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SheetAgent: Towards a Generalist Agent for Spreadsheet
Reasoning and Manipulation via Large Language Models

Anonymous Author(s)

Q: Which was the best-
selling book across all
bookstores in 2011?

BookID Book Name Unit Price

BK-83024 VB Programming 38

BK-83030 Databse Technology 41

BK-83026 Access Programming 35

… … …

BK-83029 Network Technology 43

Book_Orders.xlsx

Sheet "Orders" (635 rows × 5 columns)

Sheet ”Books"

OrderID Date Bookstore BookID Volume

BTW-08634 31/10/2012 A BK-83024 36

BTW-08633 30/10/2012 B BK-83023 49

BTW-08632 26/10/2012 C BK-83030 19

… … … … …

BTW-08001 2/1/2011 A BK-83021 12

(20 rows × 3 columns)

(a) Table Join & Numerical Calculation

SheetAgent

Q: Insert "Book Name" and "Unit Price" corresponding
to each order to the right of the "BookID" column in
the "Orders" sheet. Calculate the sales for each order
and place it into the last column named "Sales".

...

... BookID Book Name Unit Price Sales

... BK-83024 VB  Programming 38 1368

... BK-83030 Databse Technology 41 779

... BK-83026 Access Programming 35 385

... ... ... ...

(b) Formatting

Q: In "Orders" sheet, express unit prices and sales in
an accounting format with $ currency. Make the
sheet a warm color by adding borders and shadings
for better presentation.

BookID Book Name Unit Price Sales

BK-83024 VB  Programming 38 $1368

BK-83030 Databse 
Technology 41 $779

BK-83026 Access 
Programming 35 $385

… … … …

(c) Question Answering (d) Data Analysis

(f) Chart Design

Q: Plot a bar chart of the sales of each bookstore in
2011 and add data labels. Then, draw a line chart
reflecting the weekly trend of sales for bookstore A
in 2011.

(e) Identification of Unclear Requirements

Q: Highlight yellow the rows where books that are
relevant to the database with unit price greater than
40.

Q: Analyze the sales of
Bookstore A in 2011.

A: The best-selling book 
across all bookstores in 
2011 was Computer 
Science and Technology, 
which sold 1,488 copies

... BookID Book Name Unit Price Sales

... BK-83024 VB  Programming 38 1368

... BK-83030 Databse Technology 41 779

... BK-83026 Access Programming 35 385

... ... ... ... ...

A: Sales of Bookstore A
in 2011 were volatile,
indicating that the its
sales were not stable ...

I‘m your sheet assistant 
for manipulation and 
reasoning. How can I help 
you today?

Analysis…
Analysis… Calculate…

Figure 1: SheetAgent can handle diverse spreadsheet reasoning and manipulation tasks automatically. Given a large-scale
spreadsheet with multiple sheets, SheetAgent showcases its proficiency in visualization (f), achieves accurate manipulation on
long horizon and multi-step tasks (a, b) with consistent reasoning capabilities (c, d), even faced with the challenges like unclear
requirements (e).

Abstract
Spreadsheets are ubiquitous across the World Wide Web, play-
ing a critical role in enhancing work efficiency across various do-
mains. Large language model (LLM) has been recently attempted
for automatic spreadsheet manipulation but has not yet been in-
vestigated in complicated and realistic tasks where reasoning chal-
lenges exist (e.g., long horizon manipulation with multi-step rea-
soning and ambiguous requirements). To bridge the gap with the
real-world requirements, we introduce SheetRM, a benchmark
featuring long-horizon and multi-category tasks with reasoning-
dependent manipulation caused by real-life challenges. To mitigate
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on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
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© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
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the above challenges, we further propose SheetAgent, a novel
autonomous agent that utilizes the power of LLMs. SheetAgent
consists of three collaborative modules: Planner, Informer, and Re-
triever, achieving both advanced reasoning and accurate manipula-
tion over spreadsheets without human interaction through iterative
task reasoning and reflection. Extensive experiments demonstrate
that SheetAgent delivers 20–40% pass rate improvements on mul-
tiple benchmarks over baselines, achieving enhanced precision in
spreadsheet manipulation and demonstrating superior table rea-
soning abilities. More details and visualizations are available at
the project website. The datasets and source code are available at
https://anonymous.4open.science/r/SheetAgent.

CCS Concepts
• Computing methodologies→ Natural language processing;
• Information systems→ Decision support systems.

Keywords
Agents, Large Language Models, Benchmark, Spreadsheet Reason-
ing and Manipulation
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1 Introduction
Tabular data plays a crucial role in domains such as scientific re-
search, finance, and marketing, where it is predominantly handled
using spreadsheet systems. These systems, such as Google Sheets
and Microsoft Excel, are useful for tasks including numerical cal-
culations, data analysis, and visualisation [10, 14, 19]. However,
processing these affairs often involves a significant amount of repet-
itive labor and consultation [7, 11]. Recent work [7, 20] has explored
the automation of simple spreadsheet manipulation tasks. For exam-
ple, Highlight rows with sales volume greater than 40 in the “Orders”
sheet shown in Figure 1. This task can be accomplished through sim-
ple queries and formatting. However, they fail to consider the more
complex and realistic tasks that encompass more than simple first-
order logic. For instance, Highlight rows of database-related books
with sales volume greater than 40. The difficulty of this instruction
lies in identifying books related to the database, which cannot be
achieved simply by understanding the semantics of column names,
but rather by perceiving the specific content (what books are in
the spreadsheet in this case) of the spreadsheet. Such scenarios
are common because a complete spreadsheet task may demand a
multi-step reasoning process in conjunction with multiple sheets,
and the user may not precisely define the required operations or
ambiguously interpret the task instruction. Consequently, there is
an urgent need for a new method to automate these tasks.

Designing such a method demands a combination of sophisti-
cated sheet-based reasoning andmanipulation capabilities. Previous
work [13, 20, 26] has focused on precise spreadsheet manipulation
while neglecting reasoning, limiting them to tasks with clear ex-
pressions and one-step reasoning. The emergence of large language
models (LLMs) like GPTs [2, 28, 29] enables the integration of rea-
soning and manipulation capabilities. Extensive research [5, 17, 39]
has shown that LLMs can reason over tables, handling tasks such as
table question answering and fact verification. Given this context,
we are motivated to explore the question: Can we build a versatile
agent adept at handling complex spreadsheet manipulation tasks with
challenging reasoning factors using LLMs? Crafting such an agent
involves several challenges: (1) Dynamic Changes of Spread-
sheet: Complex tasks often involve multiple operations, resulting
in dynamic spreadsheet content changes. Continuously feeding the
entire spreadsheet into LLMs before each operation is impractical
due to token limits and potential hallucination [8, 39]. (2) Lim-
ited Table Understanding: LLMs are predominantly trained in
natural languages and show limited understanding of tables [21].
(3) Lack of Benchmark: There is an absence of a complicated
benchmark demanding accurate reasoning and precise manipula-
tion over spreadsheets. SheetCopilot [20] presents a benchmark
for evaluating LLM performance in controlling spreadsheets. How-
ever, it simplifies real-world requirements, ignoring challenges like
multi-step reasoning and long-horizon operations.

To address the dataset gap, we first introduce SheetRM (Spread-
sheet Reasoning and Manipulation Benchmark), a benchmark for
developing and evaluating LLM-based agents for precise spread-
sheet manipulation and advanced reasoning capabilities. Each task
in SheetRM involves multiple subtasks that relies on reasoning
abilities, derived from real-world Excel exam datasets. Moreover,
it enables automatic evaluation with various metrics. We further

present SheetAgent, a generalist agent for sheet manipulation
and reasoning using LLMs. SheetAgent mainly consists of three
components: the Planner, Informer, and Retriever. The Planner
translates conceptual understandings into proficient code genera-
tion to manipulate spreadsheets. The Informer parses task demands
and produces high-quality, task-specific SQL queries to understand
the spreadsheet without needing to read the entire table, despite
its dynamic changes. The Retriever retrieves instructive examples
to improve the robustness of solutions. We demonstrate that Shee-
tAgent significantly outperforms other state-of-the-art baselines in
diverse benchmarks. Our contributions are three-fold:
• We introduce SheetRM, a benchmark for developing and evaluat-

ing LLM-based agents to manipulate spreadsheets with advanced
reasoning abilities. It includes more challenging tasks that re-
flect real-world requests and supports automatic evaluation with
various metrics.

• We develop a versatile LLM-based agent SheetAgent, combining
sheet manipulation and reasoning abilities to boost multifaceted
interaction between humans and spreadsheets.

• Experimental results show that SheetAgent can be combined
with any LLMs backbone and SheetAgent outperforms baselines
across multiple benchmarks, achieving a 20–40% improvement in
various metrics. These results highlight SheetAgent’s exceptional
capabilities in spreadsheet manipulation and table reasoning.

2 SheetRM Benchmark
Unlike existing datasets [12, 20, 26] primarily designed for more
precise spreadsheet manipulation, our goal is to construct a more re-
alistic dataset, where tasks contain challenges such as complicated
multi-step reasoning and vague requirements, to narrow the gap
between simulation and real-world scenarios. To achieve this, we be-
gin by sourcing spreadsheets from real-life Excel exam datasets. We
collate a diverse set of spreadsheet operations commonly used in re-
alistic scenarios and analyze the challenges faced when addressing
spreadsheet tasks in practical settings. In brief, our SheetRM dataset
is featured by the following elements, as outlined in Figure 2(a)-(d):
• Multi category:We summarize and collect 5 broad types and

36 subtypes of manipulation categories with corresponding 4
reasoning challenges. Each task includes an examination of both
manipulation and reasoning abilities.

• Reasoning-dependent manipulation: Tasks include opera-
tions with multi-step reasoning over spreadsheets.

• Long horizon: Various subtasks constitute a complete task,
which brings to agents the challenge of dynamic changes in
spreadsheets.

• Procedure evaluation: We build an automated program evalu-
ation approach for SheetRM that not only automates the deter-
mination of whether the full task is completed but also detects
the completion of individual subtasks.

2.1 Task Schema
Each task is defined by the following three parts. See Figure 2 (upper
right) for a visual demonstration.
Spreadsheet Assets. Each task consists of a spreadsheet as well
as multiple sheets. We summarize the contents of the spreadsheet

2
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Complex Computational Logic

Reasoning Challenges

Vague Requirements

Incoherent Data Format

Information Extraction

Task Instruction

Criterion: "Background_FILL"
Sheet Index: 0
Area: ”A8:H8"
Properties: [”orange"]

Checklist

... (more items)

Item 1

Item 2

Criterion: "Chart_Type"
Sheet Index: 0
Area: None
Properties: ["pie"]

Python Evaluative Criteria

def background_fill(workbook, sheet_index, area, properties):
sheet = workbook.sheets[sheet_index]
# compare background fill
color_code_gt = utils.color2rgb(properties[0])
color_code_ans = sheet.range(area).api.Interior.Color
success = color_code_gt == color_code_ans

return success
... (more criteria)

S
tep-by-step procedure evaluation

Matching

Comparison

Worksheet 
Management

Value 
Processing

Format 
Adjustment

Chart
Design

Content
Summary

l Create Worksheet
l Delete Worksheet
l Rename Worksheet
l Label Color
l Page Size
l Orientation

l Calculate
l Insert
l Delete 

Value
l Auto Fill
l Sort

l Copy &
Paste

l Replace
l Hyperlink
l Distinction
l Filter

l Font Name
l Font Color
l Font Size
l Bold & Italic
l Underline
l Merge & 

Unmerge
l Alignment
l Row Height & 

Column Width
l Background Fill
l Numeric Format

l Chart Type
l Chart Data Source
l Chart Caption
l Chart Legend
l Chart Position
l Chart Axis
l Data Label
l Trendline

Manipulation 
Categories l Pivot Creation

l Summary
Function

(a) Multi-category (b) Reasoning-Dependent Manipulation & (c) Long Horizon

Spreadsheet Assets

Checklist

(d) Procedure Evaluation
Processed Spreadsheet

Evaluation

• Highlight the best-selling computer accessory in orange. (vague req.)
• Draw a pie chart reflecting the sales of each product.
• Highlight the best-selling products in blue.
• Set the format of "Unit Price" to $ currency.

Product Unit Price Sales Volume Sales ...

Mouse 150 300 45,000 ...

... ... ... ... ...

Electronics_Sales.xlsx The workbook is about conducting statistical 
analysis of the company’s sales.

Format AdjustmentType: Chart Design Vague Requirements 

Figure 2: Overview and features of SheetRM. (a) Multi-category: SheetRM contain real-life tasks for multiple types of manipula-
tion categories and reasoning challenges. Each task includes an examination of both manipulation and reasoning abilities. (b&c)
Long horizon and reasoning-dependent Manipulation: An example task including three parts. Spreadsheet assets contain sheet
data and one-sentence description with category of tasks. Then task instruction provides the requirements for the execution
of the long horizon tasks. Checklist is designed for procedure evaluation. (d) Procedure evaluation: SheetRM automatically
evaluates each task step-by-step via corresponding checklist and evaluative criterion to achieve procedure evaluation.

in a one-sentence natural language overview as context, as shown
in Table 7, aiming to stimulate the internal knowledge of LLMs.
Task Instruction. A task instruction outlines the overall require-
ments expressed in natural language. Completing a task instruction
requires a series of operations on the target spreadsheet.
Checklist. A task is paired with a checklist designed to evaluate its
completion. Each item in the checklist corresponds to the evaluation
of a fine-grained operation with tailored criteria. The automatic
evaluation will be discussed in detail in Section 2.3.

2.2 Dataset Construction
We gather and refine publicly available spreadsheets through a
selection and cleaning process. Tasks are generated with both hu-
man and GPT-4 annotation. All the tasks are attached with verified
answers, which enables model-free evaluation. The statistics of our
curated dataset are shown in Table 1. Compared to the SheetCopi-
lot benchmark, our SheetRM has a more granular and reasonable
categorisation, holds more tasks with longer horizon and includes
reasoning challenges. See Appendix B for a detailed comparison
and more statistics.
Spreadsheet Files Collection. We initially collect real-world
spreadsheets1 from a public examination question bank, filtering
out files that are protected, corrupted, or inaccessible. To minimize

1A spreadsheet is a collection of sheets that are organized into a document. A table
represents a structured arrangement of data in rows and columns. Each sheet within
the spreadsheet contains a table.

Table 1: Basic statistics of SheetRM.

Item Count

# Sheets 137
# Average Rows per File 300.82
# Average Columns per File 26.23
# Tasks 317
# Subtasks 1625

privacy risks, we further modify sensitive information, such as
adding noise to age data and anonymizing bookstore names. We
select files covering multiple domains to ensure diversity, ensur-
ing most files have at least 2 sheets, with a minimum of 20 rows
and 5 columns. External dependencies are converted into natural
language or embedded sheets if feasible. We finally shortlist 41
spreadsheets with a total of 137 sheets. On average, each spread-
sheet contains 300.82 rows and 26.23 columns. For more collection
details, we refer to Appendix B.1.
Task Generation.We begin by referring to websites about spread-
sheet software skills and consult corporate staff about commonly
used spreadsheet operations in their work. As shown in Figure 2,
we conclude five coarse operation categories and their fine-grained
specific operations for manipulation. Drawing insights from com-
mon table reasoning datasets like WikiTableQuestions, FeTaQA,
and TabFact, we summarize four challenges in the process of sheet
reasoning: (1) complex computation logic, (2) vague requirements,

3
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(3) incoherent data format and (4) information extraction. We detail
these challenges in the Appendix B.4. Then, we instruct GPT-4 to
propose realistic tasks that mimic user requests adhering to four
guidelines: the tasks should only involve predefined operations,
cover diverse manipulation categories, exhibit a long-horizon na-
ture by encompassing multiple subtasks, and incorporate at least
one subtask that presents the specified reasoning challenges. This
process yields a compilation of 2316 subtasks. We eliminate seman-
tically redundant entries for identical files to maintain uniqueness.
To guarantee quality, our internal annotators manually validate
subtasks using programming and specialized software such as Ex-
cel. Certain unreasonable subtasks are excluded throughout this
process. By combining these subtasks for different spreadsheets con-
sidering horizon and complexity, we ultimately assemble 317 task
instructions, encompassing a total of 1625 subtasks. Full prompts
are available in Appendix I.1.

2.3 Automatic Evaluation
SheetCopilot [20] introduces a feasible method that determines task
fulfillment by evaluating the alignment of key properties between
the processed spreadsheet and ground truth candidates. However,
this method fails to evaluate the accuracy of each operation in-
volved, as a task may comprise multiple detailed intermediate steps.
To address this challenge, we develop an automatic evaluation sys-
tem that is model-free and tailored for each fine-grained operation.
The advantage of that is that we are able to evaluate the perfor-
mance of intermediate sub-task processes. A checklist is crafted for
each task instruction. As illustrated in Figure 2, within the check-
list, each evaluation item comprises a (Criterion, Sheet Index,
Area, Properties) pair. We locate the comparison region in the
target spreadsheet by (Sheet Index, Area). Then, corresponding
Criterion is applied to verify whether the region aligns with the
Properties. This design enables a detailed evaluation of LLMs’
capabilities by assessing each step of task execution.

3 SheetAgent Framework
To quantify the challenges posed by SheetRM, we introduce an
LLM-based agent framework SheetAgent. As outlined in Figure 3,
SheetAgent consists of three key components: the Planner, the In-
former, and the Retriever. The Planner generates Python code to
manipulate the target spreadsheet, reasoning and acting to address
complex tasks. The Informer supplies task-specific SQL queries,
whose execution results provide crucial subviews of the spreadsheet,
narrowing the reasoning scope for the Planner and enhancing its
ability to tackle complicated spreadsheet reasoning challenges. At
each decision step, the Planner can perform more precise manipu-
lations with subviews. When the Planner generates an incorrect
solution, the Retriever is activated to fetch high-quality code exam-
ples from our curated repository, assisting the Planner in making
more effective corrections. Pseudo code is provided in Appendix A.

3.1 Proficient Spreadsheet Manipulation with
Planner

We design a Planner module to manipulate spreadsheets in SheetA-
gent. The way to interact with spreadsheets determines the preci-
sion of manipulation. Unlike SheetCopilot [20], which uses a set of

language APIs, we adopt a code-centric approach to control spread-
sheets. We find Python, compared with VBA, is more suitable for
manipulating spreadsheets due to its alignment with the training
corpora of most existing LLMs [4, 30]. This Python code-centric
approach reduces the occurrence of hallucinations of LLMs. We
refer to Appendix C for details on the code-centric design.

Complex spreadsheet manipulation tasks often involve multi-
ple steps. Achieving precise control over spreadsheets is challeng-
ing without an effective feedback mechanism. To address this, we
devise a closed-loop planning process where the Planner inter-
acts with the target spreadsheet, incorporating feedback and re-
flection. We first concatenate task instruction 𝐼 , system prompt
𝑃𝑃 , description 𝐷 , and the initial sheet state 𝑠0 (row and column
count, headers, and data type of each column) as the input. Given
a snapshot of the target spreadsheet at step 𝑡 , the Planner gen-
erates action 𝑎𝑡 = Planner(𝑎𝑡 |𝐼 , 𝑃𝑃 , 𝐷, 𝑠𝑡 , ℎ𝑡−1), where ℎ𝑡−1 is the
planning history. The action is evaluated in a sandbox with the feed-
back 𝑜𝑡 = Sandbox(𝑎𝑡 ). If an error occurs, the Planner reflects and
generates an adjusted action 𝑎∗𝑡 = Planner(𝑎∗𝑡 |𝐼 , 𝑃𝑃 , 𝐷, 𝑠𝑡 , ℎ𝑡−1, 𝑜𝑡 ).
Otherwise, the action is performed on the target spreadsheet. The
spreadsheet is updated to a new state of 𝑠𝑡+1. The planning his-
tory is also updated to ℎ𝑡 = (ℎ𝑡−1, 𝑜𝑡 , 𝑎𝑡 ). By this, the Planner can
achieve accurate manipulation with only the key information (i.e.,
the sheet state) of the target spreadsheet rather than reading all the
sheet data.

3.2 Accurate Spreadsheet Perception with
Informer

Merely being aware of the sheet state does not equip the Planner to
address the reasoning challenges shown in Figure 2. For instance,
to fulfill the instruction illustrated in Figure 3, the Planner needs to
discern which products qualify as computer accessories. However,
the Planner struggles to query the spreadsheet effectively due to the
absence of efficient mechanisms like SQLs and lacks the intrinsic
ability to comprehend the data’s semantics. A feasible approach is
constantly feeding the full spreadsheet into the Planner. However,
considering the continuity of operations in a complicated task,
a spreadsheet may experience multiple modifications, making it
challenging to maintain a synchronized state within the Planner
due to the token limit.

Therefore, we introduce the Informer to handle table content
of arbitrary length and dynamic changes. Informer generates task-
specific SQLs to perform queries. Initially, the tabular data in the
target spreadsheet is extracted and stored in a lightweight data-
base. At step 𝑡 , the Informer’s objective is to select entries that
align best with both the task instruction and the current step. To
achieve this, we formulate the input of the Informer by combining
the system prompt 𝑃 𝐼 , the task instruction 𝐼 , and previous actions
𝐴𝑡−1 = (𝑎1, · · · , 𝑎𝑡−1) performed by the Planner. Then, the In-
former generates an SQL query 𝑞𝑡 = Informer(𝑞𝑡 |𝐼 , 𝑃 𝐼 , 𝐴𝑡−1, 𝑠𝑡 ).
𝐴𝑡−1 functions as a reasoning trace of the Planner, enabling the
Informer to generate more task-specific and robust SQLs. As shown
in Figure 3, the execution result of the SQL query is a spreadsheet
subview, which serves as evidence 𝑒𝑡 for the Planner to reason over.
This allows the Planner to more accurately and efficiently perceive
the target spreadsheet from key evidence, thereby addressing the

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

SheetAgent: Towards a Generalist Agent for Spreadsheet Reasoning and Manipulation via Large Language Models WWW ’25, April 28 – May 2, 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Electronics_Sales.xlsx

pie_chart.add_data(data, titles_from_data=False)
pie_chart.set_categories(labels)
# Set title in a correct way
pie_chart.title = "Sales Distribution of Electronics Products"

# Add the chart to the sheet
sheet_sales.add_chart(pie_chart, "G2")

Highlight the best-selling computer accessory in yellow.
Draw a pie chart reflecting the sales of each product ...

Task Instruction Planner Sandbox

Executed successfully,
no output.

STDOUT:
Load "Sales" sheet, and highlight the best-selling
computer accessory based on the "Sales" column.

from openpyxl.styles import PatternFill

# Load "Sales"
sheet_sales = workbook["Sales"]

# Select the computer accessories based on the evidence
computer_accessories = ["Mouse", "Headphone", 
"Keyboard", ...]

# Locate the row of computer accessory with highest sales
max_sales = 0
max_sales_row = 0
for row in range(2, sheet_sales.max_row + 1):

...

# Highlight the "Product" column with the highest sales in 
yellow.
sheet_sales.cell(row=max_sales_row, column=1).fill = 
PatternFill(start_color="FFFF00", end_color="FFFF00", 
fill_type="solid")

Sheet "Sales" has 9 rows and 6 columns (A(1): "Product"
<class 'str'>, B(2): "Unit Price" <class 'int'>, C(3): "Sales
Volume" <class 'int'>, ...).

Sheet State

This workbook records the sales of electronics products.

Description

Prompt

You are a spreadsheet agent and a Python expert who
can utilize proper functions to solve complicated
spreadsheet-related tasks ...

System Prompt

Planner

I need to plot a pie chart reflecting the sales of each
electronics product.

from openpyxl.chart import PieChart, Reference

# Create a pie chart object
pie_chart = PieChart()

# Categories the labels and the data
labels = Reference(sheet_sales, min_col=1, min_row=2, 
max_row=sheet_sales.max_row)
data = Reference(sheet_sales, min_col=4, min_row=2, 
max_row=sheet_sales.max_row)

pie_chart.add_data(data, titles_from_data=False)
pie_chart.set_categories(labels)
pie_chart.set_title("Sales Distribution of Computer Electronics 
Products")

# Add the chart to the sheet
sheet_sales.add_chart(pie_chart, "G2")

Sandbox

AttributeError: 
'PieChart' object has no 
attribute 'set_title'

STDERR:Informer

The Planner needs to identify the
best-selling computer assessory. So I
will retrieve the product names.

SELECT DISTINCT "Product" FROM "Sales"

SQL query:

Spreadsheet

Spreadsheet
subview

Informer

Erroneous Code

Top-k Retrieved
Code Fragments

Code
Repository

Embedding
Model

Retriever

Planner

Based on the retrieved codes and exception
information, I need to modify the approach for setting
the title.

Informer

Sandbox

Executed successfully,
no output.

STDOUT:

Final output

Product
Sales

Volume
Sales …

Mouse 300 45,000 …

Headphone 400 180,000 …

… … … …

Product Unit Price
Sales

Volume
Sales …

Mouse 150 300 45,000 …

Laptop 6,500 100 650,000

Headphone 450 400 180,000 …

… … … … …

Planning History

Figure 3: An illustration of SheetAgent. SheetAgent comprises three key components, including the Planner, the Informer, and
the Retriever. The Planner interacts with the target spreadsheet via a virtual sandbox. The Informer provides subtask-specific
SQLs, the execution results of which serve as the evidence for the Planner to handle reasoning challenges. The Retriever is
invoked to retrieve similar tutorial code snippets upon encountering an error, effectively correcting the error.

reasoning challenges. Note that each time the Planner performs an
operation, the spreadsheet in the database is updated to maintain
synchronization.

3.3 Robust Solution Generation with Retriever
The Retriever advises the Planner during task planning, augmenting
error corrections by sourcing relevant code from a code repository.
We collect high-quality code from GitHub and craft tutorial exam-
ples for each manipulation category shown in Figure 2. We organize
them into a compilation of code files. To improve efficiency, we
employ Milvus [34], an open-source vector database, as the code
repository. To construct this repository, a sliding window technique
is applied to traverse these files, extracting continuous lines of code
within the window size. These code fragments C𝑟𝑒𝑝𝑜 are embedded
into a set of vectors and stored in the code repository. The Retriever
is invoked when the sandbox emits an error signal. We seek top-𝑘
similar code snippets C𝑘𝑟𝑒𝑡 as follows:

C𝑘𝑟𝑒𝑡 =

{
C𝑖𝑟𝑒𝑝𝑜 |C𝑖𝑟𝑒𝑝𝑜 ∈ C𝑟𝑒𝑝𝑜 ,∀C 𝑗𝑟𝑒𝑝𝑜 ∉ C𝑘𝑟𝑒𝑡 ,

sim
(
E(C𝑞), E(C𝑖𝑟𝑒𝑝𝑜 )

)
> sim

(
E(C𝑞), E(C 𝑗𝑟𝑒𝑝𝑜 )

) }
,

wherein |C𝑘𝑟𝑒𝑡 | = 𝑘 , C𝑞 refers to the erroneous code snippet, and
sim(·) denotes cosine similarity. The embedding function2 E(·) can
be represented by any pretrained language model. Consequently,
2Here we use text-embedding-ada-002. See https://platform.openai.com/docs/models/
embeddings.

the top-k similar code snippets C𝑘𝑟𝑒𝑡 arranged in descending order
are retrieved. These code snippets boost the replanning process
of the Planner with 𝑎∗𝑡 = Planner(𝑎∗𝑡 |𝐼 , 𝑃𝑃 , 𝐷, 𝑠𝑡 , ℎ𝑡−1, 𝑜𝑡 , C𝑘𝑟𝑒𝑡 ) for
generating more robust and reliable solutions. We provide details
of code collection in Appendix D.

4 Experiment
We conduct experiments on various tasks to answer the following
research questions (RQs):
Versatility (RQ1): Is SheetAgent adept at both spreadsheet manip-
ulation and reasoning?
Universality (RQ2): Can different LLMs benefit from the design
of SheetAgent?
Difficulty (RQ3):Why SheetRM is a challenging benchmark for
existing methods?
Ablation (RQ4): How do the modules within SheetAgent con-
tribute to its overall effectiveness?

4.1 Experiment Setup
Dataset and Evaluation Metrics.We evaluate our approach Shee-
tAgent on 5 diverse benchmarks. SheetCopilot Benchmark (SCB), a
benchmark consisting of 221 tasks, is selected to mainly assess the
manipulation ability. To measure the reasoning capability, we adopt
three table reasoning tasks, includingWikiTableQuestions (WTQ)
[25], FeTaQA [23], and TabFact [6]. We report the performance on
these tasks using their official evaluation pipeline. The 317 tasks
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Table 2: Performance comparison of different methods on SCB and our
SheetRM. * denotes results on a subset of SCB with 20 representative tasks.
Best results are bolded and second-best results are underlined.

SCB SheetRM

Method Exec@1 ↑ Pass@1 ↑ Exec@1 ↑ Pass@1 ↑ SubPass@1 ↑

VBA (GPT-3.5) 77.8 37.1 56.2 2.8 14.5

OS-Copilot (GPT-4) / 60.0* 74.8 20.5 56.6

SheetCopilot (GPT-4) 65.0* 55.0* 68.1 0 16.2
SheetCopilot (GPT-3.5) 87.3 44.3 52.7 2.2 30.7

SheetAgent (GPT-3.5) 94.1 61.1 89.3 44.8 77.0
- w/o Informer+Retriever 88.7 50.7 88.6 11.4 57.5

SheetAgent (GPT-4) 90.0* 70.0* 92.4 31.2 69.8

Table 3: Results of different methods on three
table reasoning benchmarks. Best results are
bolded and second-best results are underlined.

Method WTQ TabFact FeTaQA

Fine-tuning based LLMs
TAPEX [22] 57.5 84.2 34.7
UnifiedSKG [38] 49.3 85.4 33.4
OmniTab [18] 62.8 82.8 34.9

Prompting based LLMs
GPT-3 CoT [5] 45.7 76.0 27.0
Binder [8] 59.9 82.9 31.6
DATER [39] 61.6 80.7 30.9
StructGPT [17] 52.2 81.2 32.5

SheetAgent (GPT-3.5) 64.4 84.8 36.7

in our SheetRM is used to comprehensively evaluate manipulation
and reasoning capabilities. Refer to Appendix E for more details
of these datasets. For manipulation tasks, we adopt Exec@1 and
Pass@1 following SheetCopilot. Exec@1 measures the percentage
of solutions without exceptions during execution. Pass@1 is used
to evaluate the successful accomplishment of the task. In addition,
we use the SubPass@1 to count the success rate of subtasks in each
task to assess the instruction following capability. As for reasoning
tasks, we chose distinct evaluation metrics. For WTQ and TabFact,
accuracy is adopted as the evaluation metric. For FeTaQA, we report
the sacreBLEU score [27].
Baselines. For SCB, we compare SheetAgent with SheetCopilot
[20] and OS-Copilot [37], two LLM-based agent frameworks, and
VBA [20], a method that generates and runs VBA code. For table-
based reasoning tasks, we select fine-tuning based LLMs like TAPEX
[22] and OmniTab [18], and prompting-based LLMs such as DATER
[39] and StructGPT [17]. To our knowledge, there is a lack of meth-
ods capable of comprehensive spreadsheet manipulation. Besides,
various approaches [9, 12, 31] finetune LLMs for specific tasks like
formatting and formula prediction but lack open source weights.
Therefore, we mainly compare VBA, SheetCopilot, and OS-Copilot
on SheetRM. We chose JSON as the table representation for its
superior performance as shown in Table 5. See Appendix F for
implementation details.

4.2 Versatility (RQ1)
To answer RQ1, we conduct various experiments on both spread-
sheet manipulation and reasoning tasks. Table 2 shows the results
for SCB. Using GPT-3.5 as the backbone, we observe that Shee-
tAgent outperforms SheetCopilot with a remarkable 16.8 higher
Pass@1. Even without the Informer and Retriever components, our
method still surpasses others in both metrics. This indicates that
the generated Python code is more robust and reliable compared to
VBA code or language APIs. Following Li et al. [20], we use GPT-4
on a subset of SCB, including 20 tasks. Our SheetAgent also out-
performs SheetCopilot and OS-Copilot with 15.0 and 10.0 higher
Pass@1 respectively. These results demonstrate that SheetAgent
can better leverage the power of LLMs to achieve more accurate
spreadsheet manipulation.

Further experiments focus on assessing SheetAgent’s reasoning
capability. We remove the Retriever as these tasks typically involve

simpler operations like sorting and filtering. Results in Table 3
show that SheetAgent outperforms other baselines on WTQ and
FeTaQA tasks, indicating its capability to provide precise and in-
formative responses. Besides, SheetAgent surpasses all fine-tuning
based methods, and achieves comparable performance as SOTA
method UnifiedSKG [38] on TabFact. The results underscores the
synergy between the Planner and Informer, which significantly
enhances SheetAgent’s efficacy in table reasoning tasks. Full results
are provided in Appendix G.1.

We compare SheetAgent with baselines on the SheetRM to eval-
uate reasoning and manipulation capabilities. For fair comparison,
we have improved SheetCopilot based on the open-source version
with error feedback functionality. Results in Table 2 show SheetA-
gent significantly outperforms other baselines in three aspects: (1)
Robust solution generation: SheetAgent achieves an Exec@1
of 92.4, indicating more robust solutions, meaning Python code
generated by LLMs is more robust than VBA and language APIs.
(2) Strong manipulation proficiency: SheetAgent is proficient in
complex multi-category tasks, achieving a maximum SubPass@1
of 77.0, more than double that of SheetCopilot with GPT-4. (3) Ad-
vanced reasoning ability: SheetAgent can solve more reasoning
challenges, whereas SheetCopilot struggles significantly (Pass@1
44.8 vs 2.2). This reflects the superior reasoning capabilities of
SheetAgent. We also provide an illustrative case in Figure 7 to fur-
ther demonstrate why SheetAgent outperforms SheetCopilot in
tasks with reasoning challenges.

4.3 Universality (RQ2)
To answer RQ2, we compare our SheetAgent with SheetCopilot
across various LLM backbones on SheetRM. As presented in Table 2
and Figure 4, SheetAgent shows remarkable improvements in all
evaluated metrics on diverse backbones such as GPTs and Claude.
Despite with smaller, open-source backbones, we can continue to
observe the same results. Furthermore, SheetCopilot fails to pass
any task completely on open-source models, and possesses lower
Exec@1 scores, highlighting its challenges in generating feasible
solutions. These results confirm the universality of SheetAgent, il-
lustrating its consistent performance improvements across different
LLM backbones regardless of scale. Meanwhile, we note that the
differences between various LLM backbones mainly stem from their
fundamental capabilities, such as instruction following and code
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(14b-chat)

Llama 3
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Claude 3
(Sonnet)

23.3
37.9

54.648.9
69.4

92.7
Exec@1 

Qwen-1.5
(14b-chat)

Llama 3
(8b-instruct)

Claude 3
(Sonnet)

7.6

14.2

26.5
Pass@1 

Qwen-1.5
(14b-chat)

Llama 3
(8b-instruct)

Claude 3
(Sonnet)

4.6 10.1
19.120.6

32.9

65.3
SubPass@1 

SheetCopilot SheetAgent

Figure 4: Performance on SheetRM for other LLM backbones. “—” means Pass@1=0. These backbones benefit significantly from
the design of SheetAgent compared to SheetCopilot.
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Worksheet
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Value
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Complex
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SheetAgent (GPT-4) OS-Copilot (GPT-4) SheetCopilot (GPT-4)

(b)

Figure 5: Comparison between SheetAgent and SheetCopilot with GPT-4. (a) Comparison of Pass@1 and SubPass@1 under
different task horizon levels. (b) Pass rate of different manipulation categories (left) and reasoning challenges (right).

generation abilities. We further analyze failure cases on SheetRM
in Section 4.6 to identify the deficiencies and opportunities for
improvement in SheetAgent under different LLM backbones.

4.4 Difficulty (RQ3)
We explore the challenges of our proposed SheetRM benchmark
from three perspectives: task horizon, task categories, and reason-
ing challenges. We compare SheetAgent with SheetCopilot and
OS-Copilot against the same GPT-4 backbone. Tasks are catego-
rized into three levels based on their horizon: short (2-4), medium
(5-7), and long (8-10). As depicted in Figure 5(a), both methods
exhibit a decreasing trend in Pass@1 and SubPass@1 as task hori-
zon increases, indicating the difficulty of long-horizon tasks in our
benchmark. Furthermore, Figure 5(b) presents the performance
across different manipulation categories and reasoning challenges
by evaluating subtask success rates. Both methods struggle with
more complex tasks like chart design and content summary. Ad-
ditionally, SheetCopilot can hardly address reasoning challenges.
These findings underscore the challenges introduced by SheetRM,
particularly in domains requiring consistent and robust reason-
ing and manipulation capabilities. Noted that our SheetAgent still
outperforms SheetCopilot, further validating its superior abilities.

4.5 Ablation (RQ4)
Effects of Each Module. Table 4 reveals the effects of SheetAgent
modules. Pass@1 drops dramatically without Informer, indicating
its vital role in handling reasoning challenges by providing rele-
vant information. Exec@1 also decreases sharply without Retriever,
showing that high-quality examples help the Planner generate
reliable code. Without both Informer and Retriever, SheetAgent

performs poorest, highlighting the need for both reasoning and
manipulation capabilities to tackle complex tasks effectively. Com-
bining the results in Table 2, evenwith only the Planner, SheetAgent
performs decently compared to SheetCopilot, showcasing the ben-
efits of a code-centric approach.
Table Representations. Tabular data requires reliable representa-
tions for LLMs to recognize attribute relationships. We ablate four
table representations—JSON, DFLoader, Markdown, andHTML—for
SheetAgent on WTQ and SheetRM. Results in Table 5 show JSON
outperforms other formats. HTML performs poorly on SheetRM
due to verbosity and token limits. We provide illustration of differ-
ent representations in Appendix G.3 with in-depth analysis. More
additional ablations about temperature and vision-enabled SheetA-
gent can be found in Appendix G.

4.6 Case Study
Failure Cases Analysis. In our analysis, we classified the failures
of various LLMs into five categories, namely “improper function
calls”, “inaccurate queries”, “retrieval of irrelevant code snippets”,
“hallucinations”, and “failure to follow instructions”. Figure 6 shows
the distribution of these failure types across different LLM back-
bones. From this, we observe that smaller, open-source models (e.g.,
llama3-8b-instruct and qwen-14b-chat) tend to exhibit higher rates
of “hallucinations” and “failure to follow instructions”, whereas
larger LMs like GPTs and Claude are more prone to “improper
function calls” and “inaccurate queries”. Notably, GPTs struggle
more with SQL generation, while Claude performs better in that
area but has higher rates of improper function usage. For a more
comprehensive discussion of these error patterns, specific cases,
and proposed strategies for addressing them, refer to Appendix H.
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Table 4: Ablation study of different proposed components in
SheetAgent on SheetRM dataset.

Method Exec@1 ↑ Pass@1 ↑ SubPass@1 ↑
SheetAgent (GPT-3.5) 92.4 31.2 69.8

-w/o Informer 95.3(+2.9) 13.2(-18.0) 65.8(-4.0)
-w/o Retriever 84.2(-8.2) 19.9(-11.3) 63.7(-6.1)
-w/o Informer+Retriever 88.6(-3.8) 11.4(-19.8) 57.5(-12.3)

Table 5: Ablation study on different representations. Best
results are bolded and suboptimal results are underlined.

Representation WTQ SheetRM

Exec@1 ↑ Pass@1 ↑ SubPass@1 ↑
JSON 63.3 92.4 31.2 69.8
DFLoader 59.7 90.9 30.0 67.5
Markdown 58.6 90.2 29.0 65.4
HTML 62.1 85.2 23.3 57.5

Qwen-1.5

Llama 3

Claude 3

GPT-3.5

GPT-4

14.0%

13.0%

28.5%

25.2%

28.3%

9.3%

16.1%

24.0%

26.8%

29.6%

7.5%

13.5%

21.7%

21.8%

26.2%

31.7%

24.9%

13.2%

14.3%

7.2%

37.5%

32.4%

12.5%

12.0%

8.6%

Improper function calls
Inaccurate queries
Retrieval of irrelevant code snippets

Hallucinations
Failure to follow instructions

Figure 6: Distributions of different failures cases for various
LLM backbones on the SheetRM dataset.

An Illustrative Case Between SheetAgent and SheetCopilot.
Figure 7 presents a case with reasoning challenge. For SheetAgent,
the Informer accurately selects the key evidence related to the
task instruction. The Planner correctly fulfill the task based on the
evidence. In contrast, SheetCopilot merely offers a rigid solution
that fails to complete the task despite its successful execution.

5 Related Work
LLMs for Table Reasoning. Recent research [35, 36] has demon-
strated the excellent ability of LLMs for table reasoning tasks. Chen
[5] showcased that LLMs like GPT-3 [2] are capable of reasoning
over tables. Binder [8] leverages Codex [4] to generate executable
SQL programs to answer table-based questions. DATER [39] de-
composes the table and question into finer granularity descriptions
through Codex. StructGPT [17] designs an LLM-based framework
for structured data and uses it for table question answering. How-
ever, these methods are tailored for tasks like question answering
or fact verification, typically involving direct queries or explicit
statements. As a result, they struggle to handle long-horizon ma-
nipulation tasks because of dynamic changes and token limits.
Automatic Spreadsheet Manipulation. Early research [1, 11–
13] focus on leveraging program synthesis to guide spreadsheet
manipulation. However, these methods fail to generate effective
programs without high-quality query specifications. To address

SheetCopilot

Filter(source="Championship!B2:B21", fieldIndex=2,

criteria="America")

SetFormat(source="Championship!B1:B8", fillColor="red")

DELETEFIlter()

Step 1. Filter by the criteria "America".

Step 2. Set the fill color of filtered cells to red.

Step 3. Remove the filter.

from openpyxl.styles import PatternFill

for row in sheet.iter_rows(min_row=2,
max_row=sheet.max_row, min_col=2):
    for cell in row:
        if "USA" in cell.value:
            cell.fill =
            PatternFill(start_color="FF0000",
            end_color="FF0000", fill_type="solid")

Think: Highlight championships held in the USA based
on the given evidence.

Date Venue Opponent

August 2, 1993 Montreal, Canada
Mikael

Pernfors

October 18,

1993
Tokyo, Japan Ivan Lendl

... ... ...

September 12,

1999

US Open, New York,

USA
Andre Agassi

Planner

Informer

Think: Retrieve the championships held in America.

SELECT "Championship" FROM "Championship" WHERE

"Venue" LIKE '%USA%' or "Venue" LIKE '%America%'

SheetAgentQ: Highlight championships hled in America with

red fill.
Sheet "Championship"

Date Venue Opponent

August 2, 1993 Montreal, Canada
Mikael

Pernfors

October 18,

1993
Tokyo, Japan Ivan Lendl

... ... ...

September 12,

1999

US Open, New York,

USA
Andre Agassi

Date Venue Opponent

August 2, 1993 Montreal, Canada
Mikael

Pernfors

October 18,

1993
Tokyo, Japan Ivan Lendl

... ... ...
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1999

US Open, New York,

USA
Andre Agassi

Nothing changes! Meet the requirement!

Figure 7: A comparison between SheetAgent and SheetCopi-
lot on a task with reasoning challenges. SheetCopilot gener-
ates a rigid solution that fails to fulfill the task. SheetAgent
identifies the task intention and gives a correct solution.

this, some work [7, 9, 15, 31] employ deep learning methods to
automate spreadsheet manipulation tasks. Despite excellent perfor-
mance in narrow domains like formatting and formula prediction,
they cannot handle a broader range of operations. Given the re-
markable performance of LLMs on various tasks [32, 33, 41], their
use for comprehensive spreadsheet manipulation has been explored
[20, 26, 37, 40, 42]. Payan et al. [26] utilizes LLMs to generate Of-
ficeScripts code with multiple domains. SheetCopilot [20] builds an
autonomous agent for invoking custom APIs to manipulate spread-
sheets. TableGPT [40] fine-tunes an LLM to understand and operate
on tables using external functions. OS-Copilot [37] proposes an
OS-oriented agent framework that automates spreadsheet manipu-
lation. However, they simplify real-world requirements and ignore
reasoning challenges like unclear expression and multi-step reason-
ing. Unlike them, we further explore real-life reasoning challenges
and propose a collaborative agent framework to solve spreadsheet
manipulation tasks that involve these reasoning challenges.

6 Conclusion
In this work, we introduce SheetRM, a more complex and realistic
benchmark designed to evaluate the capabilities of agents in per-
forming precise spreadsheet manipulations that require advanced
reasoning abilities. Furthermore, We introduce SheetAgent that
leverages the power of LLMs to tackle these challenging tasks.
Comprehensive experiments have been conducted to assess the rea-
soning and manipulation proficiency of SheetAgent. We anticipate
that SheetRM will serve as a cornerstone for advancing the devel-
opment of sophisticated generalist agents dedicated to spreadsheet
tasks. Furthermore, we hope SheetAgent can alleviate the burden
of tedious sheet transactions through automated workflows. While
SheetAgent demonstrates strong performance, we acknowledge
several limitations like library coverage and token usage, detailed
in Appendix J, which we leave as future work.
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A Pseudo Code of SheetAgent
We present the pseudo code of our proposed SheetAgent consisting
of the Planner, Informer, and Retriever modules for handling a
spreadsheet task. See Alg. 1.

Algorithm 1: SheetAgent Algorithm
Input: S: spreadsheet, 𝐼 : task instruction, 𝐷 : spreadsheet

description, 𝑠: sheet state, 𝜃, 𝜙 : LMs for Planner and
Informer, 𝑃𝑃 , 𝑃 𝐼 : system prompts for Planner and
Informer, 𝑇 : max iteration rounds, 𝐾 : number of
retrieval results, E: embedding model, C𝑟𝑒𝑝𝑜 : code
repository

Output: Ŝ: final processed spreadsheet
1 db← InitDB();
2 Scopy ← Copy(S);
3 UpdateDB(db,Scopy);
// Initialize iteration counter, action sequence,

and planning history

4 𝑡 ← 1; 𝐴← ∅; ℎ ← ∅;
5 while (𝑡 ≤ 𝑇 ) ∧ (𝑎𝑡 ≠ Done) do
6 𝑞𝑡 ← Informer𝜙 (𝐼 , 𝑃 𝐼 , 𝐴𝑡−1, 𝑠𝑡 );

// Execute SQL query and get spreadsheet

subview

7 𝑒𝑡 ← ExecuteSQL(db, 𝑞𝑡 );
8 𝑎𝑡 ← Planner𝜃 (𝐼 , 𝑃𝑃 , 𝐷, 𝑠𝑡 , ℎ𝑡−1, 𝑒𝑡 );

// Execute code in sandbox and get feedback

9 𝑜𝑡 ← Sandbox(𝑎𝑡 );
10 if Error(𝑜𝑡 ) then
11 C𝑞 ← ExtractErrorCodeSnippet(𝑎𝑡 );
12 C𝐾𝑟𝑒𝑡 ← Retriever(E, C𝑞, C𝑟𝑒𝑝𝑜 , 𝐾);

// Re-plan with error information

13 𝑎𝑡 ← Planner𝜃 (𝐼 , 𝑃𝑃 , 𝐷, 𝑠𝑡 , ℎ𝑡−1, 𝑒𝑡 , 𝑜𝑡 , C𝐾𝑟𝑒𝑡 );
14 end

// Update necessary information

15 𝐴𝑡 ← 𝐴𝑡−1 ∪ {𝑎𝑡 };
16 ℎ𝑡 ← ℎ𝑡−1 ∪ {𝑜𝑡 , 𝑎𝑡 };
17 Scopy ← UpdateSpreadsheet(Scopy, {𝑎𝑡 });
18 𝑠𝑡 ← UpdateDB(db,Scopy);
19 𝑡 ← 𝑡 + 1;
20 end

// Apply generated action sequence on original

spreadsheet

21 Ŝ ← UpdateSpreadsheet(S, 𝐴);
22 return Ŝ

B Details of SheetRM Benchmark
B.1 Details of Dataset Collection
Spreadsheet Collection. The spreadsheets curated in SheetRM
dare derived from an online examination question bank. We filter
out files that are protected, corrupted, or otherwise inaccessible.
Within each spreadsheet, the first row of each column must include

a header, with the actual data entries starting from the second row.
Besides, we ensure all data in each sheet begin from cell A1. We as-
sume that these spreadsheets have already undergone a process to
remove some personal information. However, to minimize privacy
risk by leaking important personal information, we further imple-
ment measures to ensure that no privacy issues arise. Specifically,
we modify potentially sensitive information, such as adding noise
to the age data and anonymizing bookstore names to general labels
like Bookstore A, Bookstore B, etc.
Task Verification. As mentioned in Section 2.2, we instruct GPT-4
to generate realistic tasks that mimic user requests adhering to four
guidelines: the tasks should only involve predefined operations,
cover diverse manipulation categories, exhibit a long-horizon na-
ture by encompassing multiple subtasks, and incorporate at least
one subtask that presents the specified reasoning challenges. This
procedure yields a collection of 2316 subtasks. We use GPT-3.5 to
filter task instructions that have a lot of semantic duplication to
maintain uniqueness. After this, 1973 subtasks are reserved. Fur-
thermore, our internal annotators verify these subtasks manually
to ensure quality, which increases the probability that they will be
completed by LLMs. Specifically, we adopt two strategies: (1) pro-
gramming and (2) specialized software. For programming, we ask
our internal annotators to write code to complete specific subtask.
For specialized software, we use Microsoft Excel to solve the sub-
task. We accept the subtask only if both strategies solve the subtask.
This cross-way validation approach guarantees the reliability of
the subtasks. We obtain 1625 subtasks after this process. Finally,
we combine these subtasks for different spreadsheets considering
horizon and complexity, which leads to 317 task instructions.

B.2 Comparison Between SheetRM and SCB
We conclude the differences that highlight the advantages of our
proposed SheetRM dataset compared with SCB as follows:
• More sheets: The number of spreadsheet files in SheetRM and

SCB is comparable. Besides, SheetRM maintains more spread-
sheet files and sheets than SCB (41 vs 28 & 137 vs 31). Each
spreadsheet file contains more complex logical relationships and
information.

• More subtasks and longer task horizon: As shown in Table 6,
SheetRM maintains more subtasks (1625 vs 431) with longer
horizon tasks (averaging 5.13 vs 1.95). Detailed task length
distribution is presented in Figure 9.

• Broader categories and more reasonable division: SCB cate-
gorizes tasks into 6 main types: Entry & Manipulation, Format-
ting, Pivot Tables, Charts, Formulas, and Management, which
results in unbalanced coverage and vague definitions. For exam-
ple, Formula is basically a type of numerical computation and
overlaps with Management and Manipulation, etc. In contrast,
SheetRM divides the 5major categories and 36 sub-categories
from coarse to fine and minimizes the overlap of sub-operations.
We believe this allows for a better evaluation of the agents.
• Finer-grained and more flexible evaluation: We propose an

automated checklist-based evaluation in SheetRM that is
flexible and accurate for each subtask in the middle of a process,
whereas SCB directly compares the final spreadsheets with the
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ground truth spreadsheets, ignoring the intermediate process of
evaluation.

• Introduction of reasoning challenges: It is worth noting that
reasoning challenges are innovatively introduced combined with
manipulation in SheetRM. In real-world spreadsheet tasks, it
is often necessary to reason and analyze problems and data in
order to carry out operations. The SCB simplifies the task objec-
tives by assessing only the LLM’s ability to manipulate spread-
sheets. Instead, our proposed SheetRM presents more realistic
and challenging tasks. Please refer to Appendix B.4 for further
elaboration.

B.3 Detailed Statistics of Dataset
Spreadsheet Files. We provide more detailed statistics of our
SheetRM dataset. We collect spreadsheets covering multiple fields.
As illustrated in Figure 8 (Left), we categorize these spreadsheet
files into five main fields, reflecting the significant areas where
spreadsheets are frequently employed to handle a variety of tasks.
We manually annotate a short natural language description as a
summary for each spreadsheet file, aiming to stimulate inherent
knowledge of LLMs. Each description provides an overview for
LLMs to better understand the background information. We pro-
vide the descriptions in Table 7.
Task Instruction. We cluster the commonly used operation when
working with spreadsheets into five categories, namely Value Pro-
cessing, Worksheet Management, Format Adjustment, Chart
Design, and Content Summary. For each manipulation category,
we further break it down into fine-grained operations. We believe
these operations can cover most spreadsheet affairs. The descrip-
tion of these operations is introduced in Table 8. Figure 8 (Right)
demonstrates the distribution of verb-noun phrases within our 317
task instructions. We highlight the ten most frequent root verbs
and their four primary associated nouns, showcasing the diversity
of task instructions in the SheetRM dataset. Additionally, we show
the distributions of the number of manipulation categories and sub-
tasks for these task instructions (see Figure 9 (Left)). The majority
of tasks span 2 or 3 manipulation categories, with a decent portion
encompassing 4 categories, underscoring the diversity of tasks in
the SheetRM dataset. We further count the number of subtasks in
each task. As displayed in Figure 9, each task includes at least 2
sub-tasks, with the most complex extending to 10. Predominantly,
the tasks vary in length from 3 to 7. This reflects the long horizon
feature of SheetRM, which poses a significant challenge to LLMs.
Full prompts for task generation are available in Appendix I.1.

B.4 Explanation of Reasoning Challenges
Our SheetRM dataset stands out from other spreadsheet manip-
ulation collections due to its emphasis on reasoning-dependent
manipulation. Specifically, each task incorporates reasoning chal-
lenges. We draw inspiration from several popular table reasoning
tasks, including table question answering datasets WikiTableQues-
tions and FeTaQA, and table fact verification task TabFact. We
analyze cases within these datasets that most models struggled
with and identify four types of reasoning challenges, namely Com-
plex Computational Logic, Vague Requirements, Incoherent
Data Format, and Information Extraction. We find that these

reasoning challenges are prevalent in real-world spreadsheet ma-
nipulation tasks due to the diversity of human expression. Thus,
integrating practical insights, we incorporate these reasoning chal-
lenges into our spreadsheet manipulation tasks. We elaborate these
challenges with descriptions and specific examples:

Complex Computational Logic

Description:
Problems that require more than one reasoning steps to be
solved.
Example Sheet:

Name Date of Entry Educational Qualification Salary
Alice 3/1/2001 Master 11,100
Bob 12/1/2006 Bachelor 10,350
... ... ... ...

John 1/9/2011 Doctor 41,100

Instruction:
Which period, 2001-2006 or 2007-2012, had a higher propor-
tion of employees with bachelor’s degrees? For the period
with the higher proportion, calculate the average salary of
the undergraduate employees and put it in cell E1.
Challenge:
To fulfill this instruction, the capability of multi-step rea-
soning is required.

Vague Requirements

Description:
Problems that refer to incomplete or ambiguous specifi-
cations which lack clarity and precision, making it chal-
lenging to understand and fulfill the intended goals or
objectives.
Example Sheet:

BookID Book Name Unit Price
BK-83024 VB Programming 38
BK-83026 Access Programming 35

... ... ...
BK-83029 Network Technology 43

Instruction:
Highlight database-related books in yellow.
Challenge:
To fulfill this instruction, Reasoning over the sheet contents
to identify which books are relevant to the database.
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Table 6: Comparison of statistical data between SheetRM and SCB.

Dataset Name # Files # Sheets # Task Instructions # Subtasks Avg. of Task Length Median of Task Length Max Task Length

SheetRM (Ours) 41 137 317 1625 5.13 5 10
SCB 28 31 221 431 1.95 2 7

Incoherent Data Format

Description:
Problems that arise when the description provided pertains
to the spreadsheet data, yet the units or formats mentioned
do not align with those represented in the spreadsheet.
Example Sheet:

Name Date of Birth
Alice 12/27/1964
Bob 9/28/1974
... ...

John 7/19/1987

Instruction:
Mark the names of employees born after 1985-1-1 in red.
Challenge:
To fulfill this instruction, the “Date of Birth” column should
be inferred to align the format.

Information Extraction

Description:
Problems that require specific information to be extracted
from the spreadsheet.
Example Sheet:

Venue Opponent Final Score
Memphis, Tennessee, USA Jim Courier 7-5, 6-7, 6-7
Australian Open, Melbourne, Australia Pete Sampras 6-7, 4-6, 4-6
... ... ...
Estoril, Portugal Albert Costa 6-2, 3-6

Instruction:
Extract the scores from the first round of the finals into
the new column "First Round Score".
Challenge:
To fulfill this instruction, Information about the “Final
Score” is required to determine how to extract the first
round score.

C Explanations of The Code-Centric Design in
Planner

What is generated by the Planner is crucial for precise manipulation.
Li et al. [20] introduces a set of virtual APIs as the action space for
its proposed agent. However, these APIs lack scalability and are
prone to hallucinations when invoked due to conflicts with the in-
herent knowledge of LLMs. Considering the strong code generation
capabilities of LLMs [3], we assign the Planner to generate codes

to control spreadsheets. During the process of dataset construction
(Section 2.2), we find that Python, compared with VBA, is suitable
for manipulating spreadsheets and aligns well with existing train-
ing corpus [4, 30] for LLMs. As shown in Table 9, we assess various
Python libraries for spreadsheet manipulation. Morden software
features considers support for newer spreadsheet software func-
tionalities like complex formulas, charts, and conditional format-
ting. LLM familiarity measures how extensively language models
like me can understand, explain, and generate code examples us-
ing these libraries. We select a few natural language description
and code snippets written by these libraries, prompt several LLMs
(gpt-3.5-turbo-1106, qwen-14b-chat, etc.) to generate and ex-
plain code examples, and evaluate the results manually. During
this process, we found that xlwings code can hardly be understood
by these LLMs despite its strengths in other aspects. Finally, We
choose to primarily use openpyxl3 and pandas4 as a combination
of them can cover all operations shown in Figure 2.

D Details of Code Collection for the Retriever
The Retriever’s code comes from GitHub open-source projects and
external Python libraries like openpyxl and pandas, focusing on
high-quality, popular code to ensure data representativeness. We
organized these codes by operations covered in SheetRM and then
abstracted them for universality. For operations without existing
code, we gathered more from the same sources or wrote code our-
selves, ensuring coverage of all defined operations. The organized
code is related to the corresponding tasks, mainly demonstrating
the application programming interfaces and providing high-level
guidance. However, the specific implementations of these APIs and
the generated solutions are different. Since we abstracted and en-
capsulated the collected codes, we only provided information on
how to operate in it, while the application of the actual data is rele-
vant to the task scenario. Thus, we anticipate that LLMs learn from
the knowledge provided by these code snippets and reflect on past
trajectories to generate more robust and higher-quality solutions
to the task. We provide several code examples in Listing 1-2.

E Dataset Details
The details of datasets mentioned in Section 4.1 are provides as
follows:
• WikiTableQuestions includes intricate questions created by

crowd workers from Wikipedia tables. These questions necessi-
tate multiple advanced operations like comparison, aggregation,
and arithmetic, demanding a detailed compositional analysis of
table entries. This dataset uses CC-BY-SA-4.0 license.

• FeTaQA features free-form questions derived from tables that
call for profound reasoning and comprehension. Predominantly,

3https://openpyxl.readthedocs.io
4https://pandas.pydata.org
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Figure 9: (Left) Distribution of manipulation categories in each task. (Right) Histogram of the task length.

the questions in FetaQA arise from non-contiguous segments of
the table. The performance is measured by accuracy on a test set
of 2,003 samples. This dataset uses CC-BY-SA-4.0 license.

• TabFact serves as a benchmark for table-based fact verification,
with crowd workers composing statements from Wikipedia ta-
bles. For instance, the statement: “The industrial and commercial
panel has four more members than the cultural and educational
panel.” must be validated as “True” or “False” based on the table
information. Accuracy is reported on a smaller test set of 2,024
statements across 298 tables. It uses MIT license.

• SCB is a spreadsheet manipulation dataset, which contains 28
spreadsheets collected the Internet. The 221 spreadsheet control
tasks within this dataset are generated using GPT-4, including

analyzing sales data, calculating financial metrics, and visualizing
data with charts. It uses GPL-3.0 license.

• SheetRM introduced in Section 2 comprises of 317 real-world
spreadsheet tasks. Each task includes multi-category and long-
horizon manipulation sequences, along with a specific reasoning
challenge. This dataset comprehensively assess the reasoning and
manipulation capabilities of LLM-based agents. It also supports
finer-grained and more flexible automatic evaluation. For more
details of our proposed SheetRM benchmark, please refer to
Appendix B. Our SheetRM dataset follows the CC-BY-SA-4.0
license.
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Table 7: A short natural language description of the spreadsheet files we collect in SheetRM dataset.

Spreadsheet File Description

BookSales This workbook presents data related to book sales.
StudentsGrade This workbook is about organizing and analyzing student transcripts for first-grade students.
ABProductSales This workbook presents data related to product A and B.
Reimbursement The workbook shows the company’s travel expense reimbursement status for the year 2013.
ElectronicsSales The workbook is about conducting statistical analysis of the company’s sales.
PayrollSummary The workbook is the March 2014 employee salary sheet.
TeachingFees This workbook shows the teaching situation and instructor hourly fees for the courses in the Teaching

Research Office in the year 2012.
Deposit The workbook is a bank deposit journal.
ComputerBookSales The workbook depicts the sales figures for computer-related books in December 2012.
ScienceMajorGrade The workbook shows the final exam grades for the Information and Science major.
PersonnalInformation This workbook is the personnel file information of company employees.
ComputerBookSales2 This workbook represents the sales statistics of computer-related books.
AppliancesSales This workbook shows the sales statistics of various household appliances.
DepartmentSales This workbook documents the sales performance of company’s products in the first half of the year.
QuartersSales This workbook summarizes the sales performance for the first two quarters.
FinalGrade This workbook provides a detailed analysis of students’ final grades.
ParkingFees This workbook keeps track of parking fees and the associated rates.
LivingCosts This workbook displays an individual’s monthly expense report.
StudentsGrade2 This workbook displays the grades for each subject in the class.
LawMajorGrade This workbook presents the final grade analysis of law students from the 2012 cohort.
YearsSales This workbook documents the sales statistics of company products in 2012 and 2013.
YearEndSalary This workbook provides the year-end salary details of employed staff members.
AirQuality This workbook illustrates the air quality data for major cities in China.
SalesAndPurchase This workbook is a record of this year’s sales and purchase data.
PersonnelChange This workbook contains the personal details of company employees for the year 2019, including their

entry and departure information.
ProductLaunchPlan This workbook outlines the product launch timeline, key milestones, and marketing strategies.
StudentAttendance This workbook tracks the attendance records of students across various grades.
QuarterlyEarnings This workbook presents the company’s earnings and financial reports for each quarter of 2020.
OfficeInventory This workbook lists office supplies, including current stock levels and reorder statuses.
RoadMaintenanceLog This workbook logs the maintenance schedule and costs associated with road repairs in the city.
CustomerSurvey This workbook compiles customer feedback from recent marketing campaigns and product surveys.
TeacherPerformance This workbook evaluates teacher performance based on student feedback and exam results.
BudgetForecast This workbook forecasts the company’s budget allocations for the next fiscal year.
HRLeaveTracker This workbook tracks employee leave, including vacation days and sick leave balances.
BridgeInspection This workbook contains the results of bridge safety inspections conducted in 2021.
CampaignROI This workbook analyzes the return on investment (ROI) of various marketing campaigns.
CourseEnrollments This workbook tracks student enrollment numbers for various courses during the academic year.
TaxFilingSummary This workbook summarizes the company’s tax filings for the past three years.
MeetingMinutes This workbook records the minutes and action items from weekly department meetings.
PowerGridStatus This workbook monitors the status of the city’s power grid, including outages and repairs.
AdBudgetAllocation This workbook details the allocation of the advertising budget across different channels.

F Implementation Details
Baselines. As for table reasoning tasks, we run Binder and DATER
using the official implementations. The only difference is that we
revise the code to use publicly available gpt-3.5-turbo-16k-0613 as
the LLM backbone instead of Codex due to its inaccessibility. We

also run StructGPT on TabFact small-test set and FeTaQA using its
open-sourced code with the same LLM backbone. On the proposed
SheetRM, we have improved SheetCopilot based on the simplified
open-source version5 with error feedback functionality for fair

5https://github.com/BraveGroup/SheetCopilot.
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Table 8: Description of each fine-grained operation involved in SheetRM dataset.

Manipulation Category Operation Description

Value Processing Calculate Calculations and statistics.
Insert Insert rows or columns.
Delete Delete cells, rows or columns.
Auto Fill Fill according to the control relationship.
Sort Sort rows or columns in ascending or descending order.
Copy & Paste Copy and paste cell values.
Replace Replace the values of a cell at a specified location.
Hyperlink Set up hyperlinks.
Distinction Remove duplicates.
Filter Filter specified cells according to certain conditions.

Worksheet Management Create Worksheet Create a new worksheet.
Delete Worksheet Delete the specified worksheet.
Rename Worksheet Rename the specified worksheet.
Label Color Modify the color of worksheet name labels.
Page Size Modify page size.
Orientation Set the page orientation.

Format Adjustment Font Name Set the font category.
Font Color Set the font color.
Font Size Set the font size.
Bold & Italic Set the font to be bold or slanted.
Underline Underline cell contents.
Merge & Unmerge Merge or split cells.
Alignment Align cells horizontally or vertically.
Row Height & Column Width Set cell row height or column width.
Background Fill Set cell background fill color.
Numeric Format Set cell number formatting.

Chart Design Chart Type Set the Chart Type.
Chart Data Source Set the data source for the chart.
Chart Caption Set the title of the chart.
Chart Legend Set the Chart Legend.
Chart Position Specify where to place the chart.
Chart Axis Set the axes of a chart.
Data Label Set data labels for charts.
Trendline Add a trendline to the chart.

Content Summary Pivot Creation Create pivot table.
Summary Function Set statistical functions of the pivot.

Table 9: Comparison of Python libraries for spreadsheet manipuation.

Library Read Write Additional Features Cross-Platform Modern Software Features LLM Familiarity

xlrd ! % % ! Limited High
xlwt % ! % ! Limited High
openpyxl ! ! ! ! High High
xlwings ! ! ! ! High Low
xlsxwriter % ! % ! Limited High
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# create_pie_chart.py

from openpyxl import Workbook

from openpyxl.chart import PieChart, Reference

data = [

["Pie", "Sold"],

["Apple", 50],

["Cherry", 30],

["Pumpkin", 10],

["Chocolate", 40],

]

wb = Workbook()

ws = wb.active

for row in data:

ws.append(row)

pie = PieChart()

labels = Reference(ws, min_col=1, min_row=2, max_row=5)

data = Reference(ws, min_col=2, min_row=1, max_row=5)

pie.add_data(data, titles_from_data=True)

pie.set_categories(labels)

pie.title = "Pies sold by category"

ws.add_chart(pie, "D1")

Listing 1: Implementation for pie chart creation.

comparison. For the VBA method, we adjust the prompt of SheetA-
gent to generate pywin32 code and remove the Retriever module
due to code repository mismatch. FormaT5 and SpreadsheetCoder
are implemented using the official open-sourced code. For the rest
baselines, we report the performance obtained from papers.
LLM Backbones for SheetAgent. In the main experiments,
we select various LLMs as the backbones for our proposed
SheetAgent. As for proprietary LLMs, we choose GPT-3.5, GPT-
46, and Claude 3 (claude-3-sonnet-202402297). In terms of
open-source LLMs, we adopt Qwen-1.5 (qwen-14b-chat8) and
Llama 3 (llama3-8b-instruct9). Note that multiple versions of
GPTs are involved for alignment with other baselines. Specif-
ically, for SCB, WikiTableQuestions, FeTaQA, and TabFact, we
use gpt-3.5-turbo-16k-0613. For our SheetRM, we employ
gpt-3.5-turbo-1106 and gpt-4-turbo-0409.
Choice of In-context Examples. For the SCB dataset, we align
with SheetCopilot by using only one in-context example. For other

6https://platform.openai.com/docs/models
7https://docs.anthropic.com/claude/docs/models-overview
8https://huggingface.co/Qwen/Qwen-14B-Chat
9https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

# add_second_axis.py

from openpyxl import Workbook

from openpyxl.chart import BarChart, LineChart,

Reference↩→

wb = Workbook()

ws = wb.active

rows = [

["Aliens", 2, 3, 4, 5, 6, 7],

["Humans", 10, 40, 50, 20, 10, 50],

]

for row in rows:

ws.append(row)

c1 = BarChart()

v1 = Reference(ws, min_col=1, min_row=1, max_col=7)

c1.add_data(v1, titles_from_data=True,

from_rows=True)↩→

c1.x_axis.title = "Days"

c1.y_axis.title = "Aliens"

c1.y_axis.majorGridlines = None

c1.title = "Survey results"

# Create a second chart

c2 = LineChart()

v2 = Reference(ws, min_col=1, min_row=2, max_col=7)

c2.add_data(v2, titles_from_data=True,

from_rows=True)↩→

c2.y_axis.axId = 200

c2.y_axis.title = "Humans"

# Display y-axis of the second chart on the right by

setting it to cross the x-axis at its maximum↩→

c1.y_axis.crosses = "max"

c1 += c2

ws.add_chart(c1, "D4")

Listing 2: Implementation for adding second axis in a chart.
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datasets, we utilized two in-context examples each. Specifically, for
SCB, we selected the same task as SheetCopilot. We initially had
VBA and SheetAgent generate a trajectory for the task under a zero-
shot setting using GPT-4, then made appropriate modifications to
ensure correctness. The modified trajectory was ultimately used as
the in-context example. For SheetRM benchmark, we constructed
two additional tasks not present in the dataset and employed VBA,
SheetAgent and SheetCopilot to generate trajectories for these
tasks, in the same manner, to serve as in-context examples. For
other datasets, including WTQ, FeTaQA, and TabFact, where our
experiments were conducted on the test sets, we chose two tasks
from their respective training sets as examples. It is worth noting
that our SheetAgent only uses 2 in-context examples while Binder
uses 14. SheetAgent still achieves superior performance.
Computing Power.All the results in our experiments are obtained
by running the code on a server equipped with an Intel(R) Xeon(R)
Gold 6338 CPU @ 2.00GHz and 2*NVIDIA A800.
Accessibility of Code and Data. Supplementary information is
available in the Appendix. Additional information such as code and
data is available at https://anonymous.4open.science/r/SheetAgent.
We also present a video demo at the project website.

G Additional Experimental Results
G.1 Full Results on Table Reasoning Tasks
Table 10-11 show the full evaluation results on table reasoning
tasks.

Table 10: Results of different methods on WTQ test set and
TabFact small-test set. We report the accuracy metric. Best
results are bolded and second-best results are underlined.

Method WTQ TabFact

Fine-tuning based LLMs
TAPAS [16] 48.8 83.9
TAPEX [22] 57.5 84.2
UnifiedSKG [38] 49.3 85.4
OmniTab [18] 62.8 82.8
Prompting based LLMs
GPT-3 CoT [5] 45.7 76.0
Binder [8] 59.9 82.9
DATER [39] 61.6 80.7
StructGPT [17] 52.2 81.2

SheetAgent (Ours) 64.4 84.8

G.2 Vision-Enabled SheetAgent
We have explored the potential of leveraging GPT-4V(ision)’s vi-
sual capabilities by substituting spreadsheet snapshots for the text-
modal sheet state in the observation. Given the cost of GPT-4V and
the challenges in automatic snapshot capture of spreadsheets, we
test this approach with 10 representative tasks from the SheetRM
dataset. We have ensured these tasks span all five manipulation
categories defined in SheetRM. As vision-eanbled SheetAgent can
observe full state of spreadsheets, we remove the Informer mod-
ule for fair comparison. We present the differences in sheet state

Table 11: Results of different methods on FeTaQA test
set. Best results are bolded and suboptimal results are
underlined.

Method sacreBLEU

Fine-tuning based LLMs
T5-small [23] 21.6
T5-base [23] 28.1
T5-large [23] 30.5
TAPEX [22] 34.7
UnifiedSKG [38] 33.4
PeaQA [24] 33.5
OmniTab [18] 34.9
Prompting based LLMs
GPT-3 CoT [5] 27.0
Binder [8] 31.6
DATER [39] 30.9
StructGPT [17] 32.5

SheetAgent (Ours) 36.7

Table 12: Performance comparison between SheetAgent (GPT-
4) and SheetAgent (GPT-4V) on 10 representative tasks from
SheetRM. Vison-enabled SheetAgent removes the Informer
module.

Method Pass@1 ↑ SubPass@1 ↑
SheetAgent (GPT-4V) 40.0 66.5
SheetAgent (GPT-4) 50.0 74.1

between GPT-4V and GPT-4 in Figure 10. Results are presented
in Table 12. Through this intriguing experiment, we observe that
when tasks involved visual elements, such as formatting and chart
modification, SheetAgent can better adjust styles based on the vi-
sual feedback, improving task completion. However, SheetAgent
(GPT-4V) has difficulty processing large-scale spreadsheets and cor-
rectly identifying sheet data due to low image solution, resulting in
task failure. We also obtain an interesting finding that there exists
an overlap between the visual aspect of GPT-4V and the Informer
module. While GPT-4V allows SheetAgent to perceive multimodal
content within spreadsheets (charts, pivot tables, frozen panes, etc.),
it faces challenges capturing accurate information in larger-scale
tables compared with the Informer. We leave this for our future
work.

G.3 Ablation Study on Table Representation
Tabular data is a kind of information-dense structured data, it is
crucial to design reliable representations to enable LLMs clearly
recognize the attribute relationships. To investigate what repre-
sentation can better help LLMs to reason over tables. We ablate 4
prevalent table representations: JSON, DFLoader, Markdown, and
HTML for SheetAgent on WikiTableQuestions and SheetRM. We
provide an illustration of these representations, as shown in Fig-
ure 11. Notably, DFLoader is represented by the corresponding
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Planner

Create	 a	 dictionary	 to	 map	 "Bookid"	 to	 "Bookname"	 from	 the
"Numbering	 Reference"	 sheet	 and	 use	 it	 to	 fill	 in	 the	 "Bookname"
column	in	the	"Order	Details"	sheet.

#	Create	a	dictionary	mapping	Bookid	to	Bookname
bookid_to_name	=	{}
for	row	in	numbering_reference_sheet.iter_rows(min_row=2,
max_row=18,	values_only=True)(
bookid_to_name[row[0]]	=	row[1]

#	Fill	the	Bookname	in	Order	Details	sheet	using	the	dictionary
for	row	in	order_details_sheet.iter_rows(min_row=2,	max_row=635,
min_col=4,	max_col=5)(
book_id	=	row[0].value
if	book_id	in	bookid_to_name:
row[1].value	=	bookid_to_name[book_id]

Sandbox

Executed	successfully,
no	output.

STDOUT:

Sandbox

Executed	successfully,
no	output.

STDOUT:

Sheet	"Order	Details"	has	635	rows	(Including	the	header	row)
and	 8	 columns	 (A(1):	 "Orderid"	 (<class	 'str'>),	 B(2):	 "Date"
(<class	 'datetime.datetime'>),	C(3):	 "Bookstore	Name"	 (<class
'str'>),	D(4):	"Bookid"	(<class	 'str'>),	E(5):	"Bookname"	(<class
'str'>),	 F(6):	 "Unit	 Price"	 (<class	 'int'>),	 G(7):	 "Sales	 Volume"
(<class	'int'>),	H(8):	"Subtotal"	(<class	'int'>)).

Sheet	 "Numbering	 Reference"	 has	 18	 rows	 (Including	 the
header	row)	and	3	columns	(A(1):	"Bookid"	(<class	'str'>),	B(2):
"Bookname"	(<class	'str'>),	C(3):	"Unit	Price"	(<class	'int'>)).	

(b)	Text	sheet	state(a)	Snapshot
GPT-4Vision GPT-4

Figure 10: An illustration depicting the differences in sheet state between GPT-4V and GPT-4. For brevity, the Informer and
Retriever modules are excluded. The snapshots (namely the visual representation of sheet state) are partial due to the limitation
of spreadsheet scale.

Python code snippet that uses the pandas DataFrame API to define
the table. The results shown in Table 5 reveal that JSON outperform
other formats. HTML format achieves a suboptimal result on WTQ,
but ranks lowest on SheetRM. Its open-and-close structure helps
LLMs understand better, but the verbosity risks exceeding token
limits, thus hindering efficiency. We also observe that DFLoader
format achieve commendable results, possibly due to its code struc-
ture, which might be easier for LLMs to comprehend. Overall, JSON
is a preferable choice for both reasoning intensive tasks, like WTQ,
and long-horizon tasks with fewer reasoning elements, such as
SheetRM.

G.4 Ablation Study on LLM Temperature
We conduct evaluations of our method using the proposed SheetRM
dataset under varying conditions by adjusting the temperature set-
tings to investigate the impact of temperature on the performance
of LLMs. For these experiments, gpt-3.5-turbo-1106 is selected
as the LLM backbone. Our findings reveal that our method, Shee-
tAgent, achieves its best performance at a temperature of 0.0, with
minor performance fluctuations observed at a temperature of 0.2.
However, a noticeable decline in performance across all metrics
occurs when the temperature is increased to 0.4. This trend sug-
gests that higher temperature settings lead to more unpredictable
outcomes from SheetAgent, reflecting a decrease in the stability
and reliability of the solutions it generates.
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pd.DataFrame({
				"Name":	["John",	"Emily",	"Michael",	���],
				"Age":	[28,	36,	29,	���],
				"Occupation":	["Engineer",	"Teacher",	"Doctor",	���]
})

HTML

|	Name				|			Age	|	Occupation			|
|-.///////0/////1-|-.////////////2
|	John				|				28	|	Engineer					|
|	Emily			|				36	|	Teacher						|
|	Michael	|				29	|	Doctor							|
|			���			|		���		|						���					|

Markdown

DFLoader

{
				{"Name":"John","Age"-28,"Occupation":"Engineer"},
				{"Name":"Emily","Age"-36,"Occupation":"Teacher"},
				{"Name":"Michael","Age"-29,"Occupation":"Doctor"},
				���
}

JSON

<table>
		<thead>
				<tr>
						<th>Name67th>
						<th>Age67th>
						<th>Occupation67th>
				67tr>
		67thead>
		<tbody>
				<tr>
						<td>John67td>
						<td>2867td>
						<td>Engineer67td>
				67tr>
				<tr>
						<td>Emily67td>
						<td>3667td>
						<td>Teacher67td>
				67tr>

				���
		67tbody>
67table>

Figure 11: An illustration of 4 different table representations we use in our experiments.

Table 13: Ablation study on the temperature of LLM.

Temperature Exec@1 ↑ Pass@1 ↑ SubPass@1 ↑
0.0 92.4 31.2 69.8
0.2 93.5 30.3 68.1
0.4 90.2 28.7 66.2

Table 14: Token and time consumption comparison. Con-
sumption of tokens is calculated by stage.

Method Avg. # Tokens Avg. Time (s)

SheetAgent (GPT-3.5) System Prompt: 324 + Few-shot Demon-
strations: 2013 + Planner: 589.7 + Informer:
513.9 + Retriever: 625.3 = 4065.9

6.9

SheetCopilot (GPT-3.5) System Prompt: 1895 + Few-shot Demon-
strations: 1592 + Plan: 628.5 = 4115.5

5.8

G.5 Performance-Cost Analysis
We have conducted extra experiments to calculate the token
and time consumption of our method on SheetRM. We use
gpt-3.5-turbo-1106 as the LLM backbone. We compare our pro-
posed SheetAgent with SheetCopilot. It is noteworthy that since
SheetCopilot is insufficiently capable of fulfilling a complete task
from SheetRM, we select 20 subtasks for which both can generate

successful trajectories and calculate metrics based on these. The
results are presented in Table 14. On average, our approach con-
sumes fewer tokens compared to SheetCopilot, primarily because
SheetCopilot oftenmakes errors, which leads to reflection. However,
SheetAgent involves querying multiple LLMs and a vector database,
which places us at a disadvantage in terms of time efficiency.

As for cost, we have calculated the cost of successful trajecto-
ries by our SheetAgent (GPT-3.5) on SheetRM. The average cost to
finish a complete task is $0.0049. Notably, excellent results of Shee-
tAgent shown in Table 2 can be achieved even with relatively cheap
backbone GPT-3.5 and Claude 3 Sonnet, which is a trade-off be-
tween cost and performance. We believe the superior performance
of SheetAgent compared to other methods justify this resource use.

H Failure Cases Analysis
In the main text (Section 4.6), we briefly highlighted the key differ-
ences in the error distributions of various LLM backbones. To gain
a clearer understanding of the differences between the LLM back-
bones compared in Sections Section 4.2 and Section 4.3, we conduct
a detailed error analysis to determine the causes and locations of
failures. We classify the reasons for failure as follows:

• Improper function calls: The Planner inaccurately invokes
function interfaces for certain operations. For example, it uses
chart.set_title("Chart Title") instead of chart.title =
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"Chart Title", resulting in an AttributeError. Additionally,
it performs worksheet.cell_range() (a method deprecated in
newer versions of openpyxl) instead of worksheet.iter_rows()
or worksheet.iter_cols().

• Inaccurate queries: The Informer generates imprecise SQL
statements leading to incorrect or incomplete information being
input. For example, it attempts to query books related to of-
fice software but produces a statement like SELECT * FROM
w WHERE BookName LIKE ‘%Excel%’ OR BookName LIKE
‘%PowerPoint%’ while ignoring Word.
• Retrieval of irrelevant code snippets: The Retriever sources

irrelevant code fragments, which impedes the Planner’s correc-
tion process. This happens due to similarities in code segments
within the code repository, resulting in the retrieval of irrelevant
code.

• Hallucinations: It performs operations on rows and columns
that are out of scope, ignoring the actual data, or creates data
that does not exist.

• Failure to follow instructions: It terminates tasks prematurely
or fails to comply with the given instructions. For example, it
only completes a part of subtasks from a long-horizon task or
highlights entries in colors not specified by the task.

We present the proportions of different failure cases for various
LLM backbones on our SheetRM in Figure 6. Combining the results
in Figure 4, we can observe that: (i) LLMs with poorer performance
on the benchmark (e.g., llama3-8b-instruct and qwen-14b-chat) have
a significantly higher proportion of errors related to “hallucinations”
and “failure to follow instructions”. In contrast, well-tuned LLMs
with extensive parameters, such as GPT-3.5, GPT-4, and Claude 3
Sonnet, have their errors predominantly concentrated in “improper
function calls”, “inaccurate queries”, and “retrieval of irrelevant
code snippets”. This indicates that advanced LLMs perform better
on complex tasks, whereas smaller open-sourced LLMs struggle
significantly with understanding and executing instructions. (ii)
Among proprietary LLMs, GPT-3.5 and GPT-4 exhibit similar error
distributions, with high proportions of errors in “inaccurate queries”
and “improper function calls” (29.6% and 28.3% for GPT-4, 26.8%
and 25.2% for GPT-3.5, respectively). In contrast, Claude 3 Sonnet
shows a different pattern, with a similar proportion of “inaccurate
queries” (24.0%) but a relatively higher proportion of “improper
function calls” (28.5%). This may reflect that GPTs are adept at gen-
erating proficient Python code, while Claude can better understand
complicated instructions and translate them into accurate SQLs. (iii)
Smaller open-source LLMs, such as llama3-8b-instruct and qwen-
14b-chat, display similar error patterns, primarily in “hallucinations”
and “failure to follow instructions”. Llama3-8b-instruct possesses a
“failure to follow instructions” error rate of 32.4%, whereas qwen-
14b-chat has a significantly higher rate of 37.5%. This phenomenon
may be attributed to their training corpus and model scale.

We further perform a deep analysis of specific failure cases across
different LLM backbones, which reveals distinct patterns and chal-
lenges. GPT-4 and GPT-3.5 are prone to make errors in generating
correct SQLs. After inspecting the specific bad cases, we find that in
most cases, they understand the task instruction but generate SQLs
that semantically fail to fulfill the task requirements. In other cases,
they generate syntactically incorrect SQL statements that cause

execution to fail. Differently, Claude 3 Sonnet owns a highest rate
of improper function calls but fewer errors of inaccurate queries.
It usually calls a function that does not exist or is deprecated, or
misunderstands the function usage. For instance, it uses openpyxl’s
iter_rows() function to iterate through the spreadsheet. The ex-
act code it produces is for row in ws.iter_rows(min_row=1,
max_row=10, max_col="E"):, where max_col should be an in-
teger instead of a string. Llama3-8b-instruct and qwen-14b-chat
share the highest proportions of instruction-following failures and
hallucinations, suggesting difficulties in maintaining task context
and adhering to long-horizon instructions. We note that there are
a large number of incomplete solutions in the llama3-8b-instruct
failure case, due in large part to its limited context length of 8K.
For qwen-14b-chat, we observe that it can hardly follow the com-
plicated and long-horizon task instructions, and tends to generate
irrelevant contents. We assume this may have something to do with
its training strategy and corpus.

We have further proposed potential strategies to overcome the
proposed failure cases, which may provide insights for future re-
search in this community:
• Regarding addressing improper function calls, we found

conflicts between the LLM’s training corpus on openpyxl versions
and current versions. Enhancing understandings of library func-
tions through fine-tuning or tool augmentation might mitigate
this.

• For inaccurate queries, improving model training with diverse
SQL examples through fine-tuning and incorporating a validation
layer to check queries against database schemas could enhance
accuracy.

• To combat irrelevant code snippet retrieval, refining the
code repository with detailed descriptions of each example’s
functionality and intended task scenarios could improve retrieval
accuracy.

• For hallucinations and failure to follow instructions, we
attribute these to the model’s inherent limitations, noticing a
significant increase in these issues on weaker LLM backbones
like llama3-8b-instruct and qwen-14b-chat. Switching to a more
robust LLM might alleviate these problems. Explicitly managing
task progress (e.g., adding a task decompositionmodule for proce-
dural execution) or incorporating an LLM-driven Critic module
(for sanity check on generated solutions) could also partially
address these issues.

I Prompts
I.1 Prompt for Subtask Generation
The subtask generation stage involves two aspects, namely generat-
ing subtasks with diverse fine-grained operations, and generating
subtasks with four reasoning challenges. Figure 12 lists the prompt
for the first aspect. To ensure the generation quality, we prompt
GPT-4 to choose 4-5 fine-grained operation at a time. To narrow the
gap with realistic requirements, we ask GPT-4 to express in a tone of
real-life users. Moreover, an in-context example is provided to teach
GPT-4. With these prerequisites, GPT-4 can continuously generate
diverse and sufficient subtasks. Fig. 13-16 showcase the prompts for
generating subtaks with 4 reasoning challenges. Particularly, GPT-4
is prompted under the principle that the generated subtasks should
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only be solved by reasoning over spreadsheets. This guarantees the
existence of reasoning factors in the subtasks to some extent. For
the last three challenges, we ask GPT-4 to annotate response with
its thinking logic so that we could verify that it makes sense.

I.2 Prompt for Planner
Figure 17 lists the prompt template for the Planner in SheetAgent.
The Planner is prompted to mainly use openpyxl and pandas to
manipulate spreadsheets. We also prompt Planner to reason and
plan in a ReAct way. It can invoke Python tool to interact with a
Python sandbox for solution evaluation, and Answer tool to submit
the answer corresponding to the question.

I.3 Prompt for Informer
The prompt for the Informer is shown in Figure 18. To increase
the robustness and reliability of generated SQLs, we provide the
Informer with the table schemas of all sheets, along with 3 example
rows.

J Limitations and Potential Social Impact
We list the limitations of our proposed SheetAgent as follows:
• Library limitations: SheetAgent automates spreadsheet tasks

through Python code generation, utilizing libraries like openpyxl
and pandas. Although this has covered a wide range of opera-
tions, it is still missing some customizable functionality at the
software level. For instance, complex spreadsheet manipulations
that involve advanced Excel features such as pivot tables, macros,
or specific formatting options are not fully supported. Enhance-
ments in library capabilities or integration with additional tools
could address these gaps.

• High token usage: Like existing research to automate spread-
sheet manipulation [20], SheetAgent inevitably faces higher to-
ken usage for long-horizon tasks. This can lead to increased
computational costs and slower processing times. Future work
will focus on optimizing task descriptions through more efficient
prompting techniques or manual refinement to reduce token
consumption and improve overall efficiency.
The implementation of SheetAgent has the potential to bring

about several positive social impacts. By automating repetitive and
time-consuming spreadsheet tasks, SheetAgent can significantly
enhance productivity and efficiency in various industries. This can
free up human resources for more strategic and creative work, ulti-
mately leading to better utilization of talent and skills. Additionally,
SheetAgent can democratize access to advanced data analysis and
processing, making these capabilities available to a broader audi-
ence, including individuals with limited technical expertise. This
democratization can empower more people to leverage data for
informed decision-making and innovation.

However, the introduction of SheetAgent might pose negative
social impacts. As with any automation technology, there is a risk
of job displacement for roles traditionally centered around man-
ual spreadsheet manipulation. This could lead to economic and
social challenges for affected individuals. Moreover, the reliance
on computational resources for running SheetAgent, especially for
large-scale or long-horizon tasks, could contribute to environmen-
tal concerns such as increased energy consumption. Addressing

these issues requires proactive measures, including reskilling and
upskilling programs to help displaced workers transition to new
roles and optimizing the efficiency of SheetAgent to minimize its
environmental footprint. Ethical considerations must also be pri-
oritized to ensure transparency, fairness, and the safeguarding of
user data privacy and security.
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# System prompt

Role

As a spreadsheet expert, you have the ability to formulate specific questions for given spreadsheets. These questions are utilized to evaluate the large

language model's capabilities to manipualte spreadsheets. 

Constraints

1.Choose 4-5 fine-grained operations from the classification below. Use the provided spreadsheet to create tasks, and then merge them into a complete

question.

2.Generate an appropriate number of questions each time.

3.Generate questions from the user's perspective, considering elements such as thought process and tone of speech.

4.Simplify the language by focusing only on subproblems composed of fine-grained operations.

5.List the fine-grained operations involved behind each problem. For example, (fine-grained operation：Numeric Format, Auto Fill, Font Color)

6.Make each question more complex and comprehensive.

Fine-grained operations

Here are the fine-grained operations you can choose within the five categories:

A.Value Processing:Calculate,Insert,Delete,Auto Fill,Sort,Copy & Paste,Replace,Hyperlink,Distinction,Filter

B.Worksheet Management:Create Worksheet,Delete Worksheet,Rename Worksheet,Label Color,Page Size,Orientation

C.Format Adjustment:Font Name,Font Color,Font Size,Bold & Italic,Underline,Merge & Unmerge,Alignment,Row Height & Column Width,Background

Fill,Numeric Format

D.ChartDesign:Chart Type,Chart Data Source,Chart Caption,Chart Legend,Chart Position,Chart Axis,Data Label,Trendline

E:ContentSummary:Pivot Creation,Summary Function

# In-context example

I will give you an example first:

Given a spreadsheet:

Sheet name "Order Details":

|Orderid|Date|Bookstore Name|Bookid|Bookname|Unit Price|Sales Volume|Subtotal|Purchaser|

|BTW-08634|2012/10/31|A|BK-83024|VB Language Programming|38|36| 1,368.0|Hongyu Ma|

|BTW-08633|2012/10/30|B|BK-83036|Database Principles|37|49|1,813.0|Bob|

|BTW-08632|2012/10/29|C|BK-83032|Information Security Technology |39|20|780.0|Dave|

Referring to the details provided in the table above, I'll present the following complex computational logic questions:

1.In sheet "Order Details", adjust "Unit Price" and "Subtotal" to accounting with 2 decimal places and CNY currency symbol format. Fill the "Bookname"

column based on "Bookid". Identify the bookstore with the largest decrease in "Subtotal" in January to October 2012 compared to January to October

2011. （fine-grained operation：Numeric Format，Auto Fill, Font Color）

2.In sheet "Order Details", fill in the "BookiD" based on the "Bookname". Add a column named "Adjusted Quantity" to the last column of the sheet.

Calculate the data in this column by multiplying 20 with the current values in the "Subtotal" column and then dividing by the maximum value of Subtotal.

（fine-grained operation：Auto Fill, Calculate, Shading, Font Color）

# User instruction

Now it’s your turn.

Given a spreadsheet:

Sheet name "Grade": 

|Student Number|Name|Class|Chinese|Mathematics|English|Biological|Geography|History|Politics|Total Score|Average Score|

|120305|Alice|class 3|91.5|89|94|92|91|86|86|629.5|89.93|

|120203|Charlie|class 2|93|99|92|86|86|73|92|621|88.71|

|120206|Frank|class 2|100.5|103|104|88|89|78|90|652.5|93.21|

# GPT response

Sort the students' names alphabetically. Identify the student who has the highest average score after sorting. (fine-grained operation: Sort, Calculate)

Merge cells to group students based on their "Class". Find out which class has the highest total sum of all subjects combined. (fine-grained operation:

Merge & Unmerge, Calculate, Sort)

Create a new column called "Science Total", which sums up the scores for "Biological", "Geography", and "History". Then, find the student with the

lowest sum in "Science Total". (fine-grained operation: Calculate, Insert)

Adjust the "Total Score" and "Average Score" columns to display only one decimal place. After this adjustment, determine if there are any students

whose average score is exactly equal to the rounded "Average Score". (fine-grained operation: Numeric Format, Operation)

Generation of Subtasks

Figure 12: Prompt for generating subtasks with diverse fine-grained operations.
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# System prompt

Role

As a spredsheet expert, you have the ability to formulate specific questions for given spreadsheets. These questions are utilized to evaluate the large

language model's comprehension of spreadsheets.

Constraints

1.Begin by grasping the content of the provided worksheets, then formulate questions related to "Complex Computational Logic." These types of questions

necessitate the use of multiple statistical procedures for resolution.

2.Keep the focus of the question on asking, without delving into the specifics of the procedural steps.

3.The guiding principle for formulating questions is that they should only be solvable by referencing the content of the worksheets.

4.Generate an appropriate number of questions each time you approach the task.

5.Conclude each question with a fine-grained operation, integrating it with the problem to present the result.

6.Elevate the complexity and comprehensiveness of each question.

Fine-grained operations

Here are the fine-grained operations you can choose within the five categories:

A.Value Processing: Calculate,Insert,Delete,Auto Fill,Sort,Copy & Paste,Replace,Hyperlink,Distinction,Filter

B.Worksheet Management: Create Worksheet,Delete Worksheet,Rename Worksheet,Label Color,Page Size,Orientation

C.Format Adjustment: Font Name,Font Color,Font Size,Bold & Italic,Underline,Merge & Unmerge,Alignment,Row Height & Column Width,Background

Fill,Numeric Format

D.ChartDesign: Chart Type,Chart Data Source,Chart Caption,Chart Legend,Chart Position,Chart Axis,Data Label,Trendline

E:ContentSummary: Pivot Creation,Summary Function

# In-context example

I will give you an example first:

Given a spreadsheet

Sheet name "Order Details":

|Orderid|Date|Bookstore Name|Bookid|Bookname|Unit Price|Sales Volume|Subtotal|Purchaser|

|BTW-08634|2012/10/31|A|BK-83024|VB Language Programming|38|36| 1,368.0|Hongyu Ma|

|BTW-08633|2012/10/30|B|BK-83036|Database Principles|37|49|1,813.0|Bob|

|BTW-08632|2012/10/29|C|BK-83032|Information Security Technology |39|20|780.0|Dave|

Referring to the details provided in the table above, I'll present the following complex computational logic questions:

1.In sheet "Order Details", identify the quarter with the highest book sales in 2011, then determine which bookstore has the most sales in this quarter, and

fill its name of bookstore in B6 cell.（fine-grained operation：Calculate）

2.Identify the bookstore with the largest decrease in "Subtotal" in January to October 2012 compared to January to October 2011. Then, determine the

best-selling book with the most volume in that year for this bookstore and highlight its row in red font in the "Order Details" sheet.（fine-grained

operation：Font Color）

# User instruction

Given a spreadsheet:

Sheet name "Grade":        

|Student Number|Name|Class|Chinese|Mathematics|English|Biological|Geography|History|Politics|Total Score|Average Score|

|120305|Alice|class 3|91.5|89|94|92|91|86|86|629.5|89.93|

|120203|Charlie|class 2|93|99|92|86|86|73|92|621|88.71|

|120206|Frank|class 2|100.5|103|104|88|89|78|90|652.5|93.21|

# GPT response

From the "Grade" sheet, calculate the average score of each subject across all classes, identify the subject with the lowest class average, and replace the

title of that subject with "Needs Improvement" in cell D1.（fine-grained operation：Replace）

In the "Grade" sheet, determine the student with the highest total score for each class, then create a new worksheet named "Top Students" and copy &

paste the information of these students into the new worksheet.（fine-grained operation：Copy & Paste）

On the "Grade" sheet, filter the students who scored above 90 in English and then sort these records in descending order by their Total Score. Once

sorted, apply a background fill of light green to these rows.（fine-grained operation：Background Fill）

Within the "Grade" sheet, identify the class with the highest average total score and then merge cells A1 and B1 and label this merged cell with "Best

Performing Class".（fine-grained operation：Merge & Unmerge）

Generation of Subtasks with Reasoning Challenges
Complex Computational Logic

Figure 13: Prompt for generating subtasks with “complex computational logic” reasoning challenge.
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# System prompt

Role

As a spreadsheet expert, you have the ability to formulate specific questions for given spreadsheets. These questions are utilized to evaluate the large

language model's comprehension of spreadsheets.

Constraints

1.First, grasp the content of the provided worksheet, and then formulate questions about "Vague Requirements". Questions about vague requirements

involve using synonyms or generic terms to identify statistical objects instead of directly using their real names.

2.Focus the questions on asking without delving into the specifics of how to accomplish it.

3.The principle for generateing questions is that they should only be answerable by referencing the contents of the worksheet.

4.Generate an appropriate number of questions each time.

5.Generate questions from the user's perspective, considering elements such as thought process and tone of speech.

6.Conclude each question with a fine-grained operation, integrating it with the problem to present the result.

7.Specify the referenced object; for instance, when mentioning "Office-related books", it refers to "MS Office Advanced Applications" and "Word

Applications."

Fine-grained operations

Here are the fine-grained operations you can choose within the five categories:

A.Value Processing: Calculate,Insert,Delete,Auto Fill,Sort,Copy & Paste,Replace,Hyperlink,Distinction,Filter

B.Worksheet Management:Create Worksheet,Delete Worksheet,Rename Worksheet,Label Color,Page Size,Orientation

C.Format Adjustment:Font Name,Font Color,Font Size,Bold & Italic,Underline,Merge & Unmerge,Alignment,Row Height & Column Width,Background

Fill,Numeric Format

D.ChartDesign:Chart Type,Chart Data Source,Chart Caption,Chart Legend,Chart Position,Chart Axis,Data Label,Trendline

E:ContentSummary:Pivot Creation,Summary Function

# In-context example

I will give you an example first:

Given a spreadsheet:

Sheet name "Order Details":

|Orderid|Date|Bookstore Name|Bookid|Bookname|Unit Price|Sales Volume|Subtotal|Purchaser|

|BTW-08634|2012/10/31|A|BK-83024|VB Language Programming|38|36| 1,368.0|Hongyu Ma|

|BTW-08633|2012/10/30|B|BK-83036|Database Principles|37|49|1,813.0|Bob|

|BTW-08632|2012/10/29|C|BK-83032|Information Security Technology |39|20|780.0|Dave|

Referring to the details provided in the table above, I'll present the following vague requirements questions:

1.In sheet "Order Details", determine the month with the highest sales volume of programming language-related books(“programming language-related

books” are synonyms or generic terms for “VB Language Programming” and “C Language Programming”) in 2012, and then calculate its proportion to the

total sales volume of that month. Put the result in A1 of the new sheet（fine-grained operation：Calculate）

2. In sheet "Order Details", mark the Office-related books(“Office-related books” are synonyms or generic terms for “MS Office Advanced Applications”

and “Word Applications”) in red font color.（fine-grained operation：Font Color）

# User instruction

Now it’s your turn.

Given a spreadsheet:

Sheet name "Grade":    

|Student Number|Name|Class|Chinese|Mathematics|English|Biological|Geography|History|Politics|Total Score|Average Score|

|120305|Alice|class 3|91.5|89|94|92|91|86|86|629.5|89.93|

|120203|Charlie|class 2|93|99|92|86|86|73|92|621|88.71|

|120206|Frank|class 2|100.5|103|104|88|89|78|90|652.5|93.21|

# GPT response

In the "Grade" sheet, figure out which student performed best in language courses (language courses is a generic term for "Chinese" and "English") and

put the student's name and average score of the language courses in A1 and B1 of a new worksheet. （fine-grained operation: Calculate, Create

Worksheet）

In the "Grade" sheet, determine the average score for science courses (science courses is a generic term for "Biological", "Geography") in class 3, filter

the students with average science courses scores below this average and highlight their name in yellow. （fine-grained operation: Calculate, Filter,

Background Fill）

Generation of Subtasks with Reasoning Challenges
Vague Requirements

Figure 14: Prompt for generating subtasks with “vague requirements" reasoning challenge.
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# System prompt

Role

As a spreadsheet expert, you have the ability to formulate specific questions for given spreadsheets. These questions are utilized to evaluate the large

language model's comprehension of spreadsheets.

Constraints

1.Start by comprehending the content of the provided form, and then generate questions related to "Incoherent Data Format" where the description

involves the same meaning but different units or data formats.

2.Focus the questions on asking without delving into the specifics of how to accomplish it.

3.The principle for generateing questions is that they should only be answerable by referencing the contents of the worksheet.

4.Generate an appropriate number of questions each time.

5.Generate questions from the user's perspective, considering elements such as thought process and tone of speech.

6.Conclude each question with a fine-grained operation, integrating it with the problem to present the result.

7.List equivalent data at the end of the question.

Fine-grained operations

Here are the fine-grained operations you can choose within the five categories:

A.Value Processing:Calculate,Insert,Delete,Auto Fill,Sort,Copy & Paste,Replace,Hyperlink,Distinction,Filter

B.Worksheet Management:Create Worksheet,Delete Worksheet,Rename Worksheet,Label Color,Page Size,Orientation

C.Format Adjustment:Font Name,Font Color,Font Size,Bold & Italic,Underline,Merge & Unmerge,Alignment,Row Height & Column Width,Background

Fill,Numeric Format

D.ChartDesign:Chart Type,Chart Data Source,Chart Caption,Chart Legend,Chart Position,Chart Axis,Data Label,Trendline

E:ContentSummary:Pivot Creation,Summary Function

# In-context example

I will give you an example first:

Given a spreadsheet:

Sheet name "Employee Information":

|Job number| Name|Sex|Section|Educational background|Telephone|Telephone type|Date of birth|

|19|Bob|Female|Technical department|Master|12383605517|Cell phone|1980/11/16|

|20|Charlie|Male|Technical department|Undergraduate course|12733582889|Cell phone|1985/6/28|

|21|David|Male|Technical department|Master|90870409|Landline|1969/4/24|

Referring to the details provided in the table above, I'll present the following incoherent data format questions:

1. In sheet "Employee Information", italicize the owner's name of 86-12733582889.（The phone numbers 86-12733582889 and 12733582889 are

equivalent.）（fine-grained operation：Bold & Italic）

2. In sheet "Employee Information", highlight the names of people born on July 21, 1981 in red.（The date July 21, 1981 and 1981/7/21 are equivalent)

（fine-grained operation：Font Color）

# User instruction

Now it’s your turn.

Given a spreadsheet:

Sheet name "Payroll":

|Name|Department|Position|Id Number|Gender|Date Of Birth|Age|EducationalBackground|On-Board Time|Length Of Service (years)|Contract Monthly

Wages| Monthly Seniority Wage|Basic Monthly Wage|

|Faythe|Management department|General manager|110108196301020119|Male|1963/1/2|115|Doctor|1981/2/1|34|40000|1700|41700|

|Grace|Administration department|Secretary|110105198903040128|Female|1989/3/4|115|Junior college|2012/3/1|3|4800|60|4860|

|Judy|Management department|Manager|310108197712121139|Male|1977/12/12|115|Master|2003/7/1|12|12000|360|12360|

# GPT response

In the current sheet, apply a green background fill to the cell of the employee who joined the company in February 1981. (The date 'Feb-1981' and

'1981/2/1' are equivalent.) (fine-grained operation: Background Fill)

Please adjust the Basic Monthly Wage cell for Chunqiu Ding to display it in thousands. (given that $4860 is equivalent to $4.86K.) (fine-grained operation:

Numeric Format)

Generation of Subtasks with Reasoning Challenges
Incoherent Data Format

Figure 15: Prompt for generating subtasks with “incoherent data format” reasoning challenge.
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# System prompt

Role

As a spreadsheet expert, you have the ability to formulate specific questions for given spreadsheets. These questions are utilized to evaluate the large

language model's comprehension of spreadsheets.

Constraints

1.First, grasp the content of the provided form and then generate questions related to Information Extraction. The Information Extraction problem

involves extracting additional information from the content in the sheet.

2.Focus the questions on asking without delving into the specifics of how to accomplish it.

3.The principle for generateing questions is that they should only be answerable by referencing the contents of the worksheet.

4.Generate an appropriate number of questions each time.

5.Generate questions from the user's perspective, considering elements such as thought process and tone of speech.

6.Conclude each question with a fine-grained operation, integrating it with the problem to present the result.

7.Provide examples of the extracted sources and content. For example, extract the birthday "1986-05-15" from the string "220303198605153610."

Fine-grained operations

Here are the fine-grained operations you can choose within the five categories:

A.Value Processing:Calculate,Insert,Delete,Auto Fill,Sort,Copy & Paste,Replace,Hyperlink,Distinction,Filter

B.Worksheet Management:Create Worksheet,Delete Worksheet,Rename Worksheet,Label Color,Page Size,Orientation

C.Format Adjustment:Font Name,Font Color,Font Size,Bold & Italic,Underline,Merge & Unmerge,Alignment,Row Height & Column Width,Background

Fill,Numeric Format

D.ChartDesign:Chart Type,Chart Data Source,Chart Caption,Chart Legend,Chart Position,Chart Axis,Data Label,Trendline

E:ContentSummary:Pivot Creation,Summary Function

# In-context example

I will give you an example first:

Given a spreadsheet:

Sheet name "Statistical Report":

|Orderid|Date|Bookstore Name|Bookid|Bookname|Unit Price|Sales Volume|Subtotal|Purchaser|PurchaserID|

|BTW-08634|2012/10/31|A|BK-83024|VB Language Programming|38|36| 1,368.0|Hongyu Ma|211322198509260317|

|BTW-08633|2012/10/30|B|BK-83036|Database Principles|37|49|1,813.0|Bob|211481198401154411|

|BTW-08632|2012/10/29|C|BK-83032|Information Security Technology |39|20|780.0|Dave|522324197508045617|

Referring to the details provided in the table above, I'll present the following information extraction questions:

1.In sheet "Statistical Report", bold the name of the buyer with the surname "Ma"（Extract the last name "Ma" from "Hongyu Ma"）.（fine-grained

operation：Bold & Italic）

2. In sheet "Statistical Report", extract the buyer's date of birth based on the Purchaser ID, create a new column labeled "Birthday," and put the

result（Extract the birthday "1986-05-15" from "220303198605153610"）.（fine-grained operation：Font Color）

# User instruction

Now it’s your turn.

Given a spreadsheet:

Sheet name "Championship":

|Outcome|Date|Venue|Surface|Opponent in the final|Score in the final|

|Runner-up|February 15, 1993|Memphis, Tennessee, USA|Hard (i)|Jim Courier|7-5, 6-7(4-7), 6-7(4-7)|

|Winner|May 17, 1993|Coral Springs, Florida, USA|Clay|David Wheaton|6-3, 6-4|

|Runner-up|July 26, 1993|Washington D.C., USA|Hard|Amos Mansdorf|6-7(3-7), 5-7|

# GPT response

In the provided worksheet, could you filter out and display all matches that have a "Score in the final" that includes a tie-breaker set? (Extract the score

"6-7(4-7)" as an example of a tie-breaker set). (fine-grained operation: Filter)

In the workbook, identify all the occasions where the final match was won in straight sets and label these rows with a distinct background color (for

example, the final against David Wheaton with the score 6-3, 6-4). (fine-grained operation: Background Fill)

Generation of Subtasks with Reasoning Challenges
Information Extraction

Figure 16: Prompt for generating subtasks with “information extraction” reasoning challenge.
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# System prompt

Role

You are a spreadsheet agent and a python expert who can find proper functions to solve complicated spreadsheet-related tasks based on language

instructions.

Prerequisites

1. I will show you the headers (along with data type) and row numbers of spreadsheets for your reference.

2. Your partner, "Informer," aids in task completion by providing sheet content represented in {table_representation}, known as "potentially helpful

information". This information might be truncated due to token limits, so it's essential to deduce the complete information from what is provided.

3. Please provide step-by-step solutions without explanation.

4. You can use any python library, but when it comes to manipulating spreadsheets, you shoud primarily use the openpyxl and pandas library, which has

been already imported as `openpyxl` and `pd`.

5. You should only give one python code snippet at a time. Try not to add comments, and if you must, keep them as concise as possible.

6. The python code snippet should be started with ```python and enclosed with ```.

7. If you want to see the output of a value, you should print it out with `print(x)` instead of `x`.

Response Format Guidance

1. If you think a python code snippet is needed, write using the following output format:

Think: (what you need to solve now and how to solve)

Action: Python

Action Input: (your python code snippet, which should be in accordance with above prerequisites)

2. If you think there is a question to be answered, give your answer using the following format:

Think: (how do you get the answer)

Action: Answer

Action Input: (your answer)

2. If you think task instruction is accomplished, finish with the following format:

Finish: Done!

# In context example

...

# Instruction

Now it's your turn. This Workbook presents data related to book sales. The workbook is already loaded as `workbook` using openpyxl, you only need to

load the sheet(s) you want to use manually. Besides, the workbook will be automatically saved, so you don't need to save it manually.

Sheet state: Sheet "Order Details" has 635 rows (Including the header row) and 8 columns (A(1): "Orderid" (<class 'str'>), B(2): "Date" (<class

'datetime.datetime'>), C(3): "Bookstore Name" (<class 'str'>), D(4): "Bookid" (<class 'str'>), E(5): "Bookname" (<class 'NoneType'>), F(6): "Unit Price"

(<class 'int'>), G(7): "Sales Volume" (<class 'int'>), H(8): "Subtotal" (<class 'int'>)). Sheet "Numbering Reference" has 18 rows (Including the header row)

and 3 columns (A(1): "Bookid" (<class 'str'>), B(2): "Bookname" (<class 'str'>), C(3): "Unit Price" (<class 'int'>)). Sheet "Statistical Report" has 5 rows

(Including the header row) and 2 columns (A(1): "Statistical Item" (<class 'str'>), B(2): "Statistical Value" (<class 'int'>)). 

Task instruction: Format the "Order Details" worksheet, adjust "Unit Price" and "Subtotal" to accounting with 2 decimal places and CNY currency symbol

format. Fill the "Bookname" column based on Bookid. Identify the bookstore with the largest decrease in sales subtotal in 2012 compared to January to

October 2011. Then, determine the best-selling book in that year for this bookstore and highlight its row in red in the "Numbering Reference" worksheet.

Please provide your first step according to the "Response Format Guidance".

# Planner response

Think: Apply accounting format with 2 decimal places and CNY currency symbol to the "Unit Price" and "Subtotal" columns in the "Order Details"

worksheet.

Action: Python

Action Input:

```python

# Load the "Order Details" sheet

order_details_sheet = workbook["Order Details"]

# Apply accounting format with 2 decimal places and CNY currency symbol to "Unit Price" and "Subtotal" columns

for cell in order_details_sheet["F"][1:] + order_details_sheet["H"][1:]:

    cell.number_format = '"¥"#,##0.00_);[Red]("¥"#,##0.00)'

```

......

Planner

Figure 17: A prompt template for the Planner.
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Informer

# System prompt

You are a table retrieval expert who team up with a spreadsheet agent named "Planner" to accomplish complicated spreadsheet-related tasks. Your partner

excel in manipulating spreadsheets. However, some of manipulations require an understanding of specific content of the spreadsheet. Therefore, your

role is to retrieve key information from spreadsheets for your partner's reference.

# In context example

...

# Instruction

Now it's your turn. To make it easier for you to retrieve, all sheets are stored in a SQLite database.

Table schema of "First semester final grades":

CREATE TABLE "First semester final grades" (

  "Student Number" INTEGER,

  "Name" TEXT,

  "Class" REAL,

  ...

)

/*

3 example rows:

SELECT * FROM "First semester final grades" LIMIT 3;

{

  "1":{"Student Number":120305,"Name":"Alice","Class":null,"Chinese":91.5,"Mathematics":89,"English":94,"Biological":92,"Geography":91,"History":

86,"Politics":86,"Total Score ":null,"Average Score":null},

  "2":{"Student Number":120203,"Name":"Charlie","Class":null,"Chinese":93.0,"Mathematics":99,"English":92,"Biological":86,"Geography":86,"History":

73,"Politics":92,"Total Score ":null,"Average Score":null},

  ...

}

*/

Task instruction: Calculate the total score and average score of each student, and fill in the "Total Score" and "Average Score" columns respectively. Fill

in the "Class" column according to the "Student Number". There are three classes: 1, 2, and 3. Fill the cells with scores of no less than 110 points in the

three subjects of Chinese, Mathematics, and English in red respectively, and mark the cells with scores above 95 points in the other four subjects in red

font.

Previous completed subtasks of the spreadsheet agent (which is presented from your partner's point of view and is more of your partner's thought while

finishing the subtasks):

1. Load the "First semester final grades" sheet and calculate the total and average scores for each student.

Given the task instruction and subtasks your partner has completed, predict what your patner will solve next, and determine what content is most needed

by your partner. Write a SQLite select statement to achieve this goal. If there is no need to retrieve information from any spreadsheet, please type

"pass".

Based on above, responde in the following format:

Think: (how do you think)

Action: (your SQLite statement, e.g., `SELECT * FROM w WHERE age < 18;`, or "pass")

# Informer response

Think: According to the task instruction and completed subtasks, the next step for the Planner is more likely be to fill the "Class" column. The rule for

filling "Class" depends on the "Student Number" column, so I should provide the agent with the "Student Number" information.

Action: SELECT "Student Number" FROM "First semester final grades" LIMIT 3;

Figure 18: A prompt template for the Informer.
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