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Abstract—The absolute orientation problem arises often in
vision and robotics. Despite that robust algorithmic solutions exist
for quite some time, they all rely on matrix factorizations such
as eigen or singular value decomposition. These factorizations
are relatively expensive to compute, therefore might become
a performance bottleneck when absolute orientation needs to
be repeatedly computed on low-end hardware. The issue is
exacerbated by implementations relying on standard numerical
software libraries like LAPACK, since the linear algebra factor-
ization routines they include are optimized for large matrices and
thus are not the most efficient choice for small ones. Based on an
attitude estimation algorithm originating from astronautics, this
paper proposes a direct, factorization-free solution to the absolute
orientation problem that is both computationally efficient and
numerically accurate. Results from an experimental comparison
with established methods demonstrate its superior performance.

I. INTRODUCTION

Absolute orientation is the problem of determining the
rigid transformation aligning two sets of corresponding 3D
points. This problem arises often in computer vision, graphics,
photogrammetry and robotics. For example, it is involved in
the solution of several variants of the perspective-n-point (PnP)
problem such as the P3P solvers in [1], [2], the P4P solver
in [3] and the EPnP solver of [4]. In all these cases, the
distances from the camera focal point to a set of n 3D reference
points are estimated and then used to compute the coordinates
of the reference points in the camera coordinate frame. Follow-
ing this, absolute orientation is invoked to compute the camera
pose as the transformation mapping the reference points from
the world to the camera coordinate system. Another common
occurrence of absolute orientation is during the alignment of
two point sets using the iterative closest point (ICP) algorithm
with the point-to-point error metric [5]. There, pairs of closest
points are presumed to correspond and absolute orientation is
used to find the transformation that best aligns the point sets.
The estimated transformation is applied to one of the sets to
bring it closer to the other and the process repeats until con-
vergence. In a similar vein, the need for absolute orientation
also arises in stereo visual odometry, where the relative camera
motion between two successive stereo images is estimated via
the registration of two 3D point sets reconstructed from image
features that are matched in the stereo pairs [6].

To safeguard against mismatched points (i.e. outliers), cal-
culations such as PnP and ICP are typically applied in a robust
regression framework such as RANSAC [7]. In this setting,
given hundreds of noisy points, small random point sets are
repeatedly chosen, PnP or ICP is solved and the solution is
ranked according to how well it agrees with the rest of the data.

Eventually, the best solution found after a certain number of
iterations is retained. As a result, absolute orientation needs
to be estimated frequently, therefore completing this task
fast is important to the efficiency of the overall algorithm.
This becomes even more important when the estimation is
carried out on hardware of limited capacity such as that found
on mobile devices, unmanned aerial vehicles (UAVs), space
rovers, underwater robots, etc.

Attitude (i.e. orientation) estimation is crucial for the guid-
ance and navigation of modern spacecraft and a significant
amount of research has focused on it [8]. Despite that such
developments are directly relevant to the often-encountered
absolute orientation problem, the computer vision and robotics
communities seem to be unaware of this fact. This paper
establishes a link between attitude and absolute orientation
estimation and puts forward a fast algorithm to deal with
the latter based on the FOAM algorithm of [9]. To the best
of the author’s knowledge, estimating absolute orientation
with attitude determination techniques has not been attempted
before. Compared to established techniques based on eigen
decomposition or SVD, the proposed algorithm is much faster
and yields estimates of practically identical accuracy.

The rest of the paper is organized as follows. Section II
provides an overview of attitude and absolute orientation
estimation. The proposed absolute orientation algorithm is
presented in section III and is compared with established
methods in section IV. The paper concludes in section V.
Concerning notation, in the following matrices are typeset in
bold uppercase whereas bold lowercase letters denote vectors.

II. BACKGROUND

A. Attitude Estimation

Determining the orientation of a spacecraft is known as
attitude estimation in astronautics. It is a topic that has
developed significantly after Wahba published her famous
attitude determination problem involving any number of vector
observations [8]: Given two sets of corresponded unit vectors
{bi} and {ri}, Wahba’s problem is to find the orthogonal
matrix A with determinant +1 minimizing the loss function

L(A) =
1

2

N∑
i=1

||bi −Ari||2. (1)

Owing to the orthogonality of A, the terms ||bi − Ari||2
can be simplified as ||bi||2 + ||Ari||2 − 2 bTi (Ari) =
2− 2 trace(Arib

T
i ), hence Eq. (1) can be written as

L(A) = λ0 − trace(ABT ), (2)
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where λ0 = N , trace(.) denotes matrix trace (sum of diagonal
elements) and B is the “attitude profile matrix” defined by

B ≡
N∑
i=1

bir
T
i . (3)

Minimizing Eq. (2) is equivalent to maximizing trace(ABT ).
Several solutions minimizing Eq. (1) have been developed

since [8], some of them quite demanding for the limited
capacity flight computers of their time. An early, direct so-
lution for exactly two pairs of corresponding unit vectors is
provided by the so-called TRIAD method [10]. Apart from not
generalizing to arbitrary numbers of vectors, TRIAD is based
on the assumption that one of the unit vectors, let b1, is more
accurately determined than the other, so the estimate satisfies
Ar1 = b1 exactly, but Ar2 = b2 only approximately. Solu-
tions to Eq. (1) have been largely overlooked by the computer
vision and robotics communities, despite being highly relevant
to the absolute orientation problem, as will be explained next.

B. Absolute Orientation

Let {pi} and {qi}, i = 1 . . . N be two sets of corresponding
3D points measured in two different coordinate systems. The
absolute orientation problem consists in finding the Euclidean
transformation R, t that aligns the two sets. For three points
in general position, the problem has a unique solution. Since
points are corrupted by noise, for N > 3 a least squares
solution minimizing the mean squared residual error is sought:

1

N

N∑
i=1

||qi − (Rpi + t)||2. (4)

It is well-known that this problem is simplified by moving the
origin of the two coordinate systems to the point set centroids,
defined by

p̄ =
1

N

N∑
i=1

pi, q̄ =
1

N

N∑
i=1

qi. (5)

The new point coordinates are then given by

p
′

i = pi − p̄, q
′

i = qi − q̄ for i = 1 . . . N (6)

and the mean squared error from (4) becomes

1

N

N∑
i=1

||q
′

i + q̄− (R(p
′

i + p̄) + t)||2. (7)

Horn showed in [11] that (7) simplifies to

1

N

N∑
i=1

||q
′

i −Rp
′

i||2 + ||q̄−Rp̄− t||2 (8)

and observed that since the second term is non-negative, the
mean squared error is minimized when it equals zero. Hence,
the optimal translation t̂ and rotation R̂ are related with

t̂ = q̄− R̂p̄ (9)

and the mean squared error to be minimized consists of just
the first term of (8), i.e.

1

N

N∑
i=1

||q
′

i −Rp
′

i||2. (10)

The last two expressions are at the heart of absolute orientation
estimation: the rotation is determined by minimizing (10) and
translation follows by substitution of the estimated rotation
in (9). The rotation minimizing (10) was shown in [11] to
be represented by a unit quaternion which is the eigenvec-
tor associated with the largest eigenvalue of a symmetric
4 × 4 matrix. In a subsequent paper, Horn et al. [12] used
orthonormal matrices to represent rotations and developed a
solution based on the eigen decomposition of a symmetric 3×3
matrix. A solution for the best rotation based on the singular
value decomposition (SVD) of a 3× 3 covariance matrix was
proposed by Arun et al. [13]. This solution was later modified
by Umeyama, to ensure that it will always yield a rotation
instead of occasionally computing a reflection when the input
point sets are planar or very noisy [14]. The various solutions
proposed in [11], [12], [13] were compared in [15].

Both the eigensystem and the SVD-based solutions share the
drawback of involving rather expensive numerical matrix oper-
ations. High-quality, numerically robust SVD and eigensystem
routines are nowadays included in standard linear algebra
packages such as IMSL, MKL and LAPACK. However, as
these are targeted to large matrices, they do not perform
efficiently for small ones. Furthermore, these routines are
iterative, thus their execution times can vary depending on
input and degeneracy. As a result, using direct solutions instead
of employing solvers invoking such canned linear algebra
routines is highly desirable, especially when estimation is
executed often on low capacity hardware, for example the
slow, radiation-hardened CPUs on board planetary rovers [6].

The key observation of this work is that the centroid-
centered points in Eq. (6) can be seen as defining direction
vectors which are transformed covariantly by a rotation matrix
(i.e., the new direction vectors are the rotated old ones),
similarly to the vectors involved in Wahba’s problem. Indeed,
close inspection of (10) and (1) reveals that the two are very
similar. Apart from the scale factors, their only difference is
that (1) is defined for unit vectors whereas (10) it is not.
However, as it will be explained in the next section, this is not
crucial for the solution and the FOAM algorithm from [9] can
be applied almost unmodified to obtain the optimal rotation.

III. OPTIMAL ROTATION WITH THE FOAM ALGORITHM

In the case of non-unit corresponded vectors, term λ0
in Eq. (2) equals 1/2 (

∑N
i=1 ||bi||2 +

∑N
i=1 ||ri||2) and

is clearly still independent of the optimal rotation. In [9],
Markley presented a direct solution for the optimal attitude. In
the remainder of the section, a brief overview of this solution
is provided and the interested reader is referred to the original
publication for more details.
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It is shown in [9] that the optimal rotation matrix is given
for λ = λmax by the following equation:

R(λ) =
(λ2 + ||B||2F )B + 2 λ adj(BT )− 2 BBTB

λ(λ2 − ||B||2F )− 2 det(B)
, (11)

where B is given by Eq. (3), adj(.) and det(.) denote the
adjoint and determinant of their matrix argument, and ||.||F is
the Frobenius norm, defined as ||B||2F = trace(BBT ). Scalar
λmax is the largest root of

p(λ) ≡ (λ2 − ||B||2F )2 − 8 λ det(B)− 4 ||adj(B)||2F = 0, (12)

which originates from λ− trace(R(λ)BT ) = 0 (cf. Eq. (2)).
The proof that R(λmax) from Eq. (11) corresponds to the
optimal rotation is based on the representation of the Frobenius
norm, determinant and adjoint of B in terms of its singular
values. The latter, however, are only used for analysis and need
not be extracted for computing the optimal rotation matrix.
Orthogonality of the rotation matrices computed with Eq. (11)
for roots of p(λ) is guaranteed (cf. Eq. (28) in [9]).

Based on the findings presented above, Markley has pro-
posed his Fast Optimal Matrix Algorithm (FOAM) [9]. FOAM
is based on Eq. (11), which is a quartic polynomial in λ
with four real roots [16]. Of these roots, the maximum is
sought. The roots of Eq. (11) can be computed analytically,
however this involves five transcendental function evalua-
tions [9]. Instead, Markley suggests that it is more efficient
to exploit Shuster’s observation that the maximum root λmax
is close to λ0 [16]. Thus, starting from λ0, λmax can be
computed iteratively with the Newton-Raphson method, using
the sequence of estimates defined by

λi = λi−1 − p(λi−1)/p
′
(λi−1), (13)

where the derivative p
′
(λ) equals 4 (λ2−||B||2F )λ−8 det(B).

The iteration converges very fast in practice, except when the
maximum root of p(λ) is not unique, which results in the
derivative in the denominator being close to zero as the root
is approached. In this case, the rotation is indeterminate. Once
λmax has been computed, the optimal rotation follows from
Eq. (11) and translation from Eq. (9). The whole process is
illustrated in pseudocode as Algorithm 1.

IV. EXPERIMENTS

Algorithm 1 with a stopping threshold ε = 1e−12 as well as
those in [11], [12] and [13] were implemented in C, compiled
with GNU gcc 4.9.3 and tested on a desktop PC with an Intel
Core i7-4790 CPU at 3.60 GHz, 32 Gb of RAM and 256
Kb L1 cache. For brevity, the four algorithms tested will be
denoted as ‘FOAM’, ‘Quat’, ‘Ortho’ and ‘SVD’, respectively.

In order to systematically test the performance of the four
algorithms under varying conditions, synthetic input was used.
This input consisted of 3D point sets of different sizes that
were corrupted by various amounts of noise, generated with a
procedure similar to that employed in [15]: For a given size
N ≥ 3, a set of N 3D points were drawn from a uniform
distribution in [−1, 1]× [−1, 1]× [−1, 1]. Then, a random rigid
transformation was applied to these 3D points, comprised of a

Algorithm 1 Calculate R̂, t̂ aligning point sets {pi} and {qi}
Require: |{pi}| = |{qi}| ∧ |{pi}| ≥ 3

1: Compute {p′i} and {p′i} with Eq. (6)
2: Compute B with Eq. (3) and {p′i} = {ri}, {q

′

i} = {bi}
3: Compute det(B), ||B||2F , adj(B), ||adj(B)||2F and

BBTB
4: λ0 ← 0.5 ∗ (

∑N
i=1 ||p

′

i||2 +
∑N
i=1 ||q

′

i||2)
5: converged← false

// Newton-Raphson, p(λi) given by Eq. (12)
6: while converged 6= true do
7: λi ← λi−1 − p(λi−1)/p

′
(λi−1)

8: converged← |λi−λi−1

λi
| < ε // ε > 0 a small constant

9: end while
10: λmax ← λi
11: Compute R̂ from λmax and Eq. (11)
12: Compute t̂ from R̂ and Eq. (9)
13: return R̂, t̂

rotation by a unit quaternion and a translation. The quaternion
and translation components were uniformly distributed in
[−1, 1] and [−10, 10], respectively. Zero mean Gaussian noise
with standard deviation σ was added to each component of
the transformed points. The size N of the generated data sets
ranged from 3 to 10, while the noise level σ varied from 0.0 to
1e−02 in increments of 1e−03. Paired with the original points,
the noise-corrupted transformed points were used to estimate
absolute orientation with all four algorithms. For each point
set and algorithm, we measured the elapsed execution time
and the root mean square (RMS) of the misalignment error,
given by the square root of (4) for the estimated rigid motion.
For all tested values for N and σ, 100 trials with different 3D
points, rigid transformation and noise were performed and the
results averaged.

The time taken by all four algorithms on a modern desktop
CPU is very small, therefore accurately measuring it with time
routines of limited resolution is problematic. Thus, instead of
directly measuring time, in all experiments the elapsed CPU
cycles were measured using the Time Stamp Counter (TSC)
and the RDTSC x86 instruction, as suggested in [17]. As
observed in [15], the timings for small data sets are highly
dependent on the particular linear algebra routines being
used. General-purpose SVD and eigen decomposition routines
from LAPACK (namely dgesvd and dsyev), were found
to require several tens of thousands of cycles to complete.
Hence, to make the comparison more fair, custom 4 × 4 and
3 × 3 Jacobi eigensolvers for symmetric matrices were used
for implementing [11] and [12], whereas a custom 3×3 SVD
based on solving a cubic polynomial was employed for [13].

It is noted that we are mostly interested in small-sized
inputs (in particular, minimal with N = 3 and near-minimal
ones), as these correspond to practical cases where the absolute
orientation problem needs to be frequently solved. Besides,
beyond a certain size, the time needed to move points up in
the memory hierarchy (cf. steps 1-2 in Alg. 1) becomes the
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CPU cycles vs. number of points
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Fig. 1. Execution times (in CPU cycles) for the four algorithms on various
sizes of input N and fixed noise σ = 1e−02. On the CPU tested, 1K cycles
amount to 0.28 microsecond (usec).
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Fig. 2. RMS alignment errors for the four algorithms for N = 3 and varying
noise. Corresponding errors are identical up to at least the fifth decimal place.

primary bottleneck, dominating the time needed for subsequent
linear algebra operations. Figure 1 illustrates the average
cycles measured over 100 trials for the four algorithms for var-
ious input sizes and the highest amount of noise (σ = 1e−02).
‘FOAM’ requires less than 1K cycles to complete and is
evidently the fastest of all algorithms, being approximately
between 2 to 7 times faster in all cases. It is noted here that if
general-purpose linear algebra routines were used instead of
the custom, fixed-size ones, these differences would be one to
two orders of magnitude larger. ‘Ortho’ and ‘SVD’ perform
similarly, while ‘Quat’ is the slowest, most probably due to
the increased number of floating point operations necessary to
decompose the 4× 4 matrices it involves.

Figure 2 compares the average RMS alignment error over
100 trials among the four algorithms for N = 3 and vari-
ous amounts of noise. Clearly, the alignment errors for the
proposed method are indistinguishable from those induced by

the the other three algorithms, which suggests that the former
is a viable alternative to established solutions to absolute
orientation. It is also noted that the experiments confirm the
conclusions of [15], where ‘Quat’, ‘Ortho’ and ‘SVD’ were
also compared against each other and found to have the same
accuracy for realistic amounts of noise; ‘Ortho’ and ‘SVD’
were also found to be the two fastest algorithms for small N .

V. CONCLUSION

An efficient solution to the absolute orientation problem has
been presented. Experimental results have demonstrated that
it executes faster than established alternatives while being on
par with them in terms of accuracy. These properties make it
particularly attractive for use by real-time applications or on
low-end hardware such as that found on mobile devices, UAVs
and space robots. Although not shown, the presented solution
can easily be extended to account for scale changes as in [11].
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