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ABSTRACT

Model extraction attacks (MEAs) on large language models (LLMs) have re-
ceived increasing attention in recent research. However, existing attack meth-
ods typically adapt the extraction strategies originally developed for deep neu-
ral networks (DNNs). They neglect the underlying inconsistency between the
training tasks of MEA and LLM alignment, leading to suboptimal attack perfor-
mance. To tackle this issue, we propose Locality Reinforced Distillation (LoRD),
a novel model extraction algorithm specifically designed for LLMs. In particu-
lar, LoRD employs a newly defined policy-gradient-style training task that uti-
lizes the responses of victim model as the signal to guide the crafting of prefer-
ence for the local model. Theoretical analyses demonstrate that I) The conver-
gence procedure of LoRD in model extraction is consistent with the alignment
procedure of LLMs, and II) LoRD can reduce query complexity while mitigat-
ing watermark protection through exploration-based stealing. Extensive experi-
ments on domain-specific extractions validate the superiority of our method in
extracting various state-of-the-art commercial LLMs. Our code is available at:

https://anonymous.4open.science/r/LoRD-MEA-1EF2/l

1 INTRODUCTION

In recent years, we have witnessed the remark-
able success of large language models (LLMs)
such as ChatGPT (chal 2024), Gemini (Anil
et al., [2024), and Claude (clal, [2024), which are
now widely employed in various consumer and
industrial applications. Despite their success,
these models may suffer from model extrac-
tion attacks (MEAs) (Krishna et al., [2020; Rafi
et al.l 2022; Xu et al., 2022} [L1 et al.| 2023b),
where their knowledge could be at risk of being
stolen by an adversary through a local model
that learns on the data collected from the victim
model. Besides of some “open-source” LLMs
(e.g., Alpaca (Taori et al. [2023)), which are
trained on the chat history of GPT-4, cases of
commercial model theft among companies have
also been reported recently (Heathl 2023)).

Under such a real-world threat, instead of fo-
cusing on MEAs against conventional DNNss,
which have been extensively studied theoreti-
cally (Saad & Solla, [1995} [Tian, 2020; [Zhou
et al., 2021) and empirically (Jagielski et al.,
2020; Tramer et al.,[2016; |[Papernot et al.,[2017)),
a few recent works turn to explore model extrac-
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Figure 1: Comparison between vanilla MEAs
on conventional DNNs (left) and MEAs on LLMs
with alignments (right).

tion algorithms and theorems for LLMs. For example, |Wallace et al.|(2020) propose a monolingual-
query-based imitation attack framework to steal machine translation knowledge from generative
language models such as GPT-2. [Li et al.|(2023b) investigate threats of stealing the code-related
knowledge from LLMs. However, these studies inherit those MEA algorithms from traditional fields,
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such as computer vision (Tramer et al., [2016} |[Papernot et al.,[2017)), and train the local model via
supervised learning like maximum likelihood estimation (MLE) (Bengio et al.,2000; Myung], 2003)),
while neglecting the inconsistency of training tasks between MEAs and the alignments (Ouyang
et al.| [2022; |Glaese et al., 2022} Bai et al.l [2022aib}; [Perez et al., [2023) of modern LLMs. As shown
in Figure [T, modern LLMs typically employ alignments using reinforced learning, which is missing
in the local model training of conventional MEAs. As a result, these attacks usually suffer from poor
performance.

In this paper, we challenge the effectiveness of MLE in stealing a reinforcement-learning-aligned
LLM, by analyzing its potential drawbacks as follows:

Low query efficiency. Current LLM-oriented MEAs suffer from unacceptably significant query
times because they must collect enough generated responses, which entails exponential complexity in
terms of generated tokens, resulting in low query efficiency.

Vulnerability against defenses. Directly learning from the responses of victim models can cause
local models to inadvertently incorporate those watermarks (Cong et al., [2022; He et al., [2022;
Zhao et al 2022} |He et al., 2021)) embedded in the output of victim models. The residue of such
watermarks makes the extraction process less stealthy and even serves as provenance evidence of
model theft.

Motivated by these limitations, we propose Locality Rein-forced Distillation (LoRD), a query-
efficient and watermark-resistant model extraction attack under a training paradigm with LLM’s
alignments. Stealing LLMs via reinforcement learning paradigms is challenging. The main reason is
that the key component in the alignment procedure of LLMs, reinforcement learning with human
feedback (RLHF) (Bai et al.,[2022agb; [Perez et al., [2023)), heavily relies on the feedback signal of
human annotators, which is difficult to reproduce directly in the context of MEAs. To tackle this
challenge, we develop a policy-gradient-style extraction procedure. This approach regards the locality
direction between the generations of local models and victim models as the implicit reward signal. It
can thus achieve a human-feedback-free reinforcement learning for our extraction attack. From the
theoretical perspective, we show why those existing MEAs using MLE and knowledge distillation
(KD) are inconsistent with the optimization procedure in LLMs’ alignments. Along this way, we also
demonstrate why LoRD can achieve stronger watermark resistance and higher query efficiency.

Extensive experiments on five downstream NLP tasks and ten datasets demonstrate that it is feasible
to steal a commercial LLM with 175 billion parameters by a pre-trained local model with only 8
billion parameters under a given domain. The resulting local model performs statistically similar
to the victim model for tasks not requiring extra knowledge (e.g., data-to-text), and only 0 ~ 3
percentage lower for tasks requiring it (e.g., translation and QAs). This result poses an immediate
threat of task-specific extraction on commercial LLMs. To further draw the capability boundary of
such a threat, we also illustrate the “spectrum” in difficulties and upper bounds for extracting LLMs.

To summarize, the contributions of our paper are as follows:

New Perspective of LLM Alignment for MEAs. We present LoRD, a novel model extraction attack
algorithm for LLMs. To our best knowledge, it is the first effective and realistic extraction algorithm
that is compatible with the alignment procedure of LLMs.

Theoretical Guarantee. We theoretically prove that the convergence procedure of LoRD in MEAs
is consistent with the alignments of LLMs. Furthermore, we demonstrate that LoRD can reduce
query complexity while mitigating watermark protection through exploration-based stealing.

Systematical Evaluation. Extensive experiments on domain-specific extractions demonstrate that
our method outperforms current extraction strategies across different downstream NLP tasks.

2 BACKGROUND

2.1 PoLiCcY GRADIENT MODELS

Policy gradient models (PGM) are commonly used in reinforcement learning (RL) algorithms to
optimize the agents based on the decided action of RL agents. Represented by TRPO (Schulman
et al., 2015) and PPO (Schulman et al.,[2017), policy gradient models minimize the the following
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objective function:

Lpgj = —E; [p}f(@)Aj], (1)

% refers to the probability ratio defined by the
old \"7 177

optimized policy mg(a,|s;) and the initial policy 7g,,,(a;]s;), s; denotes the state of the environment,

a; denotes the decided action of my, and A; is the de-biased reward of a;. A; is estimated by the

(-value minus the V-value, i.e.,
Aj(sj,a5) = Q(s5,a5) — V(s;). 2

Intuitively, ()-value refers to the reward if employing action a; at the given environment state s;,
which can be seen as the label of policy’s decision. V -value represents the estimation of the expected
reward at s;. Consequently, A; denotes the surprise when taking action a;.

where at each decision step j, pj(f) =

To alleviate the off the cliff phenomenon that a large bad gradient update occurred from Equation [I]
PGMs, such as PPO and TRPO, add some regularization terms to avoid large gradients. Specifically,
TRPO constrains the distribution between 7y and my_,, with KL divergence, and PPO warps a “clip”
function to constrain the bounds of pf(6).

old

2.2 LANGUAGE MODELING

Supervised Training (SFT). Given a pre-trained model with parameters 6, supervised training is
essentially the maximum likelihood estimation (MLE) task (Bengio et al., 2000; [Myung} 2003)), which
fine-tunes 0 on the labeled dataset D, = {(x;,¥;)|i = 1,2, ..., N¢-s } by minimizing the following
objective function:

Nirs Nirs N
Lote = =[] Polyilxi) = = [ T[] Powislxiryi.<s): 3)

where N denotes the sequence length of y;, y; ; denotes the j-th token in y;, and y; «; =
{¥i,0,---»Yi,j—1 - The logarithmic formula of Equationcan also be seen as a joint cross-entropy
loss function:

Nth Nt'rs N
Lee =— Z logPy(yilxi) = — Z ZIOgPa(yi,jImei,q). “4)
i P

Equation []is extensively utilized in LLM’s pre-training and fine-tuning procedures. For instance,
it can be applied to instruction-following supervised fine-tuning (SFT) with the training set D,
wherein x; encompasses the instruction and the task input, while y; denotes the reference response.

Aligning LLMs merely by SFT is not always practical, as MLE tends to align the model with the
one-hot distribution of y, making it challenging to draw a sufficient variety of examples due to the
“exponential explosion” of tokens (see Section ] for more details). Moreover, providing standard
answers for LLMs can sometimes be daunting for annotators, which further slows down and even
degrades the alignment process through direct training.

Therefore, instead of “learning from answers” as in Equation[d] learning from preferences is proposed,
which only requires the annotators to select a better response from a pair of texts generated by LLMs.

Aligning from Preferences. Employing reinforcement learning in LLMs typically consists of three
stages. First, the annotators construct a preference dataset DP"¢/ = {(x;,y; ,y; )} by chatting with
LLMs and rating their responses, where yf and y; denote the rated positive and negative responses
of the dialogue context x;, respectively. Then, a reward model Ry, (x,y) — r is trained based on
DPref to simulate the environment and predict the reward values of tokens in given texts. It is trained
with a pair-wise loss,

Lr=— > oRe,(xy") ~ Ro,(x.y)). )
(xyt,y=)~Drres

where o (-) denotes the sigmoid function. Based on the reward model Ry, (x,y), we can finally train
the language models Py by maximizing its reward, i.e.,

max R, (x,¥) — ADxr[Po(§1x)||Po,,.., (71)); (6)

x~Dy
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Figure 2: The stealing procedure of LoRD.

where D, denotes the dataset of text inputs, ¥ ~ Py(y|x)) denotes the sampled sequence of
the training model, and 6;,,;; is the initialized parameters of the model, e.g. the parameters after
SFT. The Kullback-Leibler (KL) divergence term, SDk [Py (y|x)||Ps,.,, (¥|x)], introduced by
TRPO (Schulman et al.|[2015)), is incorporated to constrain the shift of distribution in generated texts
y, where f3 is the hyperparameter.

Consequently, SFT shown in Equation E] fine-tunes the pre-trained model with parameters 0, into
an aligned model 0, ¢, through MLE, and RLHF outlined in Equation @, further aligns 6 ¢, towards
the target model 6,;.. As this procedure is not consistent with the conventional training framework
of DNN, it remains unclear whether current MEAs (detailed in Appendix are effective and
efficient in stealing a LLM. Specifically, we will first put forward a new stealing method in Section 3]
and compare it with current MEAs in Section [4]

3 LoORD: LOCALITY REINFORCED DISTILLATION

3.1 OVERVIEW

In this subsection, we delve into the details
of our model extraction framework, LoRD
(Locality Reinforced Distillation). As described
in Algorithm [T} LoRD follows a reinforcement 3
learning paradigm, that is, it consists of sev- —log Py, (y; 1 )
eral periods, and in each period, the model will

learn to explore new responses and attempt to  —log Py, (v, , | =
enhance the model trained in the last period. @( B

7]ogP0f w(y; 1 ‘ T)

Parameter updations with ¢ — 2
step's data (, Yvic, ¥,y ")
\\
However, different from LLMs’ alignments, the
agent can neither obtain the reward from the —log Py, (v, | z)

reward model directly, nor label positive and

negative responses manually. This motivates us

to design a new RL method which can implicitly Figure 3: Determination of the positive and negative
measure the reward for generated tokens under samples in LoRD. We sample y;” ; and y,_, from

the guidance of victim model’s responses. Py, ,(-]x), and compute their conditional probabilities.

lllustrated by Figure[?] LoRD first requires the 1€ response with a higher probability increment on 6,
is selected as the positive sample.

model to sample two sentences randomly at pe-

riod ¢ — 1, which are denoted as y; ; and y;_,,

respectively. In a new period ¢, it first computes the changes of likelihoods for these two sentences,

among the old model P, , and the current model Py,. These changes of likelihoods, denoted as

A and A}, indicate whether a selected sentence is locally isotropic (A > 0) to the optimization
direction with victim model’s response y ;. or not (A < 0), which can be seen as the feedback signal
for P, in the current optimization step. For convenience, we may swap y;  ; with y; ; to make

sure that A;" > A always holds. In this way, for pairs (X,y,.) we can take y:’_l as a locality
neighborhood of y ;. and y,_; as the negative sample, all of which can be utilized in the training of
Py,. Figureillustrates this procedure. Additionally, LoRD takes y;" ; as the positive label under

4
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the current scope only when AT or Py, (y;~,|x) exceed their respective fixed thresholds 7 and 7».
If these conditions are not met, it will use y,;. as a substitute for y?‘_1 to enable a cold start.

Based on y,;c, yj_l, and y,_;, we now design LoRD’s loss function.

3.2 DESIGN OF L0oSS FUNCTIONS

From Section[2.1] we know that the loss function of a policy gradient model can be expressed as an
objective function to maximize the rewards of decisions (see Equation[I) and a regularization term to
ensure the stability of training. Following this paradigm, the loss function of LoRD could be

ELORD = Lobj + Ereg- (7)

Objective function L,;;. Inspired by the reward model Ry, existed in Equation 6} which is trained
to distinguish between positive and negative samples, we propose utilizing the logarithmic proportion
of positive to negative samples as the means of achieving a de-biased reward, i.e.,

0t yt 1 |X) + _
Lop; = log[——————] = [log Py, (y;_1]x) — logPp, (y;_1[x)]- 8)
T e T (
Equation@exhibits similarities to previous studies on RL-enhanced LLM (Peters & Schaal, 2007
Peng et al.,[2019;|Go et al.| 2023} Korbak et al.| [2022; Rafailov et al.,[2023)). We provide a theoretical
explanation for its consistency with the learning procedure of RLHF and the deduction procedure, as
detailed in Section @ and Appendix

However, training the local model merely by L,;; is ineffective due to two reasons: i) when L orp :=
Lop5, no information from the victim model’s responses is incorporated into the selection of y?‘_l
beyond the cold start phase, resulting in a meaningless self-reward-based learning loop for the
stealing procedure; ii) the convergence of the local model’s training cannot be guaranteed.

To address these two issues simultaneously, we design the regularization term as follows.

Regularization loss L,.,. Different from LLM’s RLHF (Schulman et al.,[2015} Rafailov et al., 2023}
Bai et al.| [2022a) that typically constrain #; with initial model’s generating distribution P, ,, (-|x) in
RLHF, LoRD aims to directly constrain §; with victim model’s distribution Py, ,_(:|x).

Unfortunately, Py, ,_ (-|x) is typically inaccessible within the APIs of commercial LLMs and is not
feasible for our black-box scenarios. Consequently, we incorporate the regularization techniques
employed in PPO and TRPO but tailor our regularization as a bounded contrastive term between the
likelihood of €; under the victim model’s response and the negative sample, i.e.,

Lreg == 3 clipllogl <P}y — — S clip(logPy, (yalx) ~ logPo, (yia ). (9)
xEDy gt( Yi— lix) xEDy

In Equation [0} we utilize PPO’s clip(-) function to limit the value of the regularization term, as
we expect the regularization term could only be used to avoid the off the cliff problem (Schulman
et al.l2017;[2015) in RL’s convergence. Besides, our contrastive term can be seen as a streamlined
black-box variant of the KL divergence in TRPO. This simplification offers two advantages: i) it
alleviates the necessity of loading the initial model’s weights, leading to a substantial reduction
in GPU memory usage; ii) it eliminates the need for Py, (-|x), which would otherwise necessitate
an additional exponential operation of log P, (-|x) that would slow down the forward computation
process and increase extra consumptionEF

Incorporating Equation [§] with Equation 0] we can reshape the loss function of LoRD as

Py (v-
Lrorp = Lobj + Lreg = Z log M [M)]

+ clip(log
R T L DN Y

(10)

Finally, we wrap L1 .rp With a sigmoid function o(-) to normalize the loss to the interval (0, 1),
which is |
Py, (yt 1| ) . Py, (Yt_fl x)
L= (log[————=—] + clip(log| =——=——1)).
oo [Pet (7 1% )] (ol o) )

x~Dy

1)

ogsoftmax is preferred in the implementation of deep learning frameworks (tor), as the exponential operation
in softmax and the logarithmic operation in cross-entropy can be canceled out by each other.
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4 THEORETICAL ANALYSIS

This section will compare LoRD with current model extraction methods from a theoretical perspective.
We will first reveal the underlying inconsistency between the optimization procedure of LLMs, which
typically involves RL-based alignments, and the previous model extraction approaches utilizing MLE
and knowledge distillation (KD). Subsequently, we will demonstrate in theory the reasons why LoRD
can achieve stronger watermark resistance and higher query efficiency than existing methods.

4.1 CONSISTENCY ANALYSIS REGARDING DIFFERENT LEARNING TASKS

Based on the analysis of the four objective functions for MLE, KD, RLHF and LoRD, we reach the
proposition I} and illustrate their convergence procedure exhibited in Figure[d A detailed proof can
be found in Appendix [B.T}

Proposition 1 (Consistency in Stealing Procedure). The learning procedure for LLMs’ alignments
is consistent with the stealing procedure of LoRD, i.e., they both attempt to maximize the difference
between the probabilities of positive and negative samples. Conversely, they are inconsistent with
either MLE or KD. In MLE, the objective is maximizing the label probability, while KD aims to
minimize the distance among all dimensions.

Albeit the inconsistency in their training proce-
dures, we put forward Proposition 2] to demon-

strate that with enough samples, all these meth- Yuie } -
ods will reach the same distribution results. \rﬂr

Proposition 2 (Equivalence when Converged). (a
Ideally, for any loss value of Equations@ Bl
6l or[l1] converging to 0, we have y* = —
Yvie- Meanwhile, the local model’s distribu-

tion Py(-|x) will approach that of the victim ’—1{
model Py, (-|x) on MEAs from all three dis-
cussed MEA methods, including LoRD, MLE,
and KD.

Proposition E] ensures that the local model will Flgure. 4 Illlust.ratl.ons for the.converglng procedure of
.. probability distributions regarding four methods, namely
COnVerge to the victim model regardle.SS of MLE (a), KD (b), RLHF (C), and LoRD (d) Arrows
the choice of MEA methods. So what is the  jpdicate the expected optimization direction. We mark
benefit of LoRD? In Section[4.2] we will show  the distribution dimensions learned with labels in blue,
that LoRD outperforms current MEAs with  and employ pink and yellow components to indicate the
two aspects: the query time reduction (i.e., probabilities of positive and negative tokens, respectively.
size of the query set D), and the watermark
resistance of the learned local model.

4.2 COMPARATIVE ANALYSIS ON MODEL STEALING

Query Efficiency. Let Ng and Ny denote the sequence lengths of the query text and the response
text, respectively. For MLE, the ideal query numbers to populate the entire text space are given by
O(VNe . VNR) where V represents the size of the vocabulary. In contrast, LORD possesses the
capability to automatically explore the generation token space, thereby significantly reducing the
query requirements about generation candidates to a constant level. Specifically, the complexity of
LoRD’s query requirements is O(V e - C), where C is a constant that correlates with the capability
of local models.

Based on the above analysis, a straightforward concern with employing MLE in LLMs’ extraction is
that, given the limited query times in real-world practices, it may suffer from incomplete learning,
especially for text generation tasks. Consequently, the local model may tend to memorize some
specific responses instead of achieving a broad understanding and generation. We call such a
phenomenon preference overfitting (PO), which indicates that the local model is only effective on
a limited set of explored samples, and yet does not generalize well to unseen scenarios. In such
cases, the local model usually exhibits a more “rugged” decision surface, which appears to overfit the
preference sentences in D;,., as shown in Figure(b). Figureprovides a visualization of it.
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| BLEU BERTScore Rouge-L
| 1 2 3 4 Pre. Rec. FI1. Pre. Rec. FI.
Text to SQL: WikiSQL (Zhong et al.||2017) with 64 query samples
Victim Model 54.1 414 32.1 24.4 86.9 93.5 90.1 58.9 62.1 59.7

Local Model | 20.2+£0.2 145+0.2 10.9+0.1 81+£0.1 825+0.0 924+0.1 871+£0.0 226+0.3 66404 33.2+0.3
+MLE | 54.0+1.6 375+21 264+20 188+18 831+£02 929+02 87.7+02 562+15 56.1+0.9 558+1.2
+LoRD | 55.14+23 39.0+3.6 28.0+40 204+39 834404 929403 879+04 57.7+22 563+2.0 56.7+2.1
Text to SQL: Spider (Zhong et al.||2017) with 64 query samples
Victim Model 9.4 3.9 2.1 I.1 717 84.1 80.6 17.1 36.3 21.8
Local Model 6.4+0.2 2.14+0.1 0.9+0.1 0.54+0.0 | 80.0£0.1 826+01 81.2+0.1 10.0+03 21.5+0.6 12.7+0.4
+MLE 6.24+0.9 1.3+0.5 0.6+0.3 02402 764+0.7 81.8+04 789+06 12.7+1.6 183+1.6 143+1.6
+LoRD 9.1+0.9 2.8£0.5 1.3+04 06+02 77.7+04 831+£05 802+03 169+0.1 241+0.2 188+0.1
Data to Text: E2E NLG (Dusek et al.||2020) with 64 query samples
Victim Model 51.8 27.0 26.8 19.1 93.9 94.6 94.2 49.6 54.6 51.4
Local Model | 31.1+0.1 20.1+£0.2 13.5£0.2 89403 861+01 924+01 89.1+01 29.0+03 494+04 359+0.3
+MLE | 53.0£0.9 38.0+0.6 275+0.5 199+£04 89.1+00 945+00 91.8+00 483+05 542+14 504409
+LoRD | 53.1+1.1 382409 278+0.7  202+0.5 89.1+0.1 945401 91.7+0.1 483+0.7 535+14 50.2+0.9
Data to Text: CommonGen (Lin et al.||2020) with 64 query samples
Victim Model 333 18.5 11.1 6.9 913 92.1 91.7 33.6 40.7 36.1
Local Model | 12.2+0.0 6.5+0.1 3.8+0.0 234+0.0 83.0£0.0 89.7+£00 86.2+00 14.6+0.1 | 462%£0.2 21.6+0.0
+MLE | 324+20 183+13 109+1.0 6.6+0.7 842+0.1 91.7£0.0 87.8+0.0 31.7+24 41.1+04 351+16
+LoRD | 32.14+1.3 18.04+£0.9 10.7+0.5 644+03 841+00 91.6+01 87.7+00 314411 403+0.9 346+0.9
Summarization: TLDR (Kirk et al.}|2023) with 64 query samples
Victim Model 11.9 5.0 2.6 1.5 859 88.4 87.1 13.4 30.9 18.4
Local Model 6.9+0.0 32+0.1 1.7+ 0.0 1.0£00 81.0+0.1 87.6+00 84.1+00 105+01 41.1+0.1 164+0.1
+MLE | 10.6 £0.5 48+0.2 2.6+0.1 1.6+1.1 836407 884+02 859+05 143+05  327+£11 189404
+LoRD | 10.24+0.3 4.5+0.1 24401 14400 84.14+0.1 883+0.1 862+01 128+03 33.2£09 18.04+0.2
Summarization: CNN Daily Mail (Hermann et al.||2015) with 64 query samples
Victim Model 204 10.8 6.4 4.1 86.4 87.8 87.1 224 40.8 28.2
Local Model 4.9+0.0 3.6+0.0 2.74+0.0 21400 80.5+0.0 883+00 84.2+00 109+0.0 79.1£0.1 18.8+0.0
+MLE 51+0.5 3.7+0.0 2.8+ 0.0 22400 80.6+0.0  883+£00 843+00 11.34+0.1  786+0.1 193+0.1
+LoRD 5.3+0.0 3.9+0.0 2.9+0.0 23400 80.6+0.0 884+£00 843+00 11.34+0.1 | 786£0.2 19.1+0.1
Summarization: Samsum (Gliwa et al.||2019) with 64 query samples
Victim Model 20.7 11.4 6.9 44 88.1 91.7 89.8 242 50.5 31.6
Local Model 89+0.2 5240.1 3.3+0.1 21401 809+02 90.1+01 852402 17.0+0.3 [ 61.8£0.5 255+0.4
+MLE | 16.9+1.1 94+0.7 58+04 3.7+£03 839+£09 909+06 87.3+£08 252408 498+25 31.0+1.7
+LoRD | 18.4+0.7 10.14+0.3 6.0+0.2 3.7+01 849+0.1 91.5+0.1 881+0.1 232+08 49.7+15 30.2+06

Table 1: MEA comparison on three tasks, including structured text generation, data to text, and
summarization. We use GPT-3.5-turbo as the victim model, and Llama3-8B (lla, [2024) as the local
initial model. The intensity of the red or blue color corresponds to the degree of underperformance or
outperformance relative to the victim model. More experiments are in Table[2]and Table 6]

Watermark Resistance. Another limitation of prevalent objective functions, such as MLE and KD,
is their susceptibility to watermarks (Cong et al., 2022 |He et al., [2022; 2021} [Kirchenbauer et al.,
2023) of output contents, i.e., while stealing knowledge from LLMs via responses y;., watermarks
within them will also been passively inherited by the local model. Consequently, the generated
sentences of the local model may possess some residual of watermarks, which might be detected as
evidence of stealing.

Despite introducing current watermark removal techniques, we indicate that LoRD can mitigate the
influences of watermarks naturally, as it does not learn the likelihood of victim models’ responses
Yovic ~ Dy directly, but relies on y,;. to determine positive and negative labels from responses
generated by the local model.

As depicted in Equation E LoRD guides the local model to learn the likelihood of Y:_—1 instead
of y i, which means that it will not been influenced by watermarks contained in y,;. explicitly.
However, the regularization term L,..,, as well as the replacement yj_l < Yuic for a cold start, will
indeed introduce watermarks from y,;.. To address this, we can reshape Equation|l I|into a convex
combination of the objective function and the regularization, i.e.,

L =E[(1— A1) - (logPs, (y;"1|x) — logPs, (y, 1|x)) + A1 - clip(logPs, (yuic|x) — logPs, (y, 1 [x))],
where 0 < A\; < 1 is the hyperparameter.

When A; is small, the convergence of LoRD will substantially focus on maximizing
Po,(y; 11x)/Ps,(y;_|x), with which the local model will exhibit a strong watermark resistance
ability. When )\; increases, LoRD will tend to rely more on the guidance of y,;., resulting in a higher
risk of introducing watermarks. In the case of \; = 1, the local model will converge to the victim
model without any exploration and watermark resistance, which might suffer from the same level of
defense by watermarks.

From a global perspective, L,; represents the exploration and the locality learning ability of LoRD,
which can mitigate the influences of watermarks. On the other hand, £,.4 ensures the stability of
the training procedure. Therefore, £ characterizes a trade-off via A; between the stability and the
diversity during stealing, and Equation [TT|can be seen as a special case of £ with A; = 0.5.
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5 EXPERIMENTS

5.1 SETTINGS

Datasets. We evaluate MEAs on five mainstream natural language generation (NLG) tasks, including
machine translation, text summarization, question answering, structured text generation, and data-to-
text. We select ten representative datasets: WMT16 (Bojar et al.,[2016), TLDR (Kirk et al., 2023,
CNN Daily Mail (Hermann et al., [2015)), Samsum (Gliwa et al.,[2019), WikiSQL (Zhong et al.l 2017),
Spider (Yu et al.}2018), E2E-NLG (Dusek et al.| 2020), CommonGen (Lin et al., 2020), PIQA (Bisk
et al.} 2020), and Truthful QA (Lin et al.,|2021) as benchmarks for our domain-specific evaluation.
These datasets cover most of the downstream tasks in natural language generation. We compare not
only the stealing efficacy of different MEA methods, but also the stealing difficulty across different
downstream tasks. Table [5]lists all datasets and backbones used in the paper.

Baselines. As described in Section[2.2]and[4.1] we compare LoRD with two types of model extraction
methods: maximum likelihood estimation (MLE) and knowledge distillation (KD). For MLE and
LoRD, we conduct MEAs under pure black-box attack settings (see Appendix [D]for more details of
the threat model). For KD, the predicted distributions are used specifically under grey-box settings.

Metrics. For text generation tasks, we evaluate extracted models with a semantic-level and two
lexical-level metrics, BERTScore (Zhang et al., [2020), BLEU (Papinenti et al., [2002), and Rouge-
L (Lin}, 2004), all of which are commonly used in the NLG evaluation. Regarding reasoning tasks
(e.g., QA), we use Precision, Recall, Accuracy, and F1 score as their evaluation metrics.

Implementation Details. We use Llama3-8B as the local model to learn the outputs generated by
victim models. We set sequence length varying 128 to 4096 depending on the selected tasks, and
learning rate 3 x 10~°. Our experiments run on 2 x 80GB Nvidia Tesla A100. We execute each
training five times and record the mean values and standard variances in the following sections. For
LoRD, we set 7 and 75 to 0.8 and -0.1, respectively. Besides, we set the period number N; to
512, and use A\; = 0.5 as the default formation of the loss function. The victim model’s response,
Yvic, 1S generated by token sampling with a temperature of 1, the default setting for current LLM
APIs. The local model also uses token sampling, but with a temperature of 0.8 and Top-P probability
clipping (Holtzman et al.,[2019) at 0.98. We use this setting to enhance the stability of generation
in local models. Note that we have not incorporated sampling strategies with their corresponding
hyperparameters into the design of LoRD. We believe that MEAs considering sampling strategies
could inspire more powerful MEA methods, and we leave these improvements for future work.

5.2 STEALING DOMAIN-SPECIFIC KNOWLEDGE

We first select GPT-3.5-turbo, a checkpoint of ChatGPT, as the basic victim model. This is because
its API provides probabilities of candidate words when generating responses. We employ Llama3-
8B (llal [2024), a small LLM with only a 4.5% fraction of parameters than the victim model as our
initial local model. Though this LaViSH (Large-Victim-Small-Heist) setting contradicts previous
assumptions (Tramer et al., 2016; [Papernot et al., 2017; Jagielski et al.,2020) in MEA that the copy
model should usually be “wider” or “larger” than the victim model to contain its knowledge, we
believe this setting is more applicable in real world scenarios (Li et al.,2023b). Appendixprovides
more detail for this setting. Besides, the number of query times selected in this section is less than
100, a significant degradation compared to previous studies (L1 et al.,2023b)). This is because, in our
experiments, copy models can easily learn the knowledge with a few training samples and then exhibit
only slight improvements afterward. More discussions on query times can be found in Appendix

Fidelity and limits on stealing. We first examine the fidelity and limits of a small LLM to steal
commercial LLMs. As shown in Table[I] we list the performance of the victim model and the local
model on three tasks, and provide two MEA methods, local model fine-tuned with MLE (+MLE) and
LoRD (+LoRD), respectively. In Table|l] cells highlighted in red indicate poorer outcomes compared
to the victim model, whereas blue signifies results that are on par or potentially superior to the victim
model. The intensity of the red or blue color corresponds to the degree of underperformance or
outperformance relative to the victim model.
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We can see that the original performance of the local model is significantly lower than the victim
model, i.e., with a 50% decrease in BLEU-4 or 10 ~ 25 decrease in Rouge-L. Once we employ
MEA:s in the local model, its performance rapidly boosts to nearly the same as the victim model, with
0 ~ 40% points of gaps in BERTScore. These gaps are negligible (e.g. < 1% in summarization)
in some tasks, but remain eminent in other tasks such as reasoning, structured text generation,
and machine translation. This phenomenon indicates that domain-specific model extractions can
effectively learn domain-specific abilities from victim models but may perform poorly if downstream
tasks require extra knowledge, such as machine translation and QA. We provide a stealing comparison
among different local models in Table 9]

Comparison among stealing methods. Tables

[6l and 2] compare the stealing efficacy be- SR

tween MLE and our LoRD. The results consis- v et / X
tently show that LoRD significantly outperforms 16 ,,"'LFHP J |
MLE under the same MEA settings. Besides, for o N \
challenging tasks such as reasoning and transla- 2 1 : — T %, [HARPT
tion, LoRD exhibits much higher improvements, g 14 B el [ R :
which demonstrates that it can address the pref- 2 e Tl
erence overfitting problem discussed in Section E 13 - R

and do enable the local model to learn the ¢ = “c=eofro™t = “HaR .
task ability from victim models. However, we " & Finnish-to-English E2ENIG N HFLP s,
also observe that for some tasks (e.g., summa- 11 ATOR T N
rization), LoRD shows no statistical difference CNN Daily Mail Spider 0
from MLE, probably because these tasks are rel- o, (45 088 090 002 094 0096 535" 1.00
atively simple, where merely MLE has already Fidelity

achieved comparable results to victim models.

Figure 5: Spectrum of the fidelity and performance-
up on extracting different downstream tasks. Cur-
rent datasets can be divided into three groups: high
fidelity and high performance-up (HFHP), high fi-
delity but low performance-up (HFLP), and low
fidelity but high performance-up (LFHP).

Tasks difficulties comparison. Based on previ-
ous analysis, we observe that the performance
and limitations of MEA depend on the category
of tasks. Additionally, sometimes datasets in the
same task exhibit significant differences in steal-
ing. We put forward two metrics to measure task
difficulties: the fidelity that measures extraction
efficacy compared to victim models, and the performance-up, which assesses the performance gain
before and after stealing for a given local model. Formally, given a test set D;, = {(x,y)} and a
corresponding metric M (hypothesis, reference), the fidelity (F) and performance-up (P) of the
local model 6y, can be defined as:

Z’D 'M(YNt, ) Y) Z’D M(me Y)
F = X, ¥y EDte ,P — X, ¥y EDte , (12)
> M(Yvicey) > Mlyo.y)
X,y €Dz X,y€D+e

where yn, ~ Py, (+X), Yo ~ P, (:x), and y,ic ~ Py, (-[x) denote the sampled responses from
the trained local model (6, ), the initial local model (6), and the victim model (6,;.), respectively.
In Figure[5] we illustrate a “spectrum” of extracting various downstream tasks based on these two
metrics defined in Equation [I2] The figure can assist in recognizing and defending commercial
LLM’s knowledge.

From Figure[5] we observe five tasks forming the following three scenario groups and datasets coming
from the same tasks are mostly in the same group:

* High fidelity and high performance-up (HFHP). These tasks are challenging for a pre-trained
model but can be effectively learned with the guidance of victim models. This group includes
two tasks: data-to-text and structured text generation.

* High fidelity but low performance-up (HFLP). The initial local model already achieves a
comparable performance to the victim model. QAs and summarization are in this group.

* Low fidelity but high performance-up (LFHP). While MEAs significantly improve the local
model’s performance, gaps between the local and victim models remain difficult to bridge
with domain-specific extraction alone. Machine translation is a representative task whose
reasons are explained in Section
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5.3 RESISTANCE TO WATERMARKS

Current LLM watermarking methods have been shown (Kirchenbauer et al.,|2023) to be robust against
commonly used erasing strategies (e.g., rephrasing), making watermark removal a distinct challenge.
In this section, we validate the inherent resistance of LoRD to watermarks, suggesting that LoRD is
preliminarily resistant to text watermarking. As described in Section[d] we highlight that LoRD can
extract the victim models’ knowledge with two terms: the straightforward likelihood learning term
log Py, (Yuvic|x) —logPs, (y;_,|x) and the exploration term log Py, (y;" ; |x) —logPy, (y;_,|x), where
we can tune the hyperparameter A; as shown in £ to trade off the exploration and the convergence
speed. Typically, a lower A; encourages the model for conducting a slower but more diverse and
localized exploration from its own generated text yf_l, potentially enhancing watermark resistance.
In this subsection, we evaluate this analysis empirically.

Watermarking Details. Unlike previous exper-
imental settings in Section [5] here we cannot EIMLE ~ -©LoRD

utilize commercial LLMs as victim models due G\S—G\S\KE
B = fR T E-EARE
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In this way, given the hypothesis H that fexts Ar A
are generated without the knowledge of the

green word set, we can estimate the probability Figure 6: Comparison of watermarks resistance.
Hj occurs (P-value) and the Z-score of it for

these texts. A high P-value, among with a low

Z-score, indicates stronger watermark resistance for MEA algorithms.

Result Analysis. As depicted in Figure[6] we evaluate the watermark resistance for both MLE and
LoRD, and demonstrate how LoRD’s performance varies with different values of A;. The Z-score
of LoRD witnesses a consistent increase as Al arises, indicating that the “confidence” in rejecting
the hypothesis, i.e., the risk to be suspected, arises when A; increases. This finding coincides with
the analysis in Section However, \; = 0 is a abnormal point in WMT (de-en), which might be
because it disables the regularization term of LoRD’s loss function. For tasks the local model does
not own enough enough knowledge, it will lead to a significant performance degradation. Besides,
we observe that the P-values of LoRD are generally higher than those of MLE when \; is below
0.8, indicating that LoRD typically exhibits stronger watermarking resistance than MLE in most
situations. It is noteworthy that this enhanced resistance seems not a “tax” of MEAs efficacy, as the
Rouge-L (F1) scores of LoRD consistently surpass those of MLE and do not exhibit a significant
negative correlation with their P-values.

6 CONCLUSION

In this paper, we have focused on the extraction problem of commercial large language models.
We proposed LoRD, a practical and realistic extraction algorithm which is consistent with the
alignment procedure of large language models. Our analysis proved that LoRD can reduce the query
time significantly and mitigate the certification of current watermarks naturally, surpassing existing
MEA algorithms’ capabilities. Extensive experiments on domain-specific stealing demonstrated the
superiority of our method.

10
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7 ETHICAL CONSIDERATIONS

As discussed in Section[I] MEAs are becoming increasingly prevalent in industrial settings and have
already been executed, yet there remains a critical gap in understanding which specific tasks are
more susceptible and what capabilities are necessary for effective executions. This lack of knowledge
exacerbates the challenges faced by LLM maintainers in safeguarding their systems. Our research can
contribute to that. Besides, the theoretical problem we address (as shown in Section E[) offers a novel
and insightful perspective on the nature of this threat. Based on these two points, we believe the
benefits of our paper outweigh potential harms, which aligns with the principles of the Menlo
Report (Bailey et al.,2012) on ethics. Additionally, we have submitted an anonymous version of
the paper to the maintainers of the victim models used in our study to assist in improving their model
security.

It is important to acknowledge, however, that the algorithms we propose could inadvertently enhance
the efficiency of illicit extraction efforts by adversaries. To mitigate this risk, we have introduced
and analyzed two defensive strategies in Appendix [8] assessing both their effectiveness and potential
vulnerabilities under adaptive attack scenarios. This ensures a comprehensive approach to bolstering
the security of LLMs.

8 POTENTIAL DEFENSES

Query Detection. One approach to effectively prevent the attack of LoRD is by detecting the
distribution of query texts. This is because LoRD, similar to current MEA algorithms, makes
no improvements to query samples, indicating that it can be detected by analyzing the statistical
information of the adversary’s queries, such as the number of queries, distribution of query contents,
and so on. However, this defense is usually resource-consuming, as it requires the LLM provider to
store all query texts of each user. Besides, the potential for false positives could adversely affect the
user experience.

More Powerful Watermarks. While we highlight the watermark resistance of LoRD, watermarking
remains one of the most effective solutions to mitigate MEAs. For example, some model-level
watermarks, such as backdoor-based watermarking (Jia et al., 2021} |Lv et al., 2024), can effectively
certify the theft of DNNs. While model-level (e.g. backdoor-based) watermarks on pre-trained
models raised increasing concerns recently (Peng et al. [2023a} |Gu et al.l [2022} [Li et al., [2023al),
model-level watermarking on LLMs remains preliminary. Besides, this technique might not work
when the adversary only steals a subset of knowledge in which no backdoor is embedded.

11
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Figure 7: Comparison of query efficiency between MLE and LoRD on PiQA, where the green
horizontal line represents the performance of the initialized local model. We increase query times
for each method until reaching their bottlenecks. It can be found that the model extracted by LoRD
typically performs a higher accuracy than MLE under the same number of queries. At the same time,
LoRD reaches bottlenecks significantly earlier, reducing about 87% query cost compared with MLE.

A SUPPLEMENTAL EXPERIMENTS

A.1 SCALING THE STEALING

In this subsection, we explore essential capac-

ities to steal domain-specific knowledge from ModeiMemic | BLEUT BLEU4 RougeL __ BERTScore
s Czech to English with 16 query samples
LLMs. We first analyze the influence of query ———w— er 3Te e o5
times for the adversary, then compare the effi- _ Local Model 0.255 0.105 0.348 0.868
e . . +MLE | 0.535 £ 0.0 0.245£0.01 0526 £0.01 0.899 % 0.00
cacy when utilizing different sizes of the local +LoRD | 0.545+0.01 0.249+0.00 0.5380.01 0.906 = 0.00
1 German to English with 16 query sample
model, anq ﬁnally compare the fidelity among Victim Model 0.661 0377 0.652 0.965
\'% . Local Model 0.276 0.130 0.359 0.877
different victim and local models

+MLE | 0.578 £0.02 0.3024+0.01 0.573+0.02 0.904 £0.01
+LoRD | 0.587 £0.00 0.308 £0.00 0.589 4 0.00 0.917 4 0.00

Finnish to English with 16 query samples
A.l.1 QUERY TIMES Victim Model 0.558 0.252 0.557 0.953
Local Model 0.242 0.085 0.320 0.866
: . : +MLE | 0.4444+0.03 0.1734+0.02 0.449+0.03 0.905 + 0.00
We first investigate the influence of query num- +LoRD | 0.498 £0.01 0.196+0.00 0.485+0.01 _0.905 + 0.00

bers on MEAs. Specifically, we sample query
examples randomly from the query dataset, start-
ing from 4, and incrementally increase it until
the performance of the learned model stabilizes.
Figure[7illustrates the stealing efficacy of LoRD
and MLE on PiQA.

We observe that the scores of MLE and LoRD

consistently increase as the query number rises,

showing that a larger query number can improve

stealing efficacy steadily until reaching their empirical upper bounds. Additionally, LoRD typically
obtains a higher score than MLE with the same number of queries, and reaches bottlenecks earlier,
which can reduce the required query numbers by 87% compared to MLE. Moreover, in Figure
the performance of LoRD exhibits a relatively lower standard variance than MLE, indicating a more
stable training procedure.

Table 2: MEA comparison on WMT16 (Bojar et al.|
2016) among MLE and our LoRD methods, where
we use GPT-3.5-turbo as the victim model, and
Llama3-8B (llal 2024) as the local initial model.

A.1.2 SCALES OF LOCAL MODELS

As shown in our threat model (see Appendix [D), we assume the adversary is stealing existing
commercial LLMs with a small local model. This raises the question of selecting an appropriate
interval of the local model’s size. To address this concern, we illustrate the correlation between the
local model’s size and extraction efficacy on two machine translation tasks, Russian-to-English (ru-en)
and German-to-English (de-en), as shown in Figure[§] Here, we employ seven OPT models (Zhang
et al.,[2022)) as local models, with parameters ranging from 125 million to 30 billion, to minimize the
interruptions of factors other than model size.

Figure [§] shows a sharp distinction between two machine translation tasks. In the de-en task, the
performance of the local model increases steadily with model size, while this trend is not evident
in the ru-en task with model size smaller than 30 billion. Nevertheless, the performance of a
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Figure 8: Experiments varying different model parameter scales.

30 billion parameter learned local model in ru-en cannot even be comparable to that of a 1.3
billion parameter local model in the de-en task. This phenomenon suggests that for tasks requiring
commonsense knowledge, such as machine translation, the local model should at least possess
foundational knowledge of the task (e.g., pre-trained on Russian texts) to learn from victim models
effectively. Besides, experiments in BERTScore (F1) show that sometimes LoRD may underperform
MLE when the local model has fewer than 1 billion parameters, demonstrating that it is challenging
to bootstrap LoRD’s exploration with a very small local model. By summarizing the increase in
LoRD’s curves, a model with 2.7 billion appears sufficient to steal domain-specific knowledge from
commercial LLMs.

A.1.3 FIDELITY UNDER DIFFERENT VICTIM AND LOCAL MODELS

We then evaluate the fidelity of extracting dif-
ferent victim models using various pre-trained Rouge.L (F1) BERTScore (F1)
local models. Specifically, we select GPT-3.5,
GPT-4, and GPT-40 as victim models, and
employ five state-of-the-art open-source mod-
els, Phi-3 (3.8B), OPT (6.7B), Qwen-2 (7B),
Mistral-V3 (7B), and Llama-3 (8B), as local
models, as shown in Figure E[

Local Models

Horizontally, while GPT-4 exhibits a consis-
tently lower eXtraCted ﬁdelity Compared to the GPT-40 GPT-4 GPT-3.5 GPT-40 GPT-4 GPT-3.5 GPT-40 GPT-4 GPT-3.5
other two victim models, vulnerabilities of the Victim Models Victim Models Victim Models
three victim models are generally similar. Ver-

tically, fidelity of different local models can be

significantly impacted by their performance. For Figure 9: Fidelity of extracted models with dif-
instance, OPT (6.7B) shows a noticeably lower ferent victim models (GPT-3.5-turbo, GPT-4, and
score compared to the other four models, which GPT-40) and different local models (Phi-3, OPT,
indicates that the initial performance of the lo- Qwen2, MistralV3, and Llama3).

cal model will affect the performance of MEAs.

Besides, Phi-3 (3.8B) achieves a comparable fi-

delity to larger models like Llama-3 (8B), demonstrating that the size of a local model does not
influence final fidelity in domain-specific stealing after 2.7 billion, which corroborates the observation

in Appendix [A-T2]

A.2 VISUALIZATION OF DISTRIBUTIONS

We also investigate the probability distributions in the generation procedure among different extraction
methods. Specifically, we visualize these distributions for four models, the victim model (GPT-3.5-
turbo), the initial local model (llama3-8B), and the learned local models with MLE and LoRD.
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DiaSafety SafeRLHF
Model Toxicity Insult Profanity Severe Toxity Threat Toxicity Insult Profanity Severe Toxity Threat
Llama3-8B (initial) | 14..20 794 835 1.58 2.29 7.92 2.71 2.80 0.30 1.49
+MLE 8.31 3.69 431 0.83 1.50 4.87 1.98  1.66 0.16 1.02
+LoRD 6.45 281 3.56 0.71 1.34 3.55 115 284 0.38 0.79

Table 4: Comparison on safety alignment extraction tasks.

As plotted in Figure [I0] each row in the subfigures refers to the distribution when generating the
i-th token, with each column element indicating the probability predicted for the corresponding
token index. We limit the visualization to no more than five token probabilities as currently only
GPT-3.5-turbo provides the token prediction probabilities during generation, with a maximum of 5
candidate tokens (ope).

From Figure [I0] we can see that both MLE
and LoRD successfully redistribute the genera- victim model _ Local Model LoRD MLE
tion of the initial local model into a distribution )
similar to the victim model’s, where probabil-
ities, especially Top-1 tokens, have been well
inherited in the extraction. This phenomenon
supports our analysis in Proposition 2] How-
ever, distributions of MLE extracted models are
consistently sharper than LoRD’s, which aligns
with our analysis in Section[4.2] where we claim
that MLE leads local mOdelS to OVCI'ﬁt to the Top-5 Tokens Top-5 Tokens Top-5 Tokens Top-5 Tokens
preferred sentences (i.e., Top-1 tokens), namely
PO, and thus to disrupt the original distributions,
leveraging unusual low probabilities for other
token indexes. The reason why LoRD can be
resistant watermarks, i.e., tokens in Top-1, can
also be derived from this discovery.

(Train Set)

Generated Token Generated Token

(Test Set)

Figure 10: Token generation distributions of four
models, namely the victim model, the (initial) local
model, and the local model learned through LoRD
and MLE, respectively. We visualize their loga-
rithmic probability on examples sampled from the
train set and test set, where a deeper color indicates
To compare MLE and LoRD accurately, we a higher probability.

quantize the entropy of these distributions, and

compute the KL divergence (Dkr), and the

Spearman Correlation (Spear. Corr.) with respect to the victim and initial local model. As shown
in Table 3] while the MLE extracted model exhibits a lower KL divergence (i.e., high distribution
similarity) with the victim model than LoRD’s on the training dataset, its KL divergence becomes
comparable to LoRD’s on the test set. Meanwhile, its Spearman correlation significantly decreases
from 0.78 to 0.27, which shows that MLE cannot effectively imitate prediction behaviors of the
victim model when encountering data beyond the training dataset.

A.3 STEALING SAFETY ALIGNMENTS

Besides of the domain-specific model extraction,
we also propose the safety alignment extrac- To Victim Model T Tnitial Local Model

. . Models\Metrics Entropy D T Spear. CorT Dit Spear. Corr.
tion. Specifically, we select two popular safety Ot irtining dataset -

1 1 Initial Local Model 0.395 0.503 0.620 - -
alignment dat.asets for the experiments, namely 8L 0oy o 016 0680
SafeRLHF (Ji et al., [2024) and DiaSafety (Sun +MLE 0271 0.029 0.780 0.051 0.540

On the test dataset
et al., 2022)), to assess the Safety of the gener- Tnitial Local Model | 0.269 0471 0.680 B B
ated responses. We employed PerspectiveAPI +LoRD e 3232 e oT

to automatically evaluate the safety of the re-

sponses. We select five key aspects of safety Table 3: Quantization analysis on distributions. A
probabilities: Toxicity, Insult, Profanity, Severe low KL divergence or a high Spearman correlation
Toxicity, and Threat. In these categories, alower indicates a high similarity.

score indicates better safety performance. For

the LoRD model, we have retained the same hyper-parameters as those used in our domain-specific
experiments to ensure consistency.

“https://perspectiveapi.com/
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Figure 11: Comparison of learned joint prediction distributions among the victim model (a), local
models are learned with MLE (b) and LoRD (c). Simply obtaining the tokens from the victim
model (solid black squares), MLE may only memorize specific responses and build a complicated
decision surface, resulting in preference overfitting. In contrast, LoORD further explores the candidate
generation paths (dashed arrows and squares) under the guidance of the victim’s generation, which is
expected to better approximate the victim model in terms of generalization ability, especially under a
limited query budget.

As shown in Table ] we can see that both MLE and LoRD significantly reduce the harmful infor-
mation after the stealing procedure. However, LoRD consistantly outperforms MLE on most of the
indicators, suggesting that it can achieve better performance in the alignment task.

B PROOFS

B.1 PROOFS OF PROPOSITIONI]]

As we described in Section [2] both existing methods and LoRD are learned from the victim model’s
response y,;. and the corresponding probability distribution Py . (-|x) € RY, where V' denotes
the vocabulary size. Therefore, we first investigate how the local model is learned to emulate the
distribution of the victim model,Py,,_(:|x), under the following three stealing strategies.

Expected Distribution of MLE. We can first reshape the MLE loss into a special formation of
Kullback-Leibler divergence with labels of one-hot distributions, that is,

N
Lee=— Y logP(yuiclx) = > > Drrlly,. [P yoie )l (13)
x7yNDt7‘ xnyDtr ]

where 1, . is a one-hot vector in which only 1, [yuvic ;] = 1 and all the other elements are 0.
Equation @demonstrates that MLE learns to maximize the probability of y ;. ;, without explicit
constraints on probabilities across other dimensions.

Expected Distribution of KD. Following a previous work (Hinton et al.}2015), the objective function
of KD is

Lya = Drr[Po,. (10| Po(-[x)] +T% - D [SM(Py,,. (-1x)/T)ISM(Py(-|x)/T)],  (14)
where SM(+) represents the softmax function, and T' > 1 denotes the temperature to smooth the
targeted distribution Py, (-|x). As described in Equation knowledge distillation aims to align
Py(-|x) with Py, (-|x) in both the original and the smoothed probability across all dimensions,
which is exceptionally comprehensive among these methods.

Expected Distribution of Alignments. Replacing Equation [6] with Equation [5] we can merge the
optimization target of LLMs’ alignments as

, Py (y"[x)/Pos(y~|%)
min — Z o (log 2 )

0 (x,y+,y— )~Drref init (y* |X>/P9init (y~ |X)

= max Z log Py, (yt|x) — logPs. (y ™ |x),
(x,yt,y=)~Drref

5)
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where 6 denotes the expected parameters of the models as

P (y|%) = —7—Pa,.., (y|x) - ex o=y, (16)

1
Z(x)
We pr0v1de a detailed derivation for Equation[I6]in Appendix [B.2] By replacmg Equation[T5] with
Equatlon , the expected distribution can be represented as r; ;- P, ,, (-|x), in which r; ; indicates the

wrapped distribution gain. This distortion aims to maximize the ratio Py (y;r x, ¥yt D/ Po(y; 1%, 52;5),
and leave the probabilities in other dimensions unconstrained directly.

Expected Distribution of LoRD. Similar to alignments, the expected converging procedure by the ob-
jective function L;; is also intended to maximize the ratio between positive samples and negative sam-

ples, i.e., Py, (y; %)/ Ps, (y;_,|x). Meanwhile, the regularization term P, (yic|X)/Ps, (y;_1|%)
will guide the models to maximize the ratio between y,;. and y,_ ;. As the “standard response” to
be learned, y,;. can be viewed sufficiently as a positive example. Therefore, we can derive that
the optimization target of LoRD is consistent with RLHF’s optimization, i.e., both encourage local
models to maximize the probability proportion between positive and negative samples.

Similar to Equation [I6]in which the optimized model can be seen as the distortion of the original
model Py, .,,in LoRD the optimized model can be regarded as the distortion of the local model Py,
with Py, (-[x) = r} ; Py, , (-[x) at each step ¢, where the distortion term r{ ; is intended to jointly

maximize Py, (y;~,|x)/ P, (y;_,|%) and Ps, (yuic|X)/Ps, (y;_|%), while leaving the probabilities
in other dimensions unconstrained directly.

B.2 THE DEDUCTION OF EQUATION [T6]IN PROPOSITION(I]

From Equation [6] we can get that

mg\,x Z Rg¢ (%,¥) — BDkL[Po(y]x)|| Pos iy (¥1%)]

x~Dy

= max Z Z Ry, (x,¥) — BllogPs(y|x) — logPs,,, (¥|x)]

x~Dq y~Py(-|x)

| Pi(ylx)
S 323 R oy tloep RS
x~Dq y~Py(-|x) v

. 1 Po(y]x)
=min 3 3 —loglexp( g1, (5 ¥)) +log 5 =50 S
x~Dg y~Pg(-|x) :

= mein Z Z log T Po(ylx)

x~Dgy y~ Py (-|x) exp(Equs (X7 y)) P (Y|X)

If we define a partition function Z(x) with the formation of

R\9¢ (X7Y))? (17)

=> Pimt()’|x)eXP(%
y

we can reformat the optimization target as

Sl D — L

x~Dy y~Pp(-|x) exp(ERQ;s (x, y)) P, (y|X)

= min Z Z Z(x) - Py(ylx)

exp(%R% (X? Y)) ' Pemn (Y|X)
—logZ(x).

x~Dg y~Py(-|x)

If we mark - )exp( Ry, (x,y)) - Po,,,.(y|x) as Pp.(y|x), then we have
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: Z(x) - Po(y|x)
min Z Z log —logZ(x)

1 .
x~Dq y~Pp(-|x) exp( R9¢> (x y)) Py, (y|x)

= mm Z Z (y x) —logZ(x).

x~Dq y~Py(-|x)

Because Z(x) is independent to y, we can deduct that

mm Z Z % )) —logZ(x)

x~Dy y~Pp(-]|x)

P,
—win | Y 1ogpj*(ﬂ ~ logZ(x) as)

x~Dy | y~Pa(-|x) ()

= min 37 Dice[Po(y)l [P (y )] ~ logZ ().
x~Dy,

As we know that Z(x) does not contain 6, the above optimization target actually minimizes the
KL-divergence between the distribution of Py and P, demonstrating that 6 is the optimal value of
0 that satisfies

P (ylx) = %exp(%zm (.)) - P, (y]%). (19)

Based on equation we can see that the optimal distribution of 8 is built upon Py, .. with a

distortion, as we discussed in Section [4.1]

init

B.3 PROOFS OF PROPOSITION[Z]

Guarantee of MLE. From Equation @] we can obtain that when L. decreases to 0, the KL diver-
gence between Py(-|x) and Py, (-|x) decreases to 0, indicating that Py(-|x) equals to Py, (:|x).

Guarantee of KD. As we know, D1 (p,q) > 0V p and g. Therefore, if L4 shown in Equation
[14]equals to 0, then both D 1,[Py(-|x)||Ps,,. (-|x)] and Dg 1, [SM(Py(-|x)/T)||SM(P,,. (-|x)/T)]
equal to 0. For the latter one, we have

vic

DicLISM(Py,., () /T)|[SM(Py -}x)/T)
_F E o exp(Po(ylx,y,)/T)/ Zy/eyeXP(Pem(y\X,yp)/T)
¥ P PSRy 108 o (P, 1%, ¥/ T) ) X ey xP(Pa(ylx, y,)/T)

exp((Po (y]%, ¥p) — Louic (Y%, ¥p))/T)
2yrey XP(Poi (Y%, ¥0)/T)/ 2y ey xp(Polylx, yp)/T)
where we can observe that only when Py (+|x) equals to Py,

... (-|x) can this term reduce to 0. Inte-
grating the analysis of these two terms, we can obtain that L4 = 0 represents the local model’s
distribution converge to that of the victim model.

=EBy~py,, (10Eyey |log

Guarantee of LoRD. When £ shown in Equation equals to 0, the proportion of
Po, (Yuic|X)/Pa,(y;_1|x) and Py, (y;" 1|x)/Pa, (y;_,|x) should limit to —co. As we know that i) in

a distribution 3" Py, (-|x) = 1 and ii) y;" , is a dynamic positive response generated at each period,
we can deduct that when £ = 0 there must be y ;. = y; 1, i.e., Pa, (Yuic|x) = Py, (y;|x) = 1 and
Py, (y;_1]x) = 0. Note that this is merely a theoretical limit that cannot be reached, because y,_,
will not be sampled if its probability is 0, and y;" , usually doesn’t exhibit a significant distinction to
¥;_; when sampling.
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Datasets\ Models | Links

PIQA https://huggingface.co/datasets/piga

Truthful QA https://huggingface.co/datasets/truthful_ga

WMTI16 https://huggingface.co/datasets/wntl6

E2E NLG https://huggingface.co/datasets/e2e_nlg

CommonGen https://huggingface.co/datasets/allenai/common_gen

WikiSQL https://huggingface.co/datasets/wikisqgl

Spider https://huggingface.co/datasets/spider

TLDR https://huggingface.co/datasets/UCL-DARK/openai-tldr-filtered
SamSUM https://huggingface.co/datasets/samsum

CNN Daily Mail | https://huggingface.co/datasets/cnn_dailymail

Llama3-8B | lhttps://huggingface.co/meta-1llama/Meta-Llama-3-8B-Instruct|
Llama3-70B https://huggingface.co/meta—-llama/Meta—-Llama—-3-70B-Instruct
Phi3-3.8B https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
OPT-6.7B https://huggingface.co/facebook/opt-6.7b

Qwen2-7B https://huggingface.co/Qwen/Qwen2-7B-Instruct

MistralV3-7B https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3

Table 5: Datasets and pre-trained model checkpoints used in the paper.

C SUPPLEMENTAL RELATED WORKS

C.1 HUMAN-FEEDBACK-FREE ALIGNMENTS

There are several alternatives to the standard RLHF approach. [Lee et al.|(2023)) propose reinforcement
learning with Al feedback (RLAIF) as a means to diminish the annotation burden associated with the
preference assessments. Besides, there are some approaches, such as direct preference optimization
(DPO) (Rafailov et al., [2023)), that conceptualize the language model itself as the reward model and
thus consolidate Equation [5|and Equation[6]into a unified supervised and preference-based training
task. Since they do not change the primary targets (i.e., maximizing rewards) and optimization
strategies of LLM’s alignments, we only consider the standard formation of alignments for simplicity
in our theoretical analysis.

C.2 LANGUAGE MODELS EXTRACTION

Studies to steal language models originated from the natural language understanding (NLU) models,
such as BERT(Devlin et al.| |2019)), and then evolved to generative language models, especially large
language models recently.

Krishna et al.[(2020) highlights early recognition of model extraction threats in language models. By
constructing text inputs with randomly vocabulary sampling, they successfully extract the weights
from BERT-based APIs. Besides, [Rafi et al.| (2022) investigate the feasibility of side-channel model
extraction attacks, revealing that by analyzing extra signals from GPU kernels, one could accurately
steal the model architecture and its parameters. Subsequent research (Xu et al.| [2022) has thoroughly
investigated the strategy of ensembling victim models to train a competitor model that surpasses its
teachers.

The exploration of generative language model extraction is still in its infant stage, with only a handful
of studies thus far. Wallace et al.[(2020) investigate imitation attacks on natural language models. By
designing monolingual query texts and collecting responses, they successfully extract the knowledge
from a simulated machine translation model under the black-box settings. This research exhibits
that slight architectural differences will not influence the extraction between language models. [Li
et al.| (2023b)) also explores the potential risks of stealing the code-generation abilities of LLMs into
smaller downstream models. Unlike previous research (Wallace et al.l 2020), this is the first study
that selects LL.Ms as targets. By collecting large-scale domain-specific samples, they fine-tune a
7-billion local pre-trained model with them and show the similarity between the victim and local
models in both performances and adversarial samples. However, these two studies employ the MLE
loss (Equation |3)) as the MEA method, neither considering whether MLE is compatible with LLMs’s
training, especially the alignment procedure shown in Section [2.2] nor addressing optimizations
related to query efficiency and the watermark resistance. Besides, the scope of these studies is limited
to stealing specific knowledge in a few downstream domains. At the same time, most of the critical
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Model/Metric | Accuracy Precision Recall F1 Score
PIQA (Bisk et al.]|2020) with 64 query samples

Victim Model 0.828 0.828 0.827 0.827

Local Model 0.622 0.638 0.621 0.609

+MLE (baseline) | 0.760+0.02 0.771 £0.01 0.760 £0.02  0.757 £0.03
+KD (gre-box) 0.759 £0.02  0.760+£0.02 0.759 £0.02  0.759 &= 0.02
+LoRD (ours) 0.785£0.01 0.795+£0.01 0.785£0.01 0.783 4+ 0.02
Truthful QA (Lin et al.]|2021) with 64 query samples

Victim Model 0.414 7 0.500 0.207 0.293
Local Model 0.391 0.500 0.195 0.281
+MLE (baseline) | 0.381+0.17 0.500 £0.00 0.190+0.09  0.266 £ 0.09
+KD (gre-box) 0.463+0.03 0.500£0.00 0.232+£0.01 0.316 £ 0.01
+LoRD (ours) 0.408 £0.05 0.500+0.00 0.204£0.03 0.289+0.03

Table 6: MEA comparison on QA tasks among MLE and our LoRD methods, where we use GPT-3.5-
turbo as the victim model, and Llama3-8B (llal |2024) as the local initial model.

aspects of LLMs and the required extraction capabilities, such as query numbers and local model
scales, remain unresolved.

C.3 TEXT WATERMARKS

In contrast to stealing LLMs, IP protection methods have received considerable attention recently.
By sampling a stealthy but representative “greed word set” on the vocabulary distribution, these
methods (Cong et al.| [2022; He et al.| 2022; 2021} |[Kirchenbauer et al.| [2023)) can remap the generated
words into their synonyms or add the “watermarked” token automatically, and thus effectively certify
the output. Besides, strategies such as integrating embeddings into the representation as the back-
door (Peng et al.;|2023b) or manipulating the probabilities with crafted sinusoidal noises (Zhao et al.|
2022;2023) are also proposed. However, these approaches often presume more stringent conditions
regarding the victim and the suspected models. This paper will further assess the effectiveness of
LoRD and current MEAs in evading these black-box watermarking strategies.

D A DETAILED THREAT MODEL

Adversary’s Objective. The adversary’s objective is to steal the targeted knowledge from LLM:s.
Specifically, we select machine translation, reasoning, data-to-text, structured text generation, and
summarization as the downstream domain-specific tasks. The adversary aims to develop a query-
efficient MEA algorithm, since the amount of input and generated tokens will be counted as the costs.
Additionally, the MEA methods are expected to be watermark-resistant, i.e., they are highly desired
to reduce the risks of exposure to unauthorized stealing.

Targeted Models. We select Llama3-70B, GPT-3.5-turbo, and GPT-40 as the victim models in this
paper. Unlike previous works that only deployed simulated local victim models (e.g., OPT (Zhang
et al.,|2022)), our selections aim to expose the stealing threat on realistic Al services. Besides, our
target models are specifically constrained to LLMs fine-tuned with alignment methods (e.g., RLHF)
since they are not only state-of-the-art solutions now but also more valuable due to their human-based
alignments.

Adversary’s Capabilities. In accordance with the LLM-based Al service APIs, we identify two
attack scenarios: black-box and grey-box attacks. In the black-box scenario, only textual responses
the adversary is allowed to obtain. At the same time, all other information, such as the temperature,
sampling strategies, and the hidden states of LLMs, are unseen and inaccessible. On the contrary,
a grey-box attack allows the adversary to access the generation probabilities distribution of tokens.
Notice that both MLE and our LoRD method are under black-box settings, and we only adopt
grey-box settings on some particular stealing methods, such as knowledge distillation.

Besides, this paper posits that the adversary usually has worse training conditions than the victims.
Specifically, query times and the scale of the local model available to the adversary are much smaller
than the victims’ training datasets and model parameters. This setting has been adopted in previous
LLMs’ extraction (L1 et al.,|2023b). We call it a LaViSH (Large-Victim-Small-Heist) framework,
which allows us to estimate the upper bound of MEA risks empirically. For adversaries with more

25



Under review as a conference paper at ICLR 2025

Task Instruction

WMTI16 Please translate the sentence from [source language] to English.

PiQA & Truthful QA | Please select the correct answer for the “Question” of Users. Question:
[question] Selection 1: [Selection1] Selection 2:[Selection2].

E2E NLG Please translate the information to a sentence in natural language.
CommonGen Please generate a sentence based on the words provided by Users.
WikiSQL& Spider Please return to me the SQL sentence based on the text (i.e., Question)
and the table information (i.e., Table) provided by the User.

TLDR& SamSUM Please **summarize** the content given by the user.

CNN Daily Mail Please **summarize** the content given by the user.

Table 7: Instructions used in the different downstream datasets.

substantial resources, they can train more powerful MEA-based LLMs by leveraging MEA algorithms
under our LaViSH settings.

E LIMITATIONS AND FUTURE WORKS

MEASs on Multi-modal Models. While this paper delves into MEAs for large language models, it
acknowledges the oversight of the multi-modal attribution of current commercial models (Anil et al.}
2024} |Achiam et al.,[2024) that integrate various forms of data such as text, images, voice, and so on.
The challenge of extending MEA algorithms to accommodate these models, which requires extra
considerations on the unified representation of concepts, remains unexplored. Future work could
focus on developing MEA methodologies sensitive to multi-modal data nuances.

Capacities beyond LaViSH Settings. We utilize the LaViSH setting to describe the model capacity
of adversaries in our threat model (see Appendix [D). However, sometimes, the adversary might
possess comparable or superior training resources to the victims. Though this paper posits that our
MEA algorithms and theoretical analysis are still compatible with such conditions, we concede that
concrete experimental validation and results beyond LaViSH settings are not presented here.

Lower-level Extractions. This study evaluates MEAs at the performance level, i.e., it measures
the extraction effectiveness simply through task performance metrics, or the similarity of learned
distributions to the victim model. This setting is justified, as performance metrics are essential for
evaluating task-related knowledge and the practical application of LLMs. However, it does not
consider the lower-level similarities between the victim and local models. Can we achieve neuron-
level alignments in LLM’s MEAs? How does a LaViSH setting hurt LLM’s MEAs? Is it compatible
to extract a MoE (Mix-of-the-Expert) (Shazeer et al.,|2017) victim model with a dense local model?
These questions are not addressed in this research.
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Algorithm 1 LoRD Algorithm

20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:

36:

37:
38:
39:
40:
41:

: Input:Query dataset D,, local language model 6;,,;;, interface of the victim model Py, ,, (-|),

train period number Vy, threshold values 7 and 7».
// Initialization.
0o < Oinit, Dir <+ 0, Df 0, Dy « 0, < 0;
// Query the victim model.
for x ~ D, do
Yvie < Py, (+[%);
Dtr — Dtr U {(X, Ywics Pe'ui,c (ywc|x))};
end for
// Train local model.
// Initialize the positive and negative datasets.

: Df « D,
: for (X7 Yvic, P@,,ic(yviclx)) ~ Dtr do

Yo ~ Po,(-[x);
D(; — DE U {(XaYE’Peo(ya\X))}§

: end for
: while ¢t < N; do
17:

t+—t+1;
0y < 0r—1;
for (Xv Yuvic, PGM'C (YUic|x)) ~ Dtr do
yi, v ~ Po,(x);
D « Df U{(x,y{)}:
D, < Dy U{(x,y;)}:
end for
// Forward.
for X, yyic,¥{_1,¥7r_1 ~ (Der, Di~1,D;_;) do
AT logPy, (y;|z) —logPs, , (i ]2);
A_ <~ IOgPQt (y;_1|.’L') - 10gP9t71(y;—1|$);
if AT < A~ then
swap(y,_1,¥i_1);
swap(AT,A7);
end if
if Py, (y;,|r) <7 && AT < 7 then
yzj—l < Yvics
end if
// Compute loss with Equation or [LI].

Po(ial¥)y o oo r P (i 1%)
L+ log[%] + C“p(log[%)]

// Backward.
0 < stepUpdate(60;, £);
end for
end while
return 0,

k)
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