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ABSTRACT

The Hybrid Online Learning Problem, where features are drawn i.i.d. from an un-
known distribution but labels are generated adversarially, is a well-motivated setting
positioned between statistical and fully-adversarial online learning. Prior work has
presented a dichotomy: algorithms that are statistically-optimal, but computation-
ally intractable (Wu et al., 2023), and algorithms that are computationally-efficient
(given an ERM oracle), but statistically-suboptimal (Wu et al., 2024).

This paper takes a significant step towards achieving statistical optimality and
computational efficiency simultaneously in the Hybrid Learning setting. To do
s0, we consider a structured setting, where the Adversary is constrained to pick
labels from an expressive, but fixed, class of functions R. Our main result is a new
learning algorithm, which runs efficiently given an ERM oracle and obtains regret
scaling with the Rademacher complexity of a class derived from the Learner’s
hypothesis class H and the Adversary’s label class R. As a key corollary, we give
an oracle-efficient algorithm for computing equilibria in stochastic zero-sum games
when action sets may be high-dimensional but the payoff function exhibits a type
of low-dimensional structure. Technically, we develop a number of novel tools for
the design and analysis of our learning algorithm, including a novel Frank-Wolfe
reduction with “truncated entropy regularizer” and a new tail bound for sums of
“hybrid” martingale difference sequences.

1 INTRODUCTION

Online learning is a fundamental paradigm in machine learning, where an algorithm learns sequen-
tially from a stream of data, making predictions and updating its model in real-time. Within the broad
landscape of online learning, different assumptions can be made about how the data is generated.
Two prominent extremes are the statistical setting, where data is drawn independently and identically
distributed (i.i.d.) from a fixed, unknown distribution, and the fully-adversarial setting, where data is
chosen by an adaptive adversary aiming to maximize the learner’s error. While these are well-studied,
the guarantees a learner can obtain can vary starkly between the two extremes. For example, the
problem of learning thresholds from a small number of samples is straightforward in the statistical
setting, but impossible in the fully-adversarial setting (Littlestone, 1988).

The Hybrid Online Learning Problem (Lazaric & Munos, 2009) has emerged as a compelling middle
ground, capturing aspects of both statistical and adversarial scenarios. In this model, features are
assumed to be drawn i.i.d. from an unknown distribution, much like in the statistical setting. The
corresponding labels, however, are determined by a potentially malicious adversary. On a practical
level, this hybrid model captures real-world situations where typical instances follow statistical
patterns, but the labels associated with these instances are influenced by strategic actors, system
dynamics, or other worst-case forces. Theoretically, the model serves as an important frontier for
exploring the limits of efficient online learning with provable guarantees.

The current state of research in Hybrid Online Learning hints at a computational-statistical divide.
Algorithms that achieve statistically optimal performance (Lazaric & Munos, 2009; Wu et al., 2023)
are typically computationally intractable with time and space complexity both scaling linearly in the
size of the learner’s hypothesis class. On the other hand, algorithms that are computationally efficient
typically assume the learner has full knowledge of or unlimited sample access to the underlying
feature distribution (Rakhlin et al., 2011; Haghtalab et al., 2024; Block et al., 2022), or they achieve
suboptimal regret (Wu et al., 2024).



This chapter takes a crucial step towards bridging this gap, aiming to develop learning algorithms that
are both statistically optimal and computationally efficient in the Hybrid Learning setting. To make
progress on this challenging goal, we focus on a structured version of the problem. Specifically, we
introduce a constraint on the adversary, assuming that the adversarial labels must be chosen from an
expressive, but fixed, class of functions R. This structural assumption allows for a more fine-grained
analysis and algorithm design. Our main contribution is the development of a novel oracle-efficient
learning algorithm for this structured setting.

1.1 ProBLEM FORMULATION

We consider the following Hybrid Online Learning Problem: Let X be the feature space and H C
[0,1]% and R C [0, 1]¥ be the learner’s hypothesis class and the adversary’s constrained label
function class, respectively, which are known to the learner. We assume the learner’s loss function
€ :10,1] x [0, 1] — R is convex and L-Lipschitz with respect to its first argument for some constant
L > 0 and measurable in the second argument. The learning process proceeds over T rounds. Nature
commits to a fixed, unknown distribution 9 over X. Ineachroundt=1,...,7T":

1. The learner selects a hypothesis #;.

2. The adversary, with knowledge of the learner’s strategy but not the future feature x,, selects
a function 7, from the adversary’s label function class R.

3. Nature samples a feature x; i.i.d. from D. The learner incurs loss €(h;(x;), r/(x;)). The pair
(x4, ;) is revealed to the learner.

The learner’s goal is to minimize its camulative loss. The learner’s strategy at time ¢ is a function of
the history (x, 1), .., (x—1,r—1). We evaluate the performance of a learner by its regret with respect
to the best fixed hypothesis in # in hindsight. The regret over T rounds is defined as:

The expectation is taken over the random draws of xi, . . ., x7 from the distribution D. Our goal is to de-
sign an oracle-efficient learner that minimizes this regret. In achieving this goal, we will also consider
an in-expectation regret guarantee, i.e., Zthl Ei-p [€(h:(x), ri(x))] — mingeqs Zthl Eip [€(h(x), ri(x))]

1.2 OVERVIEW OF RESULTS

Our main contribution is the development of an oracle-efficient learning algorithm for the Hybrid
Online Learning Problem in a structured setting where the adversary’s labeling function is constrained
to a class R. Our algorithm achieves a statistically near-optimal (up to the dependence on the
adversary’s constraint set R) regret bound while being computationally efficient given access to a
linear optimization oracle over the hypothesis class H.

A key quantity characterizing the statistical complexity of function classes is the Rademacher
complexity (see Section 1.4 for definition). In statistical learning theory, the Rademacher complexity
of a hypothesis class H provides a tight characterization of the generalization error and hence the
statistical error rate (Mohri et al., 2012). Our main result provides a high-probability regret bound for
our hybrid learner in terms of Rademacher complexity of the function classes.

Theorem 1.1. Let H C [0, 1]* be a class of hypothesis functions and let R C [0, 11¥ be a class
of labeling functions. Let € : [0, 1] X [0, I] — R be a convex, L-Lipschitz loss function in its first
argument. There exists an online algorithm that outputs a sequence of hypothesis functions 4y, ..., hr
such that with probability at least 1 — ¢ over the draw of xi,...,xr ~ D, the following bound on the
cumulative loss holds:

T T
2 (), re)=min > (h(x). rix) < O(Tradr(C o H x R)! + LTrady (H) + LT 1og(T/6))
=1 H AT
where £ o H x R denotes the class of functions {x — £(h(x),r(x)) | h € H,r € R}. The algorithm
runs in O(T?) time per round and makes O(T?) calls to a linear optimization oracle for H throughout
T rounds.

!As defined in Section 1.4, rad;(F) is at most 1 for any ¥ and O ( Vd/ T) for binary classes of VC dimension
d




Theorem 1.1 provides a strong statistical guarantee, showing that the regret scales with the
Rademacher complexity of the composite class £ o H x R. This term captures the complexity
introduced by both the learner’s hypothesis class H and the adversary’s class R. The bound is
near-optimal up to the dependence on the Rademacher complexity of the adversary’s label class R
and a logarithmic factor in 7. This follows from the fact that Hybrid Learning is at least as hard as

statistically learning and this implies a lower bound of LTradr(H) + L /T log(1/6) on the regret rate
of hybrid learning (Mohri et al., 2012). Note that if the hypothesis class H is a binary valued class of
VC dimension d and the composite class £ o H x R is also a binary valued class of dimension d*, then

the regret guarantee of Theorem 1.1 can be upper bounded by O ( NTd* + LNTd + LT log(T/é))
(see Section 1.4).

Our Hybrid Online Learning framework and our hybrid learner can be applied to the area of game
theory and optimization, specifically for finding approximate solutions to stochastic saddle-point
problems, or equivalently, finding approximate equilibria of stochastic zero-sum games. While it is
known that oracle-efficient algorithms for finding equilibria of arbitrary zero-sum games do not exist
in general (see Theorem 4 of Hazan & Koren (2016)), our results enable designing oracle-efficient
algorithms whenever the game’s payoft function factorizes as the composition of a bivariate convex-
concave Lipschitz-continuous function with (stochastic) scalar-valued functions of each player’s
action. Intuitively, any such factorization of the payoff function gives the game a low-dimensional
structure that is useful for efficient equilibrium computation. However, since the players’ action
sets themselves remain (potentially) high-dimensional, to take advantage of this low-dimensional
structure in an oracle-efficient way one must design algorithms for a player to learn an approximate
best-response to their opponent’s adaptively-chosen action sequence in the stochastic zero-sum game,
leading naturally to a Hybrid Online Learning problem.

Corollary 1.2. Let X be a domain space and D be a distribution over X. Let H, R C [0, 11X be
classes of functions (assumed to be closed under convex combinations) and « : [0, 1] X [0, 1] — R be
a convex-concave payoff function that is L-Lipschitz in its first parameter. Consider the saddle-point
optimization problem

21;1151 max E,-plu(h(x), r(x))]

Given m samples from D and access to best-response oracles for 4 and R, our online learning
algorithm can be used to find an e(m)-approximate saddle point solution (h*,r*) in polynomial
time in m and the complexities of H and R. The approximation guarantee is e(m) = rad,,(¥) +
O(L +/logm/m), where F = {f : f(x) = u(h(x),r(x)) | h € H,r € R}. Note that rad,,(¥) — 0 is

necessary for uniform convergence of the payoft matrix.

Finally, along the way to establishing our main result, we prove a general uniform convergence bound
that may be of independent interest. This bound addresses the challenge of concentration for function
classes evaluated on i.i.d. data where the functions themselves are chosen adaptively based on the
previous data samples:

Proposition 1.3. Let H be a class of hypothesis functions and ¢ be a loss function that is L-Lipschitz
in the first parameter. Let x1, x,, ..., x7 be a sequence of i.i.d samples from a fixed distribution D.
Let ri,r,...,rr € [0,11¥ be a sequence of functions where r, depends only on xi,..., x,—; (and
potentially prior adversarial choices). The following holds with probability at least 1 — ¢ over the

draw of x1,...,xr, forall h € H:
log(T
< O(L-radr(‘H)+L‘/@)

This result provides a uniform convergence bound that effectively handles the data-dependent nature
of the sequence 7y, ..., rr. The sequence £(h(x;), r:(x;)) — Ep[€(h(x), r,(x))] is a martingale difference
sequence since x; is sampled after the choice of r, is made. Applying Azuma-Hoeftding together with
a union bound over the class H would only work for finite classes and would lead to a suboptimal
bound of log |H|. We instead prove this lemma by employing a symmetrization technique and the
application of a bound based on the distribution-dependent sequential Rademacher complexity, a
measure introduced by Rakhlin et al. (2011). The L-Lipschitzness of the loss function with respect to
its first parameter is key and ensures the bound depends only on the complexity of the hypothesis
class H and the Lipschitz constant L, rather than the complexity of the r, sequence itself. We defer
the full proof to Appendix A.2. We use Proposition 1.3 to obtain the high probability guarantee in
Theorem 1.1 on the sampled sequence.

1 < 1 <
7 D (). rix)) = = D B LR ri )]
=1 t=1




1.3 TecHNICAL OVERVIEW

Our technical approach begins by considering the in-expectation regret objective: to guarantee a
bound on Zthl Ep[£(h(x), r(x))] — minjeqs ,_; Ep[€(h(x), r,(x))]. We note that achieving a bound
on this quantity is a weaker benchmark compared to the standard regret definition (which is measured
against the sum of losses on observed samples).

A key limitation in this setting is that we do not have direct access to the distribution D. To
build intuition, suppose for a moment that we had access to m i.i.d. samples, S = {s1,..., S},
from the distribution D a priori. We make the crucial observation that m samples are sufficient to
guarantee uniform convergence for the combined function class F = {f : f(x) = {(h(x), r(x)) Vh €
H,r € R} at a rate characterized by rad,,(¥). Therefore, if we had these samples upfront, the
problem could be formulated as an online learning over . In each round ¢, given r,, the loss
for a hypothesis & would be the empirical average loss over the sample set S: Eg [£(h(x), r,/(x))] =
iz?; L(h(s;), ri(s;)). Due to the uniform convergence property, for any 2 € H and adaptive
r, € R, the empirical average Eg [£(h(x), r;(x))] would be a good approximation of the true expectation
Epl€(h(x), r,(x))]. Since the loss function only depends on the m samples, this online learning problem
is essentially an Online Convex Optimization problem with action set (h(sy)/m, ..., h(s,)/m) €
[0, 1/m]™ for each h € H and where the loss vector in each round corresponds to the empirical
losses (£(h(sy), r1(s1))s - - ., C(h(Sm), (sm))) € [0, 1]™. Since the action set — the projection of H
on the m samples — is a subset of [0, 1/m]™ which is a subset of the m-dimensional simplex, then
applying Follow the Regularized Leader (FTRL) achieves regret of +/7 log m. Unfortunately, a naive
application of FTRL will return actions on the m dimensional simplex which may not correspond to
any hypothesis in the class . To solve this problem, we introduce a Frank-Wolfe reduction to the
linear optimization oracle in Section 3.

However, in the Hybrid Online Learning problem, we do not have the samples upfront. Instead, we
observe samples sequentially as part of the online process itself. We thus use the dataset accumulated
up to round ¢ — 1, §; = {xy,...,x1}, to define an empirical loss at round t: Eg, [£(h:(x), r:(x))] =
ﬁ f;} €(h(x;), r;(x;)). Unfortunately, due to the dynamically changing structure of this empirical
loss function (as the dataset D; grows with ¢), this problem cannot be directly modeled as an Online
Convex Optimization problem with a fixed vector space and a sequence of linear loss functions.

Despite this challenge posed by the adaptive structure of the empirical loss, we are still able to make
progress by constructing an adaptive sequence of entropy regularizers. In a departure from standard
FTRL analysis, the regularizers we employ are not strongly convex over the entire ambient vector
space (which is of dimension T'). This is because we never observe the “full vector” of losses or
learner’s actions on all 7" samples at any given time ¢ < 7. Nevertheless, we bypass this difficulty by
demonstrating that our adaptive entropy regularizers are strongly convex on the relevant coordinates
(the first # — 1 dimensions) at step ¢. This careful construction allows us to achieve a favorable bound

of O(+/T log T) with respect to our in-expectation regret benchmark (the sum of expected losses).

Finally, the remaining step is to transition from the weaker benchmark (regret against the sum of
expected losses over D) to the stronger benchmark (regret against the sum of actual losses incurred
on the observed samples xi,...,x7). This is where uniform convergence arguments shown in
Proposition 1.3 come into play, allowing us to convert the bound on the weaker benchmark into the
desired bound on the standard regret definition.

1.4 TECHNICAL PRELIMINARIES

Complexity Measures For a function class ¥ C RX and samples xi, ..., xr € X, the empirical
Rademacher complexity is radz({fly,,..x, : f € F}) = Eo [supf€7r % Zthl O',f(xt)], where oy,...,071

.....

..........

well known that for binary classes, the Rademacher complexity is tightly controlled by the VC

dimension: it is both upper and lower bounded (up to logarithmic factors) by +/VCdim(¥7)/T
(Bartlett & Mendelson, 2003; Mohri et al., 2012). A similar result holds for real-valued classes and
the fat-shattering dimension (Mobhri et al., 2012).

We additionally define the composite function class: € o H X R = {x > £(h(x),r(x)) | h € H,r € R}.



Linear Optimization Oracle Our algorithm’s computational efficiency is measured in terms of
calls to a Linear Optimization Oracle for the hypothesis class H. A Linear Optimization Oracle for
H is an algorithm that, given a set of points S = {sy,...,sn} C X and a set of weights for those
points V = {v1,...,v,} C R, returns a hypothesis #* € H that minimizes }.", via(s;) over H. In our
context, the set S will typically be the set of observed samples xi, ..., x,—; at round ¢.

1.5 ComprarIsON TO PRIOR WORK

The study of Hybrid Online Learning with an unknown i.i.d source was initiated by Lazaric & Munos
(2009), who showed O(+/dT log T) regret for hypothesis classes with finite VC dimension d and
absolute loss. Wu et al. (2023) extended this to real-valued functions and general convex losses,
achieving statistically optimal expected regret for VC classes. Their algorithms rely on constructing a
stochastic cover of the hypothesis class, which is computationally intractable for some classes.

The first oracle-efficient algorithm for this setting was presented by Wu et al. (2024). They achieve
O(d">T3/*) regret for finite VC classes oracle-efficiently. However, this rate is statistically suboptimal.
Their approach uses a relaxation-based Follow the Perturbed Leader method, distinct from ours. This
work aims to close this gap by providing a learning algorithm that is both statistically optimal and
computationally efficient in a structured setting with a constrained adversary class R.

Hybrid online learning can be viewed as a form of Smoothed Online Learning. However, most
existing work in smoothed online learning (Haghtalab et al., 2020; 2024; Block et al., 2022) assumes
knowledge of or sampling access to the underlying stochastic source. This key difference highlights
the specific challenge addressed in our work: handling adversarial labels when the i.i.d. feature
distribution is entirely unknown. Relatedly, Rakhlin et al. (2011) studied a distribution-dependent
online learning problem where Nature adaptively selects sampling distributions. Again, their results
primarily apply to the “distribution non-blind” case where the distribution is known (see Rakhlin et al.
(2011), Section 7), unlike our “distribution blind” setting with an unknown i.i.d. source.

Our work conceptually relates to the comparative learning setting introduced by (Hu & Peale, 2023),
where labeling functions are also restricted to a known class. However, a critical distinction is that
their models, both offline and online learning settings, do not involve adaptive labeling functions.
Consequently, their results have no direct bearing on our model. Nevertheless, exploring connections
between the two works is an enticing direction for future work. It would be particularly interesting if
the sample complexity in our setting can be characterized by the “mutual VC dimension” defined
by Hu & Peale (2023), or if our algorithms can be adapted to yield oracle-efficient and statistically-
optimal comparative learning algorithms in their setting.

2 OrAcLE-EFFICIENT HYBRID LEARNING

In Section 2.1, we show a hybrid learner that provides the in-expectation guarantee in Section 1.4. In
Section 2.2, we prove our main result (Theorem 1.1).

2.1 IN-EXPECTATION REGRET GUARANTEE USING TRUNCATED ENTROPY REGULARIZATION

This subsection presents and analyzes an algorithm for hybrid learning that makes use of a subroutine
called an entropy-regularized ¢-ERM oracle over H, defined as follows.

Definition 2.1. An entropy-regularized {-ERM oracle is initialized with a class of functions
H : X — [0,1]. The oracle takes, as input, a subset S c X of features, a set of triples
(X1, YW1+ v o s (X, Yms W) € S X R X R and parameters 7, €. It outputs an element % in the convex
hull of H, such that # minimizes (within &) the function Y}, w;f(h(x;), ;) + % > ses h(s)log(h(s)+1).

We use log(h(x;) + 1) rather than log A(x;) in the regularizer to ensure the argument to the log is
well-defined on [0, 1] but more importantly, log(a + 1) is strongly convex on the entire interval [0, 1]
with a uniform positive parameter. In Section 3 below, we show how to use the Frank-Wolfe method
to implement an e-approximate regularized {-ERM oracle using polynomial number of calls to a
linear optimization oracle.

Theorem 2.1. Let H C [0, 1] be a class of hypothesis functions and let R C [0, 11% be a class of
labeling functions. Let ¢ be a loss function that is convex, L-Lipschitz in the first parameter. Given an



entropy-regularized ¢-ERM oracle for H, Algorithm 1 outputs a sequence of hypothesis functions
hi,...,hr such that with probability at least 1 — 6,

T T
2 EL(h(x), ri()] < min Z; E[L(h(x), rix))] + T - rady (€ o H x R) + O (LT log T)

t=1

The algorithm runs in time O(T?) per timestep and makes T calls the entropy-regularized {-ERM
oracle for H.

Overview of Algorithm 1 The algorithm implements a hybrid learner using the Follow The
Regularized Leader (FTRL) approach over the class . We define a surrogate loss for each timestep
based on the empirical average of the actual loss with respect to the adversary’s choice r, on the
samples xi,...,x;—; seen so far. Then we choose the approximate minimizer of the cumulative
surrogate loss and an entropy regularizer that only depends on xi, ..., x,—.

Concretely, at each timestep ¢, the algorithm outputs a predictor i, € conv(H). After observing the
sample x; and receiving the adversary’s labeling function r;, the algorithm prepares the input dataset
for the entropy-regularized ERM oracle to compute the next predictor /... The dataset provided to
the oracle at step ¢ consists of triples (x;, y;, w;) derived from the samples {xy, ..., x;_1} and the past
adversarial functions {r, ..., r;}. Specifically, for each pair of s € {2,...,#}and i € {1,...,s— 1},
the oracle receives a triple (x;, rs(x;), ﬁ). The oracle finds an e-approximate minimizer of this
cumulative regularized empirical loss, and this minimizer becomes the predictor /.. for the next
round.

We introduce the following notation: let v(h) = (h(xl)L. .., h(xr)) and V = conv({v(h) |~h € H}).
We define the surrogate loss function at time ¢ > 2 as £,(v) = % 2;11 £V, r(x4)), and £;(v) = 0
(where v refers to the s-th coordinate of the vector v). Define the regularizer at time ¢ > 1 as
U (v) = 717 S V@ log(r® + 1), and ¢ (v) = 0. The algorithm at step  outputs /, (corresponding to

v;) where v, is an g-approximate minimizer of F,(v) = 2;11 L,(v) + Y, (v) for t > 1.

Algorithm 1 Hybrid Learner using Exponentiated Gradient

Require: Sequence of i.i.d. samples {x,}tT:1 ~ DT, time horizon 7, failure probability &, approxima-
tion parameter & for the oracle
Ensure: Sequence of predictors {h,}tT:1 where each h; € conv(H)
1: Setn « +/T/L?logT,e = Llog**T/NT
2: Initialize i, to some arbitrary hypothesis in H
3: fort=1to T do
4: Output /,, Observe x;.
Receive adversary function r, € R.

Construct the set of triples S; = Ul {(x, rs(x), 1) li € {1,..., s = 1}}. (Fort = 1, 8y = 0).
Obtain next predictor A,y € conv(H) by calling the entropy-regularized ERM oracle (in
Algorithm 2) with input dataset S, and feature set {xi, ..., x,}:

S W

: 1<
Ry « arg mlniecomm){ Z wl(h(x),y) + EZh(xx) log(h(xy) + 1)}.

(x,y,w)eS; s=1

8: return: Sequence of predictors {h,}tT:1

Lemma 2.2 (Approximate FTRL for Hybrid Learning). For n,& > 0, the empirical regret of
Algorithm 1 is bounded by

T 2
_ _ Tlog2 4nl’logT
> &) — min fiw) < ogs 3°g +5LfpeT.
UE' T]
=1

To prove this lemma, we first bound the regret of playing the exact minimizers of F,. Then we appeal
to the strong convexity of F, and Lipschitzness of £ to bound the loss of playing the approximate
minimizers. We view this as an OCO problem with ambient vector space V c [0, 1]7 and convex



loss vectors £; with an adaptive sequence of regularizers ;. We adapt the analysis of FTRL to deal
with the fact that the algorithm never observes the full vector v € V and the regularizers are not
strongly convex with respect to the £;-norm of the full ambient space. However, the loss functions 7,
and the regularizer ¢, only depend on the first 7 coordinates, which means its gradients are zero for
coordinates s > t. As a result, the ¥, is strongly convex w.r.t the £; norm of the first # coordinates and
this suffices for the proof. The full proof can be found in Appendix A.1.

Now we present a uniform convergence result necessary for relating the average loss on the sam-
ples seen so far to the expected loss under the true distribution. The full proof can be found in
Appendix A.1.

Lemma 2.3. Let ¥ c [0, 1]¥ be a class of functions. Let x|,..., xr be a sequence of samples drawn
i.i.d from a fixed distribution 9. With probability at least 1 — ¢, for all 7 € [T], f € T,

Ly log(2T /8
p Z J(x) = Evenlf(0)] < 2rady(F) + \/@
s=1

Proof of Theorem 2.1. By Lemma 2.2, the empirical regret of the sequence ¥,,...,Vr (using
0,,...,0r) with respect to any u € “V is bounded by: ZIT=2({7,(17,) - L) < O(L T log T) +
O(L \/naT) . Let h € H be arbitrary, and u = v(h). Since v, = v(h,),

el U

T -1 =1
3 [Ll 2, hx.rx) - — 2, € rf(xs»] < O(LTlogT) + O (L \eT).

Applying Lemma 2.3 to the function class F = {x — €(h(x), r(x)) Yh € H, r € R}, we have that, with

probability at least 1 — &, forall t > 2 and h € H,
log(2T /6
< 2rad,_ (£ o H x R)] + w/%

Plugging back in to the regret guarantee, we obtain that with probability at least 1 — &, for all h € H,

t—1

1
Expl€(h(x), ri(x))] - 1 Z U(h(xs), ri(x5))
s=1

ZT]Exm [£(h(x), r:(x))] = Exep£(A(x), r/(x))] (D
=2
a L [log(2T/6)
s;Zrad,,l(fowXRH;,/t_—1+0(L TlogT)+O(L+neT) )
<O(T -radr(€ o H X R)) + O(LT log T + L/neT) 3)

Including the ¢ = 1 term, minimizing over & € H and setting = /T/L21log T, & = Llog**> T/ VT:

T T
Z E[£(h(x), r(x))] < min ; E[€(h(x), r(x))] + O(T - radr(€ o H x R)) + O (LT log T).

t=1

The runtime analysis is dominated by constructing the set of samples S, to be sent to the regularized
ERM oracle. But since |S,| < #2, the runtime of the algorithm is O(7?) per timestep. ]

2.2 PROOF OF THEOREM 1.1

Proof. We decompose the quantity to bound: ZtT:] C(hy(x,), r(x;)) — mingeqy Zthl C(h(x,), r(x))] =
A + B+ C where

T
A=) (), 1)) = B[ €0 (), r(e)])
t=1

and
T T

B =" Epll(h(x), ri(x)] - min Zl Epl£(h(x), r,(x))]

t=1



and
T T
€ = min Z‘ Epl((h(x). ri(x))] ~ min Zl (). ri(xo))

. We bound each term with high probability and allocate a §/3 failure probability to each.

Term A is a sum of martingale differences, as Z, = €(h,(x;), r/(x;)) — Ep[€(h(x), r:(x))] satisfies
E[Z;|F:-1] = 0. Since ¢ is L-Lipschitz over the interval [0, 1], |Z,| < 2L. By the Azuma-Hoeffding

inequality, with probability at least 1 — §/3: A < \/2 Zthl L?1og(1/(6/3)) = L+/2T log(3/6) =

O(L AT log(1/6))
Term B is the in-expectation regret guarantee. By Theorem 2.1, the algorithm guarantees: B <

T -radr (€ o H X R) + O(L /T log T) with probability at least 1 — /3.

Term C is the generalization gap for the best hypothesis. By Proposition 1.3, for all 4 € H, the differ-
ence between empirical and expected sums is bounded uniformly: | Y’ €(h, x;, ;) — X Ep[€(h, x, r;)]| <

L-T -rad7(H) + O ( VT log(T/ 6)) with probability at least 1 — §/3. Using this uniform bound, we
get C < L-T -radr(H) + O(A/T log(T/6)).

Summing the bounds for A, B, and C, using a union bound, we obtain that with probability at least
1-¢:

T T
;aht(m, ri(x) — min Zl (). ri(x))

< T -radr(oH x R) + L- T - radr(H) + O (LT 1og(T/5))

This proves the regret bound. The computational efficiency follows from Theorem 2.1’s use of an
entropy-regularized ERM oracle, which is shown in Lemma 3.1 to be implementable efficiently using
a linear optimization oracle for H. O

3  FraNk-WOoOLFE REDUCTION TO LINEAR OPTIMIZATION ORACLE

In this section, we explain how to implement a regularized ERM oracle over H (Definition 2.1)
through a sequence of calls to a linear optimization oracle over 9. This algorithm for the regularized
ERM oracle is presented below as Algorithm 2. We assume the loss function is both convex and
B-smooth in the first parameter. However, this should not be seen as a limiting assumption due to the
fact that if the losses are convex, L-Lipschitz but not smooth then we can use a linearized surrogate of
the loss (similar to the OCO to OLO reduction). That is, we can define a new loss ¢’(a, b) = aV{(a, b)
and by convexity, low regret learning with £’ implies low regret learning for £.

Lemma 3.1 (Frank-Wolfe for smooth loss functions). Given a finite set of features S C X, dataset
{(xi, yi» w)YiL, where x; € § for all i, a loss function ¢ that is convex and S-smooth in the first

parameter, a class of functions H C [0, 11%, a linear optimization oracle for H over S, and parameters
n, € > 0, Algorithm 2 returns an e-approximate solution /" to the entropy-regularized {-ERM problem

arg mins{n D wilh(xi), i) + Y h(s) log(h(s) + 1)}
heH i=1 ses

after O (w) iterations, where Wyax = maxes 2;.,.=5 [wil is the maximum sum of absolute
weights for any feature in S.

Overview of Algorithm 2: The objective requires (approximately) solving a constrained smooth
minimization problem min{G(z) | z € K5} where z € [0, 115! is a vector indexed by elements of S,
and the function G : [0, 1]¥! — R is defined as

G@ =n ) wilze,y) + ), zloglz, + ),
i=1

seS

where z; denotes the component of z corresponding to s € S. The set K denotes the convex hull of
the set of vectors z(h) = (h(s))ses as hranges over H. In this section, we assume we are given a linear



optimization oracle for H over the set S, that is, an algorithm for selecting the /2 € 9 that minimizes
Yses csh(s) for given coefficients {c;}ses. Algorithm 2 below uses such an oracle to implement the
Frank-Wolfe method, also known as conditional gradient descent, for approximately minimizing the
convex function G(z) over K. At each iteration, the algorithm computes the gradient of the objective
function G(z) with respect to z, maps these components to weights ¢, for s € §, and invokes the
linear optimization oracle to find an extreme point in the original function class H that minimizes

the corresponding linear function over S. After O(W) iterations, it returns an g-approximate
solution to the original problem.

Algorithm 2 Frank-Wolfe for Entropy Regularized {-ERM

1: procedure FRANKWoLFE({(x;, yi, Wi, H, 1, &,5)

2 Initialize A; to an arbitrary function in H

3: fortr=1,2,...,T do

4: Let z, be the vector (/,(s))ses -

5 Compute gradient components ¢, = ag_g,) foreach s € S:

=1 ; wi—af(hgz)’y D 4 loglh(s) + 1) + —hfg? 1
6: Call a linear optimization oracle for H over S with weights {c,}ss to obtain i, € H
minimizing ) s csh(s).
7: Sety, = &
8: Update A1 = (1 = y)h, + y,h).
9: return /7

Lemma 3.2 (Conditional Gradient Descent; (Hazan, 2023)). Let K C R” with bounded ¢, diameter R.
Let f be a B-smooth function on K, then the sequence of points x; € K computed by the conditional
gradient descent algorithm satisfies

28R?

t+1

) - f(xX) <

for all # > 2 where x* € argmin, g f(x).

The proof of Lemma 3.1 uses the formulation of the problem as minimizing a smooth convex function
G(z) over a bounded set K5 c RIS|. We then compute and bound the smoothness constant of G(z)
and the diameter of K. Finally, we apply the standard convergence guarantee for the Frank-Wolfe
algorithm in Lemma 3.2 to obtain the stated convergence guarantee.

4 ApPPLICATION TO GAMES

Corollary 4.1. Let X be a domain space and D be a distribution over X. Let H,R C [0, 11% be
classes of functions (assumed to be closed under convex combinations) and u : [0, 1] X [0, 1] — R be
a convex-concave payoff function that is L-Lipschitz in its first parameter. Consider the saddle-point
optimization problem

min max E,.p[u(h(x), r(x))]

heH reR
Given m samples from D and access to best-response oracles for H and R, our online learning
algorithm can be used to find an e(m)-approximate saddle point solution (h*, r*) in polynomial
time in m and the complexities of HH and R. The approximation guarantee is e(m) = rad,,(¥) +
O(L+/logm/m), where F = {f : f(x) = u(h(x),r(x)) | h € H,r € R}. Note that rad,,(¥) — 0 is

necessary for uniform convergence of the payoff matrix.

To prove Corollary 4.1, we feed the m samples from 9 sequentially into our hybrid learner. For each
timestep ¢, we choose r; to be the best response function to the 4, the algorithm outputs. We use the
same m samples to compute the best response function r; = argmax,.g 2.ir; u(h,(x;), r(x;)) and this
will be close to the true best response due to uniform convergence. Finally, using standard minimax
analysis, we argue in Appendix C that the process converges to an approximate equilibrum.
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