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Abstract

Multimodal Large Language Models (MLLMs)001
excel in tasks like multimodal reasoning and002
cross-modal retrieval but face deployment chal-003
lenges in real-world scenarios due to distributed004
multimodal data and strict privacy require-005
ments. Federated Learning (FL) offers a so-006
lution by enabling collaborative model training007
without centralizing data. However, realizing008
FL for MLLMs presents significant challenges,009
including high computational demands, lim-010
ited client capacity, substantial communication011
costs, and heterogeneous client data. Existing012
FL methods assume client-side deployment of013
full models, an assumption that breaks down014
for large-scale MLLMs due to their massive015
size and communication demands. To address016
these limitations, we propose FedNano, the017
first FL framework that centralizes the LLM018
on the server while introducing NanoEdge, a019
lightweight module for client-specific adap-020
tation. NanoEdge employs modality-specific021
encoders, connectors, and trainable NanoAd-022
apters with low-rank adaptation. This design023
eliminates the need to access or modify the024
LLM on clients, reducing client-side storage025
by 95% and communication overhead to just026
0.01% of model parameters. By transmitting027
only compact NanoAdapter updates, FedNano028
handles heterogeneous client data and resource029
constraints while preserving privacy. Experi-030
ments demonstrate that FedNano outperforms031
prior FL baselines, bridging the gap between032
MLLM scale and FL feasibility, and enabling033
scalable, decentralized multimodal AI systems.034

1 Introduction035

Multimodal Large Language Models (MLLMs)036

(Zhu et al., 2023; Liu et al., 2024b; Peng et al.,037

2023b; Alayrac et al., 2022; Li et al., 2023) excel038

in tasks like cross-modal retrieval (Yin et al., 2024),039

making them indispensable for applications such040

as visual question answering (VQA) (Antol et al.,041

2015). However, real-world deployment remains042
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Figure 1: Comparison between traditional PEFT-based
FL (left) and our proposed FedNano (right). FedNano
keeps the LLM centralized on the server and performs
lightweight tuning on clients, reducing both computa-
tion and communication overhead.

fundamentally constrained: multimodal data is in- 043

herently decentralized and privacy-sensitive, while 044

the large parameter footprint of MLLMs renders 045

on-device execution infeasible for edge clients. 046

Federated learning (FL) (McMahan et al., 2017) 047

offers a promising solution for decentralized mul- 048

timodal training. However, applying FL to 049

MLLMs presents fundamental system-level chal- 050

lenges. First, although parameter-efficient fine- 051

tuning (PEFT) (Houlsby et al., 2019; Lester et al., 052

2021; Zaken et al., 2021; Hu et al., 2021) reduces 053

the number of trainable parameters, it still requires 054

deploying the full MLLM—often exceeding 10 bil- 055

lion parameters—on each client, which is impracti- 056

cal for resource-constrained devices such as mobile 057

phones or IoT systems. Second, PEFT methods typ- 058

ically insert adapters into internal layers of the lan- 059

guage model, requiring structural access and full- 060

model execution on clients, as seen in recent FL 061

adaptations such as FedDPA-F (Yang et al., 2024), 062

pFedLoRA (Yi et al., 2023), and FedIT (Zhang 063

et al., 2024). Third, the resulting adapter updates re- 064

main sizable, imposing substantial communication 065

overhead across training rounds. Finally, non-IID 066
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client data introduces statistical heterogeneity that067

degrades global model convergence. These lim-068

itations collectively constrain the scalability and069

practicality of existing FL approaches for MLLMs.070

To address these challenges, we propose Fed-071

Nano, the first FL framework that enables MLLM072

adaptation without deploying LLM on clients.073

FedNano centralizes LLM on the server in a074

frozen state, and equips each client with Na-075

noEdge—a lightweight adaptation module com-076

prising modality-specific encoders, connectors, and077

trainable NanoAdapters. These adapters operate ex-078

ternally to LLM and are optimized using low-rank079

decomposition (Hu et al., 2021), minimizing both080

parameter size and transmission cost. This design081

removes the need for local LLM access, reduces082

client storage by over 95% (Tab. 1), and enables de-083

ployment on edge devices. Only compact NanoAd-084

apter updates are exchanged across training rounds,085

achieving over 99% communication reduction086

compared to PEFT-based FL methods (Chen et al.,087

2023; Yang et al., 2024), as illustrated in Fig. 1.088

By decoupling adaptation from the LLM, FedNano089

provides a scalable and communication-efficient090

solution for real-world MLLM deployment.091

To address client heterogeneity, FedNano adapts092

Fisher Merging (Matena and Raffel, 2022) to align093

global updates with client-specific data distribu-094

tions. This adaptation improves performance on095

non-IID datasets and outperforms traditional aggre-096

gation methods such as FedAvg (McMahan et al.,097

2017) and FedProx (Li et al., 2020). By integrat-098

ing these innovations, FedNano effectively bridges099

the gap between the computational complexity of100

MLLMs and the constraints of FL, enabling effi-101

cient deployment in real-world scenarios.102

Experiments across diverse MLLM and multi-103

modal tasks demonstrate that FedNano not only out-104

performs existing methods but also significantly re-105

duces resource and communication costs, enabling106

the scalable, efficient, and privacy-preserving de-107

ployment of MLLMs. This framework lays a strong108

foundation for advancing multimodal AI systems109

in decentralized real-world applications, including110

personalized healthcare, cross-device collaboration,111

and multimodal user interfaces.112

The key contributions of this work are:113

1. Novel FL Architecture for MLLMs: We propose114

FedNano, the first framework that centralizes the115

LLM on the server and enables lightweight client-116

side adaptation via NanoEdge, reducing client stor-117

age by over 95% and enabling practical deploy-118

Approach Client Params Server Uploads

FedNano 304.55M (4.30%) 1.05M (0.01%)
FedDPA-F 7222.81M (100%) 180.89M (2.50%)
Reduction ↓ 95.8% ↓ 99.4%

Table 1: Comparison of parameter distribution and com-
munication efficiency between FedNano and FedDPA-F
(Yang et al., 2024) on LLaVA-1.5-7B (Liu et al., 2024b).
Client Params denotes parameters retained on client de-
vices, while Server Uploads denotes parameter updates
sent to the server per round. Both use rank-64 adapters.

ment on resource-constrained devices. 119

2. Communication-Efficient Adaptation: FedNano 120

employs low-rank decomposition in NanoAdapters, 121

achieving an over 99% reduction in the number of 122

transmitted parameters, allowing efficient deploy- 123

ment in bandwidth-constrained environments. 124

3. Improved Generalization on Non-IID Data: We 125

adapt Fisher Merging for FL, aligning global up- 126

dates with client-specific distributions to improve 127

model performance on heterogeneous datasets. 128

4. Comprehensive Validation: Extensive experi- 129

ments demonstrate the effectiveness and efficiency 130

of FedNano, establishing it as a scalable solution 131

for real-world MLLM deployment. 132

2 Related Work 133

2.1 Multimodal Large Language Models 134

MLLMs (Zhu et al., 2023; Liu et al., 2024b; 135

Peng et al., 2023b; Alayrac et al., 2022; Li 136

et al., 2023; Dai et al., 2023) extend LLMs (Tou- 137

vron et al., 2023; Peng et al., 2023a; Bai et al., 138

2023) by integrating modality-specific encoders 139

and connectors to process multimodal inputs. Re- 140

cent works focus on efficient alignment, using 141

lightweight connectors such as the linear projection 142

in MiniGPT-4 (Zhu et al., 2023) or the MLP bridge 143

in LLaVA (Liu et al., 2024b). However, these mod- 144

els assume full model access, which is incompat- 145

ible with federated settings due to privacy and re- 146

source constraints. FedNano resolves this by freez- 147

ing the LLM on the server and enabling lightweight 148

client-side adaptation via NanoAdapters. 149

2.2 Parameter Efficient Fine-tuning 150

PEFT techniques (Houlsby et al., 2019; Lester 151

et al., 2021; Zaken et al., 2021; Hu et al., 2021) 152

adapt large pretrained models by updating only 153

a small set of parameters, significantly reducing 154

training costs. They include additive methods like 155
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adapters (Houlsby et al., 2019) and soft prompts156

(Lester et al., 2021), selective tuning such as Bit-157

Fit (Zaken et al., 2021), and reparameterization158

methods like LoRA (Hu et al., 2021). While effec-159

tive in centralized settings, PEFT-based FL meth-160

ods (Chen et al., 2023; Wang et al., 2024; Zhang161

et al., 2024) assume the full model, including LLM,162

can be deployed on clients. This becomes im-163

practical for MLLMs, where LLM accounts for164

the vast majority of parameters and cannot be165

hosted on resource-limited devices. To overcome166

this, FedNano introduces a new paradigm: the167

LLM is frozen and centralized on the server, while168

lightweight NanoAdapters are deployed on clients.169

This design eliminates the need for full-model ac-170

cess, reduces client overhead, and enables scalable171

FL for MLLM. Unlike conventional PEFT, which172

are inserted into LLM, NanoAdapters operate ex-173

ternally, interfacing solely through the modality174

connector. This allows adaptation without modify-175

ing or executing LLM on clients.176

2.3 Multimodal Federated Learning177

Multimodal FL has gained increasing attention for178

handling data heterogeneity and privacy constraints179

in real-world deployments. Prior work has focused180

on vision-language models, proposing strategies181

for modality imbalance (Yu et al., 2023; Che et al.,182

2024), non-IID distributions (Yang et al., 2024;183

Zhang et al., 2024; Chen and Zhang, 2024), and184

client personalization (Yi et al., 2023; Chen et al.,185

2023). Benchmarks like FedMultimodal (Feng186

et al., 2023) and FedMLLM (Xu et al., 2024) fur-187

ther standardize evaluation in heterogeneous mul-188

timodal settings. However, these methods still189

rely on client-side full model deployment. For190

MLLMs, this becomes infeasible due to their scale.191

Even with PEFT, deploying full MLLMs locally192

remains out of reach, and transmitting adapter up-193

dates still incurs significant communication over-194

head. FedNano departs from this design by keep-195

ing the LLM on the server and transmitting only196

compact NanoAdapter updates from clients. This197

makes it the first scalable FL framework tailored for198

large-scale MLLMs, enabling efficient multimodal199

collaboration without sacrificing practicality.200

3 Methodology201

3.1 Problem Definition202

This work addresses federated fine-tuning for203

MLLMs in decentralized environments with sta-204

tistical data heterogeneity. Each client k holds a 205

private multimodal dataset Dk = {(vik, qik, aik)}, 206

comprising image-question-answer triplets. We as- 207

sume complete modality availability and a shared 208

model architecture across all clients; only data dis- 209

tributions differ (Chen et al., 2023). The marginal 210

distributions of vik, qik, and aik vary across clients, 211

resulting in shifts in both visual and textual repre- 212

sentations, as well as answer semantics. Such het- 213

erogeneity poses challenges for achieving consis- 214

tent generalization, as standard aggregation strate- 215

gies struggle to align diverse local updates. 216

Our objective is to collaboratively fine-tune a 217

shared global MLLM for VQA (Antol et al., 2015). 218

Following (Liu et al., 2024a), we formulate this 219

as an open-ended generation problem, where the 220

model generates free-form answers given image- 221

question pairs. Existing approaches assume that 222

the full MLLM can be deployed on each client, 223

which is infeasible in practice due to the massive 224

size of LLM backbones. Client devices often lack 225

sufficient compute, memory, and bandwidth to sup- 226

port such models, and privacy regulations further 227

restrict centralized data access. These constraints 228

call for a new FL framework that avoids client- 229

side LLM deployment while enabling efficient 230

adaptation and communication. To address these 231

challenges, we propose FedNano, a parameter- 232

efficient framework that centralizes the computa- 233

tionally intensive LLM on the server while enabling 234

lightweight, client-specific tuning. In the following 235

sections, we detail the design of FedNano, focusing 236

on how it minimizes computational and communi- 237

cation overhead and addresses data heterogeneity. 238

3.2 Overview of FedNano Architecture 239

FedNano is designed to address the inherent chal- 240

lenges of deploying MLLMs in FL environments. 241

As shown in Fig. 2, it introduces a new architec- 242

ture that centralizes the computationally intensive 243

LLM on the server, while clients maintain only 244

lightweight NanoEdge modules for task-specific 245

adaptation. NanoEdge freezes the modality en- 246

coders and connector, restricting training to task- 247

specific NanoAdapters. This design eliminates 248

the need to deploy the full model on resource- 249

constrained devices, reducing client-side computa- 250

tion and enabling edge deployment on mobile or 251

IoT systems. The complete training and aggrega- 252

tion algorithm is provided in Appendix A. 253

FedNano jointly addresses three key challenges 254

in MLLM-based FL: high computation, commu- 255
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Figure 2: Overview of the FedNano framework. The server hosts the frozen LLM, while each client performs
local tuning via NanoEdge, which includes NanoAdapter-T for text and NanoAdapter-I for vision. Clients upload
low-rank adapter updates, which are aggregated on the server using Fisher merging. This design reduces client
overhead and supports scalable, multimodal federated learning under data heterogeneity.

nication cost, data heterogeneity. By offloading256

the LLM to the server, clients train only the Na-257

noEdge module, which includes frozen encoders258

and a connector, and optimizes a small set of259

NanoAdapters for task-specific adaptation. The to-260

tal client-side module accounts for less than 5% of261

the model parameters, while the trainable NanoAd-262

apters comprise only 0.01%. During aggregation,263

only NanoAdapters updates are uploaded, signifi-264

cantly reducing communication overhead. NanoAd-265

apters are optimized via low-rank decomposition,266

enabling expressive local tuning while preserv-267

ing pretrained alignment with the frozen LLM.268

This compact update mechanism supports low-269

bandwidth environments and enhances training effi-270

ciency. To address data heterogeneity, FedNano in-271

tegrates Fisher Merging (Matena and Raffel, 2022)272

into FL as an advanced aggregation strategy, lever-273

aging client-specific posterior estimates to align274

local updates with global objectives. By weight-275

ing and combining NanoAdapter updates based276

on their estimated importance, this method im-277

proves robustness across diverse tasks and datasets,278

even under non-IID conditions. Together with its279

architectural and optimization designs, FedNano280

bridges the gap between the computational barriers281

of MLLM deployment and the practical constraints282

of FL, offering a scalable, efficient, and privacy-283

preserving solution for decentralized multimodal284

learning.285

3.3 NanoEdge: Client-Side Tuning Module286

MLLMs are composed of three key components:287

modality encoders, a connector, and a pretrained288

LLM backbone. The modality encoders extract 289

embeddings from raw inputs, such as images and 290

text, while the connector aligns these embeddings 291

into a unified representation compatible with the 292

LLM. Together, these components enable MLLMs 293

to effectively handle diverse multimodal tasks by 294

leveraging their pretrained capabilities. 295

Building on this structure, NanoEdge introduces 296

NanoAdapters at the interface between the connec- 297

tor and the LLM to facilitate efficient task-specific 298

tuning while preserving the pretrained alignment 299

across modalities. By freezing the modality en- 300

coders and the connector, NanoEdge maintains 301

their alignment with the LLM, ensuring the foun- 302

dational structure of the pretrained model remains 303

intact. This design allows NanoAdapters to focus 304

solely on learning task-specific patterns from lo- 305

cal client data and integrating federated knowledge 306

updates, avoiding any disruption to the pretrained 307

alignment. By restricting training to the lightweight 308

NanoAdapter parameters, NanoEdge minimizes 309

client-side computational demands while enabling 310

efficient and privacy-preserving adaptation. 311

The NanoAdapters employ a low-rank decom- 312

position mechanism, inspired by LoRA (Hu et al., 313

2021), consisting of a down-projection to reduce 314

embedding dimensionality and an up-projection 315

to restore it. This design balances parameter ef- 316

ficiency and adaptation capability, enabling Na- 317

noEdge to perform localized tuning and transmit 318

updates efficiently. Each modality is equipped with 319

a dedicated NanoAdapter—AI for images and AT 320

for text—capturing modality-specific patterns es- 321

sential for multimodal tasks. Unlike traditional 322
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adapters that are inserted into LLM, NanoAdapters323

remain externally attached to the modality connec-324

tor, requiring no structural access to or execution of325

LLM. This makes them uniquely compatible with326

server-hosted LLMs in federated environments.327

3.4 Fisher-Guided Adaptive Aggregation328

In FL, model aggregation can be interpreted as329

maximizing the joint posterior likelihood across330

clients. Traditional methods like FedAvg implicitly331

assume isotropic Gaussian posteriors (Matena and332

Raffel, 2022), which oversimplifies client uncer-333

tainty and leads to degraded performance under334

data heterogeneity. FedNano addresses this lim-335

itation by adopting Fisher Merging (Matena and336

Raffel, 2022), which leverages the Laplace approxi-337

mation for more accurate posterior estimation. The338

global update is computed as:339

θglobal =

∑K
k=1

|Dk|∑K
k=1 |Dk|

Fkθk∑K
k=1

|Dk|∑K
k=1 |Dk|

Fk

, (1)340

where θk denotes the NanoAdapter parameters of341

client k, Fk is the Fisher Information Matrix (FIM),342

which serves as the precision matrix of the Laplace343

approximation, and Dk is the local dataset. This344

weighting improves the alignment of local updates345

with their estimated importance, enhancing gener-346

alization under non-IID data. To ensure scalability,347

FedNano approximates the full FIM with its diago-348

nal (Kirkpatrick et al., 2017), and computes it effi-349

ciently from squared gradients during backpropa-350

gation (Wu et al., 2023). This reduces computation351

from O(|θ|2) to O(|θ|) without sacrificing aggre-352

gation accuracy. Compared to uniform averaging,353

this method dynamically prioritizes impactful up-354

dates, achieving stronger global performance under355

statistical heterogeneity.356

4 Experiment357

4.1 Experimental Setup358

We evaluate our approach on the Visual Ques-359

tion Answering (VQA) task using two established360

benchmarks: ScienceQA (Lu et al., 2022) and361

IconQA (Lu et al., 2021). These datasets were se-362

lected for their well-defined categorical structures363

and multimodal complexities, making them partic-364

ularly suitable for assessing the performance of FL365

in non-IID settings. To simulate FL in non-IID366

setting, we partitioned the datasets using Dirichlet367

distributions following (Che et al., 2023; Lai et al.,368

2022; Zhang et al., 2024) with a concentration pa- 369

rameter α = 1 to create strongly non-IID splits. 370

Partitioning was guided by topic annotations in Sci- 371

enceQA and skill annotations in IconQA, ensuring 372

heterogeneous yet meaningful distributions across 373

five simulated clients. Each partition, representing 374

an individual client dataset, maintains consistent 375

train-validation-test splits for evaluation. We evalu- 376

ate our approach on MiniGPT-4 (Zhu et al., 2023) 377

and LLaVA-1.5 (Liu et al., 2024b). 378

4.2 Implementation Details 379

Baselines To the best of our knowledge, Fed- 380

Nano is the first FL framework specifically de- 381

signed to support MLLMs by centralizing the LLM 382

on the server. This architectural shift renders ex- 383

isting PEFT-based FL methods inapplicable, as 384

they assume full-model access and local integra- 385

tion with the LLM. Given the absence of prior 386

work addressing this setting, we evaluate FedNano 387

against three representative FL baselines: FedAvg 388

(McMahan et al., 2017), a foundational aggregation 389

method with limited handling of data heterogene- 390

ity; FedProx (Li et al., 2020), which mitigates client 391

drift through a proximal term but lacks parameter- 392

specific adaptation; and FedDPA-F (Yang et al., 393

2024), which integrates advanced alignment strate- 394

gies but incurs high computational and communi- 395

cation overheads. We further include comparisons 396

with a centralized model, representing the perfor- 397

mance upper bound achieved with access to all 398

data, and locally fine-tuned models, which operate 399

in isolation without collaboration. 400

Training Configurations The training process 401

includes 10 communication rounds (R = 10), with 402

each client performing one local epoch per round 403

using a batch size of 8. All experiments were con- 404

ducted on NVIDIA A100 80G GPUs. 405

4.3 Main Results 406

Results in Tab. 2 demonstrate that FL methods 407

consistently outperform locally fine-tuned models 408

(LocFT), emphasizing the benefit of global knowl- 409

edge sharing in distributed, heterogeneous settings. 410

FedNano achieves the highest average perfor- 411

mance among all FL methods, more effectively nar- 412

rowing the gap to centralized training than existing 413

baselines. While FedAvg performs competitively 414

with simple weighted averaging, its inability to 415

adapt to non-IID data results in suboptimal perfor- 416

mance under heterogeneous distributions. FedProx 417
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Backbone Approach
ScienceQA (Clients) IconQA (Clients)

C1 C2 C3 C4 C5 Avg C1 C2 C3 C4 C5 Avg

MiniGPT-4

Centralized 73.70 88.34 89.83 84.52 87.41 84.76 80.76 86.62 81.16 82.74 85.36 83.33
LocFT 67.74 74.69 77.42 72.46 74.07 73.28 67.70 73.48 70.63 70.86 77.53 72.04
FedAvg 70.22 79.65 79.65 75.19 75.56 76.05 70.31 75.61 74.98 72.76 81.25 74.98
FedProx 70.97 80.40 80.15 75.19 75.80 76.50 70.94 77.36 74.58 71.50 80.70 75.01
FedDPA-F 71.96 78.41 81.14 76.42 75.80 76.75 70.94 77.91 74.51 73.08 80.30 75.35
FedNano 68.98 81.89 80.89 76.43 77.04 77.05 72.21 77.28 75.85 74.27 82.52 76.42

LLaVA-1.5

Centralized 83.87 91.07 89.33 90.57 89.38 88.84 86.62 88.92 84.88 87.25 88.45 87.22
LocFT 71.96 80.89 76.92 79.65 75.80 77.04 75.93 78.94 72.53 74.35 76.50 75.65
FedAvg 73.20 84.37 83.62 82.13 80.49 80.76 71.18 79.89 76.80 77.51 83.23 77.72
FedProx 73.95 84.37 83.87 81.39 80.00 80.71 70.23 80.13 76.72 77.51 82.36 77.39
FedDPA-F 73.70 84.12 84.12 81.89 79.51 80.67 72.12 79.65 76.80 77.43 82.36 77.68
FedNano 74.94 84.12 84.86 82.88 80.25 81.41 72.13 80.44 77.36 77.43 82.83 78.04

Table 2: Performance comparison. Results include centralized training, local fine-tuning (LocFT), and various
federated approaches. FedNano achieves superior average performance on both datasets compared to other federated
approaches, demonstrating its effectiveness in handling client heterogeneity.

Approach
α = 0.1 α = 5

C1 C2 C3 C4 C5 Avg C1 C2 C3 C4 C5 Avg

LocFT 69.94 75.80 75.48 73.18 77.00 74.28 65.71 70.62 71.41 72.76 70.64 70.22
FedAvg 72.80 76.80 75.50 73.20 73.60 74.38 74.34 75.61 72.92 76.08 74.68 74.72
FedProx 71.54 74.79 74.15 69.72 70.06 73.05 68.48 70.30 70.15 70.15 71.04 70.02
FedDPA-F 70.25 76.40 74.10 72.50 78.55 74.27 71.52 76.83 74.51 73.24 75.84 74.38
FedNano 73.85 78.22 80.14 76.28 74.94 76.68 74.90 76.16 74.18 74.82 73.73 74.75

Table 3: Performance of MiniGPT-4 on IconQA under different data heterogeneity levels. FedNano consistently
outperforms all baselines, with the largest gains under highly non-IID conditions.

mitigates client drift by constraining local updates418

toward the global model, but this rigid constraint419

limits flexibility, making it insufficient for complex420

multimodal tasks. FedDPA-F, though designed for421

personalization, requires careful tuning of global422

training epochs and risks overwriting the global423

adapter during local updates, potentially degrading424

performance due to catastrophic forgetting.425

In contrast, the superior performance of Fed-426

Nano is attributed to its novel design and optimiza-427

tion strategies. As shown in Tab. 2, FedNano428

achieves an average accuracy of 77.05% on Sci-429

enceQA and 76.42% on IconQA for MiniGPT-4,430

exceeding FedAvg and FedProx, indicating im-431

proved generalization in heterogeneous client en-432

vironments. For LLaVA, FedNano attains 81.41%433

on ScienceQA and 78.04% on IconQA, surpassing434

FedDPA-F and FedProx, demonstrating enhanced435

robustness in multimodal FL. These results validate436

the effectiveness of NanoAdapters for modality-437

specific adaptation, while substantially reducing438

client-side computational and storage demands,439

enabling deployment on resource-limited devices.440

Moreover, FedNano integrates Fisher Merging with 441

a diagonal approximation of the FIM, allowing 442

the system to prioritize critical parameter updates 443

based on client-specific confidence. This results 444

in more effective aggregation than uniform aver- 445

aging, improving stability under non-IID distribu- 446

tions while reducing overfitting to local client noise. 447

By balancing generalization and personalization, 448

FedNano consistently delivers strong performance 449

across diverse client settings, all while maintaining 450

minimal communication overhead. 451

4.4 Analysis 452

Robustness under Data Heterogeneity To as- 453

sess the robustness of FedNano under varying 454

levels of data heterogeneity, we evaluate its per- 455

formance on IconQA using the MiniGPT-4 back- 456

bone across different Dirichlet concentration val- 457

ues (α = 0.1 and α = 5). As shown in Tab. 3, 458

FedNano consistently achieves the highest average 459

accuracy in the highly non-IID setting (α = 0.1), 460

outperforming all FL baselines. This demonstrates 461

the effectiveness of its Fisher-guided aggregation 462
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Approach C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Avg

LocFT 67.56 69.77 73.89 67.24 79.90 72.15 69.77 64.71 71.67 67.35 70.40
FedAvg 74.52 81.01 78.00 78.63 85.91 79.90 75.94 75.63 70.90 77.86 77.83
FedProx 73.89 76.74 77.37 75.63 84.01 76.58 73.41 71.36 78.79 72.29 76.00
FedDPA-F 74.52 81.01 78.00 78.63 85.91 79.90 75.94 75.63 70.90 77.86 77.83
FedNano 77.03 82.77 78.22 79.67 88.57 80.35 81.34 72.84 73.77 79.47 78.86

Table 4: Performance of MiniGPT-4 on IconQA with 10 simulated clients. FedNano achieves the best average
accuracy, demonstrating strong scalability to larger federated setups.

Approach C1 C2 C3 C4 Avg

FedAvg 34.35 28.83 29.00 29.53 30.86
FedProx 52.45 50.82 59.80 42.15 51.30
FedDPA-F 52.76 51.12 60.10 42.46 51.61
FedNano 54.20 52.60 60.36 43.32 52.62

Table 5: Performance under cross-task federated setup
on MiniGPT-4. FedNano achieves the best average
accuracy across clients with distinct VQA tasks.

in aligning heterogeneous client updates. While463

the performance gap narrows under near-IID con-464

ditions (α = 5), FedNano remains competitive,465

indicating that its advantages are most pronounced466

in realistic heterogeneous federated scenarios.467

Scalability to Larger Client Populations To468

evaluate the scalability of FedNano, we extend the469

number of clients from 5 to 10 on the IconQA470

dataset using the MiniGPT-4 backbone. As shown471

in Tab. 4, FedNano achieves the highest average472

accuracy, consistently outperforming all baselines.473

This demonstrates that the framework retains its474

effectiveness even as the federated environment be-475

comes more fragmented. The results confirm that476

FedNano scales robustly with increasing client pop-477

ulation, reinforcing its practicality for real-world478

large-scale federated deployments.479

Generalization under Cross-Task Client Dis-480

tribution We evaluate FedNano in a challeng-481

ing cross-task setup where four clients are respec-482

tively assigned A-OKVQA, OK-VQA, IconQA,483

and GQA, introducing significant task-level hetero-484

geneity. As shown in Tab. 5, FedNano achieves485

stable and strong performance across all clients.486

This robustness stems from its modular design and487

Fisher-guided aggregation, which enable effective488

alignment of heterogeneous updates and support489

generalization across semantically diverse tasks.490

The Necessity of Combining Both AT and AI491

To evaluate the necessity of the textual adapter AT492

Backbone Variants ScienceQA IconQA

MiniGPT-4
AT 45.91 57.77
AI 74.57 75.17

AT + AI 76.42 76.04

LLaVA-1.5
AT 50.08 48.15
AI 77.03 77.12

AT + AI 78.04 77.83

Table 6: Performance of different adapters. Combining
AT and AI consistently yields the best results across
backbones, confirming their complementarity.

and the visual adapter AI , we conduct ablation 493

experiments using three configurations: AT only, 494

AI only, and both. For MiniGPT-4, AT achieves 495

45.91% on ScienceQA and 57.77% on IconQA, 496

while AI improves to 74.57% and 75.17%. Their 497

combination further boosts accuracy to 76.42% and 498

76.04%, outperforming AI alone by +1.85% and 499

+0.87%. Similar trends are observed with LLaVA- 500

1.5, confirming the robustness of combining both 501

adapters. The poor performance of AT alone sug- 502

gests that textual inputs provide insufficient task- 503

relevant information in these vision-centric VQA 504

tasks. These results validate the dual-adapter de- 505

sign of NanoEdge, where AI handles visual adap- 506

tation and AT enhances generalization. 507

Trade-offs in Fisher-Guided Adaptive Aggrega- 508

tion FIM is specific to a particular set of model 509

parameters and plays a key role in the ability of Fed- 510

Nano to achieve superior global alignment by cap- 511

turing parameter importance. To compute the FIM 512

precisely, FedNano employs additional forward 513

and backward passes per communication round, 514

ensuring accurate parameter estimation. While this 515

enhances accuracy, it introduces modest compu- 516

tational overhead. To explore the trade-offs be- 517

tween precision and efficiency, we conduct an ab- 518

lation study with FedNano-EF, a variant that ap- 519

proximates the FIM during standard training, elim- 520
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Dataset Variants MiniGPT-4 LLaVA-1.5

ScienceQA

FedNano 77.05 81.41
FedNano-EF 76.55 80.81

FedAvg 76.05 80.76
FedProx 76.50 80.71

FedDPA-F 76.75 80.67

IconQA

FedNano 76.42 78.04
FedNano-EF 76.04 77.83

FedAvg 74.98 77.72
FedProx 75.01 77.39

FedDPA-F 75.35 77.68

Table 7: Performance comparison of FedNano and
FedNano-EF on ScienceQA and IconQA. FedNano
achieves the highest accuracy, while FedNano-EF of-
fers a trade-off with reduced computational overhead,
demonstrating strong performance across both datasets.

inating the need for additional computation steps.521

This modification reduces computational overhead522

to the level of FedAvg. Despite this simplifica-523

tion, FedNano-EF incurs only a slight accuracy524

trade-off and consistently outperforms baselines,525

as shown in Tab. 7. These results demonstrate526

the adaptability of FedNano: the standard ver-527

sion excels in accuracy-critical tasks by leveraging528

precise FIM computation to optimize alignment,529

while FedNano-EF provides a practical alternative530

for resource-constrained environments, achieving531

strong performance with reduced overhead.532

Frequent Communication Amplifies the Advan-533

tages of FedNano As shown in Fig. 3a, reduced534

communication frequency leads to a general de-535

cline in global model performance across all meth-536

ods due to increased parameter divergence, which537

hinders effective aggregation. Importantly, the re-538

sults highlight that FedNano outperforms FedAvg539

by a larger margin when communication is more540

frequent. With shorter intervals, FIM mechanism541

of FedNano can better leverage aligned client pa-542

rameters to prioritize impactful updates, amplify-543

ing its advantages in handling data heterogeneity.544

In contrast, FedAvg struggles with parameter di-545

vergence regardless of communication frequency,546

showing minimal improvement with more frequent547

updates. These findings underscore that while fre-548

quent communication benefits all methods, it sig-549

nificantly enhances the effectiveness of FedNano,550

reinforcing its superior ability to integrate client-551

specific updates and maintain robust performance552

in federated learning environments.553
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Figure 3: (a) Impact of communication frequency. Fed-
Nano outperforms FedAvg, with more frequent commu-
nication amplifying its advantages; (b) Effect of adapter
rank. FedNano consistently achieves superior perfor-
mance, demonstrating its ability to capture task-specific
and client-specific information effectively.

Higher Adapter Ranks Enhance FedNano Per- 554

formance Fig. 3b illustrates the impact of adapter 555

rank, comparing FedNano with FedAvg on the Sci- 556

enceQA dataset. As the adapter rank increases, ac- 557

curacy improves due to the enhanced capacity to en- 558

code task-specific and client-specific information, 559

which is particularly important in non-IID settings. 560

However, higher ranks also incur greater commu- 561

nication costs, necessitating a trade-off between 562

performance and resource efficiency in FL. Fed- 563

Nano consistently outperforms FedAvg across all 564

ranks, with the performance gap widening at higher 565

ranks. This improvement is driven by the FIM ag- 566

gregation, which leverages richer client-specific 567

updates at higher ranks to achieve better alignment 568

between local contributions and the global model. 569

In contrast, at lower ranks, the limited adapter ca- 570

pacity constrains the quality of updates, reducing 571

the effectiveness of FIM aggregation. 572

5 Conclusion 573

This work introduced FedNano, an FL framework 574

that tackles the unique challenges of deploying 575

MLLMs in decentralized settings. By centralizing 576

the LLM on the server and employing lightweight 577

NanoAdapters on clients, FedNano achieves sig- 578

nificant gains in both resource and communica- 579

tion efficiency, while effectively addressing data 580

heterogeneity in non-IID environments. Compre- 581

hensive evaluations on ScienceQA and IconQA 582

benchmarks demonstrate that FedNano consistently 583

outperforms state-of-the-art FL baselines, further 584

narrowing the gap between federated and central- 585

ized training. By combining scalable design with 586

robust performance, FedNano offers a practical 587

and privacy-preserving solution, advancing the real- 588

world deployment of MLLMs. 589
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Limitation and Future Work590

While FedNano demonstrates robust performance591

and efficiency, certain areas warrant further explo-592

ration to enhance its applicability and effectiveness.593

One limitation lies in the assumption that all clients594

possess similar hardware capabilities for managing595

NanoAdapters. This assumption may not hold in596

real-world scenarios characterized by highly het-597

erogeneous devices. Future research could inves-598

tigate adaptive mechanisms that dynamically tai-599

lor NanoAdapter configurations to match the com-600

putational resources and capabilities of individual601

clients, broadening FedNano usability across di-602

verse environments.603

Although FedNano effectively mitigates data het-604

erogeneity, federated learning in real-world settings605

often involves extreme client disparities in data606

size, quality, and distribution. Addressing such607

scenarios may require dynamic strategies to adapt608

aggregation weights or incorporate more sophisti-609

cated representations of client-specific characteris-610

tics. These enhancements could further strengthen611

FedNano resilience and generalization capabili-612

ties in highly non-IID environments. Moreover,613

while the current framework supports vision and614

language modalities, extending it to incorporate au-615

dio, sensor data, or other modalities could unlock616

applications in areas such as autonomous systems,617

multimodal healthcare, and industrial IoT.618

Deploying FedNano in noisy or incomplete fed-619

erated datasets presents another promising avenue620

for research. Benchmarking its performance un-621

der these challenging conditions would not only622

provide valuable insights but also identify addi-623

tional opportunities for optimization. Furthermore,624

integrating FedNano into federated multi-agent sys-625

tems—where distinct agents collaborate to learn626

and share knowledge—could enable groundbreak-627

ing applications in fields like logistics and au-628

tonomous vehicles, highlighting the framework ver-629

satility.630

Finally, while FedNano achieves strong pri-631

vacy guarantees by transmitting only NanoAdapter632

updates, integrating advanced privacy-preserving633

methods such as differential privacy or se-634

cure multi-party computation could provide even635

stronger safeguards for sensitive client data. A636

critical future direction lies in achieving these en-637

hanced privacy measures without compromising638

the computational and communication efficiency639

that underpins FedNano practicality.640

In summary, while FedNano addresses many crit- 641

ical challenges in federated learning for MLLMs, 642

these future directions highlight its potential for 643

further innovation. By extending its capabilities to 644

tackle more diverse environments, extreme hetero- 645

geneity, and advanced privacy requirements, Fed- 646

Nano can serve as a foundational framework that 647

inspires continued advancements in federated learn- 648

ing research and applications. 649
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A FedNano: Pseudocode Overview824

Algorithm 1 FedNano. The K clients are indexed by k; R is the number of communication rounds, and
T is the number of local steps.
Server Update:

1: Randomly initialize A0
I and A0

T in NanoAdapter, and distribute to clients
2: for r = 1 to R do
3: for k = 1 to K in parallel do
4: θrk ← ClientUpdate(θr−1

global, Dk)
5: Compute FIM Fk

6: end for
7: θrglobal ← ServerAgg({θrk, F r

k }) ▷ Eq. 1
8: end for

ClientUpdate (θr−1
global, Dk):

1: θr−1
k ← θr−1

global

2: for local step t = 1 to T do
3: Sample {(vk, qk, ak)} from Dk

4: θrk
(t) ← Optimization(θrk

(t−1), vk, qk, ak)
5: end for
6: return θrk

825
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