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ABSTRACT

The interaction between the T cell receptor (TCR) and peptide-human leukocyte
antigen complex (pHLA) is a fundamental process underlying T cell-mediated
immunity. Computational methods have been developed to predict TCR-pHLA
binding, but most existing models were trained on relatively small datasets and fo-
cused solely on the Complementarity Determining Region 3 (CDR3) of the TCR β
chain. A key barrier to developing advanced prediction models is the limited avail-
ability of comprehensive data containing understudied prediction components. In
this light, we developed the Hi-TPH dataset with more protein sequences and gene
annotations. The dataset is stratified into five hierarchical subsets at four differ-
ent levels, ranging from Hi-TPH level I with only the peptide sequence and TCR
CDR3 β to Hi-TPH level II, III, and IV that incorporate increasing levels of HLA
sequences, full TCR α and β chains, and gene annotations. Hi-TPH at any level
represents the largest dataset with corresponding prediction components to date,
for instance, the Hi-TPH level IV dataset is at least 5.99 times the size of existing
ones regarding the number of TCR-pHLA pairs. We further report benchmark
results on the Hi-TPH dataset, establishing valuable baselines for the TCR-pHLA
binding prediction task. This comprehensive dataset and associated benchmarks
provide a valuable resource for developing advanced TCR-pHLA binding pre-
diction models and exploring research directions such as understanding the con-
tribution of different components and enhancing model generalization to unseen
peptides, with potential applications in developing targeted therapies, including
personalized vaccines and immunotherapies.

1 INTRODUCTION
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(a) The 3D structure of the
TCR-pHLA complex (PDB
ID: 6RP9) depicts the intri-
cate structural interactions
between the key components
of the TCR and pHLA
molecules.
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(b) The Hi-TPH dataset provides a comprehensive resource for TCR-
pHLA binding prediction, encompassing increasing levels of protein se-
quences and gene annotations of TCR-pHLA binding components. TCR
α and TCR β denote the full TCR α and TCR β chain excluding the con-
stant domain, respectively.

Figure 1: 3D structure illustration of TCR-pHLA interaction and overview of the Hi-TPH dataset.
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The interaction of T cell receptor, peptide, and human leukocyte antigen is a crucial process under-
lying T cell-mediated immunity (Davis & Bjorkman, 1988; Glanville et al., 2017b). This molec-
ular recognition process consists of two key steps: 1) the binding of antigenic peptides and HLA
molecules, forming pHLA complexes on the surface of antigen-presenting cells, and 2) the bind-
ing of the TCR with the pHLA complex. Identifying the specific TCR-peptide-HLA interactions
is of particular significance for the development of effective immunotherapies, as it enables the tar-
geted activation and expansion of T cells capable of recognizing and eliminating infected or cancer
cells (Schumacher & Schreiber, 2015; Purcell et al., 2007; Ott et al., 2017).

Computational methods have been developed to predict interactions between TCR, peptide, and
HLA molecules (Wang et al., 2023; Hudson et al., 2023; Weber et al., 2024; Meysman et al., 2023).
In predicting the binding of peptide and HLA, Mei et al. (Mei et al., 2021) compiled a comprehensive
dataset with binding peptide-HLA pairs from multiple sources, which Chu et al. (Chu et al., 2022)
then leveraged to develop a transformer-based method that achieved state-of-the-art pHLA binding
prediction performance. However, in the task of predicting TCR-pHLA binding, most available
computational models are trained on relatively small datasets (Springer et al., 2019; Montemurro
et al., 2021; Springer et al., 2021; Xu et al., 2021; Lu et al., 2021; Gao et al., 2023; Peng et al., 2023;
Pham et al., 2023). Moreover, the majority of these methods focus solely on the CDR3 domain of
the TCR β chain. This emphasis is rooted in the understanding that the CDR3 β is the most variable
segment of the TCR and directly interfaces with the bound peptide within the pHLA complex (Davis
& Bjorkman, 1988; Krogsgaard & Davis, 2005), as shown in Fig. 1(a), leading to the hypothesis that
it is the primary driving component of T cell specificity (Glanville et al., 2017a).

Emerging evidence from recent studies suggests that other components and regions of TCRs be-
yond the CDR3 β may also contribute significantly to the formation of the TCR-pHLA interac-
tion (Springer et al., 2021; Carter et al., 2019). Specifically, the importance of the HLA molecule,
the TCR α chain, and other CDR loops within the TCR β chain in mediating immunological recog-
nition process is highlighted (Stadinski et al., 2014; Gruta et al., 2018). Neglecting these additional
prediction components may limit the ability of existing methods to capture the intricate sequence
patterns from the full TCR chains and other relevant features, thereby constraining their prediction
performance (Springer et al., 2021; Fischer et al., 2019). The limited availability of comprehensive
data containing understudied TCR and pHLA regions is a key barrier to developing TCR-pHLA
binding prediction models that consider these components. Therefore, expanding the scope of col-
lected TCR and pHLA data will be necessary to enable a more complete understanding of the TCR-
pHLA interaction.

To address this challenge, we developed the Hi-TPH dataset, which provides data at five hierarchical
subsets across four levels. Each higher level contains increasing protein sequences and gene anno-
tations of TCR-pHLA binding components, as shown in Fig. 1(b). Notably, the level IV dataset not
only accounts for the TCR variable (V), joining (J), and diversity (D, β chain only) gene annota-
tions, but also includes the full TCR α and β chain sequences. These full sequence data are derived
from complex gene rearrangement and variation processes, providing a rich source of information
of TCRs beyond the CDR3s. At any level, Hi-TPH represents the largest dataset to date with the
corresponding components for TCR-pHLA binding prediction. For instance, the level IV dataset is
at least 5.99 times the size of existing datasets with peptide and full TCR sequences in terms of the
number of TCR-pHLA pairs.

To facilitate the development of advanced TCR-pHLA prediction models, we also introduced an
on-the-fly mispairing method to generate negative (i.e., non-binding) TCR-pHLA pairs, rather than
using a fixed negative dataset as is typical (Gao et al., 2023; Springer et al., 2021). This on-the-fly
mispairing approach reduces bias and exposes the model to a wider array of negative examples (Chen
et al., 2020), thereby enhancing its ability to distinguish binding TCR-pHLA pairs. Furthermore, we
constructed benchmark results on the Hi-TPH dataset using seven different models. These bench-
mark results provide useful insights in exploring the contribution of additional components and the
model generalization to unseen peptides.

The main contributions of this paper are summarized as follows.

• We highlighted the importance of additionally considering the HLA molecule and full sequences
of both the TCR α and β chains in TCR-pHLA binding prediction models.
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• We released Hi-TPH, a large-scale hierarchical dataset for TCR-pHLA binding. Hi-TPH provides
five subsets with increasing levels of protein sequences and gene annotations, each with more
peptides and TCRs than existing datasets.

• We introduced the on-the-fly mispairing method to dynamically generate non-binding TCR-pHLA
pairs for training TCR-pHLA binding prediction models and reported benchmark results with
seven different models on the Hi-TPH dataset to facilitate further research.

2 RELATED WORK

Peptide-HLA binding Peptide binding to HLA molecules is a critical prerequisite for the forma-
tion of TCR-pHLA complex, as it determines the pool of peptides presented to TCRs (Chu et al.,
2022; Yewdell & Bennink, 1999). This peptide-HLA binding step involves the anchoring of specific
amino acid residues within the peptide sequence to complementary binding pockets in the HLA
molecule, resulting in conformational changes that facilitate the display of the pHLA complexes on
the surface of antigen-presenting cells. To reduce the cost of wet-lab experiments, numerous com-
putational tools have been developed to predict peptide-HLA binding (Reynisson et al., 2020; Mei
et al., 2021; Chu et al., 2022; Zhang et al., 2022; Wang et al., 2023). Notable among these, Mei et
al. (Mei et al., 2021) provided a comprehensive dataset containing peptide binders across different
HLA class I alleles by collecting data from biological databases, prediction tools, and published
studies. Building upon this, Chu et al. (Chu et al., 2022) achieved state-of-the-art pHLA bind-
ing prediction results using a transformer-based model. In most current approaches for predicting
peptide-HLA binding, the primary inputs used are typically the amino acid sequences of the peptide
and the HLA molecule. For basic methods that only consider the protein sequence, they typically
only need to take these two elements into account.

Multiple components for predicting TCR-pHLA binding Compared to the relatively straight-
forward peptide-HLA binding, the binding of TCR-pHLA is a more complex process involving the
engagement of multiple molecules and TCR regions. Within TCR variable regions, the CDR1 and
CDR2 loops primarily interact with the HLA α-helices, while the hypervariable CDR3s predom-
inantly engage with antigenic peptides (Fig. 1(a)) (Davis & Bjorkman, 1988). The CDR3 loops
exhibit the highest sequence diversity and serve as the principal determinants of receptor binding
specificity, with CDR3 β suggested as the main driving component of T cell specificities (Glanville
et al., 2017b). While the basic TCR-pHLA binding prediction components are the peptide and TCR
CDR3 β (Gao et al., 2023; Peng et al., 2023), recent studies have indicated potential contributions
from the CDR3 α, HLA molecule and CDR1/2 (Carter et al., 2019; Gruta et al., 2018). Advance-
ments in TCR-pHLA binding prediction models, such as NetTCR2.0 (Montemurro et al., 2021),
TCRGP (Jokinen et al., 2021), ERGO-II (Springer et al., 2021), and TCRAI (Zhang et al., 2021a),
have incorporated the CDR3 α as an additional component. ERGO-II and TCRAI also consider the
V, D, and J gene annotations, as well as the HLA sequences, in their models. Furthermore, STA-
PLER (Kwee et al., 2023) reconstructs the full TCR α and TCR β amino acid sequences from the
V(D)J annotations and uses the full sequences to train transformer-based prediction models. While
these advancements are promising, the relative contributions of different TCR and pHLA compo-
nents to the binding process remain incompletely understood, warranting further investigation.

3 HI-TPH: HIERARCHICAL TCR-PHLA INTERACTION DATASET

The Hi-TPH dataset is a comprehensive collection of TCR-pHLA binding pairs, encompassing mul-
tiple subsets with varying levels of protein sequences and gene annotations. This dataset has been
structured into five hierarchical subsets at four different levels, each with a unique set of prediction
components, catering to the diverse needs of the research community. Table 1 provides a compara-
tive overview of the Hi-TPH dataset and other publicly available TCR-pHLA datasets. This section
describes the process used to generate the Hi-TPH dataset, followed by a detailed characterization
of its statistical properties. Additionally, a novel solution utilizing on-the-fly mispairing to generate
negative samples is introduced. The Hi-TPH dataset is released under a CC BY-NC 4.0 license.
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# Samples Protein sequence Gene

Dataset Pairs Peptides TCRs PeptideCDR3βHLACDR3αTCRαTCRβV/JαV/D/JβHLA type Data collection
PanPep (Gao et al., 2023) 32,080 699 29,467 ✓ ✓ HLA I Curation
TEIM (Peng et al., 2023) 45,481 355 44,227 ✓ ✓ HLA I Curation

DLpTCR (Xu et al., 2021) 7,121 304 6,583 ✓ ✓ HLA I Curation
NetTCR-2.0 (Montemurro et al., 2021) 11,431 17 11,425 ✓ ✓ ✓* HLA I Curation

epiTCR (Pham et al., 2023) 66,471 1,391 61,159 ✓ ✓ ✓ HLA I Curation
pMTnet (Lu et al., 2021) 32,070 602 28,864 ✓ ✓ ✓ HLA I Curation

TCRAI (Zhang et al., 2021a) 8,130 16 8,101 ✓ ✓ ✓ ✓ ✓* ✓* HLA I/II Curation + Experiment
ERGO-II (Springer et al., 2021) 27,260 389 26,548 ✓ ✓ ✓ ✓* ✓* ✓* HLA I/II Curation
STAPLER (Kwee et al., 2023) 4,457 604 4,253 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ HLA I Curation

Hi-TPH-level I 214,641 1,647 204,376 ✓ ✓
Hi-TPH-level II A 78,679 1,401 73,553 ✓ ✓ ✓
Hi-TPH-level II B 28,375 1,154 26,502 ✓ ✓ ✓ HLA I Curation
Hi-TPH-level III 28,262 1,148 26,353 ✓ ✓ ✓ ✓
Hi-TPH-level IV 26,704 927 24,639 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: A comparative overview of the characteristics of publicly available datasets from published
studies and the Hi-TPH dataset. The statistical information presented here was obtained in April
2024, and only the positive data (i.e., binding TCR-pHLA pair) is considered. The symbol ✓*
indicates that the corresponding information is partially available in the respective dataset. The
TCR α and β sequence fields in the table refer to the full-length TCR α and β chains, including the
variable (V), diversity (D), and joining (J) regions, excluding the constant (C) domains.

Data curation from 
biological databases

Data curation from 
published papers

ImmuneCODE VDJdb

McPAS-TCR IEDB

Component Extraction

Merged Dataset

Conflict removal

epiTCR STAPLER

pMTnet …

Filtering & Stratifying

V(D)J gene to sequence mapping

(a) Positive data collection: The workflow begins with
data curation from various biological databases such as Im-
muneCODE, VDJdb, McPAS-TCR, and IEDB, alongside
published papers like epiTCR, STAPLER, and pMTnet. The
initial stages involve component extraction followed by the
resolution of conflicts between datasets, leading to a merged
dataset. Subsequent steps include filtering and stratifying the
data, culminating in the mapping of V(D)J genes to their cor-
responding sequences.

V Gene
Annotation

J Gene
Annotation

V Sequence J Sequence

TCR Sequence 
Lookup

TCR V(D)J
Sequence

Truncation

CDR3
Sequence

Alignment & Combination

(b) V(D)J gene to sequence mapping: The
workflow for mapping V(D)J genes to se-
quences begins with the annotation of V and
J genes, followed by a TCR sequence lookup
and the extraction of the CDR3 sequence.
Subsequent truncation and alignment steps
culminate in the generation of the final TCR
V(D)J sequence.

Figure 2: The process of data collection for Hi-TPH positive data.
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3.1 DATASET GENERATION

3.1.1 POSITIVE DATA COLLECTION

Building upon the wealth of publicly available biological databases and published prediction mod-
els, we have collected and curated a comprehensive dataset of binding TCR-pHLA pairs, as depicted
in Fig. 2(a). Specifically, we accessed data from Immune Epitope Database (IEDB) (Vita et al.,
2018), McPAS-TCR (Tickotsky et al., 2017), the VDJdb (Bagaev et al., 2019) and ImmuneCODE-
MIRA (Nolan et al., 2020), all of which serve as authoritative repositories of TCR-pHLA binding
information. The IEDB represents a meticulously curated and regularly updated repository, housing
positive TCR-peptide pairs originating from both human and non-human sources. The McPAS-
TCR database serves as a comprehensive compendium of disease-associated positive TCR-peptide
pairs, drawn from both human and murine sources. VDJdb stands as a manually curated and regu-
larly updated database encompassing positive TCR-peptide pairs across mouse and human origins.
ImmuneCODE-MIRA maps TCRs binding to SARS-Cov-2 virus epitopes. Furthermore, we in-
cluded TCR-pHLA binding pairs reported in published papers (Pham et al., 2023; Kwee et al.,
2023; Lu et al., 2021), further enriching our dataset. For each data resource, we extract prediction
components including two main parts: 1) protein sequences, including peptide, CDR3 β, CDR3
α, HLA and the full TCR α and TCR β chains; 2) gene annotations, including V/J α genes and
V/D/J β genes. Conflict removal is performed to ensure data quality. For ImmuneCODE-MIRA,
we filtered out non-unique peptide-TCR samples. By focusing solely on positive, experimentally
validated binding TCR-pHLA pairs, we have assembled a robust dataset that enables the rigorous
study of TCR-pHLA binding prediction and its underlying mechanisms.

3.1.2 FILTERING AND STRATIFYING

Recent studies suggest that, in addition to CDR3 β, other regions of the TCR can also make substan-
tial contributions to the formation of the TCR-pHLA complex (Springer et al., 2021; Carter et al.,
2019; Stadinski et al., 2014; Gruta et al., 2018). This expanding understanding highlights the need
for comprehensive examination of the various components involved in TCR-pHLA binding. There-
fore, we stratified the dataset into five subsets at four different levels with increasing information of
prediction components. At the most basic level I, the data includes only the CDR3 β paired with
the peptide sequence. Level II A incorporates the HLA allele information and the corresponding
protein sequence, while level II B contains the CDR3 sequence of the TCR α chain. Advancing to
level III, the dataset combines CDR3 domains of both TCR α and β chains, along with the peptide
and HLA sequences. Reaching the most detailed level of the Hi-TPH dataset, level IV, encompasses
the full TCR α and β chains, in addition to the peptide and HLA sequences. In this comprehensive
level, only the constant domains of the TCRs are excluded. By organizing the Hi-TPH dataset in
this hierarchical manner, we aim to empower researchers to systematically investigate the relative
contributions of diverse components in shaping TCR-pHLA binding interactions and, ultimately, T
cell activation and antigen recognition.

3.1.3 GENE TO SEQUENCE MAPPING OF TCR V/J α AND V/D/J β

As prior research has demonstrated, CDR1, CDR2, and other TCR α and TCR β regions can con-
tribute to TCR-pHLA binding (Stadinski et al., 2014; Harris et al., 2016). While our level IV dataset
includes V/J gene annotations for TCR α and V/D/J gene annotations for TCR β, the full TCR α
and TCR β chain sequences are only partially available. To address this, we performed a gene-
to-sequence mapping procedure to generate the full TCR α and TCR β chains, thereby achieving
gene-sequence alignment for the Hi-TPH-level IV dataset. Following the method in previous stud-
ies (Kwee et al., 2023), we reconstructed the full TCR α and TCR β sequences (Fig. 2(b)). From the
V and J gene annotations, we conducted sequence lookup based on the IMGT/Gene-DB (Giudicelli
et al., 2005). The sequences were then truncated and combined with the CDR3 α or CDR3 β to
form the full TCR α or TCR β sequences, excluding the constant domains.

3.2 DATASET STATISTICS

Dataset size magnification The number of binding TCR-pHLA pairs, TCRs and peptides con-
tained in different levels of the Hi-TPH dataset are illustrated in Table 1. In Fig. 3, we demonstrate

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Dataset size magnification. The y-axis shows the magnification factor compared to the
largest existing dataset with the same prediction components, for datasets at different Hi-TPH levels.
The magnification factor is displayed based on the number of TCR-pHLA pairs, peptides, and TCRs,
in the left, middle, and right panels, respectively.

the magnification of Hi-TPH compared to the current largest dataset containing the same level of
prediction components. It is evident that the Hi-TPH dataset includes more records than the largest
existing dataset, in terms of binding pairs, peptides, or TCRs. For example, the level I dataset is
approximately 3.23 times the size of the existing dataset, containing around 215,000 binding TCR-
pHLA pairs. Furthermore, the level IV dataset, which includes the most comprehensive prediction
components from protein sequences to gene annotations, is 5.99 times the size of the previously
largest dataset of comparable scope, providing a significantly expanded resource for research.

Long-tail distribution of binding TCRs for different peptides As shown in Fig. 4(a), the num-
ber of binding TCRs varies across different peptides, following a typical long-tail distribution. The
peptides located in the head exhibit numerous binding TCRs, numbering in the hundreds or thou-
sands, while the majority of peptides are located in the tail, with only a small fraction of binders.
This long-tail pattern suggests that models need to be carefully designed to address the bias towards
the head peptides and overcome the significant data sparsity issues for the tail peptides (Gao et al.,
2023; Zhang et al., 2021b).

Length distribution of peptide and CDR3 sequence Fig. 4(b) summarizes the distribution of
peptide lengths at different levels in the Hi-TPH dataset, excluding peptide sequences with outlier
lengths (i.e., more than 25 amino acids). The distribution is centered around 9-mer peptides, con-
sistent with features of HLA-presented peptides in existing datasets (Mei et al., 2021; Reynisson
et al., 2020). Similarly, Fig. 4(c) illustrates the comparable length distribution of paired CDR3 α
and CDR3 β sequences in the level III dataset, with the majority falling within the 10-20 amino acid
range and peaking around 15 residues. This characteristic bias towards 9-mer peptides and 15-mer
CDR3s should be considered during model development. Models trained on this dataset may in-
herently exhibit similar biases, potentially leading to suboptimal performance on sequences of other
lengths (Chu et al., 2022; Peng et al., 2023). Strategies such as data augmentation (Sun et al., 2024),
transfer learning (Gao et al., 2023), or architectural modifications (Gao et al., 2023) may be required
to improve model generalization across a wider range of peptide and CDR3 lengths.

3.3 ON-THE-FLY MISPAIRING FOR NEGATIVE DATA GENERATION

The variable region of TCR chains is formed by the assembly of V, D (for β chains), and J gene
segments, with additional nucleotide additions and deletions at the junctional regions further ex-
panding TCR diversity (Mora & Walczak, 2019). The diversity of pHLA complexes is facilitated
by the peptide-binding specificities of HLA molecules. Given the vast TCR and pHLA sequence
space, the typical approach to generate negative TCR-pHLA pairs is to randomly pair a TCR from
the repertoire with a peptide (Springer et al., 2021; Lu et al., 2021; Kwee et al., 2023; Zhang et al.,
2021a), resulting in a low probability of generating false negatives.
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(a) Long-tail distribution of the
number of binding TCRs for dif-
ferent peptides in different levels of
Hi-TPH.

(b) Peptide length distribution in
different levels of Hi-TPH.

(c) CDR3 length distribution in
Hi-TPH-level III.

Figure 4: Statistical analysis of subsets at different levels of Hi-TPH.

However, the use of fixed negative data has notable limitations. The predetermined set of non-
binding TCR-pHLA pairs does not accurately reflect the true distribution of such complexes, leading
to biases in the training and evaluation processes (Chen et al., 2020; Dens et al., 2023; Moris et al.,
2020). Rather than fixed negatives, we opt for dynamic sampling during training (Yang et al., 2024).
For each positive pair, we randomly select a non-binding TCR and pair it with the peptide to gener-
ate a negative sample. Crucially, the negative samples differ in each training epoch, leveraging the
vast TCR and pHLA repertoires to efficiently generate non-binding pairs. This on-the-fly mispairing
approach would reduce bias and exposes the model to a wider array of negative examples, enhanc-
ing its ability to distinguish binding TCR-pHLA pairs (Chen et al., 2020; Yang et al., 2024). We
experimentally validated the efficacy of the proposed on-the-fly mispairing technique. The details
are listed in Appendix A.5.

4 BENCHMARKS

4.1 EXPERIMENT SETUP

To demonstrate the usage of the Hi-TPH dataset and provide comprehensive benchmark results, we
followed previous studies on TCR-pHLA binding prediction (Mora & Walczak, 2019; Xu et al.,
2021; Gao et al., 2023; Springer et al., 2021; Lu et al., 2021; Kwee et al., 2023; Montemurro et al.,
2021; Zhang et al., 2021a; Meysman et al., 2023; Weber et al., 2024) and adopted a binary classifi-
cation task to predict whether a given TCR binds to the pHLA complex. The dataset at each level
was randomly split into 8:1:1 training, validation, and test sets. We evaluated different models that
take various types of protein sequence information as inputs, corresponding to the different levels
of the Hi-TPH dataset hierarchy: level I (peptide, CDR3 β), level II A (peptide, HLA, CDR3 β),
level II B (peptide, CDR3 α, CDR3 β), level III (peptide, HLA, CDR3 α, CDR3 β), and level IV
(TCR α, TCR β, peptide, HLA). This approach enabled the evaluation of model performance with
increasing information depth from the Hi-TPH dataset.

During training, the on-the-fly mispairing approach was employed to dynamically generate non-
binding TCR-pHLA pairs. The evaluation involved binary classification on the test set, with neg-
ative samples randomly generated five times, and the average AUC, accuracy, and F1-score were
calculated across these five runs. Further experimental details are provided in Appendix A.3.

4.2 EVALUATED MODELS

The benchmark evaluated the following models in three different categories:

• Traditional machine learning models, including the Random Forest (RF) algorithm employed
in epiTCR (Pham et al., 2023).

• Simple neural network-based models, comprising a Multi-Layer Perceptron (MLP) and a Long
Short-Term Memory (LSTM) network, as utilized in pMTnet (Lu et al., 2021), TCRAI (Zhang
et al., 2021a), and ERGO-II (Springer et al., 2021).
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Model Level I Level II A Level II B Level III Level IV

AUC F1 ACC AUC F1 ACC AUC F1 ACC AUC F1 ACC AUC F1 ACC
RF 0.7322 0.6802 0.6551 0.7252 0.6757 0.6536 0.6026 0.5986 0.5651 0.5963 0.5669 0.5542 0.6375 0.6195 0.5895

MLP 0.7561 0.6550 0.6709 0.7313 0.6388 0.6513 0.6171 0.5308 0.5587 0.6163 0.5369 0.5689 0.6320 0.5605 0.5792
LSTM 0.7463 0.7004 0.6695 0.7360 0.7140 0.6631 0.6221 0.6375 0.5777 0.6065 0.6060 0.5708 0.5885 0.6420 0.5598

ESM2-8M 0.7893 0.6741 0.6950 0.7506 0.6753 0.6702 0.6332 0.5586 0.5791 0.6313 0.6343 0.5777 0.6531 0.5829 0.5904
ESM2-35M 0.7822 0.7070 0.6972 0.7548 0.7094 0.6794 0.6404 0.5810 0.5887 0.6363 0.5962 0.5913 0.6510 0.6526 0.6044

ESM2-150M 0.7876 0.6659 0.6944 0.7541 0.6996 0.6771 0.6178 0.5821 0.5703 0.6492 0.6312 0.5911 0.6222 0.6454 0.5904
TAPE-BERT 0.7740 0.6873 0.6886 0.7526 0.6901 0.6728 0.6300 0.5878 0.5825 0.6283 0.5995 0.5822 0.6308 0.5894 0.5823

Table 2: Benchmark results of different models on datasets at different levels of Hi-TPH. The best
results for each metric are shown in bold. The final AUC, accuracy (ACC), and F1-score (F1) are
calculated as the mean across 5 runs with randomly generated negative samples.

• Protein language model (PLM)-based models (Hu et al., 2022), encompassing TAPE-
BERT (Rao et al., 2019), a BERT-base (Devlin et al., 2019) model pre-trained on Pfam (El-Gebali
et al., 2018) with 92M parameters, and three variants of the ESM2 family (Lin et al., 2022), de-
noted as ESM2-8M, ESM2-35M, and ESM2-150M, all pre-trained on UniRef50 (Suzek et al.,
2014). A basic MLP was added as a projection head and trained alongside the PLM parameters
using a supervised fine-tuning approach.

4.3 RESULTS

Main results The benchmark results are summarized in Table 2. Key observations are as follows:

• The PLM-based methods outperform RF, MLP, and LSTM in most cases. This superior perfor-
mance can be attributed to the PLMs’ pre-training on large-scale protein sequence datasets. By
leveraging universal protein knowledge, the PLMs can capture more generalizable and informative
features compared to models trained solely on task-specific data.

• Most models encounter a performance drop when using a higher-level dataset compared to the
level I dataset, possibly due to the level I dataset having at least 2 times more binding pairs than
the higher-level datasets. The scale of the dataset is critical for predicting TCR-pHLA binding.
For this task, methods are needed that can leverage large-scale datasets containing only basic
peptide and CDR3 β sequences, as well as relatively smaller datasets with additional components
like HLA and other TCR variable regions.

• For the PLM-based methods, continuously increasing the number of model parameters does not
necessarily lead to improved performance, especially given the limited data availability. For exam-
ple, ESM2-35M achieves higher performance than ESM2-150M in most cases. This observation
suggests that the larger model, ESM2-150M, may be prone to overfitting on the limited training
data, despite its higher parameter count.

Contribution of additional components We further investigate contributions of additional pre-
diction components in each subset of Hi-TPH. We select ESM2-35M and compare its performance
when trained solely on peptide and CDR3 β sequences, versus when trained on all available com-
ponents. The results are summarized in Fig. 5(a). The contribution of the HLA component appears
to be limited, as the model trained using only the peptide and CDR3 β has comparable performance
with the model trained using additional HLA sequence. This finding suggests that the peptide and
CDR3 β features may be the primary drivers of TCR-pHLA binding prediction, and the HLA se-
quence may not provide significant additional predictive capability. In contrast, the importance of
the CDR3 α is particularly evident, leading to more than 15% relative improvement in performance.
This suggests that the CDR3 α plays a crucial role in TCR-pHLA binding prediction, and its in-
clusion in the model significantly enhances the predictive capability. Further, incorporating other
variable TCR regions, beyond just the CDR3, provides additional gains. The largest relative im-
provement is observed on the Hi-TPH-level IV dataset, highlighting the value of considering the full
TCR sequences.

Generalization to unseen peptides The ability of TCR-pHLA prediction models to generalize to
new peptides remains a significant challenge in this field (Weber et al., 2024). To address this issue,
we conducted experiments to evaluate the performance of various baseline models on both seen
and unseen peptides. The results, summarized in Table 3, reveal a noticeable drop in performance
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(a) Performance of ESM2-35M on Hi-TPH datasets
trained using only the peptide and CDR3 β se-
quences (ESM2-35M-Basic) and all available com-
ponents (ESM2-35M).

(b) Performance of ESM2-35M on Hi-TPH
datasets. Two variants are evaluated: one
with the PLM’s parameters frozen (ESM2-35M-
Frozen) and the other fine-tuned (ESM2-35M).

Figure 5: The absolute AUC performance (bar chart) and the relative improvement (line plot) of the
ESM2-35M model.

Model Level I Level II A Level II B Level III Level IV

seen unseen RD (%) seen unseen RD (%) seen unseen RD (%) seen unseen RD (%) seen unseen RD (%)
RF 0.7333 0.6927 5.53 0.7235 0.7067 2.32 0.6005 0.5964 0.68 0.5934 0.6060 -2.12 0.6382 0.5402 15.35

MLP 0.7559 0.6593 12.78 0.7324 0.6899 5.80 0.6138 0.5821 5.16 0.6079 0.5177 14.84 0.6318 0.5809 8.06
LSTM 0.7473 0.6426 14.01 0.7374 0.7096 3.77 0.6159 0.6109 0.81 0.5983 0.5267 11.97 0.5904 0.4929 16.51

ESM2-8M 0.7909 0.7129 9.86 0.7499 0.7209 3.87 0.6278 0.5877 6.39 0.6234 0.6470 -3.79 0.6559 0.5834 11.06
ESM2-35M 0.7841 0.7050 10.09 0.7529 0.7270 3.44 0.6349 0.6371 -0.35 0.6297 0.6363 -1.05 0.6474 0.5696 12.02

ESM2-150M 0.7900 0.6980 11.65 0.7535 0.7379 2.07 0.6163 0.6522 -5.84 0.6399 0.6208 2.98 0.6248 0.6346 -1.57
TAPE-BERT 0.7756 0.7003 9.71 0.7528 0.7161 4.88 0.6272 0.5954 5.07 0.6267 0.5849 6.67 0.6365 0.5686 10.67

Table 3: Performance comparison of baseline models on seen peptides and unseen peptides. RD
denotes relative drop of performance on unseen peptides compared to seen peptides. Results indi-
cating the lowest performance drop are highlighted in bold.

when predicting binding to unseen peptides for most models, even with an expanded dataset. In
terms of absolute performance, PLM-based methods outperform others on unseen peptides. While
most methods experience a decline when comparing unseen peptides to seen peptides, PLM-based
methods show a relatively smaller drop, with some even achieving comparable performance. For
instance, ESM2-150M encounters the lowest performance drop at level II A, II B, and IV. This
superiority can be attributed to their enhanced representation of protein sequences, underscoring the
potential of PLM approaches in advancing TCR-pHLA binding predictions.

Impact of fine-tuning PLMs We also explore the impact of fine-tuning PLMs. ESM2-35M-
Frozen uses the PLM as a fixed feature extractor, with only the projection head trained, while
ESM2-35M fine-tunes the entire PLM. As shown in Fig. 5(b), ESM2-35M outperforms ESM2-
35M-Frozen across all datasets. Notably, the most significant improvement was observed in the
level I dataset, suggesting that the fine-tuning process is especially advantageous for large-scale
TCR-pHLA sequences. Furthermore, the relative improvement also exceeds 10% in the level II B,
III, and IV datasets, which can be attributed to the model’s enhanced ability to capture the intricacies
of more protein sequences when fine-tuned, as opposed to using a frozen PLM. This suggests the
fine-tuning process enhances the model’s adaptability to specific datasets, allowing it to leverage
contextual information that is critical for accurately predicting TCR-pHLA binding. In contrast, the
frozen feature extractor is less effective at leveraging the domain-specific information.

5 DISCUSSION

Protein sequence of HLA molecules The HLA molecules are comprised of α and β chains.
Existing works typically select the positions that directly interact with the binding peptides (i.e.,
the contact positions) to represent the HLA molecule (Reynisson et al., 2020; Chu et al., 2022).
However, in TCR-pHLA binding, the HLA molecules are hypothesized to interact with the CDR1
and CDR2 loops in the TCR α and β chains (Carter et al., 2019). Recent studies also observe
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the interaction of HLA with the CDR3 (Gruta et al., 2018). Therefore, using solely the contact
positions to represent the HLA molecules will likely not capture the full complexity of the TCR-
pHLA interactions. To address this issue, we collect the full HLA protein sequence and the α1
and α2 domains of HLA molecules (i.e., the clipped sequence) for the further exploration of the
contribution of HLA to TCR-pHLA binding.

Limitations and future works The primary limitation arises from the binary nature of the binding
labels, which only denote whether a TCR-pHLA interaction is considered binding or non-binding.
The dataset lacks a continuous confidence score that would differentiate between strongly binding
and weakly binding interactions. The absence of such nuanced binding information may constrain
the ability of models trained on Hi-TPH to capture the full range of binding affinities. To expand
the utility of the Hi-TPH dataset, we plan to integrate it with additional databases in the future.
Furthermore, we will collect and release datasets containing 3D structural information for TCR and
pHLA complexes, which could facilitate the development of models capable of predicting TCR-
pHLA binding or docking using structural inputs (Bradley, 2022; Yin et al., 2023). Additionally,
we aim to complete the V(D)J gene to sequence mapping for rare genes, enhancing the dataset’s
representation of the TCR repertoire.

6 CONCLUSION

The TCR-pHLA interaction is a fundamental process underlying T cell-mediated immunity, with
critical implications for the development of immunotherapies. While computational methods have
emerged to predict TCR-pHLA binding, this task has traditionally been limited by the availability of
comprehensive datasets considering multiple prediction components. In this work, we addressed this
challenge by introducing the Hi-TPH dataset. By stratifying the data into multiple levels, Hi-TPH
provides protein sequences and gene annotations at different levels of granularity for TCR-pHLA
prediction, including the HLA molecule and full sequences of both the TCR α and β chains. This
hierarchical structure enables more detailed and nuanced modeling of the complex TCR-pHLA in-
teraction. At each level, Hi-TPH represents the largest binding TCR-pHLA dataset to date. To aid
the development of advanced prediction models, we introduced an on-the-fly mispairing method to
dynamically generate non-binding TCR-pHLA pairs during training. We further reported bench-
mark results with seven models on the Hi-TPH dataset, ranging from traditional machine learning
models to PLM-based models. The release of the Hi-TPH dataset, along with the accompanying
benchmark results, offers a valuable resource for TCR-pHLA binding prediction research.
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A APPENDIX

A.1 ACCESS INSTRUCTION

A.1.1 DATA FORMAT

The data files within the Hi-TPH dataset are stored in the standard CSV format. This facilitates
easy reading, editing, and utilization of the data using a wide range of data processing tools and
programming languages.

A.1.2 LICENSE

We, the authors, take full responsibility for the content of this dataset and ensure that no rights
have been violated in its creation or publication. The Hi-TPH dataset is licensed under the Creative
Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license, meaning it is
freely available for non-commercial use, sharing, and adaptation with proper attribution.

A.1.3 HOSTING PLAN

The Hi-TPH dataset will continue to be hosted on the GitHub platform for the foreseeable future,
and any updates will also be released through the same channel. Furthermore, the dataset is expected
to be updated at least one more time within the next year.

A.2 DATA ACQUISITION

A.2.1 INCLUSION CRITERIA FOR BIOLOGICAL DATABASES

The majority of the data in our dataset were from four commonly used databases: IEDB Vita et al.
(2018), VDJdb Bagaev et al. (2019), McPAS-TCR Tickotsky et al. (2017), and ImmuneCODE-
MIRA Nolan et al. (2020). We accessed the most up-to-date versions of these databases in April
2024 through their online websites1234. TCR-pHLA pairs from IEDB were retrieved by setting three
filters (Epitope: “Linear Sequence”, Assay: “T cell (Positive)” and Host: “Human”) and pressing
“Export Results” for “Receptors”. The latest complete database of the other three were downloaded:
VDJdb (2023-06-01 version), McPAS-TCR (2022-9-10 version), ImmuneCODE-MIRA (release-
002.1 version). We only retained the HLA class I related records for subsequent data preprocessing.
In addition, we obtained reference amino acids sequences of HLA alleles5 and Human TCR genes6

in FASTA format from IMGT Lefranc (2011) for sequence lookup.

When processing ImmuneCODE-MIRA data, we implemented a rigorous filtering process to ex-
clude samples where the TCR exhibited binding to a group of peptides rather than to a specific
peptide. This step was crucial in mitigating potential data errors and ensuring the integrity of our
dataset, thereby enhancing the reliability of subsequent analyses.

A.2.2 DATA COLLECTION FROM PUBLISH PAPERS

We also collected publicly shared data from nine published papers: PanPep7 Gao et al. (2023),
TEIM8 Peng et al. (2023), DLpTCR9 Xu et al. (2021), NetTCR-2.010 Montemurro et al. (2021),

1https://www.iedb.org
2https://github.com/antigenomics/vdjdb-db/releases/tag/2023-06-01
3http://friedmanlab.weizmann.ac.il/McPAS-TCR
4https://clients.adaptivebiotech.com/pub/covid-2020
5https://github.com/ANHIG/IMGTHLA/blob/Latest
6https://www.imgt.org/vquest/refseqh.html
7https://github.com/bm2-lab/PanPep/tree/main/Data
8https://github.com/pengxingang/TEIM/tree/main/data/binding_data
9http://jianglab.org.cn/DLpTCR/Download

10https://github.com/mnielLab/NetTCR-2.0/tree/main/data
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Dataset
# Samples

Training Validation Test Total
level I 148,122 18,515 18,516 185,153

level II A 61,236 7,654 7,655 76,545
level II B 22,088 2,761 2,762 27,611
level III 21,982 2,747 2,749 27,478
level IV 20,789 2,598 2,600 25,987

Table 4: Number of positive samples used for benchmarks.

epiTCR11 Pham et al. (2023), pMTnet12 Lu et al. (2021), TCRAI13 Zhang et al. (2021a), ERGO-
II14 Springer et al. (2021), and STAPLER15 Kwee et al. (2023). We focused on the main data used in
each paper while excluding external data with minimal significance, and then conducted statistical
analysis and processing on these primary data. Furthermore, most of these public data are accessible
under permissive licenses, such as the MIT license, GPL license, or Non-Commercial Use licenses,
along with their respective codes.

A.3 BENCHMARK SETUP

A.3.1 THE HI-TPH DATASET IN BENCHMARK

When constructing the benchmark data, we filtered the peptide, CDR3, and full TCR α and β se-
quences in the Hi-TPH dataset by sequence length. Drawing on previous studies Chu et al. (2022);
Peng et al. (2023) and length distribution statistics, we limited the peptide length to 8-15 for level
I and 8-10 for levels II-IV, the CDR3 length to 9-19 for levels I-IV, and the full TCR α and β se-
quence lengths to 105-121 and 109-121, respectively, for level IV. These length filters were applied
to ensure the sequences were well-suited for the padding operations required during model training.
The goal was to create a robust benchmark dataset, avoiding potential issues caused by extreme se-
quence lengths or outliers. The filtered TCR-pHLA pairs were then used for training/validation/test
set division as well as negative data generation. Overall, while using the Hi-TPH dataset as the basis
for our experiments, we only made such targeted adjustments to a small number of individual data
points. The statistics of the number of positive samples for the benchmarks are shown in Table 4.

A.3.2 MODEL IMPLEMENTATIONS

Seven models were utilized in our benchmark, including Random Forest (RF), Multi-Layer Percep-
tron (MLP), Long Short-Term Memory (LSTM), and four Protein Language Model (PLM)-based
models. The amino acid sequences of pHLA and TCR were padded with the special character “X”
(denoting unknown or arbitrary amino acids) to ensure equal length, and the concatenated TCR-
pHLA sequences were then fed into each model. The model implementations are as follows:

• RF. We implemented RF using scikit-learn Pedregosa et al. (2011). One-hot vectors of TCR-
pHLA sequences were flattened as inputs to RF.

• MLP. We implemented a basic MLP in Pytorch Paszke et al. (2019), using one embedding layer
and two hidden layers with ReLU activation. The embedding layer converts amino acids in the
TCR-pHLA sequence into vectors, which are then flattened and fed into the subsequent hidden
layers.

• LSTM. We also implemented an LSTM recurrent neural network using Pytorch, comprising an
embedding layer as in MLP, an LSTM layer and a fully connected layer for classification. The
embedding layer converts the amino acids in the TCR-pHLA sequence into vectors for input into

11https://github.com/ddiem-ri-4D/epiTCR/tree/main/data/finalData
12https://github.com/tianshilu/pMTnet/tree/master/data
13https://github.com/regeneron-mpds/TCRAI/tree/main/data
14https://github.com/IdoSpringer/ERGO-II/tree/master/Samples
15https://files.aiforoncology.nl/stapler/data/
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Figure 6: Performance of MLP on Hi-TPH
datasets trained using only the peptide and
CDR3 β sequences (MLP-Basic) and all avail-
able components (MLP).

Figure 7: Performance of ESM2-8M on Hi-
TPH datasets trained using only the peptide
and CDR3 β sequences (ESM2-8M-Basic) and
all available components (ESM2-8M).

the LSTM layer, and the average output from the LSTM layer is used by the final fully connected
layer.

• PLM-based models. We added the MLP on pre-trained PLMs to customize them for the clas-
sification task. The included PLMs are ESM2-8M, ESM2-35M, ESM2-150M Lin et al. (2022),
and TAPE-BERT Rao et al. (2019). The pre-trained ESM-2-8M/35M/150M models have been re-
leased on HuggingFace161718, whereas the pre-trained TAPE-BERT model is based on the original
PyTorch implementation19.

A.3.3 MODEL TRAINING

RF was trained using Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz. A grid search was conducted
for the hyperparameters “n estimators” with values of [100, 200, 300] and “max depth” with options
[10, 15, 20]. All other hyperparameters remained as the default settings in scikit-learn v1.3.0.

All neural network-based models, i.e., MLP, LSTM and PLM-based models, were trained with the
following settings: Adam Kingma & Ba (2014) optimizer without weight decay, the cross-entropy
loss function, and employing the early-stop strategy with a patience of five epochs during the training
process. The epoch showcasing the best performance on the validation set was chosen for testing.

MLP and LSTM models were trained on a single NVIDIA RTX 3090 GPU. The batch size was
set to 1024 for MLP and 128 for LSTM. The learning rate for both models was selected from the
set [8e-3, 5e-3, 3e-3, 1e-3], based on preliminary tuning experiments that prioritized convergence
stability and performance.

PLM-based models were trained across four NVIDIA RTX 3090 GPUs. To ensure a balance be-
tween training efficiency and model accuracy, the batch size was fixed at 32 for levels I-IV on each
GPU. For the ESM2-150M model, the batch size was reduced to 8 at level IV per GPU to avoid
memory overflow. Learning rates for these models were chosen from [1e-4, 8e-5, 5e-5, 3e-5, 1e-
5], following an extensive grid search aimed at optimizing both convergence speed and final model
performance.

16https://huggingface.co/facebook/esm2_t6_8M_UR50D
17https://huggingface.co/facebook/esm2_t12_35M_UR50D
18https://huggingface.co/facebook/esm2_t30_150M_UR50D
19https://github.com/songlab-cal/tape
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Figure 8: Performance of ESM2-35M on the
Hi-TPH level IV dataset using components
from different levels.

Figure 9: Performance of ESM2-8M on
Hi-TPH datasets. Two variants are evalu-
ated: one with the PLM’s parameters frozen
(ESM2-8M-Frozen) and the other fine-tuned
(ESM2-8M).

A.4 ADDITIONAL BENCHMARK RESULTS

A.4.1 CONTRIBUTION OF ADDITIONAL COMPONENTS

To further investigate the contribution of additional input features on TCR-pHLA binding prediction,
we performed analogous experiments to those conducted with the ESM2-35M model, but this time
utilizing the MLP and ESM2-8M models. We compared the results obtained by using only the
peptide and CDR3 β sequences versus incorporating all available input components, as shown in
Fig. 6 and Fig. 7. Consistent with the findings for ESM2-35M, we observed the following:

• For the level II A task, the inclusion of the HLA sequence contributed little to the model perfor-
mance, and in some cases even yielded a slightly negative effect.

• In contrast, for the more complex level II B, III, and IV tasks, incorporating the additional input
components, such as CDR3 α and other available features, led to a significant improvement in the
predictive performance of the models.

These results further corroborate the conclusions drawn from the main analysis using the ESM2-
35M model, highlighting the differential importance of incorporating various input features for
TCR-pHLA binding prediction across the different task difficulty levels.

Additionally, we validated the effect of progressively incorporating additional components of dif-
ferent levels on ESM2-35M using the level IV dataset. We first filter the level IV data and remove
duplicates, focusing solely on peptide and CDR3 β. With 22,099 TCR-pHLA pairs remaining, com-
ponents of different levels are used as model inputs. As illustrated in Fig. 8, the constant introduction
of additional components results in a consistent enhancement of the model performance.

A.4.2 IMPACT OF FINE-TUNING PLMS

We also explore the impact of fine-tuning the ESM2-8M model. Fig. 9 shows that fine-tuning ESM2-
8M enhances the ability to utilise the TCR-pHLA information at different levels, especially at level
I and IV. Moreover, comparing ESM2-8M to ESM2-35M reveals that fine-tuning provides more
relative improvement for the model with more trainable parameters.

A.5 PERFORMANCE OF THE ON-THE-FLY MISPAIRING METHOD

By generating negative samples during the algorithm’s execution instead of relying on a predeter-
mined set, the on-the-fly mispairing method is less prone to overfitting to specific negative examples.
Additionally, the flexibility to adjust the size of negative samples as training progresses allows for
a better balance between positive and negative classes, which is essential for robust model perfor-
mance. To further validate the advantages, we conducted experiments using the ESM2-35M model
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Level I Level II A Level II B Level III Level IV

OM FN RI (%) OM FN RI (%) OM FN RI (%) OM FN RI (%) OM FN RI (%)
AUC 0.9439 0.9237 2.18 0.7548 0.7528 0.27 0.6404 0.6318 1.37 0.6363 0.6221 2.29 0.6510 0.6381 2.01
ACC 0.8884 0.8577 3.59 0.6794 0.6752 0.62 0.5887 0.5830 0.97 0.5913 0.5757 2.71 0.6044 0.5860 3.14
MCC 0.7776 0.7183 8.27 0.3666 0.3503 4.65 0.1775 0.1661 6.89 0.1827 0.1515 20.59 0.2174 0.1722 26.20

F1 0.8859 0.8638 2.55 0.7094 0.6734 5.34 0.5810 0.5878 -1.16 0.5962 0.5695 4.69 0.6526 0.5948 9.71

Table 5: Performance comparison of ESM2-35M using On-the-Fly Mispairing (OM) and Fixed
Negative (FN) approaches. RI represents the relative improvement of OM compared to FN.

to compare the On-the-Fly mispairing (OM) with the fixed negative (FN) methods. Our results
demonstrate that the OM approach enhances predictive performance, evidenced by improvements
w.r.t. AUC, accuracy (ACC), Matthews correlation coefficient (MCC), and F1 score. The relative
improvements achieved by the OM method over FN are consistent across all levels of the dataset,
highlighting its robustness and effectiveness. The details are summarized in Table 5.
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