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Abstract

In this paper, we address the challenge of predicting learning performance in offline
Reinforcement Learning (RL). It is a crucial task to ensure the learned policy
performs reliably in the real world and to avoid unsafe or costly interactions. We
introduce a new approach that utilizes Convolutional Neural Networks (CNNs)
to analyze offline RL datasets, represented as images. Our model predicts the
performance of policies learned from these datasets within a specific RL framework,
including the selected algorithm and hyperparameters. We explore the model’s
transferability across different scenarios with alterations in state space size or
transition functions. Furthermore, we demonstrate an application of our model
in optimizing offline RL datasets. Leveraging genetic algorithms, we navigate
through potential dataset subsets to identify a reduced version that enhances policy
learning efficiency. This optimized dataset reduces training time while achieving
comparable or superior performance to the complete dataset.

17th European Workshop on Reinforcement Learning (EWRL 2024).



1 Introduction

In offline reinforcement learning (RL), the quality of the dataset is crucial for learning an effective
policy. The characteristics of the dataset and the method used to gather the data significantly impact
the performance of the learned policy. While much of RL research focuses on optimizing algorithms
to enhance policy learning, our approach shifts the focus to the dataset itself. Instead of improving
the offline RL algorithm, we aim to efficiently evaluate a dataset to determine how "good" it is for
learning.

Recent studies by Schweighofer et al. [18, 17] emphasize the importance of dataset characteristics
such as Trajectory Quality (TQ), measured by the average dataset return, and State-Action Coverage
(SACo), measured by the number of unique state-action pairs. Despite recognizing these character-
istics as crucial for determining the quality of a learned policy, what constitutes a "good" dataset
remains ambiguous.

In this paper, we develop a model to predict the performance of the policies that would be learned
from offline RL datasets within a predefined RL framework. This framework includes a specific
offline RL algorithm and its associated hyperparameters. To achieve this, we propose representing
offline RL datasets as images and leveraging Convolutional Neural Networks (CNNs) [11] to forecast
dataset performance.

Having a rapid estimator of dataset performance is highly useful. Such an estimator can quickly iden-
tify high-quality datasets, which is critical in applications like transfer learning [28, 21], curriculum
learning [13], Sim2Real [27], and batch RL [10]. These applications often require evaluating multiple
datasets or adapting to new environments efficiently, and our model facilitates these processes by
providing swift and reliable performance predictions.

Furthermore, we assess the transferability of our predictive models by applying them to new scenarios
with modified state space sizes and state transition functions. Our findings indicate promising
potential for reusing models across similar tasks, opening avenues for applications in various RL
contexts.

We also demonstrate an application of our model where we optimize an offline RL dataset to create
a reduced version that maintains or improves policy performance. Using genetic algorithms, we
explore the space of possible dataset subsets, treating a single episode as the minimum unit. Our
predictive model computes the fitness function for the genetic algorithm, resulting in a streamlined
dataset that enables faster training and improved policy learning compared to the complete dataset.

Our contribution is to introduce a novel approach to predict the performance of offline RL datasets by
representing them as images and using CNNs. Moreover, we explore the use of genetic algorithms
applying our predictive model to enhance dataset quality, providing a method to create efficient
datasets for RL training.

The structure of this paper is as follows: Section 2 provides background on RL, Section 3 formalizes
the Dataset Performance Prediction problem, its image-based solution and the results in three different
environments. Section 4 frames the dataset reduction problem as an optimization task, and presents
the experiments conducted and their results. Finally, Section 5 reviews related work, and Section 6
offers conclusions and directions for future work.

2 Preliminaries

Reinforcement Learning (RL) addresses the problem of learning to control a dynamic system
defined by a Markov Decision Process (MDP) [19]. An MDP can be defined as a tuple M =
⟨S,A,R,P, γ, I, β⟩, where S is a set of states; A is a set of actions; R is a reward function
R : A × S → Pr[R], P : S × A × S → Pr[S] is a transition distribution function; γ ∈ [0, 1)
is a discount factor; I : Pr[S] is an initial state distribution; and β : S → {0, 1} is an episode
termination function. At time step t, the state of the environment is st and the agent, using its behavior
policy π : S → Pr[A], selects an action at that, when executed in the environment, produces a
reward rt ∼ R(s, a) and leads to a new state st+1 ∼ P(s, a). The sequence (st, at, rt, st+1) is
called an experience. A sequence of experiences is an episode. When β(s′) = 1 or a horizon T
is reached the episode ends. The sequence of state-action transitions in an episode is a trajectory,
τ = (s0, a0, s1, a1, . . . ), which can be derived directly from the episodes.

2



Given a policy π, the long-term discounted return J (π), defined by Equation 1, is its expected cumu-
lative discounted reward. An optimal policy π∗ is a policy maximizing J (π): π∗ = argmaxπ J (π).
The objective of an RL agent is to learn an optimal policy.

J (π) = Es0∼I,st+1∼P(st,π(st)),rt∼R(st,π(st))

[ ∞∑
t=0

γtrt

]
(1)

In online RL, the agent learns through trial and error by interacting with the environment [19].
However, in offline RL, which is a fully data-driven method, the agent is not allowed to interact with
the environment during learning [10, 12]. Instead, it receives a dataset Denv consisting on set of M
episodes sampled from the environment, Denv = {ei}i=1,...,M . Since the training data is given, and
it is usually finite, the agent can not expect to come up with an optimal policy. Then, the objective of
the agent is to derive the best possible policy from the dataset for the given environment [10].

3 Image-based Dataset Performance Prediction

The long-term expected return (Equation 1) is a metric for a policy’s performance. In offline RL,
we assimilate the quality (or performance) of a dataset to the performance of the policy learned by
an RL agent in a specific RL framework (algorithm, parameters, etc.), denoted as θ. Thus, a direct
approach to estimate the performance of a dataset D is to perform the RL process to learn a policy
π from D, and then evaluate that policy through executions in the environment. Let E be a set of
episodes obtained by executing π in the environment from initial states s0 ∼ I. Then, we can define
the estimate of the performance for D as the average discounted return obtained in those episodes:

ĴRL(D | θ) = 1

|E|
∑
e∈E

te∑
t=0

γtret (2)

where te and ret represent the last time step of episode e ∈ E and the reward obtained at time step t
in that episode, respectively.

However, the training and evaluation process to compute ĴRL(D | θ) can be time-consuming. Then,
the described method is not useful when it is necessary to estimate the performance of a dataset
quickly. It would be preferable to have a predictive model that allows obtaining a rapid estimate
directly from the entire dataset at once. We define formally the problem of finding this model as the
Performance Prediction Problem (P3).
Definition 1 (Performance Prediction Problem (P3)). Let D be a set of episodes and θ be a repre-
sentation of an RL framework (algorithm, parameters, etc.). The P3 consists of finding a function
ĴM : D → R that approximates the return that would be obtained with the best policy, πD, that can
be learned from D by an RL agent given θ: ĴM (D | θ) ≈ J (πD | θ).

Note that we always maintain the dependency on the RL framework, θ. It is clear that if this
framework changes (e.g., the generalization method), the performance obtained from learning with
the same dataset may vary.

To prepare datasets for input into predictive models, a suitable representation is essential. We adopt
a novel approach by representing datasets as images, tailored to the specific characteristics of the
domain from which the dataset originates.

The choice to represent datasets as images arises from the potential significance of spatial information
in determining dataset quality. Furthermore, deep neural networks, particularly convolutional neural
networks (CNNs), stand to benefit from this data format, leveraging their ability to extract features
from spatial representations.

3.1 Representing Datasets as Images

Since the representation of datasets as images must be adapted to each domain, it is difficult to define
a general method to define the images. Then, we propose different alternatives and study them in
three domains: Frozen Lake, Mountain Car and Acrobot. These domains were selected to cover a
range of RL environment characteristics, including state space (discrete or continuous), the number
of state space dimensions, and the type of reward (delayed or instant).
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Frozen Lake is a grid-like environment from the Toy Text section of OpenAI’s Gymnasium1. The
goal is to reach the treasure from the starting position. It is a discrete, bi-dimensional environment with
delayed reward. Mountain Car is a classic control problem also from OpenAI’s Gymnasium. The
goal is to reach the top of the hill using momentum. It is a continuous, bi-dimensional environment
with a delayed reward. Originally, Gymnasium’s implementation featured an instant reward, but
it was modified to match the characteristics of Frozen Lake, with a final goal to achieve. Acrobot
is another classic control problem. It consists of two pendulums aiming to surpass a given height.
This domain has a continuous, 6-dimensional state space with instant reward. Snapshots from these
environments are shown in the top row of Figure 1.

Our image representation focuses solely on the states within the datasets. While actions could
also be included, we opt to omit them from the images. This decision stems from the observation
that actions can often be explicitly represented, and integrating them into images may not always
be straightforward. Additionally, our experimental results demonstrate that utilizing only state
information yields sufficiently accurate results. We propose two different ways of representing
datasets as images: state (or state abstractions) scatter plots and rendered images.

State (Abstractions) Scatter Plots The idea is to use a straightforward approach by creating scatter
plots of all states, providing a visualization of the spatial distribution. For bi-dimensional state
spaces, this method captures the bi-dimensional structure of the environment and provides additional
contextual information. Points represent the states, with the start position indicated by a red point and
the goal position by a green point or area. In high-dimensional state spaces, generating those scatter
plots is unfeasible. One solution is to employ dimensionality reduction techniques such as Principal
Component Analysis (PCA) [16] and autoencoders [3] to transform states into two-dimensional
spaces for visualization. We decided to use autoencoders and represent the bi-dimensional abstraction
of the original states with a scatter plot. The middle row of Figure 1 shows examples of each
environment using this representation.

Rendered Images The idea is to use rendered versions of the environments.2 The first step is
gathering the frames of each state represented in the dataset. The images are then converted to
grayscale and thresholded to separate the background (black) from the environment objects (white).
This step reduces the number of channels to feed the CNN, captures the motion in the environments,
and ensures the background remains black in subsequent steps. Next, we sum all the pixel values
from the dataset frames and normalize the result such that brighter areas are close to 255 and darker
areas close to 0. Examples for each environment are shown in the bottom row of Figure 1.

3.2 Experimental Results

In this section, we evaluate the CNN models in each environment. Usually, in RL a change in the
transition function means that a new policy must be learned. However, the spatial distribution of states
will share characteristics in similar tasks. Hence, if we can train the CNN models for some specific
transition functions, we would be able to transfer this knowledge to different transition functions in
the same environment.

Given this assumption, we create various datasets with different configurations to modify these
functions. Additionally, we modified the state space when possible (Frozen Lake) and the quality of
the datasets (Mountain Car and Acrobot) to prove the robustness of our solution. In Frozen Lake, we
create 23 maps, where 20 are of size 12x12 and the remaining (only in the test set) with increasing
sizes 24x24, 48x48 and 96x96. Datasets are collected with sub-optimal policies. In Mountain Car,
we create 4 configurations with different acceleration forces and gather datasets with varying policy
quality. Finally, in Acrobot we create 4 setups with different torque and pendulum lengths and obtain
datasets following policies with different qualities. In all cases, for each configuration mentioned,
a new dataset is generated following a sub-optimal RL agent previously trained through an online
approach. Further details of the generation process are provided in Appendix A. The image generation
process can be followed by Figure 3 and Appendix B.

Given the characteristics of the reward of each environment, the output of the CNN differs from one to
another. In the case of Frozen Lake and Mountain Car, where the result is a value of 0 or 1, the output

1https://gymnasium.farama.org/
2Note this is not possible in all environments.

4



(a) (b) (c)

(d) (e) (f)

(g)
Frozen-Lake

(h)
Mountain-Car

(i)
Acrobot

Figure 1: Representations of the Open AI’s environments used in the paper. On the top row, a snapshot
of each environment. On the middle row, the state representation/abstraction of the corresponding
environments. On the bottom row, the rendered representation of the environments. Each column
represent one domain: Frozen Lake, Mountain Car and Acrobot respectively.

is a value between 0 and 1, considered as the confidence level of being a good subset. In the case
of Acrobot, the output of the CNN is a value between −500 and 0. The specific CNN architecture
for each case is detailed in Appendix C. These models are trained by receiving as input examples of
images from subsets of the original datasets that are previously labeled. We use some datasets and
configurations during the training processes and different ones for test purposes. Figure 2 shows the
results from the CNN models using rendered (top row) and state (bottom row) representations across
different domains, which are summarized as follows.

Frozen Lake In this case, both image representations of the environment use the same CNN model
architecture (see Appendix C). After training the models, the accuracy obtained for the scatter plotted
representation is 99% and for the rendered images 92%. As illustrated in Figures 2a and 2d, the
representation using a scatter plot of the states can discriminate between "good" and "bad" datasets.
However, with the rendered representation it is more difficult to make this differentiation. After
analyzing the results, we found that the red pick around 0.0 confidence in Figure 2a corresponds to
all the results for a specific map. This map has the goal close to the start point and it may be more
difficult for the model to distinguish the existence of a path between the red and green points.

Mountain Car Upon completion of training, the predictor trained with the images representing
the states as points in two dimensions achieved an accuracy of approximately 79% on the test set.
Using the rendered images the model barely surpasses the 50% accuracy. Given the results provided
in Figure 2e, the state representation can accurately differentiate between cases. Additionally, "bad"
cases are better discriminated than "good" ones. As expected from the low accuracy of the model, the
rendered images (Figure 2b) are not suitable to represent "good" and "bad" cases in this environment.
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Figure 2: Results from the CNN models using rendered (top row) and state (bottom row) repre-
sentations across different domains. Each column corresponds to a different domain: Frozen Lake,
Mountain Car, and Acrobot. The plots for Frozen Lake and Mountain Car show the distribution of
confidence provided by the model for "good" (red) and "bad" (blue) datasets. The plots for Acrobot
compare the true labels of the test set instances with the predicted values, with the dashed red line
representing the ideal scenario where predicted values perfectly match the real labels.

Acrobot Following training, an L1 error, which measures the average absolute differences between
predicted and actual values, of approximately 22 was attained when utilizing rendered images. Con-
versely, an error of 25 was recorded when employing images of an autoencoder-based dimensionality
reduction. In Figures 2c and 2f we provide the predicted labels against real labels scatter plots. Both
representations distribute the results along the dashed diagonal line that assumes the perfect model.
However, when using the autoencoder representation, the model demonstrates underperformance in
higher value ranges. The rendered image model is capable of such distinction.

Already in Definition 1 we considered the hyperparameters and type of algorithm in the RL process.
Given the results of the predictors, we can observe that the representation used is also a key factor
for each environment. In our results, the scatter plots representation is better for the bi-dimensional
environments. Conversely, the rendered images are more suitable for Acrobot.

4 Case Study: Dataset Reduction

Once we prove the possibility of distinguishing between "good" and "bad" examples of datasets we
present one of its possible applications. In offline RL, the input dataset, denoted as Denv , can often be
overwhelmingly large, making the execution time of the learning algorithm impractical. Additionally,
the dataset’s source may be a mixture of "good" and "bad" policies. Therefore, a fundamental question
arises: Can we significantly reduce the size of Denv while still enabling the learning algorithm to
produce a high-quality policy? This question essentially frames the problem as a multi-objective
optimization task. On the one hand, we aim to minimize the size of the resulting dataset, and on the
other hand, we seek to maximize the quality of the policy learned from it. However, it is possible to
simplify this into a single-objective optimization problem by combining both objectives into a single
metric. Let us define the Episode Selection Problem (ESP) metric, denoted as ψ, as follows:

Definition 2 (ESP metric ψ). Let D be a set of episodes, θ be a representation of the RL framework
(algorithms, parameters, etc.), and Ĵ (D | θ) be an estimate of the return that would be obtained with
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Figure 3: Scheme used to reduce the datasets. In orange, we consider the environment configurations
used to train the CNN models. Labels for each image generated (square in pink) are obtained from
Equation 1 given an RL training and evaluation process for each individual of the genetic algorithm.
In green, we consider the environment configurations and datasets used to test our solution. The
fitness function uses the trained CNN models. The output is a reduced dataset that maintains or
improves the learned policy.

the best policy by an RL agent given θ (Definition 1). Then, an ESP metric ψ : D → R is a function
of the return estimate and the number of episodes in D: ψ(D) = f(Ĵ (D | θ), |D|)

Therefore, with this metric in place, we can formally define the Episode Selection Problem (ESP) as
follows:

Definition 3 (Episode Selection Problem, ESP(D, ψ)). Given a set of episodes D and an ESP metric
ψ, find a reduced subset D∗ ⊆ D that maximizes ψ: D∗ = argmaxD′⊆D ψ(D′)

An ESP optimally could theoretically be solved by a brute-force approach, by generating all possible
subsets of the input dataset and evaluating them using the metric ψ under θ. However, given the
potentially enormous size of Denv and the exponential number of subsets (2|Denv|), such a brute-force
approach is not feasible. Instead, we propose a method to find a suboptimal solution using stochastic
local search. Specifically, we employ a genetic algorithm [7, 14], where each individual in the
population represents a different subset of the training set, and the fitness function is defined in terms
of the ESP metric, ψ.

4.1 Genetic Algorithm for Solving the Episode Selection Problem

To solve an episode selection problem, ESP(D, ψ), with a genetic algorithm (GA) we need to
represent the reduced datasets as individuals of the population and define the fitness function.

Each individual chromosome is encoded as a string of binary values representing which episodes
in the input dataset D are selected. Each individual thus represents a reduced dataset D′ ⊆ D
containing the selected episodes. The length of the string is the number of episodes in D, |D|. Each
gene of the chromosome represents the presence of the corresponding episode in D′. Formally, let
D = {e1, e2, . . . , eM} be the input dataset, where ei is the i-th episode in D and |D| = M . Let X
be the space of all possible individuals. Then, every x ∈ X is defined as x = x1, x2, . . . , xM , where
xi is the i-th gene of the individual and xi ∈ {0, 1}. The mapping function from the genotype to the
phenotype is ρ : X → 2D, so that given an individual x ∈ X , the corresponding reduced dataset is
ρ(x) = {ei ∈ D | xi = 1}.

The fitness of each individual x ∈ X is computed using the ESP metric ψ (Definition 2) by applying
ψ to ρ(x). Thus, the fitness function, ϕ : X → R, is defined as ϕ(x) = ψ(ρ(x)). The performance
of each individual, Ĵ (D | θ), used to compute ψ, is obtained by transforming the individual into an
image representation and using a trained model (CNN) as the evaluator. Figure 3 shows an scheme
illustrating our solution.
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Table 1: Results of generalization of the method for the first and second group of experiments, separated by a
double line. Column Original denotes the complete dataset. Columns States and Rendered refers to the type of
images used for the CNNs (state scatter plots and rendered environment images, respectively). Domains are
represented by one letter followed by the type of modification performed. Frozen Lake (F), Mountain Car (M),
Acrobot (A). Modifications to transition function (P), state space (XS where X is multiplying factor to the base
12x12), policy expertise (π′) and epsilon (ϵ).

Obtained policy Number of tuples
Task Original States Rendered Original States Rendered
FP 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1111.69 ± 605.11 91.34 ± 52.39 130.31 ± 56.52

F2S 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 1006 105.83 ± 6.77 344.67 ± 23.12

F3S 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 1587 154.08 ± 34.06 307.92 ± 15.31

F4S 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 2534 370.34 ± 26.34 960.58 ± 72.41

MP 0.67 ± 0.5 0.8 ± 0.42 0.66 ± 0.5 15804.33 ± 3235 4748.8 ± 2396.55 6098 ± 2376

AP -341.92 ± 86.87 -157.729 ± 70.56 -183.99 ± 84.97 22623.75 ± 5644.55 1504.29 ± 646.77 1528.92 ± 573.60

Mπ′ 0.5 ± 0.55 0.83 ± 0.41 0.83 ± 0.41 16978.5 ± 1860.61 5656.5 ± 636.36 7401.33 ± 1244.02

Mϵ′ 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 19443.0 ± 985.32 6097.67 ± 110.98 8340.0 ± 2099.02

Aπ′ -397.16 ± 85.58 -188.5 ± 38.94 -158.97 ± 59.65 27279 ± 7760.13 2465.00 ± 335.23 964.08 ± 210.45

Aϵ -439.87 ± 50.25 -381.59 ± 59.22 -163.82 ± 93.69 23627 ± 12172.59 2165.00 ± 455.64 721.00 ± 150.40

4.2 Experimental Results

In this section, we evaluate the performance of the best individual (best-reduced dataset) obtained
when the ESP is solved by the GA using the CNN predictor, in comparison to the real value of the
performance of the original dataset, computed by Equation 2 and using the policy learned by the
offline RL algorithm. We use the same domains as before. Experiments are divided into two groups,
described below.

In the first group, we evaluate the generalization ability of the method when datasets gather data
from configurations with different transition functions and, additionally, in Frozen Lake, we consider
datasets with modified state space. Specifically, in Frozen Lake, the 12x12 maps are joined as the
modification of the transition function, and bigger maps are presented separately. In Mountain Car,
we consider the different forces as the modification of the transition function. In Acrobot, we consider
different lengths of the lower pendulum and the torque force applied to modify the transition function.
Frozen Lake is the only environment with state space modifications because it is the only one with
this possibility (changing the map size).

In the second group, we evaluate the generalization ability of the method when there are changes
intrinsic to the RL training process by using different policy qualities to gather the data. Specifically,
we include 3 policy values and a single epsilon value for both Mountain Car and Acrobot. Frozen
Lake is not included in this group due to its learning simplicity and thus difficulty in obtaining
different policy expertise.

All experiments use ψ(D) = 0.8× Ĵ (D | θ)+ 0.2× |D| as ESP metric, where Ĵ (D | θ) is obtained
by the trained CNN models used in Section 3.2. The initial population for the GA is generated
randomly with 50% chance for each episode to appear in the given subset.

All configurations were executed 5 times. Table 1 shows the results for the first and second groups of
experiments in terms of the average and standard deviation of the performance metric and the number
of tuples used for both the complete dataset and the resulting subset from the GA process, depending
on the type of images used for the CNNs. The results show that our method generally maintains
(Frozen Lake) or improves (Mountain Car and Acrobot) the learned policy. This is not fulfilled in the
rendered version of bigger maps in Frozen Lake. Moreover, we can observe between 70% to even
95% dataset size reduction in most cases.

In Figure 4, we present a comparative analysis of the performance of datasets generated through
the genetic algorithm in contrast to random datasets of varying sizes. Note that we also include
the complete dataset in this comparison. Each figure in the plot series corresponds to the training
progression of the respective reinforcement learning (RL) algorithm. While training, the policy
obtained at each interval was evaluated, with the x-axis denoting the training time and the y-axis
representing the reward achieved. We executed each case 100 times and computed the mean value
and standard deviation. In the case of Mountain Car and Acrobot, we use a moving average for
visualization purposes. Comprehensive details of the training procedures employed to generate these
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plots can be found in Appendix D. Results show that our solution outperforms the random selection
and the complete dataset in the number of updates needed for the training to converge, rewards
obtained, or both.
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Figure 4: Comparison of performance of the genetic algorithm against random and full datasets for
Frozen Lake, Mountain Car and Acrobot respectively.

5 Related work

In offline RL, data quality is an important factor. Data quality is not considered in many of the offline
RL algorithms available in the literature diminishing their performance. We will divide this section
between approaches that estimate dataset performance and dataset reduction.

5.1 Dataset performance estimation

There are different approaches to estimating the performance of datasets in Offline RL. Some metrics
have been developed to quantify the data quality like Estimated Relative Return Improvement (ERI)
[20] or TQ and SACo [17]. However, these factors do not actually reflect the possible performance
after a training process with the dataset. The metrics cannot determine the quality of a dataset
since they are based on averaging the expected returns from the episodes that constitute the dataset.
Additionally, they do not take into consideration the existence of datasets created from a mixture of
policies and still rely on the expectation formula (Equation 1).

Such considerations are reflected in algorithms like LBRAC-v [26]. The algorithm assumes the
datasets are generated from different behavior policies. With this assumption, it tries to learn a latent
variable model that is capable of grouping all the trajectories in the dataset into their corresponding
behavior policy. This latent variable is used to solve the degeneration problem from the BRAC-v [22]
algorithm. However, it still does not estimate the performance of a dataset as a whole.

An example of dataset estimation is DVORL [1]. This algorithm has a sub-module that performs
data valuation which consists of estimating datum quality in overall performance [4, 25]. This is
performed on a subset of the dataset to make the best possible selection for the target task. However,
this algorithm assumes the existence of a target dataset, which may not exist or be unknown. The
algorithm is unusable without the target dataset since it is used for a KL divergence metric [8] during
the learning process. We can estimate without the need for an auxiliary target dataset.

5.2 Dataset reduction

Offline Imitation Learning algorithms are useful to learn from demonstrations. Most of them are based
on Behavioural Cloning (BC) [2] which uses supervised learning techniques to learn. However, the
main problem with this type of algorithm is that they imitate equally data with expert and sub-optimal
behavior. This leads to bad performances. Hence there are various approaches to reduce datasets to
keep only the useful data for the training process.

The approaches to solving this issue are based on using discriminators to distinguish between expert
data and non-expert data. In Discriminator-Weighted Offline Imitation Learning from Sub-optimal
Demonstrations [24] the idea is to build a discriminator on top of a BC algorithm to weight the input
data depending on its expertise. They use a cycle to learn both the model and discriminator. COIL
[13] assumes that each trajectory has been collected by an independent policy. It measures the KL
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divergence of each trajectory to determine the similarity with the learned policy and filter the dataset.
Other examples like 2IWIL and IC-GAIL [23] based their discrimination strategies on importance
weighting or Generative Adversarial Networks (GANs) [5] using GAIL [6] as their base algorithm.
Our approach creates a new "cleaned" dataset instead of using the original one.

6 Conclusions

In this paper, we propose an efficient method for estimating the performance of a dataset in Offline
RL without a conventional training process. We tackle different RL problems such as continuous
and high dimensional state spaces and delayed and immediate reward functions. Hence, we have
represented datasets as images and used a convolutional neural network (CNN) as our approximation
function. Additionally, we present one of the possible applications of this method. We managed to
reduce dataset size in offline reinforcement learning while maintaining or improving the resulting
policy quality. We use a genetic algorithm to search on the enormous collection of subsets.

We evaluated our approach in three well-known RL domains, Frozen Lake, Mountain Car, and
Acrobot, achieving significant estimation models capable of differentiating "good" and "bad" datasets.
In our application, we reduce the dataset size while keeping or enhancing policy quality. We also
acknowledge that our estimators can transfer the learned knowledge to similar tasks.

The positive outcomes motivate future research directions. We plan to test our method in more com-
plex environments and with continuous action spaces. Adapting our method to other representation
forms is another possibility. Additionally, exploring new RL applications could lead to innovative
dataset-reduction techniques. This research lays the foundation for refining and expanding efficient
dataset reduction methods in offline and batch RL.
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A Details on Dataset Generation

The initial phase involves gathering datasets for training and evaluating the transferability of a
performance predictor across three environments: Frozen Lake, Mountain Car, and Acrobot. We
employed different RL algorithms and data collection strategies tailored to each environment to
generate diverse datasets. In general, the process consists of generating a policy training an online
RL algorithm and then sample datasets from that policy or policies. The details for each environment
are as follows:

• Frozen Lake: This environment consists of 23 maps with varying sizes and obstacle
placements. We used tabular Q-learning to generate policies online, which were then used
to create the datasets. The parameters used for tabular Q-learning are γ = 0.99 and varying
α values depending on the specific configuration. The datasets were divided into training,
validation, and testing sets with the following splits:

– Training Set: 10 maps with different sizes and obstacle configurations. These maps
are of size 12x12, the start and goal positions are randomly placed along the map and
20% of the tiles are chosen to fill them with obstacles.

– Validation Set: 4 maps were used to tune the predictor. These maps use the same
creating procedure as the training ones.

– Testing Set: The remaining 9 maps to evaluate transfer capabilities across different
settings. In this case, 6 maps still have size 12x12 and follow the same creation
procedure. The other three maps are of size 24x24, 48x48, and 96x96 with the same
creation procedure. For these last three maps, datasets are generated by solving the
path with the A* algorithm (due to complexity) and gathering the data following this
path 80% of the time and 20% randomly.

The variation in map configurations tests the predictor’s ability to generalize across different
scenarios within the Frozen Lake environment. During the image generation process, we
apply data augmentation to these images by rotating 90º, 180º, and 270º and performing
mirrors along the vertical axis, the horizontal axis, and both. The result is 42755 images to
train, 2213 images to validate, and 3584 images to test. Images are of size 204x204.

• Mountain Car: The state space in this environment was discretized uniformly into 40X40
states. Datasets were generated with variations in three key parameters:

– Applied Force: The magnitude of force applied to the car, specifically using the values:
0.001, 0.0015, 0.002, and 0.0025.

– Policy Expertise: Datasets were generated using policies with varying expertise levels,
from near-random (0) to highly optimized (100). These policies were obtained by
sampling 100 stages from the online training process of the final policy.

– Random Action Probability: This parameter reflects the likelihood of the policy
taking a random action, with probabilities set to 30%, 50%, or 70%.

The Q-learning parameters used for online policy training were: α = 0.2, γ = 0.99, and
we also used a linear epsilon decay exploration method with a starting epsilon of 0.9 and a
final epsilon of 0.1. The policy was trained over 20000 episodes. The datasets were split
into training and testing sets to assess the performance predictor’s robustness across policy
and environment variations. Specifically, the training set included datasets generated with
applied forces of 0.0015 and 0.002, policy expertise of 50, and random action probabilities
of 30% and 50%. The remaining datasets were used for testing. We used 86139 images to
train, 10765 to validate, and 10770 to test. Size of images is 220x220.

• Acrobot: For Acrobot, we used a Deep Q-Network (DQN) algorithm [15] to obtain the
policies to generate datasets. The original environment settings were retained, but the data
collection policies varied:

– Behavior Policies: Datasets were generated using different behavior policies to capture
a range of performance levels. These levels are represented by using different policies
obtained during the online training process.

The parameters for the DQN algorithm were:

– Batch Size: 128
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– Target Update Interval: 250
– Gamma: 0.99
– Learning Rate: 6.3× 10−4

– Training Steps: 1000
– Buffer size: 100000
– Explorer: Linear decay Epsilon Greedy

The predictor was trained on datasets generated from certain behavior policies and tested
on others to evaluate its ability to generalize across different policy behaviors. Specifically,
policies obtained at 10%, 20%, and 53% of the online training were used for the training
set, and policies at 15%, 24%, 44%, and 57% were used for the testing datasets not used to
train the CNN. We used 2887 images to train, 618 to validate, and 620 to test. Images size is
220x220.

B Details on image generation

We employed genetic algorithms to generate the images. During the execution process, each chromo-
some (representing a subset of the dataset) visited was stored along with its corresponding label. This
label is computed as part of the fitness function, which evaluates the policy obtained after training
an offline RL algorithm on the selected subset of the dataset. After this process, the images were
generated from the chromosomes, with data balancing to ensure a uniform label distribution.

B.1 Genetic Algorithm Parameters

The genetic algorithm was configured with the following parameters:

• Initial population: Randomly sampled individuals containing approximately 50% of the
episodes.

• Mutation probability: 0.1.
• Selection method: Tournament selection with a tournament size of 10.
• Crossover method: Bit crossover performed by all individuals.
• Population size: 50.
• Number of generations: 100.

B.2 Offline RL Algorithms and evaluation

For the evaluation of policies and labeling of the images, we employed the following offline RL
algorithms tailored to each environment:

Frozen Lake Environment: We use tabular Q-learning with the following parameters:

• Learning rate (α): 0.1.
• Discount factor (γ): 0.99.
• Number of episodes: 20.

Mountain Car Environment: We used tabular Q-learning by discretizing the continuous envi-
ronment. We used a uniform discretization of 40 bins for both position and velocity. Algorithm
parameters are:

• Learning rate (α): 0.5.
• Discount factor (γ): 0.99.
• Number of episodes: 10.

In order to evaluate a learned policy in Mountain Car and Frozen Lake, we run 10 episodes following
that policy and compute the mean of the undiscounted rewards obtained.

Acrobot Environment: We employed the discreteCQL algorithm [9] from D3rlpy library with the
following hyperparameters:
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• Batch size: 128.
• Target update interval: 1020.
• Discount factor (γ): 0.99.
• Learning rate: 6.3× 10−4.
• Number of critics: 5.
• Maximum number of steps: 1000.

To assess the policy acquired through the offline RL algorithm, we adopted a strategy of storing 100
intermediate policies obtained during the training process, with each policy stored at 1% intervals
during the training. Subsequently, we evaluated each policy by executing one episode sampled from it.
The resulting performance of each episode execution was averaged to derive the validation metric for
the dataset. This approach essentially computes the average performance across 10% of the training
process. We opted for this method due to encountered convergence issues.

Our decision stems from the observation that relying solely on the final policy learned and evaluating
it multiple times could yield markedly different results in each evaluation, despite the training process
exhibiting a consistent trend. Thus, by averaging the performance over multiple intermediate policies,
we obtain a more stable representation of the training progress and the effectiveness of the learned
policy.

C CNN architectures and training

C.1 Frozen Lake:

Feature Extraction Layers:

self.features = nn.Sequential(
nn.BatchNorm2d(3),
nn.Conv2d(3, 32, kernel_size=5, padding=0, bias=True),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=3),
nn.Dropout(p=0.25),
nn.Conv2d(32, 64, kernel_size=5, padding=0, bias=True),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=3),
nn.Dropout(p=0.25),
nn.Conv2d(64, 128, kernel_size=5, padding=0, bias=True),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=3),
nn.Dropout(p=0.25)

)

Fully Connected Layers:

self.fc = nn.Sequential(
nn.Linear(1152, 256),
nn.ReLU(inplace=True),
nn.Dropout(p=0.25),
nn.Linear(256, 1)

)

Training Details:

• Batch Size: 64
• Loss Function: MSE
• Optimizer: AdamW with learning rate 0.001
• Epochs: 50
• Early Stopping: patience of 10
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C.2 Mountain Car (states):

Feature Extraction Layers:

self.features = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=11, padding=0, bias=True),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(32, 64, kernel_size=7, padding=0, bias=True),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 128, kernel_size=5, padding=0, bias=True),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(128, 256, kernel_size=5, padding=0, bias=True),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2)

)

Fully Connected Layers:

self.fc = nn.Sequential(
nn.Linear(3200, 256),
nn.ReLU(inplace=True),
nn.Dropout(p=0.2),
nn.Linear(256, 1)

)

Training Details:

• Batch Size: 256

• Loss Function: BCE with logit loss (weight: 0.25)

• Optimizer: AdamW with learning rate 0.0025

• Epochs: 200

C.3 Acrobot:

Feature Extraction Layers:

self.features = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=11, padding=0, bias=True),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(32, 64, kernel_size=7, padding=0, bias=True),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 128, kernel_size=5, padding=0, bias=True),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(128, 256, kernel_size=5, padding=0, bias=True),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2)

)

Fully Connected Layers:
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self.fc = nn.Sequential(
nn.Linear(16384, 256),
nn.ReLU(inplace=True),
nn.Dropout(p=0.2),
nn.Linear(256, 64),
nn.ReLU(inplace=True),
nn.Dropout(p=0.2),
nn.Linear(64, 1)

)

Training Details:

• Batch Size: 64

• Loss Function: L1 loss

• Optimizer: AdamW with learning rate 0.0025

• Epochs: 500

We used the same architecture for the rendered images of Mountain Car as the one used for Acrobot.

D Details on solution comparison

D.1 Frozen Lake:

We decide to contrast our results from the genetic algorithm with randomly selected subsets. Hence,
we created 100 chromosomes for each different number of episodes: 20, 30, 40, 50, and the same
size as our solution result. We train all chromosomes and compare the results with our solution and
the complete dataset. We evaluate the performance of all the training processes every 10 updates of
the Q-table over 10 episodes. The results use the average and standard deviation of every group.

D.2 Mountain Car:

To analyze the training performance across datasets of various sizes in the Mountain Car environment,
we initiated the process by randomly selecting 100 datasets for each of different sizes. We used
different numbers of episodes: 5, 10, 40, 50, a size identical to the best subset obtained through our
genetic algorithm method, and 100 episodes. Subsequently, we commenced the training process for
each dataset, aiming to assess its efficacy. Additionally, we included the training process for the best
subset obtained through our genetic algorithm method, considering that only one chromosome is
selected by this method, resulting in a training process with a standard deviation of 0.

However, due to the deterministic nature of the Mountain Car environment, with rewards being either
1 or 0 only, rendering the training curves directly posed challenges. To enhance visualization, we
applied a moving average with a window size of 50 to the plotted lines. This modification allowed us
to better observe the trend of the training, which is the primary focus of our analysis.

Throughout the training process with each dataset, we evaluated the performance at regular intervals,
specifically every 0.001% of the total training updates. This resulted in a total of 1000 evaluation
points per dataset approximately. To facilitate comparison across different datasets and training
processes, we normalized the X-axis to represent the percentage of the training process executed.

D.3 Acrobot:

Initially, we randomly selected 100 episodes for each of the different dataset sizes, including those
with the same size as the best chromosome obtained, as well as sizes of 10, 20, 30, 50, and 100
episodes.

During the training process, we adopted a strategy of evaluating the policy at regular intervals.
Specifically, we stored 100 intermediate policies, with each policy saved at 1% intervals of the
training. Subsequently, we evaluated each of these policies by executing a single episode sampled
from it.
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To ensure stability in our evaluation, we applied a moving average technique with a window size of
50 to the obtained performance metrics. This allowed us to better observe the trend of the training
process and the effectiveness of the learned policies over time.

E Computational Resources

This appendix provides detailed information about the computational resources used for the exper-
iments conducted in this project. The specifications include both CPU and GPU details for both
machines used.

Attribute Specification
Architecture x86_64
CPU Operation Modes 32-bit, 64-bit
CPU(s) 16
Model Name Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz
Thread(s) per Core 2
Core(s) per Socket 8
CPU Max MHz 4800.0000
CPU Min MHz 800.0000
L1 Cache 256 KiB
L2 Cache 2 MiB
L3 Cache 16 MiB

Table 2: CPU Specifications machine 1

Attribute Specification
GPU Name NVIDIA GeForce 2060
Memory Usage 7974MiB

Table 3: GPU Specifications machine 1

Attribute Specification
Architecture x86_64
CPU Operation Modes 32-bit, 64-bit
CPU(s) 20
Model Name 12th Gen Intel(R) Core(TM) i7-12700F
Thread(s) per Core 2
Core(s) per Socket 12
CPU Max MHz 4900.0000
CPU Min MHz 800.0000
L1 Cache 512 KiB (12 instances)
L2 Cache 12 MiB (9 instances)
L3 Cache 25 MiB (1 instance)

Table 4: CPU Specifications machine 2

Attribute Specification
GPU Name NVIDIA GeForce 3060
Memory 12045MiB
Table 5: GPU Specifications machine 2
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