designability but do not
adhere to the motif constraint, while for higher guidance scales they adhere to the motif constraint
but have low designability.

Amortised DPS DEFT 9%

Figure 15: Comparison of samples from the amortised model, DPS and DEFT (9%) on the tasks
6EXZ med. One can see that while the amortised and DEFT samples incorporate the motif into a
realistic backbone, this is not the case for DPS. We generally observed that at small guidance scales
DPS produced realistic backbones without the desired motif and at high guidance scales it placed the
motif into an unrealistic backbone.

35

I Algorithms

In this section, we reformulate multiple algorithms from the literature under our common framework
as a reference for practitioners. In these algorithms, we use the following conventions: our dataset
is drawn from the law Pdata, but we can only sample from the simpler law Psampling at inference
time, which is often chosen as multivariate standard normal Psampling = N (0, I). Therefore, we
construct a forward noising process Pdata → Psampling that is parametrised via the noise schedule
βt = β(t), ᾱt = ᾱ(t) and try to learn the reverse denoising process Psampling → Pdata. Due to this
notion of "forward", and to keep consistency with the literature on denoising diffusion models, we
explicate the nomenclature Pdata = P0 and Psampling = PT .

There is an additional law Pnoise that is sometimes confused with Psampling since in practice both are
often chosen as N (0, I), but they are two distinct laws that could in principle be different. Pnoise is
the law from which the noise added during the forward noising process as well as the during the
reverse diffusion process is drawn from.

Algorithm 1 | Unconditional training of denoising diffusion models [28]

Require: Dataset drawn from law Pdata = P0 ▷ Dataset law Pdata
Require: Noise schedule βt = β(t), ᾱt = ᾱ(t), parametrising process Pdata → Psampling

Require: Untrained noise predictor function ϵθt (x) with parameters θ
1: repeat
2: x0 ∼ P0 = Pdata
3: t ∼ Uniform({1, ..., T})

4: ▷ Forward noise sample, xt ∼ pt|0(x0) ◁
5: εt ∼ Pnoise ▷ Often Brownian motion, Pnoise = N (0, I)
6: xt ←

√
ᾱtx0 +

√
1− ᾱtεt

7: ▷ Estimate noise of noised sample ◁
8: ε̂θ ← ϵθt (xt)

9: Take gradient descent step on
∇θL(εt, ε̂θ) ▷ Typically, loss L(xtrue,xpred) = ||xtrue − xpred||2

10: until converged or max epoch reached

Algorithm 2 | Unconditional sampling with denoising diffusion models [28]

Require: Unconditionally trained noise predictor ϵθt (xt)
Require: Noise schedule βt = β(t), ᾱt = ᾱ(t), parametrising process Pdata → Psampling

1: ▷ Sample a starting point xT ◁
2: xT ∼ PT = Psampling ▷ Often PT = N (0, I)

3: ▷ Iteratively denoise for T steps ◁
4: for t in (T, T − 1, . . . , 1) do
5: ▷ Predict noise with learned network ◁
6: ε̂θ ← ϵθt (xt)

7: ▷ Denoise sample with learned reverse process xt−1 ∼ pt−1|t(xt) ◁
8: ▷ Perform reverse drift ◁

9: xt−1 ←
1√

1− βt

(
xt −

βt√
1− ᾱt

ε̂θ

)

10: ▷ Perform reverse diffusion, which is often Brownian motion in Rn, i.e. Pnoise = N (0, I) ◁
11: εt ∼ Pnoise if t > 1 else εt ← 0
12: xt−1 ← xt−1 + σtεt ▷ A common choice is σt = β(t)
13: return x0

36

Algorithm 3 | RFDiffusion conditional training [77]

Require: Dataset drawn from Pdata ▷ Dataset law Pdata
Require: Noise schedule βt = β(t), ᾱt = ᾱ(t), parametrising process Pdata → Psampling
Require: Untrained conditional noise predictor function fθ(x,t,M) with parameters θ

1: repeat
2: x0 ∼ P0 = Pdata
3: t ∼ Uniform({1, ..., T})
4: x

[M]
0 ∪ x

[\M]
0 ← x0 ▷ Randomly partition data point into motif and rest

5: ▷ Forward noise the non-motif rest via sampling from p0|t(x0) ◁
6: εt ∼ Pnoise

7: x
[\M]
t ←

√
ᾱtx

[\M]
0 +

√
1− ᾱtε

[\M]
t

8: ▷ Combine unnoised motif with noised rest and set timestep of motif part to 0 ◁

9: xt ← x
[M]
0 ∪ x

[\M]
t

10: t[M] ← 0
11: ε̂θ ← fθ(xt, t,M) ▷ Estimate noise of sample with noised rest
12: Take gradient descent step on

∇θL(ε, ε̂θ) ▷ Typically, L(xtrue, xpred) = ||xtrue − xpred||2
13: until converged or max epoch reached

Algorithm 4 | Amortised training – i.e. Doob’s h-transform conditional training for motif-scaffolding

Require: Dataset drawn from Pdata ▷ Dataset law Pdata
Require: Noise schedule βt = β(t), ᾱt = ᾱ(t), parametrising process Pdata → Psampling

Require: Untrained amortised noise predictor function fθ(x, t,x
[M],M) with parameters θ

1: repeat
2: x0 ∼ P0 = Pdata
3: t ∼ Uniform({1, ..., T})
4: x

[M]
0 ∪ x

[\M]
0 ← x0 ▷ Randomly partition data point into motif and rest

5: ▷ Forward noise full sample via sampling from p0|t(x0) ◁
6: εt ∼ Pnoise
7: xt ←

√
ᾱtx0 +

√
1− ᾱtεt

8: ▷ Estimate noise of sample with original motif as additional input ◁

9: ε̂θ ← fθ(xt, t,x
[M]
0 ,M)

10: Take gradient descent step on
∇θL(ε, ε̂θ) ▷ Typically, L(xtrue, xpred) = ||xtrue − xpred||2

11: until converged or max epoch reached

37

Algorithm 5 | h-transform fine-tuning (new)

Require: Dataset drawn from Pdata ▷ Dataset law Pdata
Require: Noise schedule βt = β(t), ᾱt = ᾱ(t), parametrising process Pdata → Psampling

Require: Trained noise predictor function ϵθt (x) with parameters θ
Require: Untrained h-transform hϕ

t (x, x̂0,y) with parameters ϕ
1: repeat
2: x0 ∼ P0 = Pdata
3: t ∼ Uniform({1, ..., T})
4: y ∼ p(y|x0) ▷ Simulate observations
5: ▷ Forward noise full sample via sampling from p0|t(x0) ◁
6: εt ∼ Pnoise
7: xt ←

√
ᾱtx0 +

√
1− ᾱtεt

8: ε̂θ ← ϵθt (xt) ▷ Estimate noise of sample with pretrained model
9: x̂0 ← (xt −

√
1− ᾱtε̂θ)/

√
ᾱt

10: ϵ̂ϕ ← hϕ
t (xt, x̂0,y) ▷ Estimate noise of sample with h-transform

11: Take gradient descent step w.r.t. ϕ on
∇θL(ε, ε̂θ + ε̂ϕ) ▷ Typically, L(xtrue,xpred) = ||xtrue − xpred||2

12: until converged or max epoch reached

Algorithm 6 | h-transform DDIM sampling (new)

Require: Trained h-transform hϕ
t (x, x̂0,y) with parameters ϕ

Require: Unconditionally trained noise predictor ϵθt (xt)
Require: Noise schedule βt = β(t), ᾱt = ᾱ(t), parametrising process Pdata → Psampling
Require: Schedule σt = σ(t)
Require: Observation y

1: ▷ Sample a starting point xT ◁
2: xT ∼ PT = Psampling ▷ Often PT = N (0, I)

3: ▷ Iteratively denoise for T steps ◁
4: for t in (T, T − 1, . . . , 1) do
5: ▷ Predict unconditional noise with learned network ◁
6: ε̂θ ← ϵθt (xt)

7: x̂0 ←
xt −

√
1− ᾱtε̂θ√
ᾱt

8: ϵ̂ϕ ← hϕ
t (xt, x̂0,y)

9: ▷ Estimate posterior noise ◁
10: ϵ̂← ε̂θ + ϵ̂ϕ
11: εt ∼ Pnoise if t > 1 else εt ← 0

12: xt−1 ←
√
ᾱt−1

(
xt −

√
1− ᾱtϵ̂√
ᾱt

)
+
√
1− ᾱt−1 − σ2

t ϵ̂+ σtεt

13: return x0

38

Algorithm 7 | RFDiffusion conditional sampling [77]

Require: Conditionally trained noise predictor fθ(x, t,M)

Require: Target motif/context x[M]
0

Require: Noise schedule βt = β(t), ᾱt = ᾱ(t), parametrising process Pdata → Psampling
1: ▷ Sample a starting point xT ◁
2: xT ∼ PT = Psampling

3: ▷ Iteratively denoise for T steps ◁▷ Often PT = N (0, I)
4: for t in (T, T − 1, . . . , 1) do
5: ▷ Overwrite motif variables with target motif and reset their time parameter ◁

6: ▷ Note: Original RFDiffusion zero-centers xt and x
[M]
0 individually for equivariance. ◁

7: x
[M]
t ← x

[M]
0 ▷ Set noisy motif to unnoised motif

8: t[M] ← 0 ▷ Set timesteps for motif to 0
9: ε̂θ = fθ(xt, t,M) ▷ Predict noise with learned network

10: ▷ Denoise sample with learned reverse process xt−1 ∼ pt−1|t(xt) ◁
11: ▷ Perform reverse drift ◁

12: xt−1 ←
1√

1− βt

(
xt −

βt√
1− ᾱt

ε̂θ

)

13: ▷ Perform reverse diffusion, which is often Brownian motion in Rn, i.e. Pnoise = N (0, I) ◁
14: εt ∼ Pnoise if t > 1 else εt ← 0
15: xt−1 ← xt−1 + σtεt ▷ A common choice is σt = β(t)
16: return x0

Algorithm 8 | Replacement conditional sampling for motif-scaffolding

Require: Unconditionally trained noise predictor ϵθt (xt)
Require: Noise schedule βt = β(t), ᾱt = ᾱ(t), parametrising process Pdata → Psampling

Require: Target motif x[M]
0

1: ▷ Sample a starting point xT ◁
2: xT ∼ PT = Psampling

3: ▷ Iteratively denoise for T steps ◁▷ Often PT = N (0, I)
4: for t in (T, T − 1, . . . , 1) do
5: ▷ Predict noise with learned network ◁
6: ε̂θ ← ϵθt (xt)

7: ▷ Denoise sample with learned reverse process xt−1 ∼ pt−1|t(xt) ◁
8: ▷ Perform reverse drift ◁

9: xt−1 ←
1√

1− βt

(
xt −

βt√
1− ᾱt

ε̂θ

)

10: ▷ Perform reverse diffusion, which is often Brownian motion in Rn, i.e. Pnoise = N (0, I) ◁
11: εt ∼ Pnoise if t > 1 else εt ← 0
12: xt−1 ← xt−1 + σtεt ▷ A common choice is σt = β(t)

13: ▷ Forward noise the target motif x[M]
t−1 ∼ p0|t−1(x

[M]
0) ◁

14: ηt−1 ∼ Pnoise if t > 1 else ηt−1 ← 0

15: x
[M]
t−1 ←

√
ᾱt−1x

[M]
0 +

√
1− ᾱt−1ηt−1

16: xt−1 ← x
[\M]
t−1 ∪ x

[M]
t−1 ▷ Insert noised motif into current sample

17: return x0

39

Algorithm 9 | Reconstruction Guidance (i.e. Moment Matching (MM) Approximation to h-transform,
DPS [12]) for general inverse problems y ∼ noise(A(x))

Require: Unconditionally trained noise predictor ϵθt (xt) , observation y.
Require: Noise schedule βt = β(t), ᾱt = ᾱ(t), parameterising process Pdata → Psampling
Require: Guidance scale (schedule) γt = γ(t)
Require: Conditioning loss l(ypred,y). e.g, Gaussian MM l(ypred,y) = ||ypred − y||2

1: ▷ Sample a starting point xT ◁
2: xT ∼ PT = Psampling ▷ Often PT = N (0, I)

3: ▷ Iteratively denoise and condition for T steps ◁
4: for t in (T, T − 1, . . . , 1) do
5: ε̂θ ← ϵθt (xt) ▷ Predict noise with learned network

6: ▷ Estimate current denoised estimate via Tweedie’s formula ◁
7: x̂0(xt, ε̂θ)← 1√

ᾱt
(xt −

√
1− ᾱtε̂θ) ▷ c.f. also eq. 15 in [28]

8: ▷ Perform gradient descent step towards data consistency ◁
9: xt ← xt − γt∇xl(A(x̂0),y) ▷ Requires backprop through ϵθt via e.g. L2 loss

10: ▷ Denoise sample with learned reverse process xt−1 ∼ pt−1|t(xt) ◁

11: xt−1 ← (1− βt)
−1/2

(
xt − βt(1− ᾱt)

−1/2ε̂θ
)

▷ Perform reverse drift
12: ▷ Perform reverse diffusion, which is often Brownian motion in Rn, i.e. Pnoise = N (0, I) ◁
13: εt ∼ Pnoise if t > 1 else εt ← 0
14: xt−1 ← xt−1 + σtεt ▷ A common choice is σt = β(t)
15: return x0

Algorithm 10 | Reconstruction Guidance (i.e. Moment Matching (MM) Approximation to h-
transform, DPS [12]) for motif scaffolding

Require: Unconditionally trained noise predictor ϵθt (xt) , target motif/context x[M]
0 .

Require: Noise schedule βt = β(t), ᾱt = ᾱ(t), parameterising process Pdata → Psampling
Require: Guidance scale (schedule) γt = γ(t)
Require: Conditioning loss l(xtrue,xpred). e.g, Gaussian MM l(xtrue,xpred) = ||xtrue − xpred||2

1: ▷ Sample a starting point xT ◁
2: xT ∼ PT = Psampling ▷ Often PT = N (0, I)

3: ▷ Iteratively denoise and condition for T steps ◁
4: for t in (T, T − 1, . . . , 1) do
5: ε̂θ ← ϵθt (xt) ▷ Predict noise with learned network

6: ▷ Estimate current denoised estimate via Tweedie’s formula ◁
7: x̂0(xt, ε̂θ)← 1√

ᾱt
(xt −

√
1− ᾱtε̂θ) ▷ c.f. also eq. 15 in [28]

8: ▷ Perform gradient descent step towards condition on motif dimensions M ◁

9: xt ← xt − γt∇xl(x
[M]
0 , x̂

[M]
0 (xt, ε̂θ)) ▷ Requires backprop through ϵθt via e.g. L2 loss

10: ▷ Denoise sample with learned reverse process xt−1 ∼ pt−1|t(xt) ◁

11: xt−1 ← (1− βt)
−1/2

(
xt − βt(1− ᾱt)

−1/2ε̂θ
)

▷ Perform reverse drift
12: ▷ Perform reverse diffusion, which is often Brownian motion in Rn, i.e. Pnoise = N (0, I) ◁
13: εt ∼ Pnoise if t > 1 else εt ← 0
14: xt−1 ← xt−1 + σtεt ▷ A common choice is σt = β(t)
15: return x0

40

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We propose a new framework for conditional sampling from diffusion models,
referred to as DEFT in the paper. This is stated both in the abstract and introduction, see 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitation of DEFT are discussed in a special paragraph in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

41

Justification: The assumptions for the proposition are always stated in the corresponding
block. Proofs for statements are provided in Appendix D, with an exception for the optimal
control loss. The derivation for this loss function is given in Appendix G.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We clearly explain the settings and choices of our experiments either directly
in the main paper, see Section 4, or in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

42

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide anonymised code for our experiments here, as well as details
on how to use the datasets we refer to. All datasets we use are publicly available and
open-source.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Full training details are provided in the released code base. Further, the setup
is explained in both the experimental section, see Section 4, or in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the computational expense needed for sampling, providing error bars
for conditional sampling results is not standard.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

43

https://anonymous.4open.science/r/adapt-diffusions-EEC4
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide training times and experimental setup in the relevant sections.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have reviewed the NeurIPS ethics guidelines and conducted the
research according to these guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: As DEFT is a generative model, it suffers from the sample issues as other
generative approaches. The model can easily reproduce biases inherent in the training data.
Further, due to the ability for conditional sampling, i.e., drawing samples according to
specific constraints, the method can be used for “deep fakes” or misinformation. However,
these impacts do not only apply to DEFT, but to other conditional sampling method as well.
We added a sentence to the conclusion.

44

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We only use pre-trained diffusion models, which are already publicly available
in open-source code bases or publicly available datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Where applicable, we provide references to the code bases, datasets and
implementation used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

45

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide a framework for conditional sampling from diffusion models. The
codebase is provided as an anonymized Github repository. We re-use datasets and models
with open licenses.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

46

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

47

	Introduction
	Conditioning diffusions via the h-transform
	Learning the generalised h-transform
	DEFT: Fine-tuning by score matching
	Connections to variational inference and stochastic control
	Likelihood-informed inductive bias

	Experiments
	Image reconstruction
	Computed tomography
	Conditional protein design: motif scaffolding

	Conclusion
	Background on diffusion formulations
	Recap - continuous and discrete diffusion formulations
	Score, noise and mean diffusion formulations

	Related Work Discussion
	Doob's h-transform
	Doob's h-transform intuition
	Example: Truncated normal
	Doob's h-transform classical noiseless setting

	Proofs
	Proof of Proposition 2.2
	Proof of Theorem 3.1 2)

	Experimental details
	Image Experiments
	Protein Motif Scaffolding

	Additional Results
	Ablation of the DEFT parametrisation
	Non-linear Deblurring: Implementation from Mardani et al. (2023)

	Generalised h-transform and Stochastic Control
	Related Work
	Connection to domingo2024adjoint - Value Function Bias
	Scaling up the Control Objective
	Stochastic Optimal Control - Experiments

	Amortised Conditional Training
	Relationship to Conditional denoising estimator (CDE)
	Comparison to h-transform fine-tuning

	Algorithms

