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ABSTRACT

Physical adversarial attacks apply carefully crafted adversarial perturbations onto
real objects to maliciously alter the prediction of object classifiers or detectors. The
current standard method for designing physical adversarial patches, i.e. Expecta-
tion over Transformations (EoT), simulates real-world environments by random
physical transformations, resulting in adversarial examples far from satisfactory.
To tackle this issue, we propose and develop a novel network to learn real-world
physical transformations from data, including geometric transformation, printer
color transformation and illumination adaption. Our approach produces realistic-
looking adversarial examples and can be integrated into existing attack generation
frameworks to generate adversarial patches effectively. We apply our approach to
design adversarial T-shirts worn by moving people, one of the most challenging
settings for physical attacks. Experiments show that our approach significantly out-
performs the state of the arts when attacking DL-based object detectors in real life.
Moreover, we build a first-kind-of adversarial T-shirts dataset to enable effective
training of our approach and facilitate fair comparison on physical world attacks
by considering a standard patch size, environment changes and object variances.
Our code will be made publicly available.

1 INTRODUCTION

Deep learning (DL) has achieved tremendous success in a wide range of applications such as image
classification, object detection, and language processing (Alom et al., 2018; Zhao et al., 2019; Minaee
et al., 2020; Young et al., 2018). However, a large body of work has shown that deep neural networks
(DNNs) are vulnerable to adversarial attacks or examples (Goodfellow et al., 2015; Carlini & Wagner,
2017; Papernot et al., 2016; Kurakin et al., 2016), in the sense that inputs with carefully-crafted
perturbations can cause erroneous outputs in a DNN model. Such vulnerability has been demonstrated
widely in the digital world by the existence of adversarial attacks (Goodfellow et al., 2015; Carlini &
Wagner, 2017; Xu et al., 2019; Ilyas et al., 2018; Su et al., 2017; Papernot et al., 2017; Chen et al.,
2017; Brown et al., 2017). In recent years, researchers have also shown that adversarial examples can
be achieved in the physical world, through the creation of carefully designed physical objects (Thys
et al., 2019; Eykholt et al., 2018a; Li et al., 2019; Eykholt et al., 2018b; Xu et al., 2020; Chen et al.,
2018; Sharif et al., 2016; Wu et al., 2020; Athalye et al., 2018; Sitawarin et al., 2018). These physical
attacks pose serious security and safety concerns to DNN-based computer vision systems such as
autonomous driving and video surveillance.

While powerful physical adversarial examples exist, their design is currently less effective than that
of digital attacks, even in the setting where perturbation strength is unconstrained. In contrast to
digital adversarial attacks , physical adversarial attacks (PAAs) must deal with varying environment
conditions in the real world under which physical adversaries are viewed. A standard method so-
called Expectation over Transformations (EoT) (Athalye et al., 2018) designs PAAs by learning a
universal adversarial perturbation (a.k.a adversarial patch (Brown et al., 2017)) across all possible
physical transformations including background noise, translation, rotation, lighting, and contrast.
The EoT has demonstrated success in a number of scenarios from 3D printed objects (Athalye et al.,
2018), to stop/traffic signs (Eykholt et al., 2018b; Evtimov et al., 2017), eyeglass frames (Sharif
et al., 2016), adversarial cardboard (Thys et al., 2019) and the more recent adversarial T-shirts (Xu
et al., 2020) and invisibility cloaks (Wu et al., 2020). However this approach has some inherent
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limitations. First, the randomness of the approach implies a large search space of transformations for
finding an optimized adversarial patch, making the training inefficient or even infeasible. Second, as
illustrated in Fig. 1, the adversarial examples generated by the EoT for training look substantially
different from their physical realizations, indicating that the EoT lacks capability to simulate realistic
environments, such as geometric consistency and lighting changes. Due to that, large discrepancies
between training data (digital world) and test data (physical world) exist, leading to a significant
performance gap of adversarial patches between the digital world and physical world.

EoT

PaTNet

Ground truth

Figure 1: Generating adversarial examples in this work
involves inserting an adversarial patch (left) into a speci-
fied region of a T-shirt. Shown here are two examples
produced by Expectation of Transformation(EoT) (Atha-
lye et al., 2018) and our approach PaTNet, respectively.
Clearly, PaTNet produces a more realistic patch than the
EoT, based on the ground truth (right).

In this paper, we ask if it is possible to learn
physical transformations automatically from
data and use them to generate environment-
resilient adversarial examples for designing
physical adversaries. To this end, we aim to
develop a patch simulator which can infer the
physical-world conditions from an image and
adapt an adversarial patch to such conditions
in a realistic way (see Fig. 1). Our problem is
closely related the image inpainting task (Pathak
et al., 2016) that learns to repair a “lost” part of
an image, but differs in that the content (i.e. the
adversarial patch) is provided in our case. Since
an adversarial patch is dynamically updated dur-
ing the attack generation, the key challenge to
our problem is to ensure spatial invariance and illumination consistency in simulation for realism,
even for novel unseen patches. For this reason, we propose to disentangle the simulation task into a
sequence of physical transformations including geometric transformation, printer color transforma-
tion and illumination adaption, and jointly learn them by a novel patch transformer network, herein
referred to as PaTNet. As demonstrated later, PaTNet produces realistic adversarial examples and
enables design of robust adversaries that produce strong attacks in the physical world.

We apply our approach to create adversarial T-shirts (or “invisibility cloaks”) (Xu et al., 2020; Wu
et al., 2020), arguably the most challenging setting among existing adversarial attacks. Here, the
attack generator designs adversarial patches on a non-rigid object, i.e. a T-shirt, to fool object
detectors and allow moving people to evade detection. Learning all transformations aforementioned
in an end-to-end way is non-trivial. While public datasets such as CoCo (Lin et al., 2014) and
Inria (Dalal & Triggs, 2005) have been shown useful for attack generation (Thys et al., 2019; Wu
et al., 2020), they don’t provide patch location information needed for learning physical transfor-
mations effectively, as indicated in (Xu et al., 2020). We thus collected a new dataset dedicated
for designing adversarial T-shirts and facilitating fair evaluation of adversarial attacks. The dataset
contains an uniform size of the adversarial pattern with varied objects and scenes, and is available
at https://github.com/Anonymous1125/patnet_dataset. We further develop a two-stage training al-
gorithm to learn PaTNet robustly with only minimal annotations required (i.e. patch location). We
summarize our contributions as below.

• We develop a novel framework PaTNet to generate realistic-looking examples for training
physical adversarial attack models. To the best of our knowledge, it is one of the very few
approaches that aim to reduce the performance gap of adversarial patches between the digital
world and physical world.

• Our approach does not require strong supervision, converges fast in training, and generalizes
well to novel adversarial patches (disentangled transformations). All this enables design of
strong physical adversarial attacks against realistic environments from large-scale datasets.

• We apply the proposed framework to design adversarial T-shirts to attack multiple popular
detectors and evaluate the efficacy of our approach under challenging real-world scenarios.
Our adversarial patches outperform the SOTA approaches by an absolute 30%.

• We created a first-kind-of real world dataset to facilitate fair comparison on adversarial
T-shirts generated from different approaches.
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2 RELATED WORK

Physical Adversarial Attacks There exist many different types of adversarial attacks against image
classification or object detectors in the real world. In (Sharif et al., 2016), the first physical attacks
against face recognition systems by designing adversarial eyeglass frames was demonstrated. Another
well-known success of physical adversarial attacks is the generation of adversarial stop signs that can
fool state-of-the-art object detectors (Eykholt et al., 2018b; Evtimov et al., 2017; Chen et al., 2018).
In (Athalye et al., 2018), a framework known as Expectation over Transformation (EoT) was proposed
to synthesize adversarial examples robust to a set of physical transformations. EoT has become a
standard way to craft physical adversarial attacks such as adversarial vehicle camouflages (Zhang
et al., 2019) and adversarial cloths (Thys et al., 2019; Wu et al., 2020; Xu et al., 2020).

Most existing work has focused on the design of adversarial patches (or stickers) on rigid physical
objects, e.g., eyeglass frames (Sharif et al., 2016), traffic signs (Eykholt et al., 2018b; Evtimov et al.,
2017; Chen et al., 2018; Duan et al., 2020), cameras (Li et al., 2019), vehicles (Zhang et al., 2019) and
pieces of cardboard (Thys et al., 2019), except for (Wu et al., 2020; Xu et al., 2020), which address
non-rigid objects. The most relevant work to ours is (Thys et al., 2019; Wu et al., 2020; Xu et al.,
2020). In (Thys et al., 2019), the problem of physical adversarial attacks against person detectors was
studied for the first time. Although the proposed attack only applied to a rigid object—cardboard,
held by a stationary person, it successfully fools person detectors. Spurred by (Thys et al., 2019), the
work (Wu et al., 2020; Xu et al., 2020; Huang et al., 2020) attempted to design wearable adversarial
examples. In (Wu et al., 2020), a comprehensive empirical study was made to demonstrate the
effectiveness of an adversarial cloak to fool various object detectors. In (Xu et al., 2020), by utilizing
Thin Plate Spline (TPS) based transformation to model fabric distortions in an EoT framework, an
adversarial T-shirt was created that could fool object detectors even for moving individuals. In (Huang
et al., 2020), a simulated 3D world environment was built to support generating an Universal Physical
Camouflage Attack. The method of (Jan et al., 2019) applies the conditional GAN technique to
simulate the physical transformations for generating robust adversarial examples, with a focus on
digital adversarial examples.

Image Generation The pioneering work of Generative Adversarial Network (GAN) (Goodfellow
et al., 2014) has led to a series of interesting approaches in image generation which produce realistic
content such as cycle-GAN (Zhu et al., 2017), star-GAN(Choi et al., 2018) and style-GAN (Karras
et al., 2019). These techniques have also been widely applied to other topics related to image
manipulation such as image inpainting/completion (Pathak et al., 2016; Yu et al., 2018; Portenier
et al., 2019; 2018) and view synthesis (Park et al., 2017; Lin et al., 2018). Our problem of generating
adversarial examples is closely related to image inpainting in the sense of completing a missing region
in an image. (Pathak et al., 2016) train a GAN in combination with a pixel-wise reconstruction loss
to reconstruct the missing part of an image. In (Yu et al., 2018), the idea of context-aware attention is
proposed to encourage spatial consistency for image completion. In our case, since the content to
be filled in is provided by a digital patch already, we emphasize ensuring a generated example to be
spatially and color consistent with the source image.

3 PROPOSED APPROACH

The adversarial example generation process is similar to image inpainting, which aims to reconstruct
lost or deteriorated parts of an image. In our case, the “missing“ content is provided by the adversarial
patch,thus our primary interest is to ensure spatial invariance and illumination consistency in the
modification for realism. In other words, the generated adversarial examples should look realistic
under varying environment conditions in order for the attack to achieve robustness against real-world
scenarios. Such a task is challenging as the physical realization of a digital patch undergoes a number
of underlying physical transformations involving a printer, a camera, a scene as well as the patch
itself. There is no known method to model such a complex process precisely in a principled way.

In this work, we propose a general framework for physical adversarial attacks with a particular focus
on making adversarial examples resilient to real-world environments. It is an important problem
for physical adversarial attacks (PAAs) but has not received much attention. We demonstrate the
effectiveness of our idea by the example of adversarial T-shirts. However, it should be straightforward
to generalize our approach to other types of physical adversarial attacks. Before detailing our
approach, we first briefly describe how Expectation over Transformation (EoT) (Athalye et al., 2018),
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the existing most successful framework for PAAs, is used to create adversarial patches for attacking
object detectors.

Preliminaries: Adversarial Patch by EoT. Let δ be an adversarial patch (or perturbation) masked
by Mi. An image xi from a training set D results in an adversarial example x′i = (1−Mi) · xi +
Mi · t(δ) by a set of predefined transformations t ∈ T . The adversarial patch δ, in the context of
object detection, can be generated by optimizing the following objective (Eykholt et al., 2018a),

argmin
δ

λ||δ||TV + Lc(δ) + Et∈T ,xi∈DJ(fθ(x
′
i,y

′) (1)

The first term of (1) is the total variation (TV) of δ in the `p norm to ensure smoothness of the
patch. The second term is a loss function that measures the printing quality of the patch, such as the
non-printability score (NPS) proposed in (Sharif et al., 2016). The last term J indicates the attack
loss, which measures the difference between the detection score of a victim detector fθ and a target
label y′.

The currently existing approaches of PAAs solve Eq. 1 by the EoT (Athalye et al., 2018), which
applies random image transformations such as scaling, rotation and lighting from T to δ. Clearly, the
randomness of transformations, even if T is small, still results in a large search space for optimizing
δ and slow convergence in training. In addition, the randomly sampled transformations are far from
being representative of the real physical world, thus unable to provide training examples with good
quality for adversarial path generation. As a result, adversarial examples based on the EoT often
perform well in the digital world, but cannot live up to expectations in practice. Regardless of these
limitations, the EoT has demonstrated success in a variety of interesting applications (Biggio et al.,
2018).

Overview of PaTNet. To address the limitations of the EoT, we propose to learn physical transfor-
mations in a data-driven way and then apply them to generate adversarial examples. As mentioned
earlier, our problem is closely related to image inpainting (Yu et al., 2018; 2019b), which can be
potentially used for generating adversarial examples. However, image inpainting approaches heavily
rely on local and global contexts to fill in the holes of an image with semantically consistent content.
They do not tend to generalize well to new data, as shown later in Figure 3. In addition, training these
approaches is computationally costly and requires a large amount of data.

Geometric Transformation
(Spatial Transformer)

Illumination Adaptation
(Color Constancy Model)

Printer Color Transformation
(Color Mapping)

(a)

(b)

(d)
(e)

(c)

(f)

Figure 2: An overview of our approach. The network
takes as the input a person image (a), a cropped patch
(b) from (a) and a binary mask of the patch in (b) (not
drawn here), transforming a digital patch (c) to replace
(b) on the T-shirt. The patch (c) goes through three
fundamental physical transformations, i.e. geometric
transformation (d), printer color transformation (e) and
illumination adaption to ensure realism on (f). (ER, EG,
EB) is an illuminant inferred from a color constancy
model to adjust the brightness of (e).

In this work, we construct adversarial examples
from an adversarial patch by considering three
fundamental physical transformations, namely
geometric transformation (Tgt), printer color
transformation (Tpct), and illumination adap-
tion (Tia). Among them, Tgt controls how the
patch is geometrically mapped to a target im-
age; Tpct attempts to make the patch colors
more reproducible by the printer; and finally
Tia adapts the patch to fit the illumination of the
scene. As illustrated in Figure 2, each of these
transformations is implemented as a separate
network module, which is then integrated into
one network to jointly learn all the transforma-
tions with minimal supervision from the person
and patch locations only. We refer to this net-
work as Patch Transformer Network (PaTNet)
for convenience.

Note that the aforementioned transformations
can by no means precisely simulate the complex
process underlying the physical-world conditions. For example, most security cameras have automatic
white balance, which is not considered here. However, by combining together all the transformations
described above, we demonstrate that they can be jointly optimized and yield visually more satisfied
adversarial examples, which in turn improve the effectiveness of adversarial attacks. We also would
like to point out that disentangling these transformations for simulation rather than learning them in a
blackbox setting like a GAN-based image generator (Yu et al., 2018; 2019b), is essential for ensuring
PaTNet to have good generalizability to novel adversarial patterns (see Fig. 3 for comparison).
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pattern input STN GeneratorIA

good illumination poor illumination 

PCT pattern input STN GeneratorIAPCT

Figure 3: Simulated results of each transformation (STN, PCT and IA) under two different lighting conditions.
The last column shows examples generated by an image generator (Yu et al., 2018) (see Figure 4). The resulting
output of our approach (i.e. IA) demonstrates good adaptation capability to different lighting conditions for both
patches while the generator (red box) is unable to generalize to the novel adversarial patch.

As shown in Figure 2, the input to PaTNet includes an adversarial patch, a person image and a binary
mask Mi

1 indicating where to insert the patch in the image. The output is a transformed image
represented by

x′
i = (1−Mi) · xi +Mi · Tia(Tpct(Tgt(δ))) (2)

Geometric Transformation. The task of geometric transformation is to determine how to place a
patch onto a target object (i.e. T-shirt in our case) through finding a geometric mapping between them.
Depending on application, different geometric relationships can be applied. Accurate patch localiza-
tion is crucial for designing robust physical adversarial attacks. For example, affine transformation is
used for attaching adversarial stickers to stop signs (Eykholt et al., 2018b) while Thin-Plate-Spline
(TPS) based mapping is shown more effective in modeling fabric variations like cloth deformation
caused by a moving person (Xu et al., 2020). To the best of our knowledge, all existing approaches
rely on either manual labeling or random sampling to obtain spatial transformations to create physical
adversarial examples.

In this work, we apply Spatial Transformer Networks (STN) (Jaderberg et al., 2015) to automatically
learn the geometric transformation between a patch and an object. As shown in Figure 2, the input to
STN is a cropped region (b) from an image, which is used to infer the spatial transformation between
itself and a digital pattern (c). The learned geometric model is then applied to transform the original
patch onto a T-shirt. Learning STN requires supervision, which usually comes from a different task.
In our case, we train STN by minimizing the difference between the reconstructed patch and the
cropped region (b), which is detailed at the end of this section. We refer readers to the Appendix for
quantitative localization results of STN.

Printer Color Transformation. Instead of recognizing red, green and blue (RGB) values, high-end
digital printers usually present colors using a color wheel of cyan, magneta and yellow (CMYK).
Because of these variances, some RGB colors are outside of the CMYK gamut and cannot be made
with CMYK. This results in differences (sometimes significant) between on-screen colors and what
result in post-printing. The printer color issue has been well known to cause performance degradation
in physical adversarial attacks (Eykholt et al., 2018b; Xu et al., 2020). Prior works such as (Sharif
et al., 2016) use the non-printability score (NPS) to guide the perturbation to choose RGB values
closer to printable colors. More recently, a simpler but effective method is developed in (Xu et al.,
2020). It directly calibrates a color mapping between a digital color palette representing 960 colors
(Figure 3) and an image of the patch taken under a natural lighting condition.

Inspired by the idea in (Xu et al., 2020), we insert a network module into our framework to learn a
mapping between digital and printable colors. In other words, we look for a function Tpct that can
translate a digital color to its printable one. We adopt a 3× 3 matrixM to transform a digital patch
Pi by P̂i

pct
= Tpct(Pi) =MPi. We also experimented with a quadratic polynomial function, which

yields similar results.

1A mask is created by using the four corner points of the patch on the T-shirt, which can be either manually
annotated or automatically identified by image matching or detected by a detector.
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Illumination Adaption. Our approach so far can paste a digital patch onto an object (i.e. T-
shirt) with good localization. However the PCT discussed above only partially addresses the color
inconsistency between the patch and its physically realized content. As illustrated in Figure 3, the
output of PCT is still not satisfactory due to the lack of adaptation to the environmental illumination.
Further addressing this issue is related to a long-standing problem in vision called computational
color constancy (CCC) (Gijsenij et al., 2011). CCC involves removing illumination color casts in
an image so that the image can be perceived the same way regardless of illumination changes. In
other words, the goal of CCC is to infer the illuminant with which the image is lit, i.e. the missing
information needed to recover the true color of a transformed patch by PCT. We briefly describe CCC
below.

The diagonal matrix is a simple but widely used method in CCC, which computes the color of an
object under an illuminant by a 3× 3 diagonal matrix. Let (Ri, Gi, Bi) be the RGB value of a pixel i
on an image and (ER, EG, EB) is the unknown illuminant. The diagonal model is then given by

[Ri, Gi, Bi]
T = diag(ER, EG, EB) · [Rc

i , Gi
c, Bc

i ]
T (3)

where T denotes Transpose of matrix and (Rc
i , G

c
i , B

c
i ) is the color under a canonical light source,

a.k.a white light. In (Barnard & Barnard, 1995), the problem of CCC is defined as estimating the
canonical illuminant E. It should be clear that color constancy is the key problem to resolve if we
treat the output of PCT as (Rc

i , G
c
i , B

c
i ) in Eq. 3.

The solution to color constancy has witnessed significant progress in recent years by deep learning
based approaches (Barron, 2015; Hu et al., 2017; Yu et al., 2019a). In our work, we adopted FC4,
a CNN-based approach (Hu et al., 2017), for illumination estimation. FC4 is a fully convolution
network that can be easily integrated into our approach for end-to-end training. Figure 3 illustrates
the simulated results of two patches under good and poor lighting conditions. The color palette is
included in the training data while the adversarial patch is novel to the transformers. It is clear that
the final results of PaTNet (i.e. IA) inherit both the geometry and illuminations well from the input
images, demonstrating the efficacy and generalizability of our approach. In contrast, a powerful
image generator from a GAN-based approach (Yu et al., 2018) (see the next session for detail), while
showing excellent simulation for the color palette, is unable to produce satisfactory results for a novel
adversarial patch. Especially, the bottom two images highlighted by the red boxes indicate that the
generator lacks the ability of lighting adaptation demonstrated by PaTNet.

STN
Image 

Generator

(c)

(b)(a)

(d)

Figure 4: Learning STN using an image generator. The
network transforms a patch (b) to visually match its physi-
cal realization (a) on the T-shirt (training data). The Image
generator learns the difference between (c) and (d).

Two-stage Training of PaTNet. We learn
our proposed PaTNet by matching a recon-
structed patch from PaTNet to its physical ex-
ample in the real world (i.e. an input image).
The learning is mostly done in an unsuper-
vised way and the only information required
is the patch location. The PaTNet integrates
a sequence of transformation modules into
one network, and is designed in a way that
end-to-end learning is feasible. However, we found that learning all the transformations jointly does
not converge well as expected in practice. This is largely because the color constancy model (FC4),
which is dedicated to estimate an illuminant, appears too weak to provide strong supervision on
learning the geometric mapping (i.e. STN). Moreover, the success of FC4 itself requires accurate
pixel-level localization provided by STN. We thus develop a two-stage approach below to train
PaTNet effectively.

At the first stage, we focus on learning STN by coupling it with a powerful image generator to create
adversarial examples (no printer color transformation and illumination adaptation), as shown in Fig. 4.
The image generator used in our work is the fine encoder-decoder model developed in (Yu et al.,
2018). Different from (Yu et al., 2018), the generator in our case learns to infer the residual between
the reconstructed patch and the original one in an attempt to reduce the dependency on image context
(Fig. 4). At the second stage, we train the entire PaTNet end-to-end with STN fixed. Both stages
optimize the following objective function,

argmin
{θpct,θia}

Exi∈D‖x′i − xi‖1 (4)

where θpct and θia are the model parameters of the PCT and IA modules respectively, and xi is a
ground-truth adversarial patch from a T-shirt while x′i is the final output of PaTNet.
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Table 1: Digitial-world ASR under different
transformations.

Methods YOLOv2 YOLOv3

self PaTNet self PaTNet

PatNet-s 92.2 54.5 66.5 10.5
PatNet-sp 93.1 78.0 50.0 30.4
PatNet 86.5 86.5 42.6 42.6

Table 2: Digital-world attack transferrability of PaTNet
Victim Detectors

Patch YOLOv2 YOLOv3 SSD FRCNN RetinaNet

YOLOv2 86.5 1.1 7.3 0.0 0.2
YOLOv3 27.8 42.6 0.6 0.0 0.8
SSD 11.4 0.0 57.6 0.0 0.0
FRCNN 9.0 0.8 4.0 34.3 20.7
RetinaNet 10.0 0.1 0.5 0.00 83.2

Adversarial Patch Generation. Integrating PaTNet into an adversarial patch generator is straight-
forward. Following (Xu et al., 2020), we define the attack loss J of Eq. 1 by

J(x′
i) = max

Bj∩Pi>η
max(p(Bj), ν)} (5)

where p(·) denotes the confidence score of the jth ‘person’ bounding box Bj and ν is a confidence
threshold. The use of max{p(·), ν} enforces the optimizer to minimize the bounding boxes of high
probability (≥ ν). |Bj ∩ Pi| > η indicates that Bj has at least η-overlapping with the person Pi
wearing an adversarial T-shirt. η is set to be a small number 0.1 in both training and test. The
rational behind Eq. 5 is that the probability of person detection would be suppressed only if a ‘person’
bounding box associated with the adversarial T-shirt has a high confidence.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

In what follows, we illustrate the effectiveness of PaTNet in design of adversarial T-shirt (Xu
et al., 2020) to fool person detectors. Our experiments consider 5 advanced detectors including
YOLOv2 (Redmon & Farhadi, 2017), YOLOv3 (Redmon & Farhadi, 2018), SSD (Liu et al., 2016),
Faster RCNN (Ren et al., 2015), and RetinaNet (Lin et al., 2017).

Figure 5: Data used for training and validating PaTNet.

Dataset. We built a large-scale dataset for
evaluating our proposed approach. We used a
checkerboard and color palette T-shirts to col-
lect a total of 105 videos from four indoor and
two outdoor scenes by iPhone cameras. We uni-
formly sampled video frames at a rate of 1/5,
which results in 4, 892 frames. Among these
frames, 2, 830 of them were used for training
and 1, 688 for validation. Some samples frames are shown in Fig. 5. We refer readers to the Appendix
for more detail of the dataset and annotations.

Training Details. We conducted all our experiments on compute nodes with 6 V100 GPUs and a
total of 96GB GPU memory. We chose the Adam optimizer and trained all the models using a batch
size of 72 for 500 epochs. For PaTNet, we fix the parameters of Adam (β1 = 0.5, β2 = 0.9 and
lr = 1× 10−4) while employing adaptive learning in adversarial patch training.

Baselines. We conduct comprehensive experiments on both digital and physical worlds with three
variants of our proposed PaTNet, 1) PatNet-s using STN only; 2) PatNet-sp including STN and
PCT; 3) PatNet with all three transformations, which is our proposed approach. Furthermore, we
compare with other existing methods of designing adversarial T-shirts: adv-patch (Thys et al., 2019),
advT (Xu et al., 2020) and inv-cloak (Wu et al., 2020). Note that different approaches are trained
on different datasets and designed for different scenarios with different sizes/numbers of patches,
it’s challenging to make strictly fair comparison of these approaches, especially in the real-world
scenarios. Nevertheless, we managed to compare our approach with other existing methods under
some reasonable assumptions, in both the digital world and physical world (see Section 4.2).

4.2 EXPERIMENTAL RESULTS

Following (Xu et al., 2020), We set the minimum detection threshold to 0.7 for fair comparison, and
use Attack Success Rate (ASR) to report results in percentage (%).

Digital-world Test. We first investigate the effects of physical transformations. We generate
adversarial patches against YOLOv2 and YOLOv3 using different patch transformers PatNet-s,
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PatNet-sp and PatNet. The evaluations are conducted in two different ways: self means the test
transformers are the same transformers as used in training; PaTNet indicates the test results are
based on our proposed transformations, STN + PCT + IA. Interestingly, as shown in Table 1, when
training and evaluation use the same setting (self ), PatNet-s and PatNet-sp outperform PatNet on
both YOLOv2 and YOLOv3. This can be explained by the fact that fewer transformations imply
fewer constraints, or a larger perturbation space that allows for better optimization. On the other hand,
when tested by a more realistic transformer PaTNet, PatNet itself performs the best as expected.

To understand the efficacy and transferability of PatNet on stronger detectors, we compare the
vulnerability of 5 advanced object detectors in Table 2. All detectors are trained on the COCO
dataset (Lin et al., 2014). SSD (Liu et al., 2016) and Faster RCNN (FRCNN) (Ren et al., 2015) use
VGG-16 (Simonyan & Zisserman, 2014) as the backbone network while RetinaNet (Lin et al., 2017)
is based on ResNet-101 (He et al., 2016). The results indicate that YOLOv2 is the most vulnerable
while Faster RCNN being the most robust. Table 2 also shows that adversarial T-shirts have limited
transferrability, which is only observed when the backbone networks are similar, such as YOLOv2
and YOLOv3.

Table 3: Pysical-world attack results (ASR) of PaTNet
against YOLOv2 in different unseen scenes.

Scenes PatNet-s PatNet PatNet-sp PatNet

outdoor 1 9.5 39.2 20.4 47.6
outdoor 2 52.2 56.3 29.9 52.0
indoor 1 18.4 33.8 2.9 31.2
indoor 2 36.2 52.2 14.0 50.2

overall† 27.7 45.3 17.9 46.0
† overall results are computed as the total number of frames detected
over the total number of frames.

Physical-world Test. The efficacy of any
physical adversarial attack needs to be care-
fully validated in the physical world. We col-
lected new test data in 4 scenes with com-
pletely new environments different from train-
ing data for the physical-world experiments.
Each video captures two actors walking in
parallel. Both actors wear adversarial T-shirts,
one of which is designed by our proposed ap-
proach PatNet and the other T-shirt generated
by a baseline method. The actors then swap positions or T-shirts and repeat the acting, resulting
in a total of 4 videos per scene. This allows us to make a direct pairwise comparison between our
approach and a baseline method.

Table 3 lists the attack results of different approaches in different scenes. Our approach demonstrates
stronger attack ability than PatNet-s (geometric transformation only) and PatNet-sp (geometric and
printer color transformations) by a large margin of 20% ∼ 30%, suggesting that the realism of
adversarial examples is crucial for robust physical adversarial attacks in real-world scenarios. We
refer readers to Figure A3 in the Appendix for examples of our proposed approach. Demo clips can
also be found in the supplemental materials.

We also conduct experiments to evaluate the performance of other detectors in the real world. The
results show that the ASRs are 13.1%, 18.6%, 1.0% and 40.0% for YOLOv3, SSD, Faster RCNN
and RetinaNet respectively. There seems a tendency that stronger detectors are less vulnerable to
adversarial attacks, which is aligned with the finding in the digital test. Faster RCNN is almost
immune to adversarial attack in our experiments, possibly because the attack strategy in Eq. 5 is not
effective on the two-stage architecture of Faster RCNN. While a larger-scale evaluation is desired for
better understanding of the vulnerability of these detectors, the physical-world experiments actually
echo the digital world results, suggesting that PaTNet provides a promising way for determining the
attack strength of an adversarial model in the real world from digital-world results.

Table 4: Comparisons with other approaches . (all
based on YOLOv2)

Methods Digital World Physical World

COCO Inria Indoor Outdoor

adv-patch (Thys et al., 2019) 65.3 71.4 12.2 8.9
advT (Xu et al., 2020) 68.2 69.5 18.7 45.0
inv-cloak (Wu et al., 2020) 81.2 67.0 27.3 34.1
PatNet 67.5 56.2 67.3 58.4

Comparison with Other Approaches. We further
compare our approach with object detector attack-
ing methods including adv-patch (Thys et al., 2019),
advT (Xu et al., 2020) and inv-cloak (Wu et al., 2020).
For the physical world experiments, we obtained the
adversarial patterns designed by these approaches
from their arxived papers and printed the patterns out
on T-shirts. These T-shirts were used to collect test data with the T-shirt designed by our approach at
the same time and in the same scenes. So the experimental setting is fair for all methods. All scenes
consider the lightning, distance and poses changes. For the digital world experiments, we use the
public datasets COCO (Lin et al., 2014) and Inria (Dalal & Triggs, 2005), and apply all patches to the
largest person object in an image by an affine transformation, follow the setting in (Thys et al., 2019).
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In Table 4, the results clearly show that PatNet achieves the best performance in the real world
scenarios. Moreover, since all methods trained on different datasets, we cross-validate these methods
on COCO (Lin et al., 2014) (used in (Wu et al., 2020)) and Inria (Dalal & Triggs, 2005) (used in (Thys
et al., 2019)). Not surprisingly, inv-cloak (Wu et al., 2020) and adv-patch (Thys et al., 2019) perform
well in the datasets they use for training and testing. Neverthless, our approach outperforms all the
other approaches in the physical world test, clearly indicating that realistic simulation of physical
transformations is critical for robust adversarial attacks in the physical world. By comparing with the
results in the physical world and digital world, we can conclude that: 1) the results generated on the
digital world datasets like COCO and Inria are not representative of real-world performance; 2) our
approach PatNet is carefully designed for physical world attack and thus performs effectively in the
realistic scenarios.
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Figure 6: ASR (%) of PatNet-s and PatNet under different real-world scenarios.

Effects of Environment Conditions. To better understand the effects of environmental conditions
on model performance, we conduct experiments dissected by camera distance, camera views and
lighting conditions using the test videos (Figure 6). Specifically, when considering the lighting effect,
the distance from the actor to the camera ranges from 1.5m to 3m and the camera angle is around
0◦. Similarly, the angle effect is evaluated under normal lighting conditions and a fixed distance.
As can be observed in Figure 6, our approach demonstrates strong improvements (5%− 30%) over
the baseline methods in almost all categories. The much better performance on various lightening
conditions indicates simulating illumination changes in adversarial examples is of significance for an
adversarial patch to survive in realistic environments. Our approach is also more robust to camera
views up to 30

◦
, though such robustness is unclear as the camera distance increases.

Especially, we notice that strong sun lights (i.e. a sunny condition) result in overexposed frames
so that the ASR in this case are usually lower than that under other lighting conditions. This is a
challenging problem that currently cannot be effectively addressed by our approach. Also, distance is
an issue that future research should look into for developing stronger adversarial attack methods.
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Figure 7: Detection scores w/o adversarial attack
(orange), ASRs (green) and detection scores under
attack (blue) w.r.t. patch size.

Detection Robustness Against Distance. It is un-
der the impression that the robustness of a detector
against adversarial attack increases by distance due to
the negative effect of image resolution on the efficacy
of the attack. We plot in Figure 7 the detection scores
w/o adversarial attack (orange), the ASRs (green) and
detection scores (blue) under attack by the height of
the adversarial patch (a smaller height indicates a far-
ther distance) for several detectors. Surprisingly, both
YOLOv2 and YOLOv3 shows more resilience to at-
tack at an intermediate distance around 180 ∼ 200
pixels. This is more differentiating for YOLOv2, indicated by a notable sag on its ASR curve. While
there is no clear reason why this occurs to these detectors, we conjecture that it might be related to a
combined effect of the test size of the detector and the patch size. Another insightful observation is
that compared to YOLOv3 and RetinaNet101, YOLOv2 is more vulnerable to the physical adversarial
attack (characterized by ASR) even at a long distance (corresponding to small patch size).By contrast,
all the detectors can be fooled at a short distance.

5 CONCLUSIONS

We have presented a unified framework for generation of physical adversarial patch, and demonstrated
that it is much powerful compared with EoT, the current standard approach for physical adversarial
example generation. Our framework can serve as a benchmark for future physical world patch
simulation. While our architecture provides an end-to-end, consolidated approach to the multiple,
complex transformations found in real world images, generating physical adversarial examples that
work at long ranges remains an area for future improvement.
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APPENDIX

Dataset We built a large-scale dataset for evaluating our proposed approach. Similar to (Xu et al.,
2020), we used a checkerboard T-shirts to collect 66 videos from four indoor and two outdoor scenes
by iPhone cameras. Each video contains one, two, or three persons walking side by side towards a
hand-held camera. In addition, to enable learning printer color transformation, we captured another
39 videos with a single person wearing a color-palette T-shirt (see Figure 3 and 5 in the main paper).
The data present significant challenges such as distance, pose changes and varied illuminations. We
uniformly sampled video frames at a rate of 1/5, which results in 4, 892 frames. Among these frames,
2, 830 of them were used for training and 1, 688 for validation. All video frames are provided with
the coordinates of the 4 corner points of the patch on the T-shirt and the bounding box of the person
who wears an adversarial T-shirt. Some samples frames are shown in Fig. 5 in the main paper. Only
the corner points were manually annotated. The person bounding boxes are provided by a detector
based on Faster-RCNN.

Training Convergence In Fig. A1, we compare the convergence rate of our approach with
advP (Thys et al., 2019). The EoT-based training converges much slower than the training driven
by PatNet, suggesting that EoT learns both less efficiently and less effectively than our approach.
Moreover, our approach benefits from the realistic examples generated by PatNet, demonstrating
good learning capability on a large dataset with great complexity from real-world scenarios.
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Figure A1: The overall and detection losses v.s. epoch for advP (Thys et al., 2019) and advPat. Our proposed
approach converges much faster than advP based on EoT.

Localization We use ResNet18 as the backbone for the Spatial Transformer Network (i.e. STN),
and define the Thin Plate Spline (TPS) transformation by 200 control points. We apply AlexNet to
learn illumination adaptation in the color constancy model. As discussed in the main paper, learning
our proposed PaTNet is based on self supervision through minimizing the `1 distance of the output of
the IA module and the corresponding input image (See Fig 4 in the main paper). Table A1 shows
the quality of patch transformation at each stage of PaTNet, i.e. geometric transformation (STN),
printer color transformation (PCT) and illumination adaptation (IA), under two similarity metrics,
namely the Structural Similarity Index Measure (SSIM) (Wang et al., 2004) and `1 distance. Not
surprisingly, the IA module (the minimum `1 distance and the highest SSIM) produces the best visual
similarity to the ground truth images. The high matching costs of PCT indicate that it does not
transform digital colors close to their printer colors, as discussed in Section 3.2 in the main paper.
In addition, the results confirm that TPS leads to better modeling of cloth deformation than Affine
Transformation (Xu et al., 2020).

Table A1: Quality assessment of different transformations in PaTNet

Geometric SSIM `1

Transformation STN PCT IA STN PCT IA

Affine 0.496 0.425 0.574 0.242 0.295 0.157
TPS 0.554 0.478 0.645 0.233 0.293 0.140
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Adversarial Patches We show the adversarial patches generated by our approach against different
detectors in Figure A2. The performance of these patches in the digital and physical worlds can be
found in Table 3 and Table 5 of the main paper, respectively.

YOLOv2 YOLOv3 SSD FRCNN RetinaNet

Figure A2: Adversarial patches generated by PaTNet against different detectors.

Illustrative Examples Below illustrated in Fig A3 are examples of adversarial attacks from our
approach, including both successful and failure cases.

L: advT R: PatNet-s L:PatNet-s R: PatNet-sp L: advT L: PatNet-s L: PatNet-sp

Figure A3: Examples of adversarial attacks in the physical world. Successful cases: images 1-4 from left to
right; failure cases: images 5-7. L or R indicates the location of an adversarial T-shirt generated from a baseline
approach, and the other one is our approach PatNet.
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