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Abstract
Sparse Autoencoders (SAEs) are widely used to interpret neural networks by identifying meaningful concepts
from their representations. We show that each SAE imposes structural assumptions about how concepts are
encoded in model representations, which in turn shapes what it can and cannot detect. We train SAEs on synthetic
data with specific structure to show that SAEs fail to recover concepts when their assumptions are ignored, and
we design a new SAE—called SpaDE—that enables the discovery of previously hidden concepts (those with
heterogenous intrinsic dimensionality and nonlinear separation boundaries) and reinforces our theoretical insights.

1. Introduction
Interpretability has become an important research agenda for assuring, debugging, and controlling neural networks (Anwar
et al., 2024; Bengio et al., 2025; Lehalleur et al., 2025; Rudin et al., 2022; Adebayo et al., 2020). To this end, sparse
dictionary learning methods (Serre, 2006; Faruqui et al., 2015; Subramanian et al., 2018; Arora et al., 2018; Olshausen &
Field, 1996a), especially Sparse Autoencoders (SAEs), have seen a resurgence in literature, since they offer an unsupervised
pipeline for simultaneously enumerating all concepts a model may rely on for making its predictions (Cunningham et al.,
2023; Bricken et al., 2023; Gao et al., 2024; Rajamanoharan et al., 2024b; Fel et al., 2025; Bussmann et al., 2024; Fel et al.,
2023; Colin et al., 2024). Specifically, an SAE decomposes representations into an overcomplete set of latents that (ideally)
correspond to abstract, data-centric concepts which, upon aggregation, explain away the model representations (Kim et al.,
2018; Fel, 2025). In other words, an SAE is expected to result in monosemantic latents which are more interpretable than
the neurons of the original model (Elhage et al., 2022).

In this work, we show that different SAEs have different abilities to extract concepts, beyond just in their fidelity/sparsity.
We show that any SAE is implicitly biased towards identifying concepts as monosemantic that are organized in a specific
manner (Fig. 1) using SAE latent receptive fields (see Sec. 2), and highlight the assumptions for popular SAEs. We evaluate
SAEs on concepts which violate their assumptions through experiments on controlled synthetic setups, demonstrating
that SAEs failing to account for these properties systematically miss the corresponding concepts. We introduce SpaDE
(Sparsemax Distance Encoder), a novel SAE that explicitly incorporates data properties other SAEs cannot capture into
its encoder. As we show, SpaDE successfully identifies concepts that other SAEs fail to detect, reinforcing the need for
data-aware choices in interpretability.

2. Preliminaries
Notation. We denote vectors as lowercase bold (e.g., x) and matrices as uppercase bold (e.g., X). [n] denotes {1, . . . , n}
and B = {x | ∥x∥2 ≤ 1} the unit ℓ2-ball in Rd. We assume access to a dataset of k samples, X = {x1, . . . ,xk}, where
x ∈ Rd. For any matrix X or vector x, we use X ≥ 0 (resp. x ≥ 0) to indicate element-wise non-negativity.
Sparse Coding. Also known as Sparse Dictionary Learning (Olshausen & Field, 1996a; 1997), sparse coding assumes
a generative model of data as a sparse combination of latents. Specifically, sparse coding involves solving the following
optimization problem: argminz≥0,D∈B

∑
x ∥x−Dz∥22 + λR(z), where z ∈ Rs is a sparse latent code, D ∈ Rd×s are
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Figure 1: The Duality Between SAEs Architectures and Their Implicit Data Assumptions. A) SAEs do not passively
extract concepts—they impose constraints that shape what can be detected. B) Different SAEs rely on different assumptions:
some expect features to be linearly separable (ReLU, JumpReLU) or separable by angle while having uniform intrinsic
dimensionality (TopK).

the dictionary atoms, and R(z) is a sparsity-promoting regularizer, typically ∥z∥1. Note that the optimization is performed
over both the sparse code z (with z ≥ 0) and the dictionary D. Further details are included in Appendix A.

Sparse Autoencoders. SAEs (Ng et al., 2011) approximate sparse dictionary learning by using a single hidden layer
to compute the sparse code from data (x ∈ Rd): (i) z = f(x) = g(W Tx + be), and (ii) x̂ = Dz + bd, where
W ,D ∈ Rd×s and g : Rs → Rs is the encoder non-linearity. Here, sparsity is enforced on the SAE latent code z. SAEs
are trained on the sparse dictionary learning loss, with the sparsity-promoting regularizer R. Different SAEs typically differ
in the choice of encoder nonlinearity g and the regularizer R.
We use the concept of receptive fields from neuroscience to highlight monosemanticity properties of SAEs.

Definition 2.1 (Receptive Field). The receptive field of a neuron k, which computes a function f (k) : Rd → R, is defined as
Fk = {x ∈ Rd | f (k)(x) > 0}. Intuitively, Fk represents the region of input space where neuron k is active.

3. Implicit SAE Assumptions and Data Properties
In this section, we explicitly state the data assumptions made by ReLU SAE (Cunningham et al., 2023; Bricken et al., 2023),
TopK SAE (Gao et al., 2024; Makhzani & Frey, 2013) and JumpReLU SAE (Rajamanoharan et al., 2024b).

Theorem 3.1 (Implicit Assumptions; Informal). An SAE makes implicit assumptions about the structure of concepts in data,
reflecting it in the receptive fields of its encoder. These assumptions are explicitly stated in Tab. 1 for ReLU, JumpReLU and
TopK SAEs (derived in App. E.2).

Figure 2: Illustration of Two Reasonable
Data Assumptions. A) Concepts may not be
separable using hyperplanes. B) Some con-
cepts are inherently low-dimensional, while
others span higher-dimensional spaces.

The optimality of the above assumptions depends on the “true structure” of
concepts in model representations. While concept structure in not known
in its entirety, we highlight two properties of how (certain) concepts are
organized in a model based on recent interpretability literature.
1. Nonlinear separability of concepts. Concepts are not separable

by linear decision boundaries. Evidence towards such concepts in-
clude features with dependence on magnitude, such as onion fea-
tures (Csordás et al., 2024). Even “linear features” (Arora et al.,
2018; Park et al., 2023)), having different magnitudes may fail to be
linearly separable (Fig. 2).

2. Heterogeneity of concepts. Different concepts belong to subspaces
with different dimensions. Evidence for this property includes unidi-
mensional features representable as concept activation vectors (Kim

Table 1: Implicit Assumptions of SAEs. The receptive fields of SAEs implicitly assume concepts are organized with a
specific structure in the data, i.e., in model representations.

Model Receptive Field Data Assumption

ReLU half-spaces Linear separability of concepts
JumpReLU half-spaces Linear separability of concepts

TopK union of hyperpyramids Angular separability of concepts;
same dimensionality per concept
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et al., 2018), e.g., truth (Bürger et al., 2025), multidimensional fea-
tures such as days of the week in a 2-D subspace (Engels et al., 2024a), and higher dimensional safety-relevant features
(Pan et al., 2025).

Table 2: Compatibility of SAEs with nonlinear separability
and heterogeneity.

Model Nonlinear Sep. Heterogeneity

ReLU ✗ ✓
JumpReLU ✗ ✓

TopK ✓ ✗

We characterize the compatibility of different SAEs’ im-
plicit assumptions and these concept properties in Tab. 2.
To enable evaluation of our claims, we next design an
SAE that accommodates the two properties above into its
architecture, presented in the following subsection.

3.1. SpaDE: Designing a Geometry-driven SAE

We now use the data properties studied above—nonlinear separability and concept heterogeneity—and through the duality,
construct one set of sufficient conditions on the SAE to capture both properties, resulting in a novel SAE called SpaDE
(Sparsemax Distance Encoder). While details are provided in App. E.4, we note SpaDE (Sparsemax Distance Encoder) is a
combination of the Sparsemax ((Martins & Astudillo, 2016)) function with euclidean distances:

z = f(x) = Sparsemax(−λd(x,W )),

where d(x,W ))i = ∥x−Wi∥22,
(1)

Sparsemax(v) = argmin
π∈∆s

∥π − v∥22.

In the above, λ is a scaling parameter (akin to inverse temperature), while Wi is the ith column of the encoder matrix
W which behaves as a prototype (or landmark) in input space since we compute euclidean distance from input x to Wi.
The regularizer for SpaDE is a distance-weighted ℓ1 regularizer R(z) =

∑
i zi∥x−Wi∥22 (KDS, (Tasissa et al., 2023))1.

App. E.4 and E.2.3 describe the receptive fields of SpaDE in further detail and show how it captures nonlinear separability
and concept heterogeneity.

4. Results: Empirical Validation of SAE behavior
We perform experiments by training ReLU, JumpReLU, TopK and SpaDE SAEs on synthetic Gaussian clusters. Further
analysis is in App. F. We include experiments on more naturalistic data (formal language models, vision models) in App. F.

4.1. Separability Experiment

Dataset and Experiment: We construct a 2-dimensional dataset with Gaussian clusters (abstraction of concepts) of different
magnitudes in order to demonstrate nonlinear separability of concepts in a simple setting which facilitates visualization. The
concepts with smaller norm are not linearly separable, while those with larger norm are linearly separable. Following our
arguments about implicit assumptions in SAEs, we hypothesize that ReLU and JumpReLU SAEs will be unable to capture
the nonlinearly separable concepts with monosemantic latents (measured using F1 scores; see Eq. 6).

Observations: Fig. 3 shows how different SAEs fare on this experiment. In the receptive fields of Row (b), ReLU and
JumpReLU show monosemantic latents for the separable concept (orange), but latents activating for multiple concepts
for the nonlinearly separable case (purple). This is quantified with F1 scores in Row (a), and further through within-
and cross-concept co-occurrence of SAE latents (Row (c)). SpaDE shows flexible receptive fields, top F1 scores and no
cross-concept correlations.

4.2. Heterogeneity Experiment

Dataset and Experiment: We generate Gaussian clusters (again an abstraction for concepts) in a 128-dimensional space.
The five concepts are heterogeneous—they belong to subspaces with different intrinsic dimensions (6, 14, 30, 62, 126), but
are designed to have isotropic structure within each cluster, and similar total variances across clusters. We trained ReLU,

1This regularizer encourages dictionary atoms to “stick” to the data, addressing the recently raised concern (Fel et al., 2025; Paulo &
Belrose, 2025) that directions learned by SAEs may be out-of-distribution (OOD), contributing to their instability.

3



The Duality between Sparse Autoencoders and Concept Geometry

ReLU JumpReLU TopK SpaDE
(a)

(b)

(c)

Figure 3: Effect of Nonlinear Separability on SAEs. Each column represents a different SAE. a) F1 scores of the top
5 most monosemantic latents (highest F1 scores), where shaded region is ±1SD, of each SAE on two concepts—orange
(linearly separable) and purple (non-linearly separable). b) Receptive fields of the most monosemantic latent for each SAE.
Intensity of color indicates strength of SAE latent activation. (c) Matrix of pairwise cosine similarities between sparse codes
of different datapoints, and data clusters obtained through spectral clustering on this matrix.

JumpReLU, TopK SAEs and SpaDE on this data with varying sparsity levels. We hypothesize that TopK will not be able to
adapt its representations to the intrinsic dimension of each cluster.

(a)

(b)

ReLU JumpReLU TopK SpaDE

Figure 4: Effect of Concept Heterogeneity on SAEs. a) Per-concept sparsity as a function of intrinsic dimension. Colors
indicate per-concept MSE—higher errors (red/yellow) show when an SAE fails to capture a concept effectively. Each solid
line indicates one model with a specific choice of hyperparameters. b) Normalized MSE vs. per-concept sparsity. TopK SAE
only achieves good reconstruction (below the dashed 20% error threshold) only when K exceeds intrinsic dimensionality.
Observations: Fig. 4 shows the results of all SAEs on this experiment. In Row (a), TopK shows the same level of sparsity
per concept for all concepts, along with worse reconstruction error for higher dimensional concepts. For TopK, normalized
MSE (Row (b)) goes below 20% (i.e., explains 80% of the variance) for each concept only when k exceeds the dimension of
that concept. In contrast, other SAEs—ReLU, JumpReLU and SpaDE—show adaptive sparsity to different extents, and stay
below the 20% threshold for nearly all concepts across hyperparameters.

5. Discussion and Limitations
Our observations about the limitations of ReLU, JumpReLU and TopK SAEs highlight that the failure modes of different
SAEs stem from a mismatch between their inductive biases and the true structure of the data. This suggests the interpretability
community may need to prioritize a deeper understanding of latent space geometry, and translate novel insights into SAE
design, leading to models with more faithful and structured representations of concepts.

Limitations: We present SpaDE as a concrete example of incorporating reasonable data properties (nonlinear separability
and concept heterogeneity) into SAE design. Data properties beyond those considered here may be crucial for improved
SAE performance. SpaDE implicitly assumes concepts are separated by Euclidean distance, which may still result in latent
co-occurrence if concepts do not satisfy this assumption. We have focused our attention on mutually exclusive concepts in
this work, where the presence of one concept implies the absence of others.
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A. Dictionary Learning
Sparse coding (Olshausen & Field, 1996a) (alternatively known in this work as sparse dictionary learning, or just dictionary
learning) was initially proposed to replicate the observed properties (”spatially localized, oriented, bandpass receptive
fields”) of biological neurons in the mammalian visual cortex. It aims to invert a linear generative model with a sparsity
prior on the latents:

x = D∗z∗ + η

where x ∈ Rn is the data, D∗ ∈ Rn×s is the set of s dictionary atoms, z∗ ∈ Rs
+ is the sparse code, and η is additive

white Gaussian noise. Given data {x(1), . . . ,x(P )}, sparse coding performs maximum aposteriori (MAP) estimation for the
dictionary D∗ and representations z∗ under suitably defined prior and likelihood functions (Elad et al., 2007) by solving the
following optimization problem :

argmin
D∈B,z(·)≥0

∑
k

∥x(k) −Dz(k)∥22 + λR(z(k)) (2)

where R(·) is a sparsity-promoting regularizer. The set B ⊆ Rn×s includes restriction to unit norm (typical). Generally, the
L1 penalty is used as the regularizer term, i.e., R(z(k)) = ∥z(k)∥1, since using the L0 penalty makes the problem NP-hard
(Tillmann, 2015). When the number of dictionary atoms is less than or equal to the dimension of input space, s ≤ n, this is
an undercomplete problem, and the sparse code can be readily obtained using the pseudo-inverse of the dictionary matrix D
(provided the dictionary atoms are linearly independent), leading to the solution z = (DTD)−1DTx. Note that in this
(undercomplete) case, the sparse code is a linear transformation of the input. The more interesting setting involves using an
overcomplete dictionary (s > n), and was initially studied in (Olshausen & Field, 1997). Obtaining the sparse code z from
input data x is nontrivial in this case.

In this case, sparse coding results in a sparse representation of the data and a dictionary which behaves as a data-adaptive
basis. Correspondingly, sparse codes have been shown to capture interesting concepts in data (Kreutz-Delgado et al., 2003;
Sprechmann & Sapiro, 2010), e.g., responding to wavelet-like regions when trained on natural images (Olshausen & Field,
1996b). In this (overcomplete) setting, a popular approach is using iterative shrinkage and thresholding algorithms (ISTA)
(Daubechies et al., 2004) and their variants such as FISTA (Fast ISTA) (Beck & Teboulle, 2009). Modern approaches to this
problem use ISTA to design deep residual networks with shared weights and train the network on the sparse coding objective,
in a technique called Learned ISTA (LISTA) (Gregor & LeCun, 2010). Algorithm unrolling (Monga et al., 2021) is a
generalization of this technique and involves designing interpretable neural networks using iterative algorithms where each
layer of the network reflects an iteration of the algorithm. These networks are interpretable since the weights correspond to
an underlying process which was used to design the iterative algorithm. Unrolling has widespread applications in signal
processing, and is extensively reviewed in (Monga et al., 2021).

We also note that sparse coding has been used with algorithm unrolling as a model-based interpretable deep learning
technique for a wide range of applications, including image super-resolution (Wang et al., 2015), graph signal denoising
(Chen et al., 2021), mechanical fault diagnosis (An et al., 2022), deconvolving neural activity of dopamine neurons in
mice (Tolooshams et al., 2024). Therefore, assuming a linear generative model of data (Eq. 2) where the dictionary atoms
are physically relevant in some application, sparse coding using an unrolled network learns the underlying interpretable
dictionary atoms.

B. Related Work
SAEs (Ng et al., 2011) approximate sparse dictionary learning by using a single hidden layer to compute the sparse code
from data. For input x ∈ Rd,

(i) z = f(x) = g(W Tx+ be), and (ii) x̂ = Dz + bd, (3)

SAEs are a specific instantiation of the broader agenda of dictionary learning tools for concept-level explainability (Kim
et al., 2018; Olah et al., 2020; Fel, 2025; Faruqui et al., 2015; Subramanian et al., 2018; Arora et al., 2018). A number
of SAE architectures have been proposed recently, including ReLU SAE (Bricken et al., 2023), TopK SAE (Gao et al.,
2024; Makhzani & Frey, 2013), gated SAE (Rajamanoharan et al., 2024a), JumpReLU SAE (Rajamanoharan et al., 2024b),
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Batch TopK SAE ((Bussmann et al., 2024)), ProLU SAE ((Taggart, 2024)), and so on. While promising results have been
discovered, e.g., latents that respond to concepts of refusal, gender, text script (Bricken et al., 2023; Templeton et al., 2024;
Durmus et al., 2024), foreground vs. background concepts (Fel et al., 2023), and concepts of protein structures (Simon
& Zou, 2024; Garcia & Ansuini, 2025; Adams et al., 2025), a series of negative results have started to emerge on the
limitations of SAEs. For example, (Bhalla et al., 2024; Wu et al., 2025a) show a mere prompting baseline can outperform
model control compared to SAE or probing based feature ablation baseline. Similar results were observed by (Menon
et al., 2024) in a narrower formal language setting. Meanwhile, criticizing the underlying linear representation hypothesis
that has informed design of earlier SAE architectures (specifically, the vanilla ReLU SAEs), (Engels et al., 2024a;b) has
shown that SAE features can be multidimensional and nonlinear. Importantly, recent results from (Fel et al., 2025; Paulo &
Belrose, 2025; Kissane et al., 2024) have shown that two SAEs trained on the exact same data, just with a different seed,
can yield very different concepts and hence very different interpretations. These results are related to the lack of canonical
nature in SAE latents (Leask et al., 2025) This behavior, often called algorithmic instability, makes reliability of SAEs
challenging for any practical purposes. More broadly, given the hefty research investment going into the topic, we believe
it is warranted that a more formal and theoretical account help solidify the limitations and challenges SAEs (or at least
the current paradigm thereof) faces. This can help steer the research in a direction that yields meaningful improvement in
SAEs, e.g., in their practical utility. This motivation underscores our work. For a related effort on this front, we highlight the
work by (Ayonrinde et al., 2024), who contextualize SAEs from a minimum-description length perspective and enable an
intuitively solid account of how features may split to overly specialized concepts (e.g., tokens).

Disentangled Representation Learning. As mentioned in Sec. E, results similar to ours have been reported in the field of
disentangled representation learning, wherein one aims to invert a data-generating process to identify the factors of variants
(i.e., latent variables) that underlie it. To this end, autoencoders were used as a popular tool, since they offer a method
that can (ideally) simultaneously invert the generative process and identify the underlying latents (Higgins et al., 2017).
However, (Locatello et al., 2019) showed that in fact this problem is rather challenging: unless one designs an autoencoder
architecture that bakes-in assumptions about the generative process, i.e., the precise function mapping itself, there are no
guarantees the retrieved latents will correspond to the ground-truth ones. This result led to design of several methods focused
on exploiting “weak supervision”, i.e., extra information available from data-pairs such as multiple views of an image or
temporally consistent video frames, to circumvent the theoretical challenges of disentanglement (Locatello et al., 2020;
Gresele et al., 2020; Von Kugelgen et al., 2021). Our contributions are similar in nature to these results on disentanglement,
but we (i) specifically focus on the context of SAEs and (ii) provide a more concrete proof that establishes precisely what the
inductive biases of popular SAEs are, i.e., what concepts the SAEs are biased towards uncovering. Having established these
results, we now believe the next step that the disentanglement community took, i.e., use of weak supervision, would make
sense for the SAEs community as well. This can involve exploiting temporal correlations between tokens in a sentence, or
the fact that representations across layers do not change much, as in Crosscoders and Transcoders (Lindsey et al., 2024;
Dunefsky et al., 2025; Paulo et al., 2025).

C. Experimental Setup
The synthetic experiments (separability, heterogeneity) and vision experiments were run on NVIDIA A100 40GB GPUs,
while the formal language experiments were run on NVIDIA RTX A6000 48GB GPUs.

C.1. Separability experiment

We construct a synthetic dataset consisting of six isotropic Gaussian clusters in a two-dimensional (2D) space. The cluster
centers are arranged such that adjacent clusters are separated by an angular difference of 2π/6, with alternate clusters having
norms of 1 and 3. Each cluster is sampled from a multivariate normal distribution with a variance of 2−5.5. The dataset
consists of 1 million data points per concept, yielding a total of 6 million samples. Of these, we use 70% (700,000 points)
for training.

Our experiments evaluate four sparse autoencoder (SAE) architectures: ReLU SAE, JumpReLU SAE, TopK SAE, and SpaDE.
The first three architectures are implemented following their original formulations (in (Bricken et al., 2023),(Rajamanoharan
et al., 2024b),(Gao et al., 2024)), with the decoder activations normalized in the forward pass. The SpaDE model follows
the same single hidden-layer autoencoder structure but differs in that it utilizes Euclidean distance computations and a
SparseMax activation function for the encoder. Across all models, the hidden-layer width is set to 128, and a pre-encoder
bias is used in all cases except for SpaDE.
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For training, the (inverse) temperature parameter λ in SpaDE is initialized to 1/(2× input dimension) and parameterized
using the Softplus function to ensure non-negativity. This parameter trained along with the encoder and decoder weights, to
allow the model to learn its desired sparsity level. Note that large values of λ lead to greater sparsity since Sparsemax is
scale-sensitive. In JumpReLU, the threshold is initialized at 10−3 across all latent dimensions, with a bandwidth of 10−3 for
the straight-through estimator (STE), as it is proposed in (Rajamanoharan et al., 2024b). All models are trained using the
Adam optimizer with a learning rate of 10−2, which follows a cosine decay schedule from 10−2 to 10−4. The momentum
parameter is set to 0.9, and we use a batch size of 512. Training runs for approximately 8000 iterations, and gradient clipping
is applied (gradient norms are clipped at 1) to stabilize optimization.

Regularization parameters are selected such that sparsity levels remain comparable across models. Specifically, the
regularization coefficient γ is chosen in the range 10−6 to 1 for ReLU and JumpReLU SAEs, between 4 and 64 (powers
of 2) for TopK SAE, and in the range 10−6 to 1 for SpaDE. Each model applies a different regularization strategy: ReLU
SAE uses L1 regularization, JumpReLU SAE applies L0 regularization with a straight-through estimator (STE) as in
(Rajamanoharan et al., 2024b), TopK SAE does not use explicit regularization but incorporates an auxiliary loss term as
in (Gao et al., 2024), with Kaux = k (same as the choice of sparsity level k in TopK) with γaux = 1 (the scaling for the
auxiliary loss term), and SpaDE employs a distance-weighted L1 regularization, which comes from (Tasissa et al., 2023).

All networks are initialized such that the decoder weights are initially set as the transpose of the encoder weights, though
they are allowed to update freely during training. Model weights are sampled from a normal distribution N (0, 1). To
maintain consistency in scale between inputs and latent activations, a scaling factor λ is applied to all latent units, given by
λ ≈ 1/2× input dimension (note that this is not trainable for ReLU, JumpReLU and TopK SAEs). Across all architectures,
we use the Mean Squared Error (MSE) loss function, with the regularizers and regularizer scaling constants as described
above.

For evaluation, we analyze a subset of 1000 data points per concept. The primary metric for comparison is the F1-score,
which is computed based on precision and recall. Precision is defined as:

Precision =
True Positives

True Positives + False Positives
, (4)

while recall is given by:

Recall =
True Positives

True Positives + False Negatives
. (5)

Using these definitions, the F1-score is computed as:

F1 =
2× Precision × Recall

Precision + Recall
. (6)

In our setup, precision and recall are computed by thresholding latent activations at 10−6. Additionally, we analyze
the receptive fields by creating a 2D meshgrid, passing all points through the model, and extracting their SAE latent
representations. Cosine similarities between pairs of data points are also computed by obtaining their latent representations,
calculating the pairwise cosine similarity, and organizing the results by class.

To further examine latent space structure, we compute the stable rank of the representation matrix. Stable rank for the
similarity matrix is computed as the sum of singular values divided by the largest singular value (alternatively called the
intrinsic dimension of this matrix):

Stable Rank =

∑
σi

σmax
. (7)

Finally, spectral clustering is performed on the similarity matrix derived from latent representations. The number of clusters
is determined by the stable rank of this similarity matrix (rounded up), providing insights into the correlations between SAE
latent representations.
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C.2. Heterogeneity experiment

We construct a synthetic dataset consisting of five isotropic Gaussian clusters in a 128-dimensional space. The intrinsic
dimensionality of each cluster follows the sequence 2q − 2 for different values of q ∈ {3, 4, 5, 6, 7}, resulting in clusters
with intrinsic dimensions of 6, 14, 30, 62, 126, respectively. The lower-dimensional clusters belong to subspaces that form
strict subsets of the subspaces of higher-dimensional ones, meaning that the first six dimensions are fully contained in the
next 14, which are further contained in the next 30, and so on up to 126 dimensions. Cluster centers are sampled uniformly
at random from the range [0, 1

21 ] along each dimension. The variance of each concept is chosen to be inversely proportional
to its intrinsic dimension to ensure that the total variance per concept remains constant across all concepts. The dataset
contains 6.4 million data points per concept, yielding a total of 32 million samples, of which 70% (approximately 22 million
points) are used for training.

Our models follow four different sparse autoencoder (SAE) architectures: ReLU SAE, JumpReLU SAE, TopK SAE, and
SpaDE. The first three are implemented according to their original formulations in (Bricken et al., 2023), (Rajamanoharan
et al., 2024b), and (Gao et al., 2024), with the decoder activations normalized in the forward pass. The SpaDE model follows
the same single hidden-layer autoencoder structure but differs in that it utilizes Euclidean distance computations and a
SparseMax activation function for the encoder. Across all models, the SAE hidden-layer width is set to 512. A pre-encoder
bias is applied in all cases except for SpaDE. Additionally, for the TopK SAE, a ReLU activation is applied before selecting
the top k latent dimensions.

For training, the temperature parameter λ in SpaDE is initialized at 1/(2× input dimension) and parameterized using the
Softplus function to ensure non-negativity. This parameter trained along with the encoder and decoder weights, to allow the
model to learn its desired sparsity level. In JumpReLU, the threshold is initialized at 10−3 across all latent dimensions,
with a bandwidth of 10−3 for the straight-through estimator (STE). All models are trained using the Adam optimizer with
a learning rate of 10−2, which follows a cosine decay schedule from 10−2 to 10−4. The momentum parameter is set to
0.9, and we use a batch size of 2048. Training runs for approximately 10,000 iterations, and gradient clipping (restricting
gradient norms to be less than 1) is applied to stabilize optimization.

Regularization parameters are selected such that sparsity levels remain comparable across models. Specifically, the
regularization coefficient γ is chosen in the range 10−3 to 5.0 for ReLU SAE, 10−3 to 1 for JumpReLU SAE, from 4 to 256
(powers of 2) for TopK SAE, and from 10−3 to 10 for SpaDE. Each model applies a different regularization strategy: ReLU
SAE uses L1 regularization, JumpReLU SAE applies L0 regularization with a straight-through estimator (STE) following
from (Rajamanoharan et al., 2024b), TopK SAE does not use explicit regularization but incorporates an auxiliary loss term
with γaux = 1 (scaling for the auxillary term in the loss) and Kaux = k (same as sparsity level), and SpaDE employs a
distance-weighted L1 regularization.

All networks are initialized such that the decoder weights are initially set as the transpose of the encoder weights, though
they are allowed to update freely during training. Model weights are sampled from a normal distribution N (0, 1). To
maintain consistency in scale between inputs and latent activations, a scaling factor λ is applied to all latent units, given by
λ ≈ 1/2× input dimension. Across all architectures, we use the Mean Squared Error (MSE) loss function.

For evaluation, we analyze a subset of 1000 data points per concept. We report the normalized MSE, defined as the ratio of
the standard MSE to the variance of the corresponding concept:

Normalized MSE =
MSE

Variance of Concept
. (8)

We also compute sparsity (L0) per concept, measured as the average number of active latents per data point, averaged over
each concept.

To analyze latent representations, we examine cosine similarities in two contexts: (i) between pairs of SAE latent represen-
tations for different input data points (per-input co-occurrence) and (ii) between pairs of latents aggregated over all data
points (global co-occurrence). For the latter, each latent is assigned a concept label based on the concept for which it is most
frequently activated on average. This assignment provides insight into how latents specialize across different underlying
structures in the dataset.
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C.3. Formal Languages experiment

Data. The formal language setup analyzed in the main paper (Sec. F.3) involves training a 2-layer nanoGPT model on
strings from an English-like PCFG. Broadly, a PCFG is defined via a 5-tuple G = (NT, T, R, S, P), where NT is a finite set of
non-terminal symbols; T is a finite set of terminal symbols, disjoint from NT; R is a finite set of production rules, each of the
form A → αβ, where A ∈ NT and α, β ∈ (NT ∪ T); S ∈ NT is the start symbol; and P is a function P : R → [0, 1], such that
for each A ∈ NT,

∑
α:A→α∈R P(A → αβ) = 1. To generate a sentence from the grammar, the following process is used.

1. Start with a string consisting of the start symbol S.
2. While the string contains non-terminal symbols, randomly select a non-terminal A from the string. Choose a production

rule A → αβ from R according to the probability distribution P(A → α).
3. Replace the chosen non-terminal A in the string with α, the right-hand side of the production rule.
4. Repeat the production rule selection and expansion steps until the string contains only terminal symbols (i.e., no

non-terminals remain).
5. The resulting string, consisting entirely of terminal symbols, is a sentence sampled from the grammar.

We follow the same rules of the grammar considered in (Menon et al., 2024). The strings are tokenized via one-hot encoding
via a manually defined tokenizer.

Model training. Models are trained from scratch on strings sampled from the grammar above. Strings are padded to length
128 (if not already that length), and a batch-size of 128 (∼10K tokens per batch) is used for training. Training uses Adam
optimizer with a cosine learning-rate schedule starting at 10−3 and ending at 10−4 after 70K iterations, alongside a weight
decay of 10−4. The nanoGPT models used in this work have a width of 128 units, with an MLP expansion factor of 2 and
also 2 attention heads per attention layer.

SAE training. All SAEs trained in the formal language setup involve an expansion factor of 2×, i.e., 256 latents for a
residual stream of 128 dimensions. Training involves a constant learning rate of 10−3 and lasts for 10K iterations (∼1M
tokens). We sweep regularization strength for SAEs’ training, yielding SAEs with different sparsity levels. While we fix
the regularization strength for SpaDE based on best values identified from the synthetic, Gaussian cluster datasets, for
other SAEs (ReLU, JumpReLU, and TopK) we report the best possible results from our sweep by looking at the top-10
per-concept F1 scores; i.e., reported results are a best-case estimate of results achievable by training of these SAEs, and in
practice performance can be expected to be poorer than what we analyze. Cross-task transfer for SpaDE’s hyperparameters
is intriguing in this regard, since we found other SAEs’ hyperparameters to not transfer.

C.4. Vision experiment

Data. We use an off-the-shelf, large-scale pretrained model for our analysis in these experiments, specifically DINOv2-base
(with registers). For simplicity, we focus on a 10-class subset of ImageNet, called Imagenette, containing 1.5k images per
class. Representations are extracted from the model for images of these classes, yielding 261 tokens per image.

SAE training. SAEs are trained on all available tokens, including spatial, CLS, and registers tokens, for 50 epochs with
200 latent dimensions. With 261 tokens per image, this amounts to ∼200M tokens for training SAEs over the course of
50 training epochs. For each SAE, the best reconstruction is selected based on a sparsity-controlled learning rate sweep.
This resulted in an optimal learning rate of 5× 10−4 for TopK, ReLU, and SpaDE, while JumpReLU performed best with
10−4 (using Adam optimizer). Additionally, we note our JumpReLU implementation employs a Silverman kernel with a
bandwidth of 10−2, which we found to work best for our setting.

D. Further Theory Results

E. Unified Framework for SAEs

Table 3: Projection Nonlinearities in SAE Encoders. Each model
can be understood by its nonlinear orthogonal projection g(·) onto a
constraint set S which determines its activation behavior, sparsity
structure, and implicit data assumptions.

Model g(v)

ReLU ΠS {v}, S = {x ∈ Rs : x ≥ 0}
TopK ΠS {v}, S = {x ∈ Rs : x ≥ 0, ||x||0 ≤ k}

Heaviside (H) ΠS
{
v + 1

2
1
}

, S = {0, 1}s
JumpReLU ReLU(v − θ) + θ ⊙H(v − θ)

In this section, we develop a framework which
captures multiple SAEs used in practice. More
specifically, we analyze the following three popular
SAE architectures: ReLU SAE (Cunningham et al.,
2023; Bricken et al., 2023), TopK SAE (Gao et al.,
2024; Makhzani & Frey, 2013) and JumpReLU
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Figure E.1: Projection As The Key Architectural Difference Between SAEs. A) SAE encoders do more than just linearly
transform data—they project it onto an architecture-specific constraint set. This projection fundamentally determines which
features an SAE can extract and which it will suppress. B) Different SAEs rely on different projection sets S: ReLU
projects onto the positive orthant, TopK onto K−sparse subspaces, and JumpReLU combines ReLU with a projection onto
a hypercube (via a Heaviside step function).

SAE (Rajamanoharan et al., 2024b; Lieberum et al.,
2024). This framework unravels a duality between
how concepts are encoded in model representations
and an SAE’s architecture. The nonlinearity of the
SAEs under study is an orthogonal projection onto
some set, where the choice of projection set differentiates SAEs (see Fig. E.1). We formalize such nonlinearities as projection
nonlinearities, as defined below.

Definition E.1 (Projection Nonlinearity). Let v ∈ Rs be a pre-activation vector. A projection nonlinearity ΠS {·} : Rs →
Rs is defined as:

ΠS {v} = argmin
π∈S

∥π − v∥22, (9)

where S ⊆ Rs is the constraint set onto which v is orthogonally projected. Popular SAE nonlinearities, e.g., ReLU,
JumpReLU, and TopK, are orthogonal projections onto different sets (see Tab. 3).

Generalizing the variational form of projection nonlinearities allows us to formalize SAEs as follows.

Claim E.1 (Bilevel optimization of SAEs). A sparse autoencoder (Eq. 3) with the dictionary learning loss function (Eq. 2)
solves the following bi-level optimization problem:

argmin
D∈B,z≥0

∑
x

∥x−Dz∥22 + λR(z)

s.t. z = f(x) ∈ argmin
π∈S

F (π,W ,x),
(10)

where F is a variational formulation of the SAE encoder f . For SAEs, f(x) = g(W Tx+ be) (Eq. 3). Note that this inner
optimization with the objective F is what differentiates different SAEs.

Proof. The outer optimization follows from the dictionary learning loss with sparsity-inducing penalty of the SAE (Eq. 2).
The constraint is imposed by the SAE encoder’s architecture (Eq. 3). The variational formulation of the encoder as the
minimization of some objective F over set S is a generalization of projection nonlinearities (Eq. 9) for which F (π,W ,x) =
∥W Tx+ be − π∥22.

This framework implies that each SAE solves a different, constrained (through encoder architecture) optimization version of
sparse dictionary learning. This constraint dictates the quality of the solution obtained, since it restricts the search space of
solutions to dictionary learning, and hence does not have to capture the full sparse coding solution. To further formalize this
claim in the next section, we now define receptive fields, a popularly used concept in neuroscience to study the response
properties of biological neurons (Olshausen & Field, 1997).

Definition E.2 (Receptive Field). Consider a neuron k, which computes a function f (k) : Rd → R. The receptive field of
this neuron is defined as Fk = {x ∈ Rd | f (k)(x) > 0}.
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Intuitively, Fk represents the region of input space where neuron k is active. The structure of receptive fields in an SAE is
dictated by its encoder’s architecture.

Duality: Properties of the SAE encoder will constrain receptive fields’ structure for SAE latents. These constraints directly
translate to assumptions (often implicit, see Sec. 3) about the data structure, since “monosemanticity” (Bricken et al., 2023;
Elhage et al., 2022) requires receptive fields to match structure of concepts in data. Alternatively, if one knows how concepts
are organized in the data (model representations), duality can be used to design an appropriate SAE architecture (see
Sec. 3.1).

Fundamental Limitation of SAEs

An SAE’s encoder enforces implicit dual assumptions about data, fundamentally shaping which concepts it can
identify and which remain obscure. To build more effective SAEs, these assumptions must explicitly match the true
structure of the data.

E.1. Projections and Nonlinearities

The nonlinearity of popular SAEs is commonly an orthogonal projection onto some set, where the choice of projection set
differentiates SAEs (see Fig. E.1). We formalize such nonlinearities as projection nonlinearities, as (re)defined below.
Definition E.3 (Projection Nonlinearity). Let v ∈ Rs be a pre-activation vector. A projection nonlinearity ΠS {·} : Rs →
Rs is defined as:

ΠS {v} = argmin
π∈S

∥π − v∥22, (11)

where S ⊆ Rs is the constraint set onto which v is orthogonally projected. The structure of S determines the properties of
the nonlinearity.

Table 4: Projection Nonlinearities in SAE Encoders. Each model
can be understood by its nonlinear orthogonal projection g(·) onto a
constraint set S which determines its activation behavior, sparsity
structure, and implicit data assumptions.

Model g(v)

ReLU ΠS {v}, S = {x ∈ Rs : x ≥ 0}
TopK ΠS {v}, S = {x ∈ Rs : x ≥ 0, ||x||0 ≤ k}

Heaviside (H) ΠS
{
v + 1

2
1
}

, S = {0, 1}s
JumpReLU ReLU(v − θ) + θ ⊙H(v − θ)

We will say a function f(·) is a Projection En-
coder if it uses a projection nonlinearity g(·) ap-
plied to a linear transformation of the input. This is
equivalent to using v = W Tx+ be, and f = g(v)
(see Eq. 3), where g is a projection nonlinearity.
Popular SAEs can be understood as a similar Pro-
jection Encoder with different projection nonlinear-
ities, as shown in Tab. 4 (see Theorem E.5 for a
derivation).
Lemma E.4 (Elementwise projections). For pro-
jection nonlinearities whose projection sets satisfy
componentwise constraints, i.e. S = {x ∈ Rs : f(xj) ≤ 0, h(xk) = 0∀j, k ∈ [s]}, the projection problem can be
decoupled and broken down into a combination of elementwise projections, leading to an elementwise nonlinearity. The
converse is also true: any elementwise nonlinearity which is also a projection nonlinearity can be written as a combination
of elementwise projections, leading to componentwise constraints on the projection set

Proof.

ΠS {x} = argmin
π∈S

∥π − x∥2 (12)

= argmin
f(πj)≤0,g(πj)=0,j∈[s]

∑
k

(πk − xk)
2 (13)

= (..., argmin
f(πk)≤0,g(πk)=0,

(πk − xk)
2, ...) (14)

i.e., ΠS{x}k = argmin
f(πk)≤0,g(πk)=0,

(πk − xk)
2 (15)

This is a consequence of the objective function above (squared euclidean norm of the difference π − x) decomposing into
a sum over componentwise functions. The above argument can be traced backward, since all steps are invertible, which
proves the converse.
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Theorem E.5 (Projection Nonlinearities). ReLU, TopK, JumpReLU are simple combinations of orthogonal projections onto
nonlinearity-specific sets: ReLU is a projection onto the positive orthant, TopK is a projection onto the union of all k-sparse
subspaces, and JumpReLU is a sum of shifted ReLU and shifted Heaviside step, which itself is a projection onto the corners
of a hypercube.

Proof. First consider the ReLU nonlinearity, defined for x ∈ Rs as:

z = ReLU(x) (16)

zi =

{
xi if xi ≥ 0

0 else
(17)

This is an elementwise nonlinearity, so it suffices to show that each component can be written as a projection ( from Lemma
E.4). Consider this reformulation:

zi = argmin
πi≥0

(xi − πi)
2 (18)

This is equivalent to ReLU, since for all non-negative values, it equals the input, while it is 0 (nearest non-negative point) for
all negative inputs. Using Lemma E.4, ReLU is a projection nonlinearity with projection set S = {x ∈ Rs : xi ≥ 0∀i ∈ [s]}.

JumpReLU is defined as:

JumpReLU(x) = x⊙H(x− θ) (19)
= (x− θ + θ)⊙H(x− θ) (20)
= ReLU(x− θ) + θ ⊙H(x− θ) (21)

where the heaviside step function H is:

H(x) = I(x > 0) (22)

which is performed elementwise. Thus, JumpReLU (and the heaviside step) is also an elementwise nonlinearity. Consider
the step function:

H(x)i = H(xi) =

{
1 if xi ≥ 0

0 else
(23)

= argmin
πi∈{0,1}

(xi + 0.5− πi)
2 (24)

which is a shifted version of a projection. Again using Lemma E.4, H is a projection nonlinearity with projection set
S = {x ∈ Rs : xi ∈ {0, 1}}, i.e., the corners of a unit hypercube.

The TopK nonlinearity is defined as:

yj = ReLU(xj) (25)

TopK(x)j = yj I
(
yj ≥ yp∀p ∈ M : |M| = s−K

)
(26)

where s is the dimension of the space. Note that topK typically includes a ReLU applied first ((Gao et al., 2024)), making all
entries of the vector non-negative followed by choosing the k-largest entries of ReLU(x). Consider a projection onto the
union of all k-dimensional axis-aligned subspaces. With non-negative entries (due to ReLU), this would lead to choosing
the k largest entries of x:

argmin
π: π is k−sparse

∥x− π∥22 = argmin
π: π is k−sparse

∑
i

(xi − πi)
2 (27)

= TopK(x) (28)

This completes the proof.
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Theorem E.6. Projection nonlinearities satisfy the following properties:

1. For points within the set S, projection is an identity map

x ∈ S =⇒ ΠS {x} = x

2. For points outside the set S , projection is onto the boundary

x /∈ S =⇒ ΠS {x} ∈ ∂S

3. If ∂S is a flat (linear manifold), or a subset of a flat (with flat boundaries), projection of points outside the set S is
either piecewise linear or constant:

ΠS {αx1 + βx2} = αΠS {x1}+ βΠS {x2} for α, β ∈ T , OR

ΠS {x} = c, x ∈ D (a linear piece)

where x1,x2 /∈ S, T ⊆ R is suitably defined to confine x to the corresponding linear piece

Proof. (sketch) (1) is trivial and follows from the definition of projection nonlinearities (Eq. 9).
For (2), suppose ΠS {x} is in the interior of S . This implies that ∃y ∈ Int(S) such that y = αx+ (1− α)ΠS {x} , α ∈
(0, 1] and therefore ∥y − x∥2 < ∥x−ΠS {x} ∥2, which is a contradiction. Thus ΠS {x} ∈ ∂S.
For (3), one can consider the section of the boundary ∂S that is closest to x, and extend it to form a subspace (possible since
it is flat). Since projections onto subspaces are linear operations, ΠS {x} is linear in some neighborhood, and thus piecewise
linear. In some cases, there is a single corner point of S that is closest to x, in which case the projection is a constant.

Projection nonlinearities are orthogonal projections onto various sets. For points within the set S, projection is the point
itself, while for points outside, the projection is onto the boundary ∂S (Theorem E.6 in Appendix). For projections to be
well defined everywhere, the set S must be closed (so that the boundary belongs to the set, i.e., ∂S ∈ S). Note that if the
set S is a subspace of Rs, projection is a linear map. Therefore, the nonlinearity of projection nonlinearities comes from
choosing either a subset of a subspace, or a non-flat manifold. Sparsity in projection nonlinearities is a consequence of the
projection set having edges/corners along sparse subspaces.

E.2. Receptive fields of various SAEs

First, we (re)define the four SAE encoders we study in this section:

ReLU SAE: z = ReLU(W Tx+ b) (29)

JumpReLU SAE: z = JumpReLU(W Tx+ b) (30)

TopK SAE: z = TopK(W Tx) (31)

SpaDE: z = Sparsemax(−λd(x,W )) (32)

d(x,W )i = ∥x−wi∥22 (33)

This section discusses the piecewise linear (affine) regions (by showing that each of the above is a piecewise linear function)
and neuron receptive fields in input space for each of the four SAEs (ReLU, JumpReLU, TopK, SpaDE). Projection
nonlinearities become piecewise linear when the projection sets have flat faces. Under the requirement of monosemanticity,
the structure of receptive fields directly implies the assumption that concepts in data have the same structure as the receptive
field.
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For projection-based encoders, the receptive field can be rewritten as

Fk = f−1
(
S ∩ {zk > 0}

)
,

where S is the projection set of the encoder.

That is, Fk is the pre-image of the intersection of the projection set with the half-space {zk > 0}. Alternatively, it can be
viewed as the complement of the pre-image of the set S ∩ {zk = 0}, where the hyperplane zk = 0 indicates latent k is
“dead”. This expression shows the explicit relation between the projection set and the receptive field properties of the SAE.

First note that all four nonlinearities have some level of sparsity, i.e., some neurons are turned off at times. The following
observation is crucial in formulating the piecewise linear regions:

Lemma E.7 (Gating). Given the indices M = {i1, i2, ..., i|M|} of active neurons (with nonzero outputs), ReLU, JumpReLU,
TopK and Sparsemax are all affine functions of their inputs.

Lemma E.7 indicates that the nonlinearity in these transformation lies only in their gating, or selection of active indices.
Thus, each linear (affine) region is characterized by a specific choice of indices M of active neurons. Note that not all
choices of indices may be allowed by the nonlinearity. Denote the set of allowed indices by M.
Let LM ⊆ Rn denote the piecewise linear (affine) region corresponding to active indices M.

Lemma E.8. The set {LM : M ∈ M} of all piecewise linear regions forms a partition of Rn.

Using the Gating lemma, we can associate each set of active indices to a piecewise linear region, and identify receptive
fields as unions of such piecewise linear regions.

Lemma E.9 (Receptive fields and piecewise linear regions). A neuron’s receptive field is a union of piecewise linear regions
where the neuron is active:

Fk = ∪M:k∈MLM

We now use the above results and obtain the piecewise linear regions for each of the four SAEs defined previously.

E.2.1. RELU, JUMPRELU SAE

First note that the piecewise linear regions and receptive fields of ReLU and JumpReLU SAEs are the same—since in both
cases, the gating appears through the heaviside step function (ReLU(x) = x ⊙ I(x ≥ 0)). Thus, we develop the linear
pieces and receptive fields only for ReLU, since the corresponding ones for JumpReLU are identical. The piecewise linear
regions of latents in ReLU SAE are described by the following claim:

Claim E.2. For a layer defined as in Eq. 29, LM is given as:

LM = {x ∈ Rn : wT
mx+ bm ≥ 0∀m ∈ M,wT

q x+ bq < 0∀q /∈ M} (34)

Thus, M is an intersection of N half-spaces, and thus is a convex polytope which may be bounded or unbounded.

Proof. This is a consequence of the observation in Lemma E.7 and the definition of the relu model 29.

Lemma E.10. If b = 0 in Eq. 29, then LM are unbounded convex polytopes with only one corner at the origin and flat
faces, i.e., they are (unbounded) hyperpyramids.

Thus, bias plays an important role in ReLU layers, allowing piecewise linear regions that are convex polytopes with multiple
corners anywhere in space. The greater flexibility in defining the pieces allows greater expressivity by capturing a larger
class of functions. The following (somewhat obvious) claim describes the receptive fields of model 1 neurons.

Claim E.3. In Model 1 (29), for a given neuron k ∈ [n], the receptive field Fk is given as:

Fk = {x ∈ Rn : wT
k x+ bk ≥ 0} (35)

which is a half-space defined by the normal vector wk and bias bk.

This is a straightforward consequence of the definition of the ReLU model in Eq. 29.
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E.2.2. TOPK SAE

Claim E.4. For a layer defined as in Eq. 31, LM is given as:

LM = {x ∈ Rn : wT
mx ≥ wT

q x∀m ∈ M, q /∈ M} (36)

Thus, M is an intersection of K(N −K) half-spaces all passing through the origin, and thus is a convex polytope which
may be bounded or unbounded. In fact, it is an unbounded hyperpyramid, with a corner at the origin and flat faces. The
normals to these half-spaces are pairwise differences between active and inactive weight vectors.

This again follows from the Gating Lemma E.7.

Claim E.5. In Model 2 (31), for a given neuron k ∈ [n], the receptive field Fk is given as:

Fk = ∪M:k∈MLM (37)

which is a union of hyperpyramids with a corner at the origin. Note that in typical implementations of TopK, a pre-encoder
bias is included, so the corner of the hyperpyramids is at the pre-encoder bias.

E.2.3. SPADE

Claim E.6. For a layer defined as in Eq. 1, LM is given as:

LM =

{
x ∈ Rn : ∥x−wm∥22 −

1

|M|
∑
j∈M

∥x−wj∥22 −
1

λ|M|

{
≤ 0, if m ∈ M
> 0, m /∈ M

}
(38)

=

{
x ∈ Rn : (39)

(
wT

m − 1

|M|
∑
j∈M

wT
j

)
x−

(
∥wm∥22 −

1

|M|
∑
j∈M

∥wj∥22
)
+

1

λ|M|

{
≥ 0, if m ∈ M
< 0, m /∈ M

}
(40)

Thus, M is an intersection of N half-spaces, and thus a convex polytope. Note that the normal to each half space is
now chosen in an input-adaptive fashion (m ∈ M) and is locally centered using the mean of other nearby prototypes
that are active, i.e.,

(
wT

m − 1
|M|

∑
j∈M wT

j

)
where M is input adaptive. An alternate interpretation is using the first

equation above, which defines the region as the set of points whose distance to active prototypes is within a tolerance of the
average distance to all active prototypes, while distance to inactive prototypes is larger than the average distance to active
prototypes.

Proof. This is again a consequence of the definition of sparsemax (Martins & Astudillo, 2016).

Claim E.7. In SpaDE (32), for a given neuron k ∈ [n], the receptive field Fk is given as:

Fk = ∪M:k∈MLM (41)

which is a union of convex polytopes, each of which includes the latent k in the set of active indices M. Due to the use
of euclidean distances in choosing active indices, the receptive field is a union of convex polytopes in the vicinity of the
prototype ak of latent k. This incorporates the notion of locality and flexibility in receptive field shapes, allowing latents to
capture nonlinearly separable concepts.

E.3. KDS and Sparse Coding

K-Deep Simplex (KDS) (Tasissa et al., 2023) is the sparse coding framework which forms the outer optimization in the
SpaDE. While this is a different framework, in this section we show that it is general enough to capture the standard sparse
coding, i.e., for data generated using standard sparse coding, there exists a corresponding KDS framework that could have
generated the same data. Note that we may have to increase the latent dimension (number of dictionary atoms) by one to
obtain the corresponding KDS framework. This is stated and proved (with a constructive proof) in the following theorem.
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Theorem E.11 (KDS can capture standard sparse coding). Given data D = {x(1), ...,x(P )} generated from a standard
sparse coding generative model, i.e., x = Dz + η, where dictionary atoms (columns of D) have unit norm and z is
unconstrained, there exists a scaling of the data such that it can be represented using the K-Deep Simplex (Tasissa et al.,
2023) framework, i.e., x̃ = κx = D̃z̃ + η̃, where z̃ ∈ ∆s.

Proof. Consider the following scalar:

κ =

(
max
x∈D

∑
i

zi(x)

)−1

Normalizing data using κ above gives us,

x̃ = κx

= D
z

maxx∈D
∑

i zi(x)
+ κη

= Dẑ + η̃

By definition, ẑ defined above always satisfies
∑

i ẑi ≤ 1, so let β = 1−
∑

i ẑi. Appending an all-zeros dictionary atom to
D, D̃ = [D,0] and assigning the residual to z̃ = [ẑT , β]T gives us the following:

x̃ = D̃z̃ + η̃, where z̃ ∈ ∆s

implying that the original data can be represented in the framework of KDS.

E.4. SpaDE

Figure E.2: SpaDE shows adaptive sparsity by projecting onto the probability simplex. In this illustrative 3D figure,
note ∥x∥0 = 3 for points on the face, ∥x∥0 = 2 for points on edges along subspaces, and ∥x∥0 = 1 for corners on
coordinate axes.
Sparsemax is a projection onto the probability simplex, which can be written as (see Proposition 1 in (Martins & Astudillo,
2016))

Let z = Sparsemax(y) (42)

Then, zi = ReLU(yi −
1

|M|
∑
j∈M

yj +
1

|M|
) (43)

SpaDE is defined using squared euclidean distances between an input vector and some prototypes (or landmarks) in input
space (Eq. 1), which gives us

yi = −λ|x−wi|22 (44)

=⇒ Sparsemax(y)i = ReLU

2λ(wi −
1

|M|
∑
j

wj)
Tx− λ(|wi|2 −

1

|M|
|wj |2) +

1

|M|

 (45)

= ReLU(W̃ (x)x+ b̃e(x)) (46)
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where W̃ (x) = 2λ(wi − 1
|M|

∑
j wj), b̃e = −λ(|wi|2 − 1

|M| |wj |2) + 1
|M| and M is the set of active indices, which

is uniquely determined by the constraint
∑

i Sparsemax(y)i = 1 (see Proposition 1 in (Martins & Astudillo, 2016) for
uniqueness). Note that W̃ (x), b̃e(x) are both piecewise constant on regions of input space marked by the same choice of
active indices.

Thus, SpaDE is equivalent to a ReLU SAE, but with a linear transformation and bias that are input-adaptive (piecewise
constant). SpaDE is thus piecewise linear and continuous (continuity follows from the continuity of sparsemax). Note that
this is a nontrivial result: despite appearing quadratic in input due to the use of squared euclidean distances, SpaDE is a
piecewise linear function of the input. This result is also exact, and is NOT a first order Taylor series approximation.

However, SpaDE differs from a ReLU SAE by using linear transformations defined with respect to a local origin, which is
uniquely determined by the set of active SAE latents, similar to recent work on steering (Wu et al., 2025b).

Since SAEs are completely described by their inner and outer optimization problems (see Theorem E.1), we now describe
these components for SpaDE.

The inner optimization (Eq. 10) for the SpaDE is as follows:

F (π,W ,x) =
∑
i

πi∥x−wi∥22 +
1

2λ
∥π∥22

S = {π ∈ Rs : πi ≥ 0,
∑
i

πi = 1}
(47)

This resembles one-sided optimal transport with a squared 2-norm regularizer. This problem is one-sided because there is no
constraint on how much weight sits on each prototype across different inputs (optimization is performed independently for
each input). The squared 2−norm regularizer is known to lead to sparse transport plans in the optimal transport literature
(see (Liu et al., 2022)).

The outer optimization for SpaDE (Eq. 10) is a locality-enforced version of dictionary learning called K-Deep Simplex
(KDS) (Tasissa et al., 2023). In this framework, the sparse code is constrained to belong to the probability simplex, i.e.,
z ∈ ∆s = {y ∈ Rs :

∑
i yi = 1, yi ≥ 0∀i}, while the dictionary atoms D are unconstrained. The distance-weighted

L1 regularizer encourages each datapoint to use those dictionary atoms which are close to itself in euclidean distance,
inducing a soft clustering bias. Even though this is a different dictionary learning framework than standard sparse coding, it
is expressive enough to capture the standard sparse coding setup, i.e., for any standard sparse coding problem, there exists
an equivalent KDS problem (see Theorem E.11 in Appendix).

While this outer optimization (KDS) is a different problem than the standard dictionary learning problem, it may be useful
for interpretability since it has the following advantages:

1. It avoids shrinkage, since the L1 norm of the sparse representation z(x) is constrained to equal 1 for all inputs
2. Constraining the sparse code to the probability simplex finds support in an oft-cited paper demonstrating the linear

representation hypothesis in word embeddings under a random-walk based generative model of language (Arora et al.,
2018). Their main result (Theorem 2) shows that representations are convex combinations of concepts, as opposed
to unconstrained linear combinations, which is better interpreted as assigning vectors (with magnitude and direction;
alternatively, locations) to concepts rather than directions (without magnitude). This idea of concepts as vectors has
also been demonstrated both theoretically and empirically in the final layer representations of language models (Park
et al., 2024).

Note how SpaDE satisfies the two data properties of nonlinear separability and heterogeneity:

1. The projection set S in SpaDE is the probability simplex, which admits edges/corners with varying levels of sparsity,
thereby allowing the representation of heterogeneous concepts. For any choice of k ∈ {1, 2, ..., s}, there are

(
s
k

)
choices

of indices Mk for a k-sparse representation, and points {x ∈ Rs : xi = 0, i /∈ Mk,
∑

j∈Mk
xj = 1, xj ≥ 0} ⊆ ∆s

which admit this level of sparsity, thereby capturing concept heterogeneity.
2. The receptive fields of SpaDE (see App. E.2.3) are local to each prototype (encoder weight vector), and are flexibly

defined as the union of convex polytopes. This allows latents in SpaDE to become monosemantic to concepts which
are nonlinearly separable from the rest of the data.
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F. Further Results
In this section, we present a more detailed analysis of the results from each of our four experiments.

F.1. Separability Experiment
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Figure F.3: Evolution of normalized MSE with training iterations for various SAEs on the separability experiment. Color
intensity is proportional to L0 (darker colors imply more dense SAE latents).
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Figure F.4: Normalized MSE (normalized with variance of data), Stable ranks (of data correlations, latent correlations
matrices), and fraction of dead latents as a function of sparsity (L0) for the separability experiment (Sec. 4.1)
Fig. F.3 shows the evolution of normalized MSE (NMSE- MSE normalized by the variance of data) with training iterations
for each SAE, for different levels of sparsity. Note that denser representations (higher L0 and thus darker colors in Fig.
F.3) lead to lower NMSE. While all SAEs end up at similar levels of NMSE, their ability to extract concepts from data
is markedly different (as described in Sec. 3). A per-concept breakdown of training dynamics is shown in Fig. F.5. For
comparison, this figure also includes the mean of the squared norm of each concept (which equals MSE if the SAE predicts
the origin for all inputs), variance of each concept (which equals MSE if the SAE predicts the mean of each concept). Thus,
SAEs whose MSE saturates at the concept variance are likely to be predicting the mean of the concept for all points, whereas
when MSE goes below concept variance, the SAE explains within-concept variance. Also shown in gray is MSE with
respect to the center of each concept, which ideally must match concept variance if the SAE reconstructs all points (which is
observed in most cases).

In Fig. F.4, final NMSE as a function of sparsity (L0) shows that while all SAEs have comparable MSE-sparsity curves
at dense representations (high L0), TopK’s NMSE goes down significantly more than others. This is a consequence of
TopK learning a redundant solution, by just using two latents as an orthogonal basis to represent all data. Fraction of dead
latents show large numbers of dead latents at high sparsity levels for ReLU, JumpReLU and TopK, with this going down
(exponentially) as representations become more dense. However, SpaDE shows significantly fewer dead latents at all levels
of sparsity. Stable ranks of cosine similarities between latent representations of pairs of data points (data corr.), and between
pairs of latents across all data points (latent corr.) show that SpaDE has very high stable ranks, indicating high specialization
of latents. The other SAEs have comparable stable ranks, all much lower than the desirable stable rank of 6 (equal to the
number of clusters in data).

The SAE latent activation profiles for each concept are shown as histograms in Fig. F.6. While variations exist across
concepts, there is a common structure to the profiles for each SAE (SpaDE appears pointy, indicating a second mode other
than zero).

Cosine similarities between latent representations of pairs of data points are shown for different levels of sparsity in Fig.
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F.7. Notice that SpaDE has the lowest cross-concept correlations of all SAEs, and these correlations do not decrease much
especially in ReLU and JumpReLU. The corresponding figure with similarities between pairs of latents across all datapoints
is in Fig. F.8. Here, the number of dead latents increases with increasing sparsity, leading to very few active latents (only
active latents are shown). Broadly, note the decrease in co-occurrences with increase in sparsity- also note how ReLU and
JumpReLU result in newer correlation structures with greater sparsity.
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Figure F.5: Training dynamics for each concept (column) across SAEs (rows) for separability experiment: colored solid
lines are MSE, with intensity of color proportional to L0. Gray lines show MSE of SAE predictions with respect to the
center of each cluster; intensity is again proportional to L0. . Black dotted line shows the mean squared norm of each cluster,
which would equal the MSE if the SAE predicted the origin for all datapoints. Red dotted line shows variance of each
cluster, which again equals MSE if an SAE predicts the center of the cluster. Note that when a model reconstructs data well,
MSE wrt cluster center equals the variance of the cluster (as observed here)
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Figure F.6: Histogram of latent representations for each concept of various SAEs on the separability experiment.
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Figure F.7: Data correlations for various sparsity levels on the separability experiment: Pairwise cosine similarities between
SAE latent representations of datapoints. White lines separate different concepts.
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Figure F.8: Latent correlations for various sparsity levels on the separability experiment: Pairwise cosine similarities:
pairwise cosine similarities between different SAE latents, computed across data from all concepts.
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F.2. Heterogeneity Experiment

The overall training dynamics (on data from all concepts) is shown in Fig. F.10- note, again, that for low sparsity (high L0,
darker color) all SAEs reach similar levels of NMSE, but differ for higher sparsity levels. The per-concept breakdown of
MSE, and comparison with mean squared norm, concept variance and MSE with respect to the center of each concept is in
Fig. F.5 . The kink in gray lines is precisely the point where the model transitions from learning to represent the mean, to
learning to explain the within-concept variance, clearly demonstrating two phases in learning: learning the right scale for
the data (since initial model predictions may not match the true scale of data), thereby predicting the mean well, followed by
learning the distribution of the data.

Fig. F.12 shows latent activation profiles for each concept and each SAE (k = 32 in TopK). Since TopK with k = 32 cannot
allocate enough latents for large intrinsic dimension concepts, it increases activations on smaller number of concepts instead.
Cosine similarities between SAE latent representations for pairs of data points, and pairs of latents across all datapoints,
is shown for varying levels of sparsity in Fig. F.13, F.14 respectively. All SAEs (except JumpReLU) do a decent job at
reducing correlations between pairs of data points, but in the latent correlation plots, we see how TopK fails to adaptively
allocate latents to heterogenous concepts, especially at moderate levels of sparsity, while the other SAEs do well- have
different sized blocks in block-structured matrix.
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Figure F.9: Normalized MSE (normalized with variance of data), Stable ranks (of data correlations, latent correlations
matrices), and fraction of dead latents as a function of sparsity (L0) for the heterogeneity experiment (Sec. 4.2)
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Figure F.11: Training dynamics for each concept (column) across SAEs (rows) for heterogeneity experiment: colored solid
lines are MSE, with intensity of color proportional to L0. Gray lines show MSE of SAE predictions with respect to the
center of each cluster; intensity is again proportional to L0. . Black dotted line shows the mean squared norm of each cluster,
which would equal the MSE if the SAE predicted the origin for all datapoints. Red dotted line shows variance of each
cluster, which again equals MSE if an SAE predicts the center of the cluster. Note that when a model reconstructs data well,
MSE wrt cluster center equals the variance of the cluster (as observed here)
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Figure F.12: Histogram of latent representations for each concept of various SAEs on the heterogeneity experiment.
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Figure F.13: Data correlations for various sparsity levels on the heterogeneity experiment: Pairwise cosine similarities
between SAE latent representations of datapoints. White lines separate different concepts.
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Figure F.14: Latent correlations for various sparsity levels on the heterogeneity experiment: Pairwise cosine similarities:
pairwise cosine similarities between different SAE latents, computed across data from all concepts.
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Figure F.15: Investigating SAE properties on GPT for formal languages. (a) 3D PCA of model activations and SAE
encoder weights, where datapoints are colored by part-of-speech (PoS). Encoder weights are indicated by points for SpaDE
and arrows for the other SAEs. (b) Matrix of cosine similarities between pairs of data and pairs of latents (in order) for each
SAE. White lines separate different PoS. (c) MSE normalized by PoS variance as a function of sparsity, for each PoS. Inset:
cumulative sum of variance (eigenvalues of data correlations) of each PoS, where the effective dimension (variance > 99%)
of each PoS is shown. (d) Top-20 F1-scores for different PoS from each SAE’s latents (a measure of monosemanticity).

F.3. Formal Language Experiments

Dataset and Experiment: Building on recent work using formal languages for making predictive claims about language
models (Jain et al., 2023; Lubana et al., 2024; Allen-Zhu & Li, 2023), we use this setting as a semi-synthetic setup for
corroborating our claims. Specifically, we analyze the English PCFG with subject-verb-object sentence order proposed in
(Menon et al., 2024). We train 2-layer Transformers (Andrej Karpathy, 2023) from scratch on strings of maximum length
128 tokens from the formal grammar above. SAEs are then trained on activations retrieved from the middle residual stream
of the model.

Observations: Results are shown in Fig. F.15. Different parts of speech (PoS), the core concepts of the grammar, form
clusters in a 3D PCA of their representations (see row (a)). SpaDE learns to tile the PoS clusters well. While all SAEs do a
good job at making their latents uncorrelated across PoS (first column per SAE, row (b)), there are co-occurring latents
across PoS in all SAEs except SpaDE (second column per SAE, row (b)). PoS seem to have different intrinsic dimensions
(number of dimensions to capture 99% of total variance in data, inset in row (c)), which leads to TopK requiring different
values of K to explain the data (crosses 5% normalized mse with differing values of k, row (c)). PoS also appear to have
differing levels of linear separability, as ReLU and JumpReLU show lower F1 scores which peak at different levels of
sparsity for each concept (row (d)), while SpaDE shows a perfect F1 score of 1 in its most monosemantic latents.

Furthermore, we report several more results in the formal language experimental setup. Specifically, we show how with
changing sparsity of the latent code, fidelity metrics, e.g., normalized MSE scales changes and stable rank of both data and
latent correlations changes (Fig. F.16); how monosemanticity changes, i.e., how F1 scores averaged across latents and the
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concept they achieve maximum F1 score on change (indicating their specialization to that concept) (Fig. F.17 Left); and
how percentage of dead latents change (Fig. F.17 Right). These results are repeated at the concept-level, i.e., at the level
of parts-of-speech, in Figs. F.18, F.19. Inline with results on heatmaps demonstrating correlation between sparse codes
of samples from different concepts and between vector denoting which samples a given latent activates for, we retrieve
results in Fig. F.20, F.21. The results above are perfectly inline with our findings from the main paper, e.g., that SpaDE
achieves highly monosemantic features. The new and intriguing results involve demonstrations of how effective SpaDE can
be at discerning position of a concept (part-of-speech) in a sentence, when compared to other protocols which learn a more
uniform representation.

Further, we also provide 2D and 3D PCA visualizations of different SAEs’ retrieved latents in two different manners: (i)
assess which datapoints a latent activates for and project it into a low-dimensional space identified using PCA, and (ii) assess
which latents a datapoint activates, and project this activation vector. The former helps assess how monosemantic latents are,
i.e., whether they activate for specific concepts, and the latter helps assess how specific latents are, i.e., whether a datapoint
only activates a specific latent and hence there is no regularity present. Results show most SAEs, when they perform well,
organize latents in a very structured manner (like a tetrahedron), but SpaDE succeeds at this throughout.

Figure F.16: Normalized MSE and Stable ranks as a function of sparsity in the Formal Language setup.

Figure F.17: Monosemanticity (F1 scores averaged over latents) and fraction of dead latents as a function of sparsity for
different SAEs in the Formal Language setup.
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Figure F.18: Normalized MSE decomposed by concepts (parts-of-speech) and plotted as a function of sparsity in the Formal
Language setup.

Figure F.19: Percentage of Dead Latents decomposed by concepts (parts-of-speech) and plotted as a function of sparsity in
the Formal Language setup. Note that in such a concept-conditioned count of dead latents, one ends up counting both the
latents that are always inactive and ones that are inactive for the specific concept under consideration.
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Figure F.20: Correlation between sparse codes of different concepts (parts-of-speech) in the Formal Language setup.
Datapoints for different concepts are sorted according to which concept they come from (using a predefined order on the
parts-of-speech) and according to their position in a sentence, hence highlighting position dependence. Lines demarcate
boundaries at which tokens corresponding to different concepts start / end.
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Figure F.21: Correlation between which datapoints a latent activates for in the Formal Language setup. Latents are sorted
according to which concept (part-of-speech) they most strongly activated for (as measured using F1-score). White lines
demarcate boundaries at which latents of different concepts start / end.
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Figure F.22: 2D PCA visualization of sparse codes corresponding to different concepts (parts-of-speech).
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Figure F.23: 3D PCA visualization of sparse codes corresponding to different concepts (parts-of-speech).
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Figure F.24: 2D PCA visualization of a matrix whose elements capture which tokens a latent activates for. That is, which
concepts (parts-of-speech) the latent is specialized towards, if any.
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Figure F.25: 3D PCA visualization of a matrix whose elements capture which tokens a latent activates for. That is, which
concepts (parts-of-speech) the latent is specialized towards, if any.
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Figure F.26: SAE properties on DINOv2 activations. (a) 3-D PCA of model activations colored by class, and SAE encoder
weights (points for SpaDE, arrows for other SAEs). (b) Cosine similarities of sparse codes of pairs of data and pairs of SAE
latents (in order) for each SAE. White lines separate classes. (c) F1 scores of top-5 most monosemantic latents for each
SAE across classes (color-coded)

F.4. Vision Experiment

Dataset and Experiment: We use Imagenette, a 10-class subset of ImageNet (Deng et al., 2009), containing 1.5k images
per class. Representations are extracted from the DINOv2-base (with registers), yielding 261 tokens per image. Over
the course of 50 training epochs, this yields approximately 200 million tokens. SAEs are trained on all available tokens,
including spatial, CLS, and registers tokens, for 50 epochs with 200 latent dimensions.

Observations: Results are shown in Fig. F.26. SpaDE again tiles the class structure well in the 3-D PCA (Row (a)).
Similarities between sparse codes of data (first column of each SAE in Row (b)) show that all SAEs are able to decorrelate
different classes in their latent representations. Latent co-occurrence (second column of each SAE in row (b)) is widespread
in ReLU, JumpReLU and TopK SAEs, but it seems to be specific to certain pairs of latents in SpaDE. F1 scores (row (c)) show
that SpaDE has the most monosemantic latents across all classes. The varying F1 scores for ReLU and JumpReLU across
classes indicate different levels of linear separability across classes. Importantly, we find SpaDE identifies interpretable
concepts such as foreground/background, different parts of objects in an image (hands, face, fins of fish, windows/ stairs in
church images, eyes, ears, snout of dogs, etc), which are visualized using feature attribution maps in App. F.4.

We also show, visually, the concepts SpaDE has learnt in the vision experiment, by visualizing feature attribution maps for
inputs from each class from Imagenette. We perform this visualization for the top concepts for each class for five classes-
Tench (Fig. F.27), Chainsaw (Fig. F.28), Church (Fig. F.29), Golf (Fig. F.30) and Springer (Fig. F.31)).
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Figure F.27: Feature Attribution maps for monosemantic latents from SpaDE on the Tench class
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Figure F.28: Feature Attribution maps for monosemantic latents from SpaDE on the Chainsaw class
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Figure F.29: Feature Attribution maps for monosemantic latents from SpaDE on the Church class
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Figure F.30: Feature Attribution maps for monosemantic latents from SpaDE on the Golf class
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Figure F.31: Feature Attribution maps for monosemantic latents from SpaDE on the Springer class
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