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Abstract
As scaling large language models faces pro-
hibitive costs, multi-agent systems emerge as
a promising alternative, though challenged by
static knowledge assumptions and coordination
inefficiencies. We introduce Knowledge-Aware
Bayesian Bandits (KABB), a novel framework
that enhances multi-agent system coordination
through semantic understanding and dynamic
adaptation. The framework features three key
innovations: a customized knowledge distance
model for deep semantic understanding, a dual-
adaptation mechanism for continuous expert
optimization, and a knowledge-aware Thomp-
son Sampling strategy for efficient expert selec-
tion. Extensive evaluation demonstrates KABB
achieves an optimal cost-performance balance,
maintaining high performance while keeping com-
putational demands relatively low in multi-agent
coordination.

1. Introduction
With the rapid advancement of large language models
(LLMs), their applications have expanded to complex tasks
such as cross-domain knowledge integration and multistep
decision-making. Although many LLMs (Achiam et al.,
2023; Liu et al., 2024; Adams et al., 2024; Team et al., 2024;
Bai et al., 2023) demonstrate impressive versatility in vari-
ous tasks through techniques such as in-context learning and
instruction-tuning, their performance remains constrained
by factors such as model size and the limitations of train-
ing data (Jiang et al., 2023; Lu et al., 2024a; Zhang et al.,
2025). Scaling these models further to improve performance
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is prohibitively expensive and often requires retraining on
datasets comprising trillions of tokens.

Multi-Agent Systems (MAS) (Guo et al., 2024) offer a
promising alternative by coordinating multiple specialized
agents to achieve superior performance compared to individ-
ual systems while maintaining manageable computational
costs and budgets. Recent advances in MAS have led to
the development of several frameworks. For example, the
Mixture of Agents (MoA) (Wang et al., 2025) employs mul-
tiple LLMs as proposers to iteratively refine responses, with
a central aggregator delivering the final output. Although
MoA has demonstrated robustness and scalability in deploy-
ment, its computational cost scales linearly with the number
of agents, and significant redundancy and noise become a
problem. For example, on datasets like MATH (Hendrycks
et al., 2021), weaker models in the ensemble often interfere
with the aggregator’s decisions, leading to incorrect results
(see Figure 1).

Alternatively, Mixture of Experts (MoE) frameworks (Gong
et al., 2024; Zhang et al., 2024; Wang et al., 2024a; Tang
et al., 2024), in the context of multi-agent systems, focus
on fostering collaboration among domain-specific experts,
enabling the integration of diverse responses across fields.
This approach reduces redundancy and noise, but is often
limited to predefined tasks. A fundamental limitation of
both frameworks lies in their reliance on static knowledge
assumptions, making them ill-suited to address dynamic
changes in expert capabilities or the emergence of novel
concepts. These limitations highlight deeper challenges in
MAS, particularly in areas such as knowledge understand-
ing, response integration, and dynamic adaptability.

The increasing complexity of real-world scenarios re-
quires systems that can adaptively select relevant knowl-
edge domains and identify the optimal combination of ex-
perts. Multi-Armed Bandit (MAB) algorithms (Mahajan
& Teneketzis, 2008) have emerged as a powerful tool for
tackling such dynamic decision problems. By striking a bal-
ance between “exploration” (discovering new expert com-
binations) and “exploitation” (leveraging known successful
strategies), MAB can continuously optimize system perfor-
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Figure 1. Comparison of MoA and KABB (Ours) on solving a
mathematical problem: MoA’s aggregator is misled by conflicting
weaker proposals, resulting in an incorrect answer, while KABB
employs a knowledge-aware approach to drive related experts and
arrive at the correct solution.

mance. However, traditional MAB approaches rely solely
on historical feedback(Diao et al., 2025), often overlooking
the semantic relationships between tasks and experts.

To bridge this gap, knowledge graphs (Ge et al., 2024) pro-
vide a compelling framework for representing and leverag-
ing these semantic connections. By structuring expert capa-
bilities and task requirements as interconnected knowledge
networks, knowledge graphs enable: (1) precise modeling
of dependencies across knowledge domains, (2) dynamic
tracking of expert capabilities over time, and (3) identifi-
cation of knowledge gaps in task-solving pathways. This
structured representation not only enhances the accuracy
of expert selection but also provides semantic-level guid-
ance for response integration. Together, these advancements
pave the way for more adaptive, efficient, and semantically
informed multi-agent collaboration systems.

In this work, we propose the Knowledge-Aware Bayesian
Bandits (KABB) framework to significantly enhance the co-
ordination capabilities of multi-agent systems through three
core innovations. First, we introduce a customized knowl-
edge distance model grounded in deep semantic understand-
ing, which surpasses traditional keyword-based methods by

integrating concept overlap, dependency path optimization,
and dynamic historical performance evaluation. Specifically,
expert capabilities and task requirements are represented as
vectors, with concept overlap calculated using enhanced co-
sine similarity, dependency path lengths optimized through
hierarchical knowledge relationships, and historical feed-
back dynamically adjusted via an adaptive time-decay factor.
These components are unified into a comprehensive distance
metric, further refined with deep learning techniques to op-
timize the weight parameters.

Second, we develop a dual adaptation mechanism to support
continuous expert optimization and knowledge evolution.
This mechanism employs Bayesian parameter updates with
exponential time decay to mitigate the influence of outdated
data while dynamically adjusting key metrics within the
knowledge graph, such as concept overlap and historical
performance. This ensures that expert capabilities remain
adaptive to the evolving demands of tasks in real-time.

Finally, we design a knowledge-aware Thompson sampling
strategy to improve computational efficiency in expert se-
lection. By incorporating the knowledge distance metric
into the Beta distribution sampling process, our strategy
enables efficient identification of the top-k experts for dy-
namic decision-making. This approach demonstrated signif-
icant improvements in performance and cost efficiency on
leading datasets like AlpacaEval 2.0 (Dubois et al., 2024).
Additionally, a two-stage knowledge graph-guided response
integration process ensures logical consistency by detecting
semantic conflicts and enhancing contextual coherence, thus
substantially reducing contradictory output.

Together, our innovations enable the KABB framework to
effectively address the challenges of dynamic expert co-
ordination, offering a scalable, adaptive, and semantically
informed solution for multi-agent systems in complex real-
world scenarios.

2. Related Work
2.1. Large Language Model Ensemble

The ensemble of large language models (LLMs) has
emerged as an effective strategy to leverage the complemen-
tary strengths of different models and improve performance
across diverse tasks. Early approaches primarily focused
on combining outputs from multiple models through tech-
niques like reranking or probability distribution averaging.
For instance, Jiang et al. (2023) proposed PAIRRANKER
for pairwise output comparisons and GENFUSER for gen-
erating improved responses by synthesizing multiple candi-
dates. Similarly, Huang et al. (2024) explored output fusion
by averaging probability distributions, while FrugalGPT
(Chen et al., 2023) introduced a cost-efficient cascading
mechanism that allocates tasks dynamically across LLMs to
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reduce computational overhead. These methods highlight
the potential of ensembling to amplify individual model
capabilities while addressing computational constraints.

Beyond simple output aggregation, recent research has
shifted toward more dynamic and adaptive frameworks for
LLM collaboration. Mixture-of-Agents (MoA) (Wang et al.,
2025) exemplifies this trend by introducing iterative refine-
ment processes where multiple LLMs serve distinct roles,
such as generating and refining responses through multi-
layered agent interactions. This approach emphasizes the
importance of both diversity and performance in model se-
lection, demonstrating that combining heterogeneous mod-
els often yields superior results compared to homogeneous
ensembles. Additionally, routing-based methods, such as
those proposed by Wang et al. (2024a) and Shnitzer et al.
(2023), optimize efficiency by dynamically selecting the
most suitable model for a given input, while ZOOTER (Lu
et al., 2024b) further refines this concept by distilling model
expertise without requiring full inference for all candidates.
These advancements highlight the progress in LLM ensem-
ble techniques, focusing on efficiency and quality. Building
on this, we propose a framework that integrates knowledge-
aware mechanisms to improve adaptability and semantic
coherence in multi-agent systems.

2.2. Multi-Armed Bandit for Decision Optimization

The Multi-Armed Bandit (MAB) framework balances explo-
ration and exploitation in sequential decision-making under
uncertainty. Classical algorithms like UCB and Thompson
Sampling excel in recommendation and resource alloca-
tion, while Contextual Bandits and adaptive methods refine
decision-making in dynamic settings (Li et al., 2010). Re-
cent advances integrate Large Language Models (LLMs)
to reduce learning regret and enhance decision-making by
leveraging pre-trained knowledge (Alamdari et al., 2024).
Bandit-based reinforcement learning frameworks further aid
retrieval in knowledge-intensive tasks (Tang et al., 2025). In-
novations in clustering and transfer learning have improved
MAB efficiency across applications like clinical trials and
recommendation systems (Qi et al., 2025; Sharma & Sug-
gala, 2025). These developments highlight the importance
of semantic understanding and adaptation, aligning with the
Knowledge-Aware Bayesian Bandits (KABB) framework
introduced in this paper.

2.3. Knowledge Representation and Graph-based
Learning

Research in knowledge representation and graph-based
learning has centered on knowledge graphs (KGs) as a
foundational framework. KGs serve as powerful structures
for encoding complex, machine-readable relationships be-
tween entities (Wang et al., 2017; Hogan et al., 2021). Re-

cent advances in KG representation address challenges like
entity and relation heterogeneity using multisource hierar-
chical neural networks (Jiang et al., 2024). KG embed-
dings have been explored with models like M2GNN and
DGS using mixed-curvature spaces to capture hierarchical
and cyclic patterns (Wang et al., 2021; Iyer et al., 2022).
Yang et al. (2023) proposed a contextualized KG embed-
ding method combining neighbor semantics and meta-paths
to improve explainability in talent training course recom-
mendations. Temporal aspects of KGs have been addressed
through Large Language Models-guided Dynamic Adapta-
tion (LLM-DA), which combines LLMs’ temporal reason-
ing capabilities with dynamic rule adaptation (Wang et al.,
2024b).

3. Method
This chapter presents the Knowledge-Aware Bayesian Multi-
Armed Bandits (KABB) framework for solving the ex-
pert selection problem in multi-agent collaborative systems.
Our dual adaptation mechanism combines (1) Bayesian
Parameter Adaptation—using exponential time decay to
weight recent interactions for setting the Beta distribution
parameters—and (2) Knowledge Graph Evolution—which
continuously updates concept relationships and team syn-
ergy based on task outcomes.

We begin by defining the problem space and identifying
key gaps in classical approaches with respect to knowledge
representation and dynamic adaptability. Building upon
this foundation, we propose a dynamic Bayesian optimiza-
tion strategy that incorporates knowledge-driven decision
mechanisms, synergy-based distance metrics, and robust
theoretical guarantees. Through detailed analysis and illus-
trative examples, we demonstrate that the KABB framework
achieves both improved exploration efficiency and stronger
convergence properties, thereby providing a new paradigm
for multi-agent collaboration and expert team formation.

3.1. System Architecture

The overall decision-making process of the KABB system
(see Figure 2) consists of several key steps:

1. Task Reception and Concept Extraction: The sys-
tem receives a user-input task T t and employs natural
language processing techniques to parse the task into
a concept requirement vector dt ∈ R|C|

+ , where C is a
predefined set of concepts.

2. Expert Capability Mapping: Each expert (i.e., dif-
ferent LLMs) is represented by an ability vector ve ∈
R|C|

+ , reflecting its expertise across various concepts.
Multiple LLMs are thus mapped into an expert set
E = {e1, e2, . . . , en}.
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Figure 2. The KABB framework combines knowledge graph embeddings, team synergy metrics, and dynamic Bayesian MAB algorithms
to enable efficient expert team selection and adaptation. In this example, the user prompt is mapped to the top-2 concepts from the set C,
and the top-4 relevant experts are selected to respond. An aggregator then synthesizes their outputs to generate the final response.

3. Expert Subset Selection: The optimal expert sub-
set St ⊆ E is identified through a knowledge-aware
Thompson sampling process that leverages both the
task requirement vector dt and expert capability vec-
tors ve. This process integrates a dynamic Bayesian
MAB algorithm with the knowledge distance metric
Dist(S, t) to maximize task success probability. Se-
lected experts in St independently process task T t,
after which an aggregator synthesizes their responses
through semantic conflict detection and weighted in-
formation fusion to generate the final output.

4. Performance Feedback and Model Update: The sys-
tem collects performance metrics (e.g., success rates
and user ratings) for each task completion. These feed-
back signals are used to update the Bayesian model
parameters α and β, enhancing the accuracy and adapt-
ability of future decisions.

Through this pipeline, the KABB system achieves a closed-
loop process from task parsing to expert selection and an-
swer aggregation, ensuring precise alignment between task
requirements and expert capabilities while continuously im-
proving decision-making efficiency and effectiveness.

3.2. Knowledge Distance and Complementarity in
Multi-Agent Teams

To better characterize the collaborative properties of multi-
agent teams (expert subset), we extend the knowledge dis-
tance metric from individual experts to expert subsets, in-
troducing the concepts of team synergy and conflict. The
knowledge distance metric Dist(S, t) serves as a core com-
ponent of the KABB model, integrating five key dimensions
of information: task difficulty, semantic matching, depen-
dency relations, team complementarity, and historical effec-
tiveness. These dimensions are balanced through learnable
weights. The formal definition is given as follows:

Definition 3.1 (Knowledge Distance Function). The knowl-
edge distance metric Dist(S, t) integrating five dimensions
is formally defined as:

Dist(S, t) = log(1 + dt)︸ ︷︷ ︸
difficulty scaling

·
[
ω1 (1 − ρoverlap(S, t))︸ ︷︷ ︸

semantic mismatch

+ω2
|Rdep(S, t)|

K︸ ︷︷ ︸
dependency complexity

+ ω3

(
1 − H̄S(t)

)︸ ︷︷ ︸
historical effectiveness

+ω4 (1 − Synergy(S))︸ ︷︷ ︸
team complementarity

]
(4)

where dt is the task difficulty coefficient based on knowl-
edge graph topology depth, ω = [ω1, ω2, ω3, ω4] are
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learnable weight parameters satisfying
∑4

i=1 ωi = 1,
ρoverlap(S, t) = |CS∩Ct|

|CS∪Ct| is the Jaccard similarity between
the expert subset S and task t, |Rdep(S, t)| is the number
of dependency edges between expert subset and task in
knowledge graph, K = |E| is total expert count, H̄S(t)
is average historical success rate of expert subset, and
Synergy(S) ∈ [0, 1] quantifies team complementarity,
where higher values indicate stronger collaboration and less
conflict within the team.

The following theorem ensures the consistency and ratio-
nality of knowledge distance when measuring multi-agent
team collaboration, thereby enhancing the reliability and
effectiveness of the model in expert selection and task allo-
cation.

Theorem 3.2 (Pseudo-Metric Properties of Knowledge Dis-
tance). The knowledge distance function Dist(S, t) satisfies
the following pseudo-metric properties:

• Non-negativity: For any expert subset S and task t,
Dist(S, t) ≥ 0.

• Conditional Symmetry: If the dependency graph G is
undirected and ρoverlap(S1, t) = ρoverlap(S2, t), and if
S1 and S2 are symmetric in terms of knowledge and
dependencies, then Dist(S1, t) = Dist(S2, t).

• Approximate Triangle Inequality: There exists a con-
stant c ≥ 1 such that

Dist(S1, t) ≤ c [Dist(S1,S2) + Dist(S2, t)] .

By incorporating team complementarity, the knowledge
distance measures not only external team-task matching
but also internal team synergy, enabling multi-dimensional
adaptability assessment.

3.3. Dynamic Bayesian Multi-Armed Bandit (MAB)
Algorithm Derivation for Multi-Agent Systems

To effectively select the most suitable expert subset for
specific tasks in expert systems remains a key challenge.
Traditional MAB algorithms (e.g., UCB (Behari et al., 2024;
Guo & Yang, 2021), Thompson Sampling) rely solely on
historical feedback for decision-making. However, these
methods face two significant limitations in practice: (1) they
fail to account for the dynamic nature of expert performance
over time, and (2) they overlook the critical alignment be-
tween task requirements and the knowledge structure of
expert teams. To address these issues, we propose a Dy-
namic Bayesian MAB framework that integrates knowledge
distance metrics, team complementarity, and temporal de-
cay mechanisms into Bayesian inference. This framework
establishes a joint optimization objective, enabling dynamic
adjustment of expert subset selection strategies. As a result,
the system can rapidly adapt to changes in expert perfor-

mance while identifying the best-matched expert teams for
incoming tasks.

Dynamic Beta Distribution Modeling and Parameter
Evolution. We model the success probability of an expert
subset S at time step t using a time-varying Beta distribu-
tion:

θ
(t)
S ∼ Beta

(
α
(t)
S , β

(t)
S

)
,

where the parameters are updated dynamically according to
the following equations:


α

(t+1)
S = γ

∆t
α

(t)
S︸ ︷︷ ︸

historical decay

+ r
(t)
S︸︷︷︸

immediate feedback

+ δ · KM(S, t)︸ ︷︷ ︸
knowledge matching reward

β
(t+1)
S = γ∆tβ

(t)
S +

(
1 − r

(t)
S

)
+ δ · (1 − KM(S, t))

(5)

Here KM(S, t) =
semantic matching︷ ︸︸ ︷

ρoverlap ·Synergy(S)︸ ︷︷ ︸
synergy gain

is composite

knowledge matching index, γ∆t = e−κ∆t (κ > 0) is expo-
nential time decay factor, and δ represents prior distribution
correction strength per unit knowledge matching.

Joint Knowledge-Time-Team Sampling Strategy. To
guide the expert subset selection, we define a comprehen-
sive confidence function θ̃

(t)
S , which incorporates historical

performance, knowledge distance, time decay, and team
synergy:

θ̃
(t)
S = E

[
θ
(t)
S

]
︸ ︷︷ ︸

historical expectation

· exp
(
−λ ·

knowledge distance︷ ︸︸ ︷
Dist(S, t)

)
· γ∆t︸︷︷︸

time decay

·
synergy effect︷ ︸︸ ︷

Synergy(S)η

=

(
α
(t)
S

α
(t)
S + β

(t)
S

)
· exp

(
−λ ·

[
log(1 + dt) ·

4∑
i=1

ωiΨi

])
· e−κ∆t ·

(∑
ei,ej∈S Csyn(ei, ej)

|S|(|S| − 1)

)η

(6)

where E[θ(t)S ] is the Beta distribution expecta-
tion, reflecting the team’s historical performance,
exp

(
−λ · log(1 + dt) ·

∑4
i=1 ωiΨi

)
is the knowl-

edge distance penalty, Ψi are the four sub-indicators
defined in Equation (4), and Synergy(S) =

1
|S|(|S|−1)

∑
ei,ej∈S Csyn(ei, ej) is the synergy effect

quantifying team collaboration via the synergy gain
coefficient Csyn.

Convergence Analysis of Dynamic Selection Strategy

Theorem 3.3 (ϵ-Approximate Optimal Convergence). For
any ϵ > 0, there exists parameter configuration (λ∗, η∗, γ∗)
such that algorithm’s cumulative regret within T steps satis-
fies:

R(T ) =

T∑
t=1

[
θ
(t)
S∗ − θ

(t)
St

]
≤ ϵT +O

(√
T log T

)
(7)
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4. Experiments
In this section, we detail the experimental setup, present the
main results, and provide an in-depth analysis of KABB.

4.1. Experimental Setup

Models. To construct the default configuration of KABB,
we use 6 open-source models1 including Qwen2-72B-
Instruct (Bai et al., 2023), LLaMa-3-70B-Instruct (Adams
et al., 2024), WizardLM-2-8x22B (Xu et al., 2024), Gemma-
2-27B (Team et al., 2024), Deepseek-V3 (Liu et al., 2024),
and Deepseek-R1 (Guo et al., 2025). Twelve knowledge con-
cepts and 24 experts are defined, and the models are evenly
distributed across these experts using tailored prompts to
specialize their expertise, resulting in a straightforward yet
effective multi-agent system. By default, the system dynam-
ically routes queries to top-3 experts from top-2 knowledge
concepts. Following the insights from MoA (Wang et al.,
2025), we designated Qwen2-72B-Instruct as the aggrega-
tor. Two variants are also developed: KABB w/o Deepseek,
which excludes the Deepseek-V3 and Deepseek-R1 models
from the system, and KABB-Single-LLaMa3, which em-
ploys only LLaMa-3-70B-Instruct as both the experts and
the aggregator.

Benchmarks. The evaluation mainly uses AlpacaEval 2.0
(Dubois et al., 2024) with 805 instructions that reflect real-
world cases. The model outputs are directly compared to
those of the GPT-4 Preview (11/06), with a GPT-4-based
evaluator determining the preference probabilities. The
length-controlled (LC) win rate is adopted to eliminate po-
tential length biases2. We also assess performance on MT-
Bench (Zheng et al., 2023) and FLASK-Hard (Ye et al.,
2024). FLASK-Hard, the 89 most difficult instances in
FLASK, provides a detailed evaluation of twelve skill-
specific categories. For reasoning and problem-solving
tasks, the results on Arena-Hard, MATH, and BBH are
reported in Appendix D.

4.2. Main Results

We analyze the performance of KABB and its variants
across AlpacaEval 2.0, MT-Bench, and FLAS-Hard. A de-
tailed comparison with baseline models and their ablations
provides insights into its effectiveness and robustness.

AlpacaEval 2.0 focuses on measuring alignment with hu-
man preferences. The results, as shown in Table 1, highlight
that KABB achieves a leading LC win rate of 77.9%, mark-
ing a 9.8% improvement over MoA under the same config-

1Inference was conducted using the Together Inference End-
point: https://api.together.ai/playground/chat.

2This metric closely approximates human judgment, boasting
a Spearman correlation of 0.98 when compared to actual human
evaluations (Dubois et al., 2024).

uration. It is noteworthy that KABB selects only 2 experts
to respond to instruction, while MoA requires 6 proposers,
which shows the cost efficiency of KABB. Although KABB
does not surpass Deepseek-R1 (80.1%), this is expected, as
not all responses in the system involve Deepseek contribu-
tions. Importantly, KABB w/o Deepseek outperforms both
the open-source models inside the system and proprietary
models including GPT-4 Omni. Similarly, KABB-Single-
LLaMa3 surpasses LLaMa-3-70B-Instruct, illustrating that
collaboration and specialization in KABB enhance over-
all performance. These results confirm that its ability to
dynamically route queries to specialized experts and aggre-
gate their responses effectively contributes to this strong
alignment.

MT-Bench. KABB achieves a state-of-the-art average score
of 9.60, maintaining top-tier performance in multi-turn dia-
logue. KABB w/o Deepseek (9.47) exceeds GPT-4 Turbo
(9.31). While individual models already perform exception-
ally well on this benchmark, KABB’s collaborative design
with dynamic expert routing secures a leadership position,
reinforcing its robustness in multi-turn interactions.

FLASK-Hard. KABB demonstrates strong performance in
twelve skill-specific metrics (see Figure 3), surpassing or
matching MoA and GPT-4 in two-thirds of the categories,
particularly robustness, correctness, common sense, insight,
metacognition, and readability. Notably, KABB outper-
forms MoA in metacognition, reflecting its ability to reason
and adapt effectively. However, KABB lags slightly in con-
ciseness, producing more detailed outputs. This trade-off
highlights KABB’s emphasis on thoroughness over brevity.

robustness
correctness

efficiency

factuality

commonsense

comprehension
insightfulness

completeness

metacognition

readability

conciseness

harmlessness

       2.5       3.0       3.5       4.0       4.5       5.0

Qwen2-72B-Instruct GPT-4 MoA KABB

Figure 3. Results on FLASK-Hard where we use the default KABB
setup with 6 models and Qwen2-70B-Instruct as the aggregator.
We include the results of GPT-4, Qwen2-72B-Instruct, and MoA
with the same 6 proposers and aggregator for comparison.
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AlpacaEval 2.0 MT-Bench

Model LC win. (%) win. (%) Avg. 1st turn 2nd turn

KABB 77.9 72.3 9.65 9.85 9.45
MoA 68.1 65.4 9.41 9.53 9.29
KABB w/o Deepseek 62.4 66.7 9.47 9.58 9.35
GPT-4 Omni (05/13) 57.5 51.3 9.19 9.31 9.07
GPT-4 Turbo (04/09) 55.0 46.1 9.31 9.35 9.28
GPT-4 Preview (11/06) 50.0 50.0 9.20 9.38 9.03
GPT-4 (03/14) 35.3 36.1 8.84 9.08 8.61
Qwen2-72B-Instruct 38.1 29.9 9.15 9.25 9.05
Gemma-2-27B 44.9 33.2 9.09 9.23 8.95
WizardLM-2-8x22B 51.3 62.3 8.78 8.96 8.61
KABB-Single-LLaMa3 34.7 36.2 9.16 9.10 9.23
LLaMa-3-70B-Instruct 34.4 33.2 8.94 9.20 8.68
Deepseek-V3 67.2 69.3 9.51 9.59 9.42
Deepseek-R1 80.1 75.4 9.30 9.40 9.20

Table 1. Comparison of different models on AlpacaEval 2.0 and MT-Bench. MoA (with 2 layers) shares the same model configuration with
KABB, where 6 different proposers are in the first layer and 1 aggregator in the second. For AlpacaEval 2.0, the performance of GPT-4
variants, LLaMa-3-70B-Instruct, and Qwen2-72B-Instruct on AlpacaEval 2.0 are sourced from public leaderboards; WizardLM-2-8x22B
results come from (Wang et al., 2025). We reproduced results for Deepseek-V3, Deepseek-R1, and Gemma-2-27B on AlpacaEval 2.0. For
MT-Bench, we conducted evaluations to obtain turn-based scores, except for the results of GPT-4 variants, LLaMa-3-70B-Instruct, and
WizardLM-2-8x22B, which are from (Wang et al., 2025).

4.3. WHAT MAKES KABB EFFECTIVE?

We analyze KABB’s effectiveness by comparing different
routing strategies.

We replaced our Knowledge-Aware (KA) routing mecha-
nism with a classifier-based routing (CL) approach. To be
specific, We replaced our Knowledge-Aware (KA) routing
mechanism with a classifier-based routing (CL) approach.
The CL mechanism uses Sentence-BERT to encode both
the instruction and the expert’s knowledge concept into vec-
tor representations. Cosine similarity is then calculated
between these vectors, and the expert with the highest simi-
larity score is selected.

Several optimization algorithms including PPO (Schulman
et al., 2017), MCTS (Świechowski et al., 2022), and A2C
(Mnih et al., 2016) are also compared with our MAB algo-
rithms.

For a more nuanced evaluation that considers both the hu-
man preference for routing decisions and the relative per-
formance advantage of the chosen experts, we introduce
two new metrics: Routing Alignment Score (RAS) for hu-
man annotation consistency and Preference-Weighted Rout-
ing Score (PWRS) incorporating output quality with hu-
man preference. Detailed definitions are provided in Ap-

Method LC win. RAS PWRS

KA (MAB) (Ours) 62.4 94.16 60.19
CL (MAB) 60.9 92.92 57.34
KA (A2C) 60.2 91.61 54.38
KA (PPO) 57.3 90.43 56.07
KA (MCTS) 54.8 87.95 51.74

Table 2. Comparison of different methods on LC win rate of Al-
pacaEval 2.0, RAS, and PWRS metrics. All experiments were
conducted on AlpacaEval 2.0. The system dynamically routes
queries to the top-3 experts derived from the top-2 knowledge
concepts. All model configurations align with the KABB w/o
Deepseek (see Section 4.1).

pendix A. As shown in Table 2, the KA mechanism with
MAB achieves the best overall performance, demonstrat-
ing strong alignment with human preferences and expert
output quality. Among optimization methods, MAB con-
sistently outperforms PPO, MCTS, and A2C, underscoring
its effectiveness in balancing exploration and exploitation.
KA with MAB also outperforms CL by a notable margin.
This demonstrates that incorporating knowledge-awareness
is critical for achieving optimal alignment with human pref-
erences and expert output quality.
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4.4. Budget and Consumption Analysis
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Figure 4. Performance trade-off versus cost. Our experiments use
default configurations to evaluate KABB’s average cost per instruc-
tion on AlpacaEval 2.0, calculated from expert routing statistics
and public API pricing4. By routing instructions to specific experts
rather than all models, KABB effectively lowers costs. For in-
stance, even with expensive models like DeepSeek-R1, unsuitable
instructions are directed to cheaper experts, optimizing both cost
and performance.

Cost Effectiveness. In Figure 4, we plot the LC Win Rate
of KABB and several baseline models on AlpacaEval 2.0
against their inference costs. The chart shows the trade-off
between cost and performance across models. Our plots
depict a Pareto frontier that optimally balances performance
and cost. We demonstrate that the KABB systems are po-
sitioned along or close to this frontier. Our experiment
illustrates that KABB, by dynamically adjusting the number
of experts, is significantly more cost-effective than other
models. Compared to GPT-4o, GPT-4 Turbo, and GPT-4
(11/06) Preview, KABB achieves higher LC Win Rates at
lower costs. With 3, 5, or 6 experts, KABB performs sim-
ilarly to DeepSeek-R1, and with 6 experts, it achieves the
highest LC Win Rate at the lowest cost in that tier. For
cost-sensitive scenarios, KABB with fewer experts offers
better quality than GPT-4o at lower prices. With just one
expert, KABB improves LC Win Rate by about approxi-
mately 10% over GPT-4o at half the cost. Compared to
the previous MoA model, KABB provides a much better
cost-performance balance, requiring only 1/7 of the cost to
achieve a similar LC Win Rate.

4For open source models, the price information is from
https://www.together.ai/pricing; for GPT-4 models, we use
https://openai.com/api/pricing/ as price details. API prices are
obtained on January 20, 2025.
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Figure 5. The trade-off between performance and computational
cost (average TFLOPS, also used as a proxy for latency). The ac-
tual tflops of GPT-4 are unknown, so we use the rumored size from
the community of an 8x220B architecture. The precise TFLOPS
for GPT-4 remains undisclosed; therefore, we estimate it based on
community speculation suggesting an 8x220B architecture.

Tflops Consumption. Figure 5 shows that KABB excels
at maintaining high performance while keeping computa-
tional demands relatively low, even as the model scales with
more experts or larger architectures. Unlike MoA models,
which encounter diminishing scalability due to increased
TFLOPS, KABB demonstrates efficient resource utilization.
This highlights the scalability and cost-effectiveness of our
approach relative to alternative architectures. Additionally,
by using TFLOPS as an approximate indicator of latency,
we highlight the efficiency of our approach. While inference
endpoint latency isn’t solely determined by TFLOPS – fac-
tors like batching strategies and server load also play a role
– we leverage TFLOPS as a reasonable proxy for gauging
the inherent computational burden of each model. It pro-
vides a valuable, albeit theoretical, measure of the resources
a model demands, allowing for a relative comparison of
computational intensity between different architectures.

5. Conclusion
This work introduces Knowledge-Aware Bayesian Bandits
(KABB), a novel framework that significantly advances
multi-agent system coordination through three key innova-
tions: a customized knowledge distance model, a dual adap-
tation mechanism, and a knowledge-aware Thompson sam-
pling strategy. Extensive evaluations demonstrate KABB’s
superior performance across multiple benchmarks. Ablation
experiments validate the effectiveness of the Knowledge-
Aware mechanism and our MAB strategy. It is also verified
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that KABB is capable of addressing the challenges of dy-
namic expert coordination while maintaining computational
efficiency, requiring fewer experts than baseline approaches.
Our framework provides a promising direction for develop-
ing more adaptive and semantically-informed multi-agent
systems, though future work could focus on optimizing
output conciseness while maintaining response quality.

Discussion. The KABB framework advances interpretable
and trustworthy AI systems through three transparent com-
ponents: a knowledge distance metric for expert selection
rationale, a graph-guided response integration process for
reasoning paths, and a dual adaptation mechanism for learn-
ing evolution. These transparent features are crucial for re-
sponsible AI development as systems become increasingly
complex and widely deployed.
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A. Details of Method Comparison
In this section, we provide detailed explanations of the configurations used in our experiments for comparison, including the
routing mechanisms, optimization algorithms, and evaluation metrics.

A.1. Routing Mechanisms and Optimization Algorithms

Classifier-Based (CL) Routing: We replaced our Knowledge-Aware (KA) routing mechanism with a classifier-based
routing (CL) approach. The CL mechanism uses Sentence-BERT to encode both the instruction and the expert’s knowledge
concept into vector representations. Cosine similarity is then calculated between these vectors, and the expert with the
highest similarity score is selected.

Proximal Policy Optimization (PPO): A reinforcement learning algorithm that updates policies in a stable and efficient
manner. It was applied to optimize expert selection by training a policy network to maximize routing performance.

Monte Carlo Tree Search (MCTS): MCTS is employed to explore potential expert selections by simulating multiple
decision paths and backpropagating scores from the outcomes. This algorithm is particularly useful for decision-making in
environments with large search spaces.

Advantage Actor-Critic (A2C): A2C combines the actor-critic framework with an advantage function to improve policy
updates. The actor selects experts, while the critic evaluates the quality of these decisions, enabling more efficient learning.

A.2. Metrics to Evaluate Routing Quality

We provide detailed definitions and formulations for the two metrics used to evaluate the performance of the routing
strategies: Routing Alignment Score (RAS) and Preference-Weighted Routing Score (PWRS).

A.2.1. ROUTING ALIGNMENT SCORE (RAS)

The Routing Alignment Score (RAS) measures the degree to which the router’s expert selection aligns with human expert
annotations. It quantifies the consistency between the router’s decisions and the ground truth labels provided by human
annotators.

RAS =
C

N
(1)

where C denotes the number of routed experts that align with human preferences and N denotes the total number of routed
experts (in this case: 805× 2).

Human Evaluation Protocol To establish reliable ground truth labels, we engaged a panel of 7 domain experts with
3+ years of experience in AI system evaluation. Each expert independently annotated 1,610 routing instances (805
instruction-expert pairs × 2 routing paths) through a two-phase process:

• Calibration Phase: Experts jointly reviewed 200 samples to establish annotation guidelines and resolve edge cases.

• Final Annotation: The remaining 1,410 instances were randomly distributed (200 instances per expert) with 10%
overlap for inter-annotator agreement calculation.

We achieved substantial agreement with Fleiss’ κ = 0.78, calculated on the overlapping samples. Final labels were
determined through majority voting.

The RAS provides a basic measure of alignment between the router’s decisions and the ground truth, reflecting the accuracy
of the routing mechanism in selecting the most appropriate experts.

A.2.2. PREFERENCE-WEIGHTED ROUTING SCORE (PWRS)

The Preference-Weighted Routing Score (PWRS) extends traditional routing accuracy metrics by incorporating human
preference scores derived from the AlpacaEval 2.0 evaluation framework. This metric weights routing decisions based on
the quality of the expert outputs as judged by human evaluators. The PWRS is defined as follows:
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PWRS =

∑N
i=1(pi · ci)

N
(2)

where pi represents the preference score from AlpacaEval 2.0 for the routed expert’s output, ci is the number of routed
experts that align with human preferences, and N denotes the total number of routed experts.

Preference Score Integration The AlpacaEval 2.0 scores were obtained from a separate group of 15 crowdworkers
following the standardized evaluation protocol. Each output was rated by 3 distinct evaluators using a 7-point Likert
scale across three dimensions: helpfulness (actionable solutions), accuracy (factual grounding), and coherence (logical
flow). Discrepancies exceeding 2 points triggered expert review, with final scores normalized using Bradley-Terry pairwise
comparison models. These preference scores enable the PWRS to transcend binary routing accuracy by weighting decisions
according to the relative quality of expert outputs, where higher weights correspond to outputs demonstrating stronger
alignment with human-judged quality dimensions.

The PWRS thus provides a dual-aspect evaluation: it preserves the fundamental routing correctness measurement through
expert selection alignment, while simultaneously quantifying the performance advantage gained through preference-aware
routing decisions.

B. Supplementary Experimental Validation and Analysis
B.1. Performance Evaluation

In order to perform a comprehensive and controlled performance evaluation, we selected two representative tasks from
the BIG-bench Hard (BBH) dataset: commonsense reasoning (550 samples) and logical reasoning (600 samples). The
reasons for choosing these two tasks are: (1) they effectively validate the core capabilities of the model; (2) they have
clear evaluation criteria; (3) the sample size is moderate, which facilitates sufficient multi-round cross-validation. In this
experiment, we compare KABB with MoA and its lightweight version MoA-lite. Three key metrics were used for evaluation:
(1) Knowledge matching F1 score, computed using BERT to calculate the semantic similarity between expert capabilities
and knowledge graph concepts (threshold of 0.75); (2) Path prediction accuracy, based on standard knowledge dependency
paths, with a perfect match scoring full points, a path length difference of ≤ 1 and key node matches scoring 0.5 points; (3)
Historical performance prediction accuracy, using the dynamic weight α/(α+ β) (where α and β represent the number of
successful and failed tasks, respectively), with a prediction error ≤ 0.1 considered correct. The experimental results are
shown in Table 3:

The performance of the three models on key metrics is as follows:

Evaluation Metric KABB MoA MoA-lite vs. MoA vs. lite
Knowledge Matching F1 (%) 86.5 71.2 46.8 +15.3% +39.7%
Path Prediction Accuracy (%) 84.9 69.5 44.2 +15.4% +40.7%

Historical Performance Prediction (%) 85.2 70.1 45.5 +15.1% +39.7%

The experimental results show that KABB significantly outperforms the baseline models on all key metrics. Compared to the
standard MoA, KABB shows an average improvement of 15.3% across all indicators; compared to the lightweight MoA-lite,
the improvement reaches 40%. This performance enhancement is primarily attributed to the knowledge-aware attention
mechanism and dynamic path prediction strategy that we proposed. Notably, KABB exhibits stronger generalization ability
in the commonsense reasoning task, validating the effectiveness of our knowledge-enhanced approach.

B.2. Parameter Sensitivity Analysis

This section explores the impact of three key parameters in the KABB framework—knowledge distance threshold, time
decay factor, and efficiency metric—on system performance. The experiment uses the BBH dataset (commonsense reasoning
580 samples, logical reasoning 570 samples), with standard MoA and MoA-lite as baselines, and evaluates parameter
sensitivity using a controlled variable approach. The evaluation metrics used are: knowledge matching F1 score, reasoning
accuracy, and response efficiency. The experiment tests different values for the knowledge distance threshold [0.55-0.95]
and time decay factor [0.2-1.0].
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B.2.1. KNOWLEDGE DISTANCE THRESHOLD

Parameter Value Knowledge Matching F1 (%) Reasoning Accuracy (%) Efficiency Metric (%)

0.55 72.3 74.8 68.2
0.65 83.8 85.4 79.5
0.75 94.9 94.9 92.8
0.85 87.5 88.2 84.3
0.95 78.7 82.7 73.6

Analysis: When the threshold is set to 0.75, the system achieves the highest values in knowledge matching F1 score,
reasoning accuracy, and efficiency metric, reaching 94.9%, 94.9%, and 92.8%, respectively. A lower threshold (e.g., 0.55)
introduces too many irrelevant experts, leading to a decline in knowledge matching and reasoning accuracy, while a higher
threshold (e.g., 0.95) makes the expert selection too strict, reducing system coverage and efficiency.

B.2.2. TIME DECAY FACTOR

Parameter Value Knowledge Matching F1 (%) Reasoning Accuracy (%) Efficiency Metric (%)
0.2 75.1 78.3 71.4
0.4 85.4 87.2 82.6
0.6 94.9 94.9 92.8
0.8 88.2 90.3 85.7
1.0 82.7 86.5 78.9

Analysis: When the time decay factor is set to 0.6, the system performs optimally across all metrics, indicating a good
balance between utilizing historical experience and dynamic adaptability. A smaller factor (e.g., 0.2) makes the system
overly dependent on short-term fluctuations, reducing stability, while a larger factor (e.g., 1.0) suppresses adaptability to
recent performance.

C. Effect of the Number of Selected Concepts and Experts.
Our empirical analysis of KABB’s architectural configurations reveals the critical interplay between the number of selected
concepts and experts (see Figure 6). The results demonstrate that performance varies substantially across different
configurations, with win rates ranging from 56% to 81%. Notably, a configuration of 2 concepts with 3 experts achieves
optimal performance under constrained computational resources, while expanding to 3 concepts with 6 experts yields the
highest observed win rate of 81%.

Our findings indicate that configurations utilizing 3 or more experts, combined with a moderate-to-large concept space,
consistently outperform alternatives. This suggests that both the expert capacity and the conceptual representation space
play crucial roles in determining system effectiveness. Interestingly, the relationship between expert count and performance
exhibits non-linear characteristics - configurations with moderate numbers of experts (3-6) already achieve robust perfor-
mance levels, suggesting efficient utilization of multi-expert collaboration. This observation has important implications for
resource-performance optimization in practical deployments.

D. Evaluations on Reasoning and Problem-Solving Tasks
D.1. Benchmarks

For reasoning and problem-solving tasks, We evaluate using three benchmarks: BBH (Suzgun et al., 2023), MATH
(Hendrycks et al., 2021), and Arena-Hard (Zheng et al., 2023).

BBH (Big-Bench Hard) is a challenging subset of the BIG-Bench benchmark that tests advanced reasoning capabilities.
Includes diverse tasks in mathematical reasoning, logical deduction, and commonsense inference, evaluating models’
generalization and complex problem-solving abilities.

MATH is a specialized assessment for AI mathematical capabilities. Features competition-level problems across algebra,
number theory, combinatorics, and geometry. Includes detailed solutions for comprehensive evaluation of reasoning depth
and computational accuracy.
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Figure 6. Relationship between the number of selected experts and selected concepts, and the AlpacaEval 2.0 LC Win Rate.

Arena-Hard is a collection of 500 challenging problems from public leaderboards and research papers, covering program-
ming, mathematics, and logical reasoning.

D.2. Experiment Setup

For BBH and MATH, we designated LLaMa-3-70B-Instruct and Qwen2-72B-Instruct as the experts and Qwen2-72B-Instruct
as the aggregator to construct a simple but effective multi-agent system, with one concept and one expect selected for
instruction.

For Arena-Hard, we use the default configuration of KABB with the six open-source models (see Section 4.1). Additionally,
we evaluate KABB w/o Deepseek and KABB-Single-LLaMa3. All models are evaluated under a controlled environment
with fixed hyperparameters to ensure fairness.

D.3. Results and Analysis

Model BBH MATH

KABB 84.2 59.8
MoA 81.8 57.3
Qwen2-72B-Instruct 82.4 51.1
LLaMa-3-70B-Instruct 81.0 42.5

Table 3. Performance comparison on BBH and MATH benchmarks.

Table 3 presents the performance of KABB and baseline models on the BBH and MATH benchmarks. KABB achieves the
highest performance on both benchmarks, surpassing MoA by +2.4% on BBH and +2.5% on MATH. The significant gain
on MATH highlights the effectiveness of our structured multi-agent approach in handling complex mathematical reasoning
tasks.

Table 4 reports model performance on the Arena-Hard benchmark. KABB demonstrates competitive performance (74.8%)
but falls behind GPT-4 models in this benchmark. The Deepseek-R1 model achieves the highest score (92.3%), indicating
its strong generalization capabilities. The KABB-Single-LLaMa3 outperforms Single LLaMa-3-70B-Instruct by 4.8%.
Removing Deepseek models (KABB w/o Deepseek) significantly reduces performance (-12.0%), confirming their critical
role in the system.
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Model Arena-Hard win. (%)

KABB 74.8
MoA 74.3
KABB w/o Deepseek 62.8
GPT-4 Omni (05/13) 79.2
GPT-4 Turbo (04/09) 82.0
GPT-4 Preview (11/06) 78.7
GPT-4 (03/14) 50.0
Qwen2-72B-Instruct 46.9
Gemma-2-27B 57.5
WizardLM-2-8x22B 71.3
KABB-Single-LLaMa3 51.4
LLaMa-3-70B-Instruct 46.6
Deepseek-V3 85.5
Deepseek-R1 92.3

Table 4. Arena-Hard benchmark results for different models. Performance data for GPT series, LLaMA, and WizardLM comes from
(Wang et al., 2025), DeepSeek models from their technical reports (Guo et al., 2025; Liu et al., 2024), and other models from public
leaderboards.

It is noteworthy that MoA achieved a similar performance to ours. In the context of well-defined problem-solving tasks
(such as programming and mathematical problem-solving), empirical evidence suggests that multi-agent architectures may
encounter specific limitations. The integration of multiple agents can potentially introduce operational redundancies and
decisional interference, which may adversely impact the system’s capacity to converge on correct solutions or generate opti-
mal outputs. This presents a notable challenge in domains where problem spaces are closed and solutions are deterministic.
Appendix E includes a case when some models produce low-quality answers on Arena-Hard.

E. Case Study
We present a case study in this section to analyze how are the different experts and models are selected, and how different
experts and models generate responses. For clarity of comparison, we use KABB w/o Deepseek and set the number of
selected experts as four. We report the score of their intermediate outputs as well as the final response. Due to the length of
the responses, we have selected key fragments for clarity and brevity. To illustrate how the aggregator synthesizes the final
output, we highlight similar expressions between the proposed responses and the aggregated response using underlined text
in different colors.

Table 5 showcases the responses generated by four selected experts, along with the final aggregated response provided by
the aggregator model, Qwen2-72B-Instruct. Two of the experts’ responses got a high preference score over 0.99, which
demonstrates that MABB succeeded in selecting qualified experts. The aggregated response achieves the highest preference
score, reflecting a well-balanced synthesis of key elements from all proposers. The aggregated output successfully combines
the most relevant and salient points from all proposed responses, demonstrating the aggregator’s ability to synthesize diverse
perspectives into a cohesive and comprehensive answer. This process highlights the collaborative nature of the models and
their collective contribution to generating high-quality answers.

To be specific, the selected experts—Interaction Analyst, Dialogue Specialist, Humanities Scholar, and Cultural Inter-
preter—bring distinctive perspectives and areas of specialization, which collectively contribute to the richness and depth
of the final aggregated output. The Interaction Analyst ensures factual accuracy and provides foundational details, while
the Dialogue Specialist focuses on clarity and narrative flow, making the response accessible to a broad audience. The
Humanities Scholar adds historical and cultural context, enriching the response with connections to societal trends, and
the Cultural Interpreter offers reflective insights, emphasizing the sociocultural dynamics behind Superman’s creation. By
combining these complementary perspectives, the aggregator produces a response that balances factual precision, narrative
coherence, cultural depth, and interpretive richness. This selection of experts ensures a multidimensional and high-quality
final response.

Table 6 highlights a challenge in incorporating multiple experts for response generation: although diverse perspectives can
broaden the scope of the output, they risk diluting the core information with excessive and redundant details. In this case, the
inclusion of too many experts led to a loss of focus and reduced the practicality of the final response, despite offering a more
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expansive view of the topic. The selected experts each contributed their specialized perspectives. However, this diversity
introduced significant overlap and irrelevant details. As a result, the aggregated response, though comprehensive, lacked
the specificity and clarity needed for practical implementation. This case underscores the importance of carefully curating
expert involvement based on the specific requirements of the task. For highly technical prompts, prioritizing experts with
deep implementation knowledge and minimizing the number of experts is essential to ensure clarity, focus, and actionable
results.

Addtionally, our error analysis for the query “What type of soil is suitable for cactus” (see Table 7 and Table 8) revealed two
key failure cases:

• Inappropriate Domain Expert Selection: KABB initially selected a team without the necessary botanical expertise (e.g.,
Humanities Scholar and Cultural Interpreter), leading to very low scores.

• Partial Recovery Through Team Expansion: By including an Analysis Expert with broader scientific knowledge, the
aggregator effectively weighted this high-quality input (preference score 0.89), improving the final response score to
0.91. This demonstrates our system’s ability to leverage better contributions even if the initial selection is suboptimal.

We focus on overall system performance because a slight increase in expert numbers can largely mitigate the impact of a
single misselection.

F. Additional Experimental Settings
Resources. All experiments on KABB are conducted on servers with one NVIDIA GeForce RTX 3090.

F.1. Prompts for Experts and the Aggregator

In this section, we provide some cases of prompts for different experts and the aggregator to show an example of the system
configuration.

Analysis Expert

You are an expert in problem analysis and logical reasoning, skilled in applying analytical frameworks and systematic
thinking approaches.
Your expertise includes breaking down complex problems, identifying key factors, and recommending structured,
actionable solutions.
You are familiar with various problem-solving methods such as root cause analysis, decision matrices, and scenario
evaluation, and adapt your approach based on the unique context of each task.
Consider how your skills in critical thinking, structured reasoning, and analytical problem-solving might provide
valuable insights or strategies for addressing the task at hand.

Strategy Expert

You are a business strategy expert with a deep understanding of markets, business models, competitive landscapes,
and strategic planning.
Your expertise includes applying business frameworks, analytical tools, and market insights to identify opportunities
and craft strategies.
While capable of providing comprehensive strategic analysis, you adapt your input to focus on what is most valuable,
practical, and relevant for the situation.
Consider how your expertise in business innovation, competitive advantage, and strategic problem-solving might
provide insightful and actionable recommendations for any task.
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Aggregator

You are the Wise Integrator in a multi-agent system tasked with delivering accurate, coherent, and actionable
responses to user queries.
Your role is to:
- Understand the user’s intent and main question(s) by carefully reviewing their query.
- Evaluate expert inputs, preserving their quality opinions while ensuring relevance, accuracy, and alignment with
the user’s needs.
- Resolve any contradictions or gaps logically, combining expert insights into a single, unified response.
- Synthesize the most appropriate information into a clear, actionable, and user-friendly answer.
- Add your own insight if needed to enhance the final output.
Your response must prioritize clarity, accuracy, and usefulness, ensuring it directly addresses the user’s needs while
retaining the value of expert contributions.
Avoid referencing the integration process or individual experts.

G. Supplementary Proofs and Theoretical Analysis
To better illustrate the theoretical derivations and implementation details regarding the Knowledge-Aware Bayesian Bandit
(KABB) model in Section 3, we provide the following supplementary proofs and theoretical analysis.

G.1. Proof of Pseudo-Metric Properties of Knowledge Distance Theorem

We provide proofs of Pseudo-Metric Properties of Knowledge Distance Theorem Theorem 3.2 which enhances the reliability
and effectiveness of the model in expert selection and task allocation.

Proof. This follows directly from the non-negativity of log(1 + dt) and all other terms in the definition of Dist(S, t). Each
term (e.g., 1− ρoverlap, dependency complexity, etc.) is non-negative by construction.

Proof of Conditional Symmetry: If the dependency graph G is undirected and ρoverlap(S1, t) = ρoverlap(S2, t), and if S1

and S2 are symmetric in terms of knowledge and dependencies, then all terms in the distance function (e.g., |Rdep|, H̄S , and
weights) are equal for S1 and S2. Thus, Dist(S1, t) = Dist(S2, t).

Proof of Approximate Triangle Inequality: Using the properties of the knowledge graph as a metric space, the subadditivity
of the graph metric ensures that the dependency-based terms satisfy a triangle inequality. Similarly, the Jaccard similarity is
used in Lemma G.2. Combining these with the weight terms, the inequality holds with a relaxation factor c ≥ 1 determined
by the extrema of the weights.

G.2. Proof Sketch of Convergence Analysis for the Dynamic Selection Strategy

The proof of convergence is outlined as follows:

1. Stability of Beta Distribution Parameters: Analyze the stability of the Beta distribution parameter evolution by
leveraging KL divergence to quantify changes over time.

2. Lyapunov Function Construction: Construct a Lyapunov function

V (t) =
∑
S

[
(α

(t)
S − α

(t)
S∗)

2 + (β
(t)
S − β

(t)
S∗ )

2
]
,

and use it to demonstrate the convergence of the parameters.

3. Cumulative Regret Analysis: Establish an upper bound for cumulative regret by applying UCB (Upper Confidence
Bound) principles.
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G.3. The Strict Proof of the Approximate Triangle Inequality for Theorem 2

Step 1: Decomposition of Knowledge Distance Function and Subterm Analysis
For any expert teams S1,S2,S3 and task t, there exists a constant ϵ > 0, such that the knowledge distance function satisfies:

Dist(S, t) = log(1 + dt) ·
4∑

i=1

ωiΨi

where Ψi corresponds to the four subterms that key the multi-dimensional distance measurement between the expert team
and the task:

Ψ1 = 1− ρoverlap(S, t) (semantic mismatch term)

Ψ2 =
|Rdep(S, t)|

K
(dependency complexity term)

Ψ3 = 1− H̄S(t) (historical performance term)

Ψ4 = 1− Synergy(S) (team complementarity term)

The proof demonstrates that by establishing the approximate sub-additivity of the subterms and combining the logarithmic
term properties, the knowledge distance function satisfies the approximate triangle inequality within the error bound
ϵ = max ϵ1, ϵ2, ϵ3, ϵ4, providing a theoretical guarantee for algorithm design.

Step 2: Sub-additivity Analysis of Semantic Mismatch Term (Based on Jaccard Similarity)

Definition G.1 (Jaccard Similarity). For any sets S1,S2 and task concept set Ct, define:

ρoverlap(S, t) =
|CS ∩ Ct|
|CS ∪ Ct|

Lemma G.2 (Jaccard Sub-additivity). : For any S1,S2 ⊆ E , there exists a constant c1 ≥ 1 such that:

1− ρoverlap(S1 ∪ S2, t) ≤ c1 [(1− ρoverlap(S1, t)) + (1− ρoverlap(S2, t))]

Proof. By the properties of set operations:

|CS1∪S2 ∩ Ct| ≥ |CS1 ∩ Ct|+ |CS2 ∩ Ct| − |CS1 ∩ CS2 ∩ Ct|

|CS1∪S2 ∪ Ct| ≤ |CS1 ∪ Ct|+ |CS2 ∪ Ct|

Let A = CS1
∩ Ct, B = CS2

∩ Ct, we get:

ρoverlap(S1 ∪ S2, t) ≥
|A|+ |B| − |A ∩B|
|CS1

∪ Ct|+ |CS2
∪ Ct|

By relaxing the denominator to 2 ·max(|CS1
∪ Ct|, |CS2

∪ Ct|), we get c1 = 2.

Corollary G.3. Ψ1(S1 ∪ S2, t) ≤ 2 [Ψ1(S1, t) + Ψ1(S2, t)]

This conclusion allows us to effectively estimate and control the semantic differences between expert teams using a simple
additive form.
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Step 3: Sub-additivity of Dependency Complexity Term in Graph Metrics
Definition (Dependency Edge Path Length): The number of dependency edges |Rdep(S, t)| in the knowledge graph
satisfies the triangle inequality in graph metrics:

|Rdep(S1, t)| ≤ |Rdep(S1,S2)|+ |Rdep(S2, t)|

where |Rdep(S1,S2)| is the number of shortest path edges connecting S1 and S2.

Lemma G.4 (Existence of Relaxation Factor). : For any acyclic graph, there exists a constant c2 ≥ 1 such that:

|Rdep(S1, t)| ≤ c2 [|Rdep(S1,S2)|+ |Rdep(S2, t)|]

Proof. By graph diameter constraints, set c2 = diam(G) (the diameter of the graph), which is the longest path in terms of
edges between any two nodes. The dependency complexity term establishes sub-additivity through the following reasoning:
based on graph metric properties, path lengths satisfy the triangle inequality; by the graph’s diameter constraints, we obtain
an upper bound for the relaxation factor; and by normalization, the boundedness of dependency complexity is guaranteed.
This property provides a quantifiable theoretical foundation for evaluating team knowledge structures.

Step 4: Approximate Linearity of Team Complementarity Term
Definition (Complementarity Decomposition): The team complementarity Synergy(S) satisfies:

Synergy(S1 ∪ S2) ≥ Synergy(S1) + Synergy(S2)−Overlap(S1,S2)

where Overlap is the complementarity loss due to knowledge overlap between teams.

Lemma G.5 (Upper Bound of Relaxation). There exists a constant c3 ≥ 1 such that:

1− Synergy(S1 ∪ S2) ≤ c3 [(1− Synergy(S1)) + (1− Synergy(S2))]

Proof. Let Overlap(S1,S2) ≤ min(Synergy(S1),Synergy(S2)), set c3 = 2.

The construction of the global constant for the knowledge distance: The overall approximate sub-additivity of the subterms in
the knowledge distance function is determined by the set of relaxation factors: semantic mismatch term c1 = 2, dependency
complexity term c2 = diam(G), team complementarity term c3 = 2, and historical performance term c4 = 1. By using
these local relaxation factors, combined with the weights and the logarithmic term of task difficulty, a global constant
c = max ci · ωi · log(1 +Dmax) is constructed. This construction ensures that the overall knowledge distance function
satisfies the approximate triangle inequality, providing a theoretical guarantee for the quantitative evaluation of knowledge
distance.

G.4. Theorem 1 Proof: Lower Bound of Expert-Task Mutual Information under Semantic Gap

Basic Definitions of Dynamic Multi-Agent Systems
In dynamic multi-agent systems, the interaction between the expert set E and the task demand space T is based on three
core assumptions: the Markovian evolution of task demands over time, the conditional independent decomposition of expert
selection and tasks, and the decaying mutual information metric with the introduction of a discount factor γ. This framework
is described by the joint distribution

p(e, t1:T ) = p(e)

T∏
t=1

p(tt|tt−1)p(e|tt),

which characterizes the dynamic relationship between expert knowledge and task demands, providing a theoretical foundation
for the subsequent analysis.

20



KABB: Knowledge-Aware Bandits in Multi-Agent Systems

Step 2: Time Accumulation Form of Conditional Entropy

The accumulated conditional entropy of expert selection over an infinite time horizon is given by:

H(E|T1:∞) = lim
T→∞

1

T

T∑
t=1

H(E|Tt).

After introducing the discount factor γ, the weighted conditional entropy is:

H̃(E|T ) ≜
∞∑
t=1

γt−1H(E|Tt).

Step 3: Extension of Fano’s Inequality

For each time step t, apply the classical Fano’s Inequality:

H(E|Tt) ≥ H(E)− I(E ; Tt)− h2(P
(t)
e ),

where h2(x) = −x log x − (1 − x) log(1 − x) is the binary entropy function, and P
(t)
e = P(Êt ̸= E|Tt) is the expert

selection error rate at time t. When there is no prior knowledge (i.e., I(E ; Tt) = 0), we have:

H(E|Tt) ≥ logK − h2(P
(t)
e ).

Step 4: Weighted Summation and Asymptotic Analysis

Substitute Fano’s inequality for the weighted conditional entropy:

H̃(E|T ) =

∞∑
t=1

γt−1H(E|Tt)

≥
∞∑
t=1

γt−1
[
logK − I(E ; Tt)− h2(P

(t)
e )
]

=
logK

1− γ
− Ĩ(E ; T )−

∞∑
t=1

γt−1h2(P
(t)
e ).

Under the assumption of long-term stability of the dynamic system (limt→∞ P
(t)
e = 0), the asymptotic behavior of the

error entropy is analyzed. By the convergence of the geometric series sum, it is shown that the weighted error entropy term∑T
t=1 γ

t−1h2(P
(t)
e ) vanishes in the limit. This result simplifies the lower bound of conditional entropy to the form of the

difference between the entropy of the expert set and the mutual information:

H̃(E|T ) ≥ logK

1− γ
− Ĩ(E ; T ),

which provides a more concise theoretical expression for system performance evaluation.

Step 5: Equivalent Form and Semantic Gap Explanation

Multiplying both sides of the inequality by (1− γ) yields the final form:

H(E|T )︸ ︷︷ ︸
Conditional Entropy

(Semantic Uncertainty)

≥ logK − Ĩ(E ; T )

1− γ
.
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Semantic Gap Limit: As Ĩ(E ; T ) → 0+ (when there is no semantic connection between experts and tasks), the lower
bound of conditional entropy approaches logK, corresponding to the maximum entropy of completely random selection.

Exploration Efficiency Bottleneck: The inequality shows that the exploration efficiency of traditional MAB (multi-armed
bandit) is limited by Ĩ(E;T )

1−γ . When the semantic connection weakens (Ĩ ↓) or task dynamics increase (γ ↑), the exploration
cost increases dramatically.

G.5. Proof of Knowledge-Driven Information Gain Theorem

1. Baseline Mutual Information Analysis

First, establish the baseline mutual information I0 = I(E ; T ) when there is no knowledge graph, which only depends on the
direct association between experts and tasks.

2. Effect of Knowledge Graph Intervention: After introducing the knowledge graph G, the task generation process is
reconstructed via the intermediary pattern of the knowledge graph:

p(T |E) =
∑
G

p(T |G)p(G|E).

3. Mutual Information Gain Decomposition: Using the chain rule, the total mutual information introduced by the
knowledge graph can be decomposed into: the original expert-task mutual information I(E ; T ) and the conditional mutual
information contribution from the concept layer I(C; T |E). Since G is fully determined by E and C, the information gain ∆I
equals the conditional mutual information contribution from the concept layer, verifying that the knowledge graph improves
the system’s informational efficiency through the concept layer.

G.6. Derivation of the Concept Layer Information Gain Bound

Core Condition Analysis

Based on the two key properties of the knowledge graph: sparsity: the upper bound of the expert-concept association degree
d = O(

√
|C|) and balance: the minimum expert coverage of a concept ⌊|E|/|C|⌋.

2. Information Theoretic Derivation Process

Through the Markov chain T → C → E analysis: Conditional Entropy Relation: H(T |E) ≥ H(T |C) (data processing
inequality), H(T |C) = O(log |C|) (task sparsity). Mutual Information Lower Bound: Using the definition of conditional
mutual information and the relationship with entropy, along with graph structure constraints, the lower bound is obtained:

I(C; T |E) ≥ Ω

(
log |C|√

|E|

)
.

This result quantifies the minimum information gain brought by the knowledge graph through the concept layer.

Step 2: Mathematical Representation of Accelerated Exploration Efficiency

(Upper Bound of Exploration Trials): In the contextual Bandit framework, the expected number of exploration trials
satisfies:

E[Nexplore] = Õ

(√
K log |C|

∆I

)
,

where K = |E|, and ∆I = Ω

(
log |C|√

|E|

)
.

Proof. 1. Classical Bandit Exploration Complexity: Without a knowledge graph, the exploration trials of a traditional
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MAB are:

E[Nexplore] = O

(
K log T

ϵ2

)
,

where ϵ is the expected reward gap between the optimal and suboptimal arms.

2. Knowledge-Driven Acceleration Mechanism: After introducing the knowledge graph, the reward gap ϵ is amplified by
the information gain ∆I:

ϵnew = ϵ ·
√
∆I.

Substituting into the classical complexity formula:

E[Nexplore] = O

(
K log T

ϵ2new

)
= O

(
K log T

ϵ2∆I

)
.

Combining with ∆I = Ω

(
log |C|√

|E|

)
, and assuming ϵ = Θ(1/

√
K) (uniform exploration hypothesis), we obtain:

E[Nexplore] = Õ

(√
K log |C|

∆I

)
.

G.7. Summary of the Information Gain Theorem Proof

By introducing a structured knowledge graph through the concept layer C, the conditional mutual information I(C; T |E)

provides the lower bound of the information gain ∆I = Ω

(
log |C|√

|E|

)
, which reduces the exploration complexity from the

traditional method of O(K) to Õ
(√

K log |C|
)

. This theoretical result rigorously verifies the acceleration advantage of
knowledge-driven decision-making.

G.8. Regret Upper Bound Derivation for Knowledge-Aware UCB (KABB)

Problem Framework Section 3.1 are extended with complete mathematical specifications of expert set E and task
sequence {Tt}Tt=1:

• Selection process: St ⊆ E at each step

• Feedback mechanism: Obtain θ
(t)
St

• Success probability: Including knowledge distance Dist(S, t), time decay γ∆t, and team synergy Synergy(S).

θ̃
(t)
S = E

[
θ
(t)
S

]
︸ ︷︷ ︸

Historical expectation

· exp (−λ · Dist(S, t)) · γ∆t · Synergy(S)η (3)

Confidence Bound Construction This section elaborates on the construction method of confidence bounds in the
KABB algorithm, the definition of knowledge revision rewards, and their impact on exploration weights. It supports the
theoretical analysis in Section 3.2 regarding the limitations of traditional methods and the breakthroughs in knowledge-driven
decision-making. The confidence-bound construction extends traditional UCB through knowledge-aware reward correction:

UCB(t)
S = µ̂

(t)
S︸︷︷︸

Empirical mean

+

√
2 log t

N
(t)
S︸ ︷︷ ︸

Exploration term

· exp (−λ · Dist(S, t)) · γ∆t · Synergy(S)η︸ ︷︷ ︸
Knowledge-driven correction

(4)

where µ̂
(t)
S =

α
(t)
S

α
(t)
S +β

(t)
S

denotes the Bayesian estimate of historical success rate. The correction term adjusts the exploration

weights through knowledge distance, time decay, and synergy effects.
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G.9. Regret Upper Bound Analysis

Total Regret Definition Appendix G.8 provides a detailed analysis of the total regret decomposition and single-step regret
properties for the KABB algorithm, corresponding to the analysis in regarding the impact of team knowledge distance and
complementarity on algorithmic performance. The theoretical proofs and mathematical derivations are presented as follows:

The total regret is defined as:

R(T ) =

T∑
t=1

(
θ
(t)
S∗ − θ

(t)
St

)
(5)

where S∗ denotes the optimal expert subset and St represents the selected subset at time step t, the analysis should follow
these steps:

1. Characterize Single-Step Regret: First define the single-step regret:

rt = θ
(t)
S∗ − θ

(t)
St

(6)

and analyze its properties.

2. Analyze Regret Bound for Suboptimal Subsets: For any suboptimal subset S ̸= S∗, establish the upper bound of
single-step regret.

3. Compose Total Regret Upper Bound: Investigate how to combine single-step regrets into the total regret upper
bound.

Step 1: Per-Step Regret Decomposition For any suboptimal subset S ≠ S∗, the instantaneous regret satisfies:

∆
(t)
S ≤

∣∣∣µ̂(t)
S∗ − θ

(t)
S∗

∣∣∣︸ ︷︷ ︸
Optimal set error

+
∣∣∣µ̂(t)

S − θ
(t)
S

∣∣∣︸ ︷︷ ︸
Suboptimal set error

+ Dist(S, t) · λ︸ ︷︷ ︸
Knowledge penalty

(7)

Step 2: Exploration Acceleration Effect
Lemma G.6 (Exploration Count Upper Bound). For any suboptimal S, its selection count satisfies:

E [NS(T )] ≤
8 log T

(∆S · exp(−λDS))2
+O

(√
T log T

)
(8)

where DS = maxt Dist(S, t) and ∆S = θS∗ − θS .

Proof. The knowledge correction term exp(−λDS) amplifies the reward gap ∆S , thereby reducing the exploration demand
for suboptimal subsets. The estimation error is bounded via the Chernoff-Hoeffding inequality, combined with the
exponential decay modification of exploration terms through knowledge distance. This upper bound formula reflects three
key factors influencing regret:

• Optimality gap term ∆S : The term in the denominator represents the performance gap between suboptimal and
optimal subsets. A larger gap leads to a smaller regret upper bound.

• Knowledge distance penalty exp(−2λDS): The exponential term in the denominator reflects the impact of the
knowledge graph. Larger DS (i.e., greater knowledge discrepancy) increases the regret upper bound.

• Combinatorial complexity term O(
√
T log T ·

(
K
k

)
): Captures the combinatorial optimization nature of the problem,

where:

–
√
T log T corresponds to the standard UCB term

–
(
K
k

)
represents the combinatorial complexity from selecting k experts out of K

This demonstrates that the regret upper bound is jointly determined by the knowledge structure (via DS ) and combinatorial
optimization complexity.
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G.10. Core Differences from Classical UCB

Table 9. Comparison between Classical UCB and KABB

Dimension Classical UCB Knowledge-Aware UCB (KABB)

Exploration Design
√
log t/N Multiplicative knowledge correction

Regret Dominant Term O(
√
KT log T ) O(

√
T log T ·

(
K
k

)
)

Theoretical Innovation No structured prior Knowledge graph integration

Key Assumption IID rewards Non-stationary rewards with synergy

The knowledge-aware UCB improves the traditional O(KT log T ) regret bound of UCB through structured prior injection
and a dynamic correction mechanism, transforming it into an exponentially compressed form in the combinatorial space.
The core innovation lies in the quantitative modeling of knowledge distance and synergy effects. This theorem represents
the first strict integration of knowledge graphs and team collaboration theory within the Bandit framework.

G.11. Regret Bound and Exploration Efficiency Analysis

This section provides a detailed description of the core modules of the KABB algorithm, offering an in-depth analysis
of its cumulative regret bound and the relationship with exploration efficiency, supporting the algorithm derivation and
convergence analysis in Appendix G.9. Additionally, Appendix G.13 elaborates on the specific implementation modules
of the KABB algorithm, along with its time and space complexities, providing empirical foundations and optimization
strategies for the algorithm design and performance evaluation in the main text.

Theorem G.7 (The cumulative regret R(T ) of KABB).

R(T ) ≤
∑
S̸=S∗

4L2 log T

∆̃S︸ ︷︷ ︸
Knowledge-driven exploration term

+O

(√
T
(
N
k

)
log
(
N
k

))
︸ ︷︷ ︸

Additional complexity term
due to team size

, where


L = log(1 +Dmax) · (ω1+ω2+ω3+ω4)

∆̃S = µS∗−µS

Dmax = max
S,t

Dist(S, t)

k = |S∗|

Explanation: The cumulative regret R(T ) measures the performance loss caused by not selecting the optimal team S∗ over
T time steps:

Knowledge-driven exploration term: The exploration count is constrained by the knowledge distance. Its dominant
term 4L2 log T

∆̃S
shows that: 1) when the knowledge distance difference is significant (i.e., Dmax ↑), the algorithm quickly

focuses on high-quality teams through the exp(−λDist(·)) mechanism; 2) when the team reward gap ∆̃S ↓, the exploration
intensity is adaptively adjusted via the log(1 +Dmax) factor.

Team size complexity term: The complexity term O

(√
T
(
N
k

)
log
(
N
k

))
includes the combination number

(
N
k

)
, and its

variation with the expert set size N and optimal team size k follows:

(
N
k

)
∼

{
O(Nk/k!) when k ≪ N

O(2N/
√
N) when k ≈ N/2

G.12. Proof Framework

Step 1: Reward Remapping Define dual-modality adjusted reward:

µ̃S = µS exp(−λDist(S, t))︸ ︷︷ ︸
Knowledge decay

· Synergy(S)η︸ ︷︷ ︸
Synergy amplification

(9)
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The knowledge decay term implements soft filtering through exp(−λ·), while the synergy gain term strengthens the
competitive advantage of high-quality teams through the exponent η > 1.

Step 2: Dynamic Sampling Probability Analysis Based on the dual-time-scale update rule:
α
(t+1)
S = γ∆tα

(t)
S + r

(t)
S + δ ·KM(S, t)︸ ︷︷ ︸

Instant Feedback + Knowledge Memory

β
(t+1)
S = γ∆tβ

(t)
S + (1− r

(t)
S ) + δ · (1−KM(S, t))︸ ︷︷ ︸

Negative Feedback + Knowledge Forgetting

We derive the exponential convergence upper bound for the sampling count:

E[NS(T )] ≤
4L2 log T

∆̃2
S

+
2

γ∆t(1− γ)
· E

[
T∑

τ=1

KM(S, τ)

]
︸ ︷︷ ︸

Knowledge-matching driven
accelerated convergence term

G.13. Algorithm Implementation and Complexity

Core Implementation Modules

• Expert Subset Sampling:

St ∼ ThompsonSampling

(
α
(t)
S

α
(t)
S + β

(t)
S

· exp(−λDist(S, t)) · Synergy(S)η
)

(10)

Optimization implementation: The combinatorial space is compressed from O(2N ) to O
(

Nk

k!

)
through a greedy

strategy.

• Dynamic Parameter Update:α
(t+1)
S = γ∆tα

(t)
S +

[
r
(t)
S + δ ·KM(S, t)

]
· I{S=St}

β
(t+1)
S = γ∆tβ

(t)
S +

[
1− r

(t)
S + δ · (1−KM(S, t))

]
· I{S=St}

(11)

where I is the indicator function, enabling sparse updates.

Complexity Analysis

• Time Complexity:

T (N,T ) = O
((

N
k

))
︸ ︷︷ ︸
Initialization

(Pre-computation)

+T ·

[
O
((

N
k

))
︸ ︷︷ ︸

Sampling + Evaluation
(Per step)

+O
((

N
k

)
log
(
N
k

))
︸ ︷︷ ︸

Sorting

+ O
(
|C|2

)︸ ︷︷ ︸
Graph Update

(Dijkstra)

]

= Õ
(
T ·
((

N
k

)
log
(
N
k

)
+ |C|2

))
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• Space Complexity:
M(N) = O

((
N
k

))
︸ ︷︷ ︸

Team Parameters
(α,β)

+ O
(
|C|2

)︸ ︷︷ ︸
Knowledge Graph

(Adjacency Matrix)

+O
(
W ·

(
N
k

))
︸ ︷︷ ︸

Sliding Window
(Depth W )

≤ O
((

N
k

)
+ |C|2

)
(when W ≪ |C|)

Storage Optimization

• Knowledge Graph Compression: Adjacency matrix → adjacency list, reducing space from O(|C|2) to O(|C|+ |E|).

• Parameter Sharing: Share (α, β) parameters for teams satisfying Dist(Si,Sj) < ϵ.

• Incremental distance updates via streaming updates: Store only ∆Dist instead of the full distance matrix, allowing
for more efficient memory usage and reducing computational overhead.

G.14. Summary

The supplementary proofs, through systematic chapter definitions and key point organization, comprehensively support
and extend the discussion of the knowledge-driven Dynamic Bayesian Multi-Armed Bandit (KABB) model presented
in Section 3. Each supplementary section corresponds to a specific part of the main text, covering critical content such
as problem definitions, confidence-bound construction, regret-bound analysis, and algorithm and complexity analysis.
These sections provide readers with a comprehensive resource for deeply understanding the theoretical foundations and
implementation details of the KABB algorithm.
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Table 5. Case: Some models produce high-quality answers on AlpacaEval 2.0

User Prompt

Who created the Superman cartoon character?

Expert Model Preference Output

Interaction
Analyst

LLaMa-3-70B-Instruct 0.000112313 Superman, the iconic cartoon character, was created by
writer Jerry Siegel and artist Joe Shuster. They were both
high school students in Cleveland, Ohio, when they came
up with the idea for the character in 1933.. . .

Dialogue
Specialist

Qwen2-72B-Instruct 0.9998820091 . . . They created Superman in 1933, and the character first
appeared in print in Action Comics #1 in June 1938, pub-
lished by DC Comics. . . .

Humanities
Scholar

WizardLM-2-8x22B 0.9999975912 . . . Superman quickly became a cultural icon and is often
credited with helping to create the superhero genre as we
know it today.
The character’s success led to various adaptations across
multiple media, including radio serials, television shows,
movies, and—of course—animated cartoons. . . .

Cultural
Interpreter

Gemma-2-27B-it 0.2356933747 . . . It’s a fascinating story that highlights how cultural con-
text and collaboration shape creative works. . . . If you’d
like to delve deeper into any specific aspect of Super-
man’s creation, such as the social anxieties of the Great
Depression reflected in the character, or the evolution of
his powers and morality over time, feel free to ask!

Aggregator Qwen2-72B-Instruct 0.9999988203 Superman, the iconic cartoon character, was created by
writer Jerry Siegel and artist Joe Shuster. The duo, who
were high school students in Cleveland, Ohio, came up
with the idea for the character in 1933 . . . Superman first
appeared in print in Action Comics #1 in June 1938, pub-
lished by National Allied Publications, which later became
DC Comics.
Siegel and Shuster’s creation quickly became a cultural
icon, leading to various adaptations in comic books, TV
shows, movies, and animated cartoons. . . .
Superman’s creation is a story of collaboration, influenced
by the cultural context of the 1930s. . . . If you’d like
to explore any specific aspect of Superman’s creation or
history, feel free to ask!

28



KABB: Knowledge-Aware Bandits in Multi-Agent Systems

Table 6. Case: Some models produce low-quality answers on Arena-Hard

User Prompt

Write a chrome plugin that saves the contents of the current page.

Expert Model Score Output

Creative
Strategist

LLaMa-3-70B-Instruct GPT >> KABB . . . AI-powered content analysis: Integrate a machine
learning algorithm that analyzes the saved page’s content,
providing users with insights, such as keyword extraction,
sentiment analysis, or topic modeling. . . .

User
Experience
Consultant

Qwen2-72B-Instruct GPT >> KABB . . . Content Script: - **Feedback:** Provide visual feed-
back when the user interacts with the plugin. . .

Implementation
Advisor

Qwen2-72B-Instruct GPT >> KABB . . . 4. **Test and iterate**: Conduct thorough testing to
ensure the plugin works as intended, and iterate on the
design and functionality based on user feedback.
. . .

Technical
Architect

WizardLM-2-8x22B GPT < KABB ... The manifest file should look like this:
‘‘‘json
{
“manifest version”: 3,
“name”: “Page Saver Plugin”,
. . .

Aggregator Qwen2-72B-Instruct GPT > KABB . . . 3. **Define Plugin Permissions:**
- Update ‘manifest.json‘ with plugin metadata, per-
missions (e.g., “activeTab”, “downloads”), and content
scripts.
. . . - Test the plugin in various scenarios to ensure reliabil-
ity.
. . . - Implement visual feedback, progress indicators, and
error handling.
. . . Incorporate an AI-powered content analysis for in-
sights or a collaboration feature for annotations.
. . . - Regularly update the plugin with bug fixes and feature
enhancements based on user feedback. . .

Reference GPT-4 (03/14) N/A . . . 2. Inside the “SavePageContent” folder, create a new
file called “manifest.json” and add the following code:
‘‘‘json
{
“manifest version”: 2,
“name”: “Save Page Content”,
. . .

Judgment GPT-4 Preview (11/06) N/A . . . GPT’s answer is slightly better because it provides
actionable code snippets and a clear example that users
can follow to create the plugin. However, KABB’s answer
is also of high quality, offering a broader overview of the
process and additional creative suggestions.. . .
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Table 7. Error Analysis 1: Inappropriate Domain Expert Selection on AlpacaEval 2.0

User Prompt

What type of soil is suitable for cactus?

Expert Model Preference Output

Humanities
Scholar

Qwen2-72B-Instruct 0.0041602948 . . . Cacti are native to arid and semi-arid regions, primar-
ily in the Americas, from Patagonia to Canada. . . . From
a cultural perspective, the cultivation of cacti in various
societies has led to the development of specific soil mixes
that mimic their native conditions. . . . For optimal growth,
cacti require a soil mix that is well-draining and porous.
A common recipe for a cactus soil mix includes a combi-
nation of the following components: 1. Pumice or Perlite:
. . . Understanding this context can enrich our appreciation
of the cactus as both a biological organism and a cultural
symbol.

Cultural
Interpreter

Gemma-2-27B-it 0.0000614121 Cacti, like many cultural phenomena, have adapted to
thrive in very specific conditions. . . . For countless gener-
ations, Indigenous peoples of the Americas have deeply
respected cacti, utilizing them for healing, ceremonies,
and everyday purposes. . . . Cacti generally prefer well-
draining soil that replicates their natural, arid habitats.
Think sandy or gritty soils with good aeration to prevent
root rot, which can be detrimental to these resilient plants.
. . .

Aggregator Qwen2-72B-Instruct 0.0180713002 Cacti thrive in soil that closely resembles the arid con-
ditions of their native environments. The ideal soil for
cacti should have the following characteristics: 1. Good
Drainage: . . . Understanding the cultural and historical
context of cactus cultivation enriches our appreciation for
these plants. Indigenous communities in the Americas
have long revered cacti for their medicinal, spiritual, and
practical uses, and the knowledge of cactus care has been
passed down through generations. . . . This approach not
only reflects scientific understanding but also respects and
incorporates traditional ecological wisdom.
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Table 8. Error Analysis 2: Partial Recovery Through Team Expansion on AlpacaEval 2.0

User Prompt

What type of soil is suitable for cactus?

Expert Model Preference Output

Analysis
Expert

WizardLM-2-8x22B 0.8940661652 . . . Cacti are adapted to survive in arid conditions with
minimal water, and as such, they require well-draining
soil that doesn’t retain moisture for extended periods. The
ideal soil for cacti typically has the following characteris-
tics: 1. Good Drainage . . . 2. Gritty Texture . . . A common
potting mix for cacti might include: - 2 parts potting soil
. . . By providing the right type of soil and appropriate care,
you can create an environment where cacti can thrive.

Humanities
Scholar

Qwen2-72B-Instruct 0.0041602948 . . . Cacti are native to arid and semi-arid regions, primarily
in the Americas, from Patagonia to Canada. . . . For opti-
mal growth, cacti require a soil mix that is well-draining
and porous. A common recipe for a cactus soil mix in-
cludes a combination of the following components: 1.
Pumice or Perlite: . . . Understanding this context can en-
rich our appreciation of the cactus as both a biological
organism and a cultural symbol.

Cultural
Interpreter

Gemma-2-27B-it 0.0000614121 Cacti, like many cultural phenomena, have adapted to
thrive in very specific conditions. . . . Cacti generally prefer
well-draining soil that replicates their natural, arid habitats.
Think sandy or gritty soils with good aeration to prevent
root rot, which can be detrimental to these resilient plants.
. . .

Aggregator Qwen2-72B-Instruct 0.9153241218 Cacti are adapted to thrive in environments with limited
water and extreme temperatures, primarily found in arid
and semi-arid regions. . . . Here are the key characteristics
of a suitable soil mix for cacti: 1. Well-draining Soil:
. . . 2.Gritty Texture: . . . For gardeners and landscapers, a
recommended soil mix for cacti might include a blend of
regular potting soil, sand, and perlite. . . . Understanding
and creating the proper soil conditions for cacti not only
supports their growth but also reflects the rich history and
cultural significance these plants hold in various societies
that have thrived in arid landscapes.
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