
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

SheetAgent: Towards a Generalist Agent for Spreadsheet
Reasoning and Manipulation via Large Language Models

Anonymous Author(s)

Q: Which was the best-
selling book across all
bookstores in 2011?

BookID Book Name Unit Price

BK-83024 VB Programming 38

BK-83030 Databse Technology 41

BK-83026 Access Programming 35

… … …

BK-83029 Network Technology 43

Book_Orders.xlsx

Sheet "Orders" (635 rows × 5 columns)

Sheet ”Books"

OrderID Date Bookstore BookID Volume

BTW-08634 31/10/2012 A BK-83024 36

BTW-08633 30/10/2012 B BK-83023 49

BTW-08632 26/10/2012 C BK-83030 19

… … … … …

BTW-08001 2/1/2011 A BK-83021 12

(20 rows × 3 columns)

(a) Table Join & Numerical Calculation

SheetAgent

Q: Insert "Book Name" and "Unit Price" corresponding
to each order to the right of the "BookID" column in
the "Orders" sheet. Calculate the sales for each order
and place it into the last column named "Sales".

...

... BookID Book Name Unit Price Sales

... BK-83024 VB Programming 38 1368

... BK-83030 Databse Technology 41 779

... BK-83026 Access Programming 35 385

...

(b) Formatting

Q: In "Orders" sheet, express unit prices and sales in
an accounting format with $ currency. Make the
sheet a warm color by adding borders and shadings
for better presentation.

BookID Book Name Unit Price Sales

BK-83024 VB Programming 38 $1368

BK-83030 Databse
Technology 41 $779

BK-83026 Access
Programming 35 $385

… … … …

(c) Question Answering (d) Data Analysis

(f) Chart Design

Q: Plot a bar chart of the sales of each bookstore in
2011 and add data labels. Then, draw a line chart
reflecting the weekly trend of sales for bookstore A
in 2011.

(e) Identification of Unclear Requirements

Q: Highlight yellow the rows where books that are
relevant to the database with unit price greater than
40.

Q: Analyze the sales of
Bookstore A in 2011.

A: The best-selling book
across all bookstores in
2011 was Computer
Science and Technology,
which sold 1,488 copies

... BookID Book Name Unit Price Sales

... BK-83024 VB Programming 38 1368

... BK-83030 Databse Technology 41 779

... BK-83026 Access Programming 35 385

...

A: Sales of Bookstore A
in 2011 were volatile,
indicating that the its
sales were not stable ...

I‘m your sheet assistant
for manipulation and
reasoning. How can I help
you today?

Analysis…
Analysis… Calculate…

Figure 1: SheetAgent can handle diverse spreadsheet reasoning and manipulation tasks automatically. Given a large-scale
spreadsheet with multiple sheets, SheetAgent showcases its proficiency in visualization (f), achieves accurate manipulation on
long horizon and multi-step tasks (a, b) with consistent reasoning capabilities (c, d), even faced with the challenges like unclear
requirements (e).

Abstract
Spreadsheets are ubiquitous across the World Wide Web, play-
ing a critical role in enhancing work efficiency across various do-
mains. Large language model (LLM) has been recently attempted
for automatic spreadsheet manipulation but has not yet been in-
vestigated in complicated and realistic tasks where reasoning chal-
lenges exist (e.g., long horizon manipulation with multi-step rea-
soning and ambiguous requirements). To bridge the gap with the
real-world requirements, we introduce SheetRM, a benchmark
featuring long-horizon and multi-category tasks with reasoning-
dependent manipulation caused by real-life challenges. To mitigate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’25, April 28 – May 2, 2025, Sydney, Australia
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

the above challenges, we further propose SheetAgent, a novel
autonomous agent that utilizes the power of LLMs. SheetAgent
consists of three collaborative modules: Planner, Informer, and Re-
triever, achieving both advanced reasoning and accurate manipula-
tion over spreadsheets without human interaction through iterative
task reasoning and reflection. Extensive experiments demonstrate
that SheetAgent delivers 20–40% pass rate improvements on mul-
tiple benchmarks over baselines, achieving enhanced precision in
spreadsheet manipulation and demonstrating superior table rea-
soning abilities. More details and visualizations are available at
the project website. The datasets and source code are available at
https://anonymous.4open.science/r/SheetAgent.

CCS Concepts
• Computing methodologies→ Natural language processing;
• Information systems→ Decision support systems.

Keywords
Agents, Large Language Models, Benchmark, Spreadsheet Reason-
ing and Manipulation

1

https://doi.org/XXXXXXX.XXXXXXX
https://sheetagent.github.io/
https://anonymous.4open.science/r/SheetAgent

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’25, April 28 – May 2, 2025, Sydney, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

1 Introduction
Tabular data plays a crucial role in domains such as scientific re-
search, finance, and marketing, where it is predominantly handled
using spreadsheet systems. These systems, such as Google Sheets
and Microsoft Excel, are useful for tasks including numerical cal-
culations, data analysis, and visualisation [10, 14, 19]. However,
processing these affairs often involves a significant amount of repet-
itive labor and consultation [7, 11]. Recent work [7, 20] has explored
the automation of simple spreadsheet manipulation tasks. For exam-
ple, Highlight rows with sales volume greater than 40 in the “Orders”
sheet shown in Figure 1. This task can be accomplished through sim-
ple queries and formatting. However, they fail to consider the more
complex and realistic tasks that encompass more than simple first-
order logic. For instance, Highlight rows of database-related books
with sales volume greater than 40. The difficulty of this instruction
lies in identifying books related to the database, which cannot be
achieved simply by understanding the semantics of column names,
but rather by perceiving the specific content (what books are in
the spreadsheet in this case) of the spreadsheet. Such scenarios
are common because a complete spreadsheet task may demand a
multi-step reasoning process in conjunction with multiple sheets,
and the user may not precisely define the required operations or
ambiguously interpret the task instruction. Consequently, there is
an urgent need for a new method to automate these tasks.

Designing such a method demands a combination of sophisti-
cated sheet-based reasoning andmanipulation capabilities. Previous
work [13, 20, 26] has focused on precise spreadsheet manipulation
while neglecting reasoning, limiting them to tasks with clear ex-
pressions and one-step reasoning. The emergence of large language
models (LLMs) like GPTs [2, 28, 29] enables the integration of rea-
soning and manipulation capabilities. Extensive research [5, 17, 39]
has shown that LLMs can reason over tables, handling tasks such as
table question answering and fact verification. Given this context,
we are motivated to explore the question: Can we build a versatile
agent adept at handling complex spreadsheet manipulation tasks with
challenging reasoning factors using LLMs? Crafting such an agent
involves several challenges: (1) Dynamic Changes of Spread-
sheet: Complex tasks often involve multiple operations, resulting
in dynamic spreadsheet content changes. Continuously feeding the
entire spreadsheet into LLMs before each operation is impractical
due to token limits and potential hallucination [8, 39]. (2) Lim-
ited Table Understanding: LLMs are predominantly trained in
natural languages and show limited understanding of tables [21].
(3) Lack of Benchmark: There is an absence of a complicated
benchmark demanding accurate reasoning and precise manipula-
tion over spreadsheets. SheetCopilot [20] presents a benchmark
for evaluating LLM performance in controlling spreadsheets. How-
ever, it simplifies real-world requirements, ignoring challenges like
multi-step reasoning and long-horizon operations.

To address the dataset gap, we first introduce SheetRM (Spread-
sheet Reasoning and Manipulation Benchmark), a benchmark for
developing and evaluating LLM-based agents for precise spread-
sheet manipulation and advanced reasoning capabilities. Each task
in SheetRM involves multiple subtasks that relies on reasoning
abilities, derived from real-world Excel exam datasets. Moreover,
it enables automatic evaluation with various metrics. We further

present SheetAgent, a generalist agent for sheet manipulation
and reasoning using LLMs. SheetAgent mainly consists of three
components: the Planner, Informer, and Retriever. The Planner
translates conceptual understandings into proficient code genera-
tion to manipulate spreadsheets. The Informer parses task demands
and produces high-quality, task-specific SQL queries to understand
the spreadsheet without needing to read the entire table, despite
its dynamic changes. The Retriever retrieves instructive examples
to improve the robustness of solutions. We demonstrate that Shee-
tAgent significantly outperforms other state-of-the-art baselines in
diverse benchmarks. Our contributions are three-fold:
• We introduce SheetRM, a benchmark for developing and evaluat-

ing LLM-based agents to manipulate spreadsheets with advanced
reasoning abilities. It includes more challenging tasks that re-
flect real-world requests and supports automatic evaluation with
various metrics.

• We develop a versatile LLM-based agent SheetAgent, combining
sheet manipulation and reasoning abilities to boost multifaceted
interaction between humans and spreadsheets.

• Experimental results show that SheetAgent can be combined
with any LLMs backbone and SheetAgent outperforms baselines
across multiple benchmarks, achieving a 20–40% improvement in
various metrics. These results highlight SheetAgent’s exceptional
capabilities in spreadsheet manipulation and table reasoning.

2 SheetRM Benchmark
Unlike existing datasets [12, 20, 26] primarily designed for more
precise spreadsheet manipulation, our goal is to construct a more re-
alistic dataset, where tasks contain challenges such as complicated
multi-step reasoning and vague requirements, to narrow the gap
between simulation and real-world scenarios. To achieve this, we be-
gin by sourcing spreadsheets from real-life Excel exam datasets. We
collate a diverse set of spreadsheet operations commonly used in re-
alistic scenarios and analyze the challenges faced when addressing
spreadsheet tasks in practical settings. In brief, our SheetRM dataset
is featured by the following elements, as outlined in Figure 2(a)-(d):
• Multi category:We summarize and collect 5 broad types and

36 subtypes of manipulation categories with corresponding 4
reasoning challenges. Each task includes an examination of both
manipulation and reasoning abilities.

• Reasoning-dependent manipulation: Tasks include opera-
tions with multi-step reasoning over spreadsheets.

• Long horizon: Various subtasks constitute a complete task,
which brings to agents the challenge of dynamic changes in
spreadsheets.

• Procedure evaluation: We build an automated program evalu-
ation approach for SheetRM that not only automates the deter-
mination of whether the full task is completed but also detects
the completion of individual subtasks.

2.1 Task Schema
Each task is defined by the following three parts. See Figure 2 (upper
right) for a visual demonstration.
Spreadsheet Assets. Each task consists of a spreadsheet as well
as multiple sheets. We summarize the contents of the spreadsheet

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

SheetAgent: Towards a Generalist Agent for Spreadsheet Reasoning and Manipulation via Large Language Models WWW ’25, April 28 – May 2, 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Complex Computational Logic

Reasoning Challenges

Vague Requirements

Incoherent Data Format

Information Extraction

Task Instruction

Criterion: "Background_FILL"
Sheet Index: 0
Area: ”A8:H8"
Properties: [”orange"]

Checklist

... (more items)

Item 1

Item 2

Criterion: "Chart_Type"
Sheet Index: 0
Area: None
Properties: ["pie"]

Python Evaluative Criteria

def background_fill(workbook, sheet_index, area, properties):
sheet = workbook.sheets[sheet_index]
compare background fill
color_code_gt = utils.color2rgb(properties[0])
color_code_ans = sheet.range(area).api.Interior.Color
success = color_code_gt == color_code_ans

return success
... (more criteria)

S
tep-by-step procedure evaluation

Matching

Comparison

Worksheet
Management

Value
Processing

Format
Adjustment

Chart
Design

Content
Summary

l Create Worksheet
l Delete Worksheet
l Rename Worksheet
l Label Color
l Page Size
l Orientation

l Calculate
l Insert
l Delete

Value
l Auto Fill
l Sort

l Copy &
Paste

l Replace
l Hyperlink
l Distinction
l Filter

l Font Name
l Font Color
l Font Size
l Bold & Italic
l Underline
l Merge &

Unmerge
l Alignment
l Row Height &

Column Width
l Background Fill
l Numeric Format

l Chart Type
l Chart Data Source
l Chart Caption
l Chart Legend
l Chart Position
l Chart Axis
l Data Label
l Trendline

Manipulation
Categories l Pivot Creation

l Summary
Function

(a) Multi-category (b) Reasoning-Dependent Manipulation & (c) Long Horizon

Spreadsheet Assets

Checklist

(d) Procedure Evaluation
Processed Spreadsheet

Evaluation

• Highlight the best-selling computer accessory in orange. (vague req.)
• Draw a pie chart reflecting the sales of each product.
• Highlight the best-selling products in blue.
• Set the format of "Unit Price" to $ currency.

Product Unit Price Sales Volume Sales ...

Mouse 150 300 45,000 ...

...

Electronics_Sales.xlsx The workbook is about conducting statistical
analysis of the company’s sales.

Format AdjustmentType: Chart Design Vague Requirements

Figure 2: Overview and features of SheetRM. (a) Multi-category: SheetRM contain real-life tasks for multiple types of manipula-
tion categories and reasoning challenges. Each task includes an examination of both manipulation and reasoning abilities. (b&c)
Long horizon and reasoning-dependent Manipulation: An example task including three parts. Spreadsheet assets contain sheet
data and one-sentence description with category of tasks. Then task instruction provides the requirements for the execution
of the long horizon tasks. Checklist is designed for procedure evaluation. (d) Procedure evaluation: SheetRM automatically
evaluates each task step-by-step via corresponding checklist and evaluative criterion to achieve procedure evaluation.

in a one-sentence natural language overview as context, as shown
in Table 7, aiming to stimulate the internal knowledge of LLMs.
Task Instruction. A task instruction outlines the overall require-
ments expressed in natural language. Completing a task instruction
requires a series of operations on the target spreadsheet.
Checklist. A task is paired with a checklist designed to evaluate its
completion. Each item in the checklist corresponds to the evaluation
of a fine-grained operation with tailored criteria. The automatic
evaluation will be discussed in detail in Section 2.3.

2.2 Dataset Construction
We gather and refine publicly available spreadsheets through a
selection and cleaning process. Tasks are generated with both hu-
man and GPT-4 annotation. All the tasks are attached with verified
answers, which enables model-free evaluation. The statistics of our
curated dataset are shown in Table 1. Compared to the SheetCopi-
lot benchmark, our SheetRM has a more granular and reasonable
categorisation, holds more tasks with longer horizon and includes
reasoning challenges. See Appendix B for a detailed comparison
and more statistics.
Spreadsheet Files Collection. We initially collect real-world
spreadsheets1 from a public examination question bank, filtering
out files that are protected, corrupted, or inaccessible. To minimize

1A spreadsheet is a collection of sheets that are organized into a document. A table
represents a structured arrangement of data in rows and columns. Each sheet within
the spreadsheet contains a table.

Table 1: Basic statistics of SheetRM.

Item Count

Sheets 137
Average Rows per File 300.82
Average Columns per File 26.23
Tasks 317
Subtasks 1625

privacy risks, we further modify sensitive information, such as
adding noise to age data and anonymizing bookstore names. We
select files covering multiple domains to ensure diversity, ensur-
ing most files have at least 2 sheets, with a minimum of 20 rows
and 5 columns. External dependencies are converted into natural
language or embedded sheets if feasible. We finally shortlist 41
spreadsheets with a total of 137 sheets. On average, each spread-
sheet contains 300.82 rows and 26.23 columns. For more collection
details, we refer to Appendix B.1.
Task Generation.We begin by referring to websites about spread-
sheet software skills and consult corporate staff about commonly
used spreadsheet operations in their work. As shown in Figure 2,
we conclude five coarse operation categories and their fine-grained
specific operations for manipulation. Drawing insights from com-
mon table reasoning datasets like WikiTableQuestions, FeTaQA,
and TabFact, we summarize four challenges in the process of sheet
reasoning: (1) complex computation logic, (2) vague requirements,

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’25, April 28 – May 2, 2025, Sydney, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

(3) incoherent data format and (4) information extraction. We detail
these challenges in the Appendix B.4. Then, we instruct GPT-4 to
propose realistic tasks that mimic user requests adhering to four
guidelines: the tasks should only involve predefined operations,
cover diverse manipulation categories, exhibit a long-horizon na-
ture by encompassing multiple subtasks, and incorporate at least
one subtask that presents the specified reasoning challenges. This
process yields a compilation of 2316 subtasks. We eliminate seman-
tically redundant entries for identical files to maintain uniqueness.
To guarantee quality, our internal annotators manually validate
subtasks using programming and specialized software such as Ex-
cel. Certain unreasonable subtasks are excluded throughout this
process. By combining these subtasks for different spreadsheets con-
sidering horizon and complexity, we ultimately assemble 317 task
instructions, encompassing a total of 1625 subtasks. Full prompts
are available in Appendix I.1.

2.3 Automatic Evaluation
SheetCopilot [20] introduces a feasible method that determines task
fulfillment by evaluating the alignment of key properties between
the processed spreadsheet and ground truth candidates. However,
this method fails to evaluate the accuracy of each operation in-
volved, as a task may comprise multiple detailed intermediate steps.
To address this challenge, we develop an automatic evaluation sys-
tem that is model-free and tailored for each fine-grained operation.
The advantage of that is that we are able to evaluate the perfor-
mance of intermediate sub-task processes. A checklist is crafted for
each task instruction. As illustrated in Figure 2, within the check-
list, each evaluation item comprises a (Criterion, Sheet Index,
Area, Properties) pair. We locate the comparison region in the
target spreadsheet by (Sheet Index, Area). Then, corresponding
Criterion is applied to verify whether the region aligns with the
Properties. This design enables a detailed evaluation of LLMs’
capabilities by assessing each step of task execution.

3 SheetAgent Framework
To quantify the challenges posed by SheetRM, we introduce an
LLM-based agent framework SheetAgent. As outlined in Figure 3,
SheetAgent consists of three key components: the Planner, the In-
former, and the Retriever. The Planner generates Python code to
manipulate the target spreadsheet, reasoning and acting to address
complex tasks. The Informer supplies task-specific SQL queries,
whose execution results provide crucial subviews of the spreadsheet,
narrowing the reasoning scope for the Planner and enhancing its
ability to tackle complicated spreadsheet reasoning challenges. At
each decision step, the Planner can perform more precise manipu-
lations with subviews. When the Planner generates an incorrect
solution, the Retriever is activated to fetch high-quality code exam-
ples from our curated repository, assisting the Planner in making
more effective corrections. Pseudo code is provided in Appendix A.

3.1 Proficient Spreadsheet Manipulation with
Planner

We design a Planner module to manipulate spreadsheets in SheetA-
gent. The way to interact with spreadsheets determines the preci-
sion of manipulation. Unlike SheetCopilot [20], which uses a set of

language APIs, we adopt a code-centric approach to control spread-
sheets. We find Python, compared with VBA, is more suitable for
manipulating spreadsheets due to its alignment with the training
corpora of most existing LLMs [4, 30]. This Python code-centric
approach reduces the occurrence of hallucinations of LLMs. We
refer to Appendix C for details on the code-centric design.

Complex spreadsheet manipulation tasks often involve multi-
ple steps. Achieving precise control over spreadsheets is challeng-
ing without an effective feedback mechanism. To address this, we
devise a closed-loop planning process where the Planner inter-
acts with the target spreadsheet, incorporating feedback and re-
flection. We first concatenate task instruction 𝐼 , system prompt
𝑃𝑃 , description 𝐷 , and the initial sheet state 𝑠0 (row and column
count, headers, and data type of each column) as the input. Given
a snapshot of the target spreadsheet at step 𝑡 , the Planner gen-
erates action 𝑎𝑡 = Planner(𝑎𝑡 |𝐼 , 𝑃𝑃 , 𝐷, 𝑠𝑡 , ℎ𝑡−1), where ℎ𝑡−1 is the
planning history. The action is evaluated in a sandbox with the feed-
back 𝑜𝑡 = Sandbox(𝑎𝑡). If an error occurs, the Planner reflects and
generates an adjusted action 𝑎∗𝑡 = Planner(𝑎∗𝑡 |𝐼 , 𝑃𝑃 , 𝐷, 𝑠𝑡 , ℎ𝑡−1, 𝑜𝑡).
Otherwise, the action is performed on the target spreadsheet. The
spreadsheet is updated to a new state of 𝑠𝑡+1. The planning his-
tory is also updated to ℎ𝑡 = (ℎ𝑡−1, 𝑜𝑡 , 𝑎𝑡). By this, the Planner can
achieve accurate manipulation with only the key information (i.e.,
the sheet state) of the target spreadsheet rather than reading all the
sheet data.

3.2 Accurate Spreadsheet Perception with
Informer

Merely being aware of the sheet state does not equip the Planner to
address the reasoning challenges shown in Figure 2. For instance,
to fulfill the instruction illustrated in Figure 3, the Planner needs to
discern which products qualify as computer accessories. However,
the Planner struggles to query the spreadsheet effectively due to the
absence of efficient mechanisms like SQLs and lacks the intrinsic
ability to comprehend the data’s semantics. A feasible approach is
constantly feeding the full spreadsheet into the Planner. However,
considering the continuity of operations in a complicated task,
a spreadsheet may experience multiple modifications, making it
challenging to maintain a synchronized state within the Planner
due to the token limit.

Therefore, we introduce the Informer to handle table content
of arbitrary length and dynamic changes. Informer generates task-
specific SQLs to perform queries. Initially, the tabular data in the
target spreadsheet is extracted and stored in a lightweight data-
base. At step 𝑡 , the Informer’s objective is to select entries that
align best with both the task instruction and the current step. To
achieve this, we formulate the input of the Informer by combining
the system prompt 𝑃 𝐼 , the task instruction 𝐼 , and previous actions
𝐴𝑡−1 = (𝑎1, · · · , 𝑎𝑡−1) performed by the Planner. Then, the In-
former generates an SQL query 𝑞𝑡 = Informer(𝑞𝑡 |𝐼 , 𝑃 𝐼 , 𝐴𝑡−1, 𝑠𝑡).
𝐴𝑡−1 functions as a reasoning trace of the Planner, enabling the
Informer to generate more task-specific and robust SQLs. As shown
in Figure 3, the execution result of the SQL query is a spreadsheet
subview, which serves as evidence 𝑒𝑡 for the Planner to reason over.
This allows the Planner to more accurately and efficiently perceive
the target spreadsheet from key evidence, thereby addressing the

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

SheetAgent: Towards a Generalist Agent for Spreadsheet Reasoning and Manipulation via Large Language Models WWW ’25, April 28 – May 2, 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Electronics_Sales.xlsx

pie_chart.add_data(data, titles_from_data=False)
pie_chart.set_categories(labels)
Set title in a correct way
pie_chart.title = "Sales Distribution of Electronics Products"

Add the chart to the sheet
sheet_sales.add_chart(pie_chart, "G2")

Highlight the best-selling computer accessory in yellow.
Draw a pie chart reflecting the sales of each product ...

Task Instruction Planner Sandbox

Executed successfully,
no output.

STDOUT:
Load "Sales" sheet, and highlight the best-selling
computer accessory based on the "Sales" column.

from openpyxl.styles import PatternFill

Load "Sales"
sheet_sales = workbook["Sales"]

Select the computer accessories based on the evidence
computer_accessories = ["Mouse", "Headphone",
"Keyboard", ...]

Locate the row of computer accessory with highest sales
max_sales = 0
max_sales_row = 0
for row in range(2, sheet_sales.max_row + 1):

...

Highlight the "Product" column with the highest sales in
yellow.
sheet_sales.cell(row=max_sales_row, column=1).fill =
PatternFill(start_color="FFFF00", end_color="FFFF00",
fill_type="solid")

Sheet "Sales" has 9 rows and 6 columns (A(1): "Product"
<class 'str'>, B(2): "Unit Price" <class 'int'>, C(3): "Sales
Volume" <class 'int'>, ...).

Sheet State

This workbook records the sales of electronics products.

Description

Prompt

You are a spreadsheet agent and a Python expert who
can utilize proper functions to solve complicated
spreadsheet-related tasks ...

System Prompt

Planner

I need to plot a pie chart reflecting the sales of each
electronics product.

from openpyxl.chart import PieChart, Reference

Create a pie chart object
pie_chart = PieChart()

Categories the labels and the data
labels = Reference(sheet_sales, min_col=1, min_row=2,
max_row=sheet_sales.max_row)
data = Reference(sheet_sales, min_col=4, min_row=2,
max_row=sheet_sales.max_row)

pie_chart.add_data(data, titles_from_data=False)
pie_chart.set_categories(labels)
pie_chart.set_title("Sales Distribution of Computer Electronics
Products")

Add the chart to the sheet
sheet_sales.add_chart(pie_chart, "G2")

Sandbox

AttributeError:
'PieChart' object has no
attribute 'set_title'

STDERR:Informer

The Planner needs to identify the
best-selling computer assessory. So I
will retrieve the product names.

SELECT DISTINCT "Product" FROM "Sales"

SQL query:

Spreadsheet

Spreadsheet
subview

Informer

Erroneous Code

Top-k Retrieved
Code Fragments

Code
Repository

Embedding
Model

Retriever

Planner

Based on the retrieved codes and exception
information, I need to modify the approach for setting
the title.

Informer

Sandbox

Executed successfully,
no output.

STDOUT:

Final output

Product
Sales

Volume
Sales …

Mouse 300 45,000 …

Headphone 400 180,000 …

… … … …

Product Unit Price
Sales

Volume
Sales …

Mouse 150 300 45,000 …

Laptop 6,500 100 650,000

Headphone 450 400 180,000 …

… … … … …

Planning History

Figure 3: An illustration of SheetAgent. SheetAgent comprises three key components, including the Planner, the Informer, and
the Retriever. The Planner interacts with the target spreadsheet via a virtual sandbox. The Informer provides subtask-specific
SQLs, the execution results of which serve as the evidence for the Planner to handle reasoning challenges. The Retriever is
invoked to retrieve similar tutorial code snippets upon encountering an error, effectively correcting the error.

reasoning challenges. Note that each time the Planner performs an
operation, the spreadsheet in the database is updated to maintain
synchronization.

3.3 Robust Solution Generation with Retriever
The Retriever advises the Planner during task planning, augmenting
error corrections by sourcing relevant code from a code repository.
We collect high-quality code from GitHub and craft tutorial exam-
ples for each manipulation category shown in Figure 2. We organize
them into a compilation of code files. To improve efficiency, we
employ Milvus [34], an open-source vector database, as the code
repository. To construct this repository, a sliding window technique
is applied to traverse these files, extracting continuous lines of code
within the window size. These code fragments C𝑟𝑒𝑝𝑜 are embedded
into a set of vectors and stored in the code repository. The Retriever
is invoked when the sandbox emits an error signal. We seek top-𝑘
similar code snippets C𝑘𝑟𝑒𝑡 as follows:

C𝑘𝑟𝑒𝑡 =

{
C𝑖𝑟𝑒𝑝𝑜 |C𝑖𝑟𝑒𝑝𝑜 ∈ C𝑟𝑒𝑝𝑜 ,∀C 𝑗𝑟𝑒𝑝𝑜 ∉ C𝑘𝑟𝑒𝑡 ,

sim
(
E(C𝑞), E(C𝑖𝑟𝑒𝑝𝑜)

)
> sim

(
E(C𝑞), E(C 𝑗𝑟𝑒𝑝𝑜)

) }
,

wherein |C𝑘𝑟𝑒𝑡 | = 𝑘 , C𝑞 refers to the erroneous code snippet, and
sim(·) denotes cosine similarity. The embedding function2 E(·) can
be represented by any pretrained language model. Consequently,
2Here we use text-embedding-ada-002. See https://platform.openai.com/docs/models/
embeddings.

the top-k similar code snippets C𝑘𝑟𝑒𝑡 arranged in descending order
are retrieved. These code snippets boost the replanning process
of the Planner with 𝑎∗𝑡 = Planner(𝑎∗𝑡 |𝐼 , 𝑃𝑃 , 𝐷, 𝑠𝑡 , ℎ𝑡−1, 𝑜𝑡 , C𝑘𝑟𝑒𝑡) for
generating more robust and reliable solutions. We provide details
of code collection in Appendix D.

4 Experiment
We conduct experiments on various tasks to answer the following
research questions (RQs):
Versatility (RQ1): Is SheetAgent adept at both spreadsheet manip-
ulation and reasoning?
Universality (RQ2): Can different LLMs benefit from the design
of SheetAgent?
Difficulty (RQ3):Why SheetRM is a challenging benchmark for
existing methods?
Ablation (RQ4): How do the modules within SheetAgent con-
tribute to its overall effectiveness?

4.1 Experiment Setup
Dataset and Evaluation Metrics.We evaluate our approach Shee-
tAgent on 5 diverse benchmarks. SheetCopilot Benchmark (SCB), a
benchmark consisting of 221 tasks, is selected to mainly assess the
manipulation ability. To measure the reasoning capability, we adopt
three table reasoning tasks, includingWikiTableQuestions (WTQ)
[25], FeTaQA [23], and TabFact [6]. We report the performance on
these tasks using their official evaluation pipeline. The 317 tasks

5

https://platform.openai.com/docs/models/embeddings
https://platform.openai.com/docs/models/embeddings

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’25, April 28 – May 2, 2025, Sydney, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Performance comparison of different methods on SCB and our
SheetRM. * denotes results on a subset of SCB with 20 representative tasks.
Best results are bolded and second-best results are underlined.

SCB SheetRM

Method Exec@1 ↑ Pass@1 ↑ Exec@1 ↑ Pass@1 ↑ SubPass@1 ↑

VBA (GPT-3.5) 77.8 37.1 56.2 2.8 14.5

OS-Copilot (GPT-4) / 60.0* 74.8 20.5 56.6

SheetCopilot (GPT-4) 65.0* 55.0* 68.1 0 16.2
SheetCopilot (GPT-3.5) 87.3 44.3 52.7 2.2 30.7

SheetAgent (GPT-3.5) 94.1 61.1 89.3 44.8 77.0
- w/o Informer+Retriever 88.7 50.7 88.6 11.4 57.5

SheetAgent (GPT-4) 90.0* 70.0* 92.4 31.2 69.8

Table 3: Results of different methods on three
table reasoning benchmarks. Best results are
bolded and second-best results are underlined.

Method WTQ TabFact FeTaQA

Fine-tuning based LLMs
TAPEX [22] 57.5 84.2 34.7
UnifiedSKG [38] 49.3 85.4 33.4
OmniTab [18] 62.8 82.8 34.9

Prompting based LLMs
GPT-3 CoT [5] 45.7 76.0 27.0
Binder [8] 59.9 82.9 31.6
DATER [39] 61.6 80.7 30.9
StructGPT [17] 52.2 81.2 32.5

SheetAgent (GPT-3.5) 64.4 84.8 36.7

in our SheetRM is used to comprehensively evaluate manipulation
and reasoning capabilities. Refer to Appendix E for more details
of these datasets. For manipulation tasks, we adopt Exec@1 and
Pass@1 following SheetCopilot. Exec@1 measures the percentage
of solutions without exceptions during execution. Pass@1 is used
to evaluate the successful accomplishment of the task. In addition,
we use the SubPass@1 to count the success rate of subtasks in each
task to assess the instruction following capability. As for reasoning
tasks, we chose distinct evaluation metrics. For WTQ and TabFact,
accuracy is adopted as the evaluation metric. For FeTaQA, we report
the sacreBLEU score [27].
Baselines. For SCB, we compare SheetAgent with SheetCopilot
[20] and OS-Copilot [37], two LLM-based agent frameworks, and
VBA [20], a method that generates and runs VBA code. For table-
based reasoning tasks, we select fine-tuning based LLMs like TAPEX
[22] and OmniTab [18], and prompting-based LLMs such as DATER
[39] and StructGPT [17]. To our knowledge, there is a lack of meth-
ods capable of comprehensive spreadsheet manipulation. Besides,
various approaches [9, 12, 31] finetune LLMs for specific tasks like
formatting and formula prediction but lack open source weights.
Therefore, we mainly compare VBA, SheetCopilot, and OS-Copilot
on SheetRM. We chose JSON as the table representation for its
superior performance as shown in Table 5. See Appendix F for
implementation details.

4.2 Versatility (RQ1)
To answer RQ1, we conduct various experiments on both spread-
sheet manipulation and reasoning tasks. Table 2 shows the results
for SCB. Using GPT-3.5 as the backbone, we observe that Shee-
tAgent outperforms SheetCopilot with a remarkable 16.8 higher
Pass@1. Even without the Informer and Retriever components, our
method still surpasses others in both metrics. This indicates that
the generated Python code is more robust and reliable compared to
VBA code or language APIs. Following Li et al. [20], we use GPT-4
on a subset of SCB, including 20 tasks. Our SheetAgent also out-
performs SheetCopilot and OS-Copilot with 15.0 and 10.0 higher
Pass@1 respectively. These results demonstrate that SheetAgent
can better leverage the power of LLMs to achieve more accurate
spreadsheet manipulation.

Further experiments focus on assessing SheetAgent’s reasoning
capability. We remove the Retriever as these tasks typically involve

simpler operations like sorting and filtering. Results in Table 3
show that SheetAgent outperforms other baselines on WTQ and
FeTaQA tasks, indicating its capability to provide precise and in-
formative responses. Besides, SheetAgent surpasses all fine-tuning
based methods, and achieves comparable performance as SOTA
method UnifiedSKG [38] on TabFact. The results underscores the
synergy between the Planner and Informer, which significantly
enhances SheetAgent’s efficacy in table reasoning tasks. Full results
are provided in Appendix G.1.

We compare SheetAgent with baselines on the SheetRM to eval-
uate reasoning and manipulation capabilities. For fair comparison,
we have improved SheetCopilot based on the open-source version
with error feedback functionality. Results in Table 2 show SheetA-
gent significantly outperforms other baselines in three aspects: (1)
Robust solution generation: SheetAgent achieves an Exec@1
of 92.4, indicating more robust solutions, meaning Python code
generated by LLMs is more robust than VBA and language APIs.
(2) Strong manipulation proficiency: SheetAgent is proficient in
complex multi-category tasks, achieving a maximum SubPass@1
of 77.0, more than double that of SheetCopilot with GPT-4. (3) Ad-
vanced reasoning ability: SheetAgent can solve more reasoning
challenges, whereas SheetCopilot struggles significantly (Pass@1
44.8 vs 2.2). This reflects the superior reasoning capabilities of
SheetAgent. We also provide an illustrative case in Figure 7 to fur-
ther demonstrate why SheetAgent outperforms SheetCopilot in
tasks with reasoning challenges.

4.3 Universality (RQ2)
To answer RQ2, we compare our SheetAgent with SheetCopilot
across various LLM backbones on SheetRM. As presented in Table 2
and Figure 4, SheetAgent shows remarkable improvements in all
evaluated metrics on diverse backbones such as GPTs and Claude.
Despite with smaller, open-source backbones, we can continue to
observe the same results. Furthermore, SheetCopilot fails to pass
any task completely on open-source models, and possesses lower
Exec@1 scores, highlighting its challenges in generating feasible
solutions. These results confirm the universality of SheetAgent, il-
lustrating its consistent performance improvements across different
LLM backbones regardless of scale. Meanwhile, we note that the
differences between various LLM backbones mainly stem from their
fundamental capabilities, such as instruction following and code

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

SheetAgent: Towards a Generalist Agent for Spreadsheet Reasoning and Manipulation via Large Language Models WWW ’25, April 28 – May 2, 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Qwen-1.5
(14b-chat)

Llama 3
(8b-instruct)

Claude 3
(Sonnet)

23.3
37.9

54.648.9
69.4

92.7
Exec@1

Qwen-1.5
(14b-chat)

Llama 3
(8b-instruct)

Claude 3
(Sonnet)

7.6

14.2

26.5
Pass@1

Qwen-1.5
(14b-chat)

Llama 3
(8b-instruct)

Claude 3
(Sonnet)

4.6 10.1
19.120.6

32.9

65.3
SubPass@1

SheetCopilot SheetAgent

Figure 4: Performance on SheetRM for other LLM backbones. “—” means Pass@1=0. These backbones benefit significantly from
the design of SheetAgent compared to SheetCopilot.

short
(2-4)

medium
(5-7)

long
(8-10)

10

20

30

40

50

Sh
ee

tA
ge

nt

Sh
ee

tA
ge

nt

Sh
ee

tA
ge

nt

Sh
ee

tC
op

ilo
t

Sh
ee

tC
op

ilo
t

Sh
ee

tC
op

ilo
t

O
S-

C
op

ilo
t

O
S-

C
op

ilo
t

O
S-

C
op

ilo
t

Pass@1

short
(2-4)

medium
(5-7)

long
(8-10)

10

30

50

70

Sh
ee

tA
ge

nt

Sh
ee

tA
ge

nt

Sh
ee

tA
ge

nt

Sh
ee

tC
op

ilo
t

Sh
ee

tC
op

ilo
t

Sh
ee

tC
op

ilo
t

O
S-

C
op

ilo
t

O
S-

C
op

ilo
t

O
S-

C
op

ilo
t

SubPass@1

(a)

Worksheet
Management

Value
Processing

Format
Adjustment

Chart
Design

Content
Summary 20

40
60
80

Complex
Computational Logic

Vague
Req.

Incoherent
Data Format

Info.
Extraction

20
40
60
80

SheetAgent (GPT-4) OS-Copilot (GPT-4) SheetCopilot (GPT-4)

(b)

Figure 5: Comparison between SheetAgent and SheetCopilot with GPT-4. (a) Comparison of Pass@1 and SubPass@1 under
different task horizon levels. (b) Pass rate of different manipulation categories (left) and reasoning challenges (right).

generation abilities. We further analyze failure cases on SheetRM
in Section 4.6 to identify the deficiencies and opportunities for
improvement in SheetAgent under different LLM backbones.

4.4 Difficulty (RQ3)
We explore the challenges of our proposed SheetRM benchmark
from three perspectives: task horizon, task categories, and reason-
ing challenges. We compare SheetAgent with SheetCopilot and
OS-Copilot against the same GPT-4 backbone. Tasks are catego-
rized into three levels based on their horizon: short (2-4), medium
(5-7), and long (8-10). As depicted in Figure 5(a), both methods
exhibit a decreasing trend in Pass@1 and SubPass@1 as task hori-
zon increases, indicating the difficulty of long-horizon tasks in our
benchmark. Furthermore, Figure 5(b) presents the performance
across different manipulation categories and reasoning challenges
by evaluating subtask success rates. Both methods struggle with
more complex tasks like chart design and content summary. Ad-
ditionally, SheetCopilot can hardly address reasoning challenges.
These findings underscore the challenges introduced by SheetRM,
particularly in domains requiring consistent and robust reason-
ing and manipulation capabilities. Noted that our SheetAgent still
outperforms SheetCopilot, further validating its superior abilities.

4.5 Ablation (RQ4)
Effects of Each Module. Table 4 reveals the effects of SheetAgent
modules. Pass@1 drops dramatically without Informer, indicating
its vital role in handling reasoning challenges by providing rele-
vant information. Exec@1 also decreases sharply without Retriever,
showing that high-quality examples help the Planner generate
reliable code. Without both Informer and Retriever, SheetAgent

performs poorest, highlighting the need for both reasoning and
manipulation capabilities to tackle complex tasks effectively. Com-
bining the results in Table 2, evenwith only the Planner, SheetAgent
performs decently compared to SheetCopilot, showcasing the ben-
efits of a code-centric approach.
Table Representations. Tabular data requires reliable representa-
tions for LLMs to recognize attribute relationships. We ablate four
table representations—JSON, DFLoader, Markdown, andHTML—for
SheetAgent on WTQ and SheetRM. Results in Table 5 show JSON
outperforms other formats. HTML performs poorly on SheetRM
due to verbosity and token limits. We provide illustration of differ-
ent representations in Appendix G.3 with in-depth analysis. More
additional ablations about temperature and vision-enabled SheetA-
gent can be found in Appendix G.

4.6 Case Study
Failure Cases Analysis. In our analysis, we classified the failures
of various LLMs into five categories, namely “improper function
calls”, “inaccurate queries”, “retrieval of irrelevant code snippets”,
“hallucinations”, and “failure to follow instructions”. Figure 6 shows
the distribution of these failure types across different LLM back-
bones. From this, we observe that smaller, open-source models (e.g.,
llama3-8b-instruct and qwen-14b-chat) tend to exhibit higher rates
of “hallucinations” and “failure to follow instructions”, whereas
larger LMs like GPTs and Claude are more prone to “improper
function calls” and “inaccurate queries”. Notably, GPTs struggle
more with SQL generation, while Claude performs better in that
area but has higher rates of improper function usage. For a more
comprehensive discussion of these error patterns, specific cases,
and proposed strategies for addressing them, refer to Appendix H.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’25, April 28 – May 2, 2025, Sydney, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 4: Ablation study of different proposed components in
SheetAgent on SheetRM dataset.

Method Exec@1 ↑ Pass@1 ↑ SubPass@1 ↑
SheetAgent (GPT-3.5) 92.4 31.2 69.8

-w/o Informer 95.3(+2.9) 13.2(-18.0) 65.8(-4.0)
-w/o Retriever 84.2(-8.2) 19.9(-11.3) 63.7(-6.1)
-w/o Informer+Retriever 88.6(-3.8) 11.4(-19.8) 57.5(-12.3)

Table 5: Ablation study on different representations. Best
results are bolded and suboptimal results are underlined.

Representation WTQ SheetRM

Exec@1 ↑ Pass@1 ↑ SubPass@1 ↑
JSON 63.3 92.4 31.2 69.8
DFLoader 59.7 90.9 30.0 67.5
Markdown 58.6 90.2 29.0 65.4
HTML 62.1 85.2 23.3 57.5

Qwen-1.5

Llama 3

Claude 3

GPT-3.5

GPT-4

14.0%

13.0%

28.5%

25.2%

28.3%

9.3%

16.1%

24.0%

26.8%

29.6%

7.5%

13.5%

21.7%

21.8%

26.2%

31.7%

24.9%

13.2%

14.3%

7.2%

37.5%

32.4%

12.5%

12.0%

8.6%

Improper function calls
Inaccurate queries
Retrieval of irrelevant code snippets

Hallucinations
Failure to follow instructions

Figure 6: Distributions of different failures cases for various
LLM backbones on the SheetRM dataset.

An Illustrative Case Between SheetAgent and SheetCopilot.
Figure 7 presents a case with reasoning challenge. For SheetAgent,
the Informer accurately selects the key evidence related to the
task instruction. The Planner correctly fulfill the task based on the
evidence. In contrast, SheetCopilot merely offers a rigid solution
that fails to complete the task despite its successful execution.

5 Related Work
LLMs for Table Reasoning. Recent research [35, 36] has demon-
strated the excellent ability of LLMs for table reasoning tasks. Chen
[5] showcased that LLMs like GPT-3 [2] are capable of reasoning
over tables. Binder [8] leverages Codex [4] to generate executable
SQL programs to answer table-based questions. DATER [39] de-
composes the table and question into finer granularity descriptions
through Codex. StructGPT [17] designs an LLM-based framework
for structured data and uses it for table question answering. How-
ever, these methods are tailored for tasks like question answering
or fact verification, typically involving direct queries or explicit
statements. As a result, they struggle to handle long-horizon ma-
nipulation tasks because of dynamic changes and token limits.
Automatic Spreadsheet Manipulation. Early research [1, 11–
13] focus on leveraging program synthesis to guide spreadsheet
manipulation. However, these methods fail to generate effective
programs without high-quality query specifications. To address

SheetCopilot

Filter(source="Championship!B2:B21", fieldIndex=2,

criteria="America")

SetFormat(source="Championship!B1:B8", fillColor="red")

DELETEFIlter()

Step 1. Filter by the criteria "America".

Step 2. Set the fill color of filtered cells to red.

Step 3. Remove the filter.

from openpyxl.styles import PatternFill

for row in sheet.iter_rows(min_row=2,
max_row=sheet.max_row, min_col=2):
 for cell in row:
 if "USA" in cell.value:
 cell.fill =
 PatternFill(start_color="FF0000",
 end_color="FF0000", fill_type="solid")

Think: Highlight championships held in the USA based
on the given evidence.

Date Venue Opponent

August 2, 1993 Montreal, Canada
Mikael

Pernfors

October 18,

1993
Tokyo, Japan Ivan Lendl

...

September 12,

1999

US Open, New York,

USA
Andre Agassi

Planner

Informer

Think: Retrieve the championships held in America.

SELECT "Championship" FROM "Championship" WHERE

"Venue" LIKE '%USA%' or "Venue" LIKE '%America%'

SheetAgentQ: Highlight championships hled in America with

red fill.
Sheet "Championship"

Date Venue Opponent

August 2, 1993 Montreal, Canada
Mikael

Pernfors

October 18,

1993
Tokyo, Japan Ivan Lendl

...

September 12,

1999

US Open, New York,

USA
Andre Agassi

Date Venue Opponent

August 2, 1993 Montreal, Canada
Mikael

Pernfors

October 18,

1993
Tokyo, Japan Ivan Lendl

...

September 12,

1999

US Open, New York,

USA
Andre Agassi

Nothing changes! Meet the requirement!

Figure 7: A comparison between SheetAgent and SheetCopi-
lot on a task with reasoning challenges. SheetCopilot gener-
ates a rigid solution that fails to fulfill the task. SheetAgent
identifies the task intention and gives a correct solution.

this, some work [7, 9, 15, 31] employ deep learning methods to
automate spreadsheet manipulation tasks. Despite excellent perfor-
mance in narrow domains like formatting and formula prediction,
they cannot handle a broader range of operations. Given the re-
markable performance of LLMs on various tasks [32, 33, 41], their
use for comprehensive spreadsheet manipulation has been explored
[20, 26, 37, 40, 42]. Payan et al. [26] utilizes LLMs to generate Of-
ficeScripts code with multiple domains. SheetCopilot [20] builds an
autonomous agent for invoking custom APIs to manipulate spread-
sheets. TableGPT [40] fine-tunes an LLM to understand and operate
on tables using external functions. OS-Copilot [37] proposes an
OS-oriented agent framework that automates spreadsheet manipu-
lation. However, they simplify real-world requirements and ignore
reasoning challenges like unclear expression and multi-step reason-
ing. Unlike them, we further explore real-life reasoning challenges
and propose a collaborative agent framework to solve spreadsheet
manipulation tasks that involve these reasoning challenges.

6 Conclusion
In this work, we introduce SheetRM, a more complex and realistic
benchmark designed to evaluate the capabilities of agents in per-
forming precise spreadsheet manipulations that require advanced
reasoning abilities. Furthermore, We introduce SheetAgent that
leverages the power of LLMs to tackle these challenging tasks.
Comprehensive experiments have been conducted to assess the rea-
soning and manipulation proficiency of SheetAgent. We anticipate
that SheetRM will serve as a cornerstone for advancing the devel-
opment of sophisticated generalist agents dedicated to spreadsheet
tasks. Furthermore, we hope SheetAgent can alleviate the burden
of tedious sheet transactions through automated workflows. While
SheetAgent demonstrates strong performance, we acknowledge
several limitations like library coverage and token usage, detailed
in Appendix J, which we leave as future work.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

SheetAgent: Towards a Generalist Agent for Spreadsheet Reasoning and Manipulation via Large Language Models WWW ’25, April 28 – May 2, 2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and

Daniel Tarlow. 2016. DeepCoder: Learning to Write Programs. In International
Conference on Learning Representations.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[3] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao
Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. 2024. A survey on
evaluation of large language models. ACM Transactions on Intelligent Systems
and Technology 15, 3 (2024), 1–45.

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021).

[5] Wenhu Chen. 2023. Large Language Models are few (1)-shot Table Reasoners. In
Findings of the Association for Computational Linguistics: EACL 2023. 1090–1100.

[6] Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang,
Shiyang Li, Xiyou Zhou, and William Yang Wang. 2019. TabFact: A Large-
scale Dataset for Table-based Fact Verification. In International Conference on
Learning Representations.

[7] Xinyun Chen, Petros Maniatis, Rishabh Singh, Charles Sutton, Hanjun Dai,
Max Lin, and Denny Zhou. 2021. Spreadsheetcoder: Formula prediction from
semi-structured context. In International Conference on Machine Learning. PMLR,
1661–1672.

[8] Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu,
Caiming Xiong, Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, et al. 2022.
Binding Language Models in Symbolic Languages. In The Eleventh International
Conference on Learning Representations.

[9] Haoyu Dong, Jiong Yang, Shi Han, and Dongmei Zhang. 2020. Learning For-
matting Style Transfer and Structure Extraction for Spreadsheet Tables with a
Hybrid Neural Network Architecture. In Proceedings of the 29th ACM Interna-
tional Conference on Information & Knowledge Management. 2389–2396.

[10] Alexander Edeling, Shuba Srinivasan, and Dominique M Hanssens. 2021. The
marketing–finance interface: A new integrative review of metrics, methods, and
findings and an agenda for future research. International Journal of Research in
Marketing 38, 4 (2021), 857–876.

[11] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-
output examples. ACM Sigplan Notices 46, 1 (2011), 317–330.

[12] Sumit Gulwani, William R Harris, and Rishabh Singh. 2012. Spreadsheet data
manipulation using examples. Commun. ACM 55, 8 (2012), 97–105.

[13] Sumit Gulwani and Mark Marron. 2014. Nlyze: Interactive programming by
natural language for spreadsheet data analysis and manipulation. In Proceedings
of the 2014 ACM SIGMOD international conference on Management of data. 803–
814.

[14] Md Morshadul Hasan, József Popp, and Judit Oláh. 2020. Current landscape and
influence of big data on finance. Journal of Big Data 7, 1 (2020), 1–17.

[15] Wanrong He, Haoyu Dong, Yihuai Gao, Zhichao Fan, Xingzhuo Guo, Zhitao
Hou, Xiao Lv, Ran Jia, Shi Han, and Dongmei Zhang. 2023. HermEs: Interactive
Spreadsheet Formula Prediction via Hierarchical Formulet Expansion. In Proceed-
ings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). 8356–8372.

[16] Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Mueller, Francesco Piccinno,
and Julian Eisenschlos. 2020. TaPas: Weakly Supervised Table Parsing via Pre-
training. In Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics. 4320–4333.

[17] Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Wayne Xin Zhao, and Ji-Rong
Wen. 2023. StructGPT: A General Framework for Large Language Model to
Reason over Structured Data. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing. 9237–9251.

[18] Zhengbao Jiang, Yi Mao, Pengcheng He, Graham Neubig, and Weizhu Chen.
2022. OmniTab: Pretraining with Natural and Synthetic Data for Few-shot
Table-based Question Answering. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. 932–942.

[19] Sean Kandel, Andreas Paepcke, Joseph M Hellerstein, and Jeffrey Heer. 2012.
Enterprise data analysis and visualization: An interview study. IEEE transactions
on visualization and computer graphics 18, 12 (2012), 2917–2926.

[20] Hongxin Li, Jingran Su, Yuntao Chen, Qing Li, and ZHAO-XIANG ZHANG. 2024.
SheetCopilot: Bringing software productivity to the next level through large
language models. Advances in Neural Information Processing Systems 36 (2024).

[21] Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang,
Danielle Rifinski Fainman, Dongmei Zhang, and Surajit Chaudhuri. 2023. Table-
gpt: Table-tuned gpt for diverse table tasks. arXiv preprint arXiv:2310.09263
(2023).

[22] Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, and
Jian-Guang Lou. 2021. TAPEX: Table Pre-training via Learning a Neural SQL
Executor. In International Conference on Learning Representations.

[23] Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victoria Lin, Neha Verma, Rui
Zhang, Wojciech Kryściński, Hailey Schoelkopf, Riley Kong, Xiangru Tang,
et al. 2022. FeTaQA: Free-form Table Question Answering. Transactions of the
Association for Computational Linguistics 10 (2022), 35–49.

[24] Vaishali Pal, Evangelos Kanoulas, and Maarten Rijke. 2022. Parameter-Efficient
Abstractive Question Answering over Tables or Text. In Proceedings of the Second
DialDoc Workshop on Document-grounded Dialogue and Conversational Question
Answering. 41–53.

[25] Panupong Pasupat and Percy Liang. 2015. Compositional Semantic Parsing on
Semi-Structured Tables. In Proceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers). 1470–1480.

[26] Justin Payan, Swaroop Mishra, Mukul Singh, Carina Negreanu, Christian Poelitz,
Chitta Baral, Subhro Roy, Rasika Chakravarthy, Benjamin Van Durme, and Elnaz
Nouri. 2023. InstructExcel: A Benchmark for Natural Language Instruction in
Excel. In Findings of the Association for Computational Linguistics: EMNLP 2023.
4026–4043.

[27] Matt Post. 2018. A Call for Clarity in Reporting BLEU Scores. In Proceedings of
the Third Conference on Machine Translation: Research Papers. 186–191.

[28] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

[29] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. 2019. Language models are unsupervised multitask learners.
(2019).

[30] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. Code
llama: Open foundation models for code. arXiv preprint arXiv:2308.12950 (2023).

[31] Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Carina Negreanu, Elnaz
Nouri, Mohammad Raza, and Gust Verbruggen. 2023. FormaT5: Abstention and
Examples for Conditional Table Formatting with Natural Language. Proceedings
of the VLDB Endowment 17, 3 (2023), 497–510.

[32] Hongda Sun, Yuxuan Liu, Chengwei Wu, Haiyu Yan, Cheng Tai, Xin Gao, Shuo
Shang, and Rui Yan. 2024. Harnessing Multi-Role Capabilities of Large Language
Models for Open-Domain Question Answering. In Proceedings of the ACM on
Web Conference 2024. 4372–4382.

[33] Bo Wang, Jing Ma, Hongzhan Lin, Zhiwei Yang, Ruichao Yang, Yuan Tian, and
Yi Chang. 2024. Explainable Fake News Detection With Large Language Model
via Defense Among Competing Wisdom. In Proceedings of the ACM on Web
Conference 2024. 2452–2463.

[34] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-
angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, et al. 2021. Milvus:
A Purpose-Built Vector Data Management System. In Proceedings of the 2021
International Conference on Management of Data. 2614–2627.

[35] Xuezhi Wang, JasonWei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang,
Aakanksha Chowdhery, and Denny Zhou. 2023. Self-Consistency Improves
Chain of Thought Reasoning in Language Models. In The Eleventh International
Conference on Learning Representations.

[36] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reason-
ing in large language models. Advances in Neural Information Processing Systems
35 (2022), 24824–24837.

[37] Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu,
Shunyu Yao, Tao Yu, and Lingpeng Kong. 2024. OS-Copilot: Towards Generalist
Computer Agents with Self-Improvement. In ICLR 2024 Workshop on Large
Language Model (LLM) Agents.

[38] Tianbao Xie, Chen HenryWu, Peng Shi, Ruiqi Zhong, Torsten Scholak, Michihiro
Yasunaga, Chien-Sheng Wu, Ming Zhong, Pengcheng Yin, Sida I Wang, et al.
2022. UnifiedSKG: Unifying andMulti-Tasking Structured Knowledge Grounding
with Text-to-Text Language Models. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing. 602–631.

[39] Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin Li. 2023.
Large language models are versatile decomposers: Decomposing evidence and
questions for table-based reasoning. In Proceedings of the 46th International ACM
SIGIR Conference on Research and Development in Information Retrieval. 174–184.

[40] Liangyu Zha, Junlin Zhou, Liyao Li, Rui Wang, Qingyi Huang, Saisai Yang,
Jing Yuan, Changbao Su, Xiang Li, Aofeng Su, et al. 2023. Tablegpt: Towards
unifying tables, nature language and commands into one gpt. arXiv preprint
arXiv:2307.08674 (2023).

[41] Junjie Zhang, Yupeng Hou, Ruobing Xie, Wenqi Sun, Julian McAuley, Wayne Xin
Zhao, Leyu Lin, and Ji-Rong Wen. 2024. Agentcf: Collaborative learning with
autonomous language agents for recommender systems. In Proceedings of the
ACM on Web Conference 2024. 3679–3689.

[42] Wenqi Zhang, Yongliang Shen, Weiming Lu, and Yueting Zhuang. 2024. Data-
Copilot: Bridging Billions of Data and Humans with Autonomous Workflow. In
ICLR 2024 Workshop on Large Language Model (LLM) Agents.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’25, April 28 – May 2, 2025, Sydney, Australia Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A Pseudo Code of SheetAgent
We present the pseudo code of our proposed SheetAgent consisting
of the Planner, Informer, and Retriever modules for handling a
spreadsheet task. See Alg. 1.

Algorithm 1: SheetAgent Algorithm
Input: S: spreadsheet, 𝐼 : task instruction, 𝐷 : spreadsheet

description, 𝑠: sheet state, 𝜃, 𝜙 : LMs for Planner and
Informer, 𝑃𝑃 , 𝑃 𝐼 : system prompts for Planner and
Informer, 𝑇 : max iteration rounds, 𝐾 : number of
retrieval results, E: embedding model, C𝑟𝑒𝑝𝑜 : code
repository

Output: Ŝ: final processed spreadsheet
1 db← InitDB();
2 Scopy ← Copy(S);
3 UpdateDB(db,Scopy);
// Initialize iteration counter, action sequence,

and planning history

4 𝑡 ← 1; 𝐴← ∅; ℎ ← ∅;
5 while (𝑡 ≤ 𝑇) ∧ (𝑎𝑡 ≠ Done) do
6 𝑞𝑡 ← Informer𝜙 (𝐼 , 𝑃 𝐼 , 𝐴𝑡−1, 𝑠𝑡);

// Execute SQL query and get spreadsheet

subview

7 𝑒𝑡 ← ExecuteSQL(db, 𝑞𝑡);
8 𝑎𝑡 ← Planner𝜃 (𝐼 , 𝑃𝑃 , 𝐷, 𝑠𝑡 , ℎ𝑡−1, 𝑒𝑡);

// Execute code in sandbox and get feedback

9 𝑜𝑡 ← Sandbox(𝑎𝑡);
10 if Error(𝑜𝑡) then
11 C𝑞 ← ExtractErrorCodeSnippet(𝑎𝑡);
12 C𝐾𝑟𝑒𝑡 ← Retriever(E, C𝑞, C𝑟𝑒𝑝𝑜 , 𝐾);

// Re-plan with error information

13 𝑎𝑡 ← Planner𝜃 (𝐼 , 𝑃𝑃 , 𝐷, 𝑠𝑡 , ℎ𝑡−1, 𝑒𝑡 , 𝑜𝑡 , C𝐾𝑟𝑒𝑡);
14 end

// Update necessary information

15 𝐴𝑡 ← 𝐴𝑡−1 ∪ {𝑎𝑡 };
16 ℎ𝑡 ← ℎ𝑡−1 ∪ {𝑜𝑡 , 𝑎𝑡 };
17 Scopy ← UpdateSpreadsheet(Scopy, {𝑎𝑡 });
18 𝑠𝑡 ← UpdateDB(db,Scopy);
19 𝑡 ← 𝑡 + 1;
20 end

// Apply generated action sequence on original

spreadsheet

21 Ŝ ← UpdateSpreadsheet(S, 𝐴);
22 return Ŝ

B Details of SheetRM Benchmark
B.1 Details of Dataset Collection
Spreadsheet Collection. The spreadsheets curated in SheetRM
dare derived from an online examination question bank. We filter
out files that are protected, corrupted, or otherwise inaccessible.
Within each spreadsheet, the first row of each column must include

a header, with the actual data entries starting from the second row.
Besides, we ensure all data in each sheet begin from cell A1. We as-
sume that these spreadsheets have already undergone a process to
remove some personal information. However, to minimize privacy
risk by leaking important personal information, we further imple-
ment measures to ensure that no privacy issues arise. Specifically,
we modify potentially sensitive information, such as adding noise
to the age data and anonymizing bookstore names to general labels
like Bookstore A, Bookstore B, etc.
Task Verification. As mentioned in Section 2.2, we instruct GPT-4
to generate realistic tasks that mimic user requests adhering to four
guidelines: the tasks should only involve predefined operations,
cover diverse manipulation categories, exhibit a long-horizon na-
ture by encompassing multiple subtasks, and incorporate at least
one subtask that presents the specified reasoning challenges. This
procedure yields a collection of 2316 subtasks. We use GPT-3.5 to
filter task instructions that have a lot of semantic duplication to
maintain uniqueness. After this, 1973 subtasks are reserved. Fur-
thermore, our internal annotators verify these subtasks manually
to ensure quality, which increases the probability that they will be
completed by LLMs. Specifically, we adopt two strategies: (1) pro-
gramming and (2) specialized software. For programming, we ask
our internal annotators to write code to complete specific subtask.
For specialized software, we use Microsoft Excel to solve the sub-
task. We accept the subtask only if both strategies solve the subtask.
This cross-way validation approach guarantees the reliability of
the subtasks. We obtain 1625 subtasks after this process. Finally,
we combine these subtasks for different spreadsheets considering
horizon and complexity, which leads to 317 task instructions.

B.2 Comparison Between SheetRM and SCB
We conclude the differences that highlight the advantages of our
proposed SheetRM dataset compared with SCB as follows:
• More sheets: The number of spreadsheet files in SheetRM and

SCB is comparable. Besides, SheetRM maintains more spread-
sheet files and sheets than SCB (41 vs 28 & 137 vs 31). Each
spreadsheet file contains more complex logical relationships and
information.

• More subtasks and longer task horizon: As shown in Table 6,
SheetRM maintains more subtasks (1625 vs 431) with longer
horizon tasks (averaging 5.13 vs 1.95). Detailed task length
distribution is presented in Figure 9.

• Broader categories and more reasonable division: SCB cate-
gorizes tasks into 6 main types: Entry & Manipulation, Format-
ting, Pivot Tables, Charts, Formulas, and Management, which
results in unbalanced coverage and vague definitions. For exam-
ple, Formula is basically a type of numerical computation and
overlaps with Management and Manipulation, etc. In contrast,
SheetRM divides the 5major categories and 36 sub-categories
from coarse to fine and minimizes the overlap of sub-operations.
We believe this allows for a better evaluation of the agents.
• Finer-grained and more flexible evaluation: We propose an

automated checklist-based evaluation in SheetRM that is
flexible and accurate for each subtask in the middle of a process,
whereas SCB directly compares the final spreadsheets with the

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

SheetAgent: Towards a Generalist Agent for Spreadsheet Reasoning and Manipulation via Large Language Models WWW ’25, April 28 – May 2, 2025, Sydney, Australia

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

ground truth spreadsheets, ignoring the intermediate process of
evaluation.

• Introduction of reasoning challenges: It is worth noting that
reasoning challenges are innovatively introduced combined with
manipulation in SheetRM. In real-world spreadsheet tasks, it
is often necessary to reason and analyze problems and data in
order to carry out operations. The SCB simplifies the task objec-
tives by assessing only the LLM’s ability to manipulate spread-
sheets. Instead, our proposed SheetRM presents more realistic
and challenging tasks. Please refer to Appendix B.4 for further
elaboration.

B.3 Detailed Statistics of Dataset
Spreadsheet Files. We provide more detailed statistics of our
SheetRM dataset. We collect spreadsheets covering multiple fields.
As illustrated in Figure 8 (Left), we categorize these spreadsheet
files into five main fields, reflecting the significant areas where
spreadsheets are frequently employed to handle a variety of tasks.
We manually annotate a short natural language description as a
summary for each spreadsheet file, aiming to stimulate inherent
knowledge of LLMs. Each description provides an overview for
LLMs to better understand the background information. We pro-
vide the descriptions in Table 7.
Task Instruction. We cluster the commonly used operation when
working with spreadsheets into five categories, namely Value Pro-
cessing, Worksheet Management, Format Adjustment, Chart
Design, and Content Summary. For each manipulation category,
we further break it down into fine-grained operations. We believe
these operations can cover most spreadsheet affairs. The descrip-
tion of these operations is introduced in Table 8. Figure 8 (Right)
demonstrates the distribution of verb-noun phrases within our 317
task instructions. We highlight the ten most frequent root verbs
and their four primary associated nouns, showcasing the diversity
of task instructions in the SheetRM dataset. Additionally, we show
the distributions of the number of manipulation categories and sub-
tasks for these task instructions (see Figure 9 (Left)). The majority
of tasks span 2 or 3 manipulation categories, with a decent portion
encompassing 4 categories, underscoring the diversity of tasks in
the SheetRM dataset. We further count the number of subtasks in
each task. As displayed in Figure 9, each task includes at least 2
sub-tasks, with the most complex extending to 10. Predominantly,
the tasks vary in length from 3 to 7. This reflects the long horizon
feature of SheetRM, which poses a significant challenge to LLMs.
Full prompts for task generation are available in Appendix I.1.

B.4 Explanation of Reasoning Challenges
Our SheetRM dataset stands out from other spreadsheet manip-
ulation collections due to its emphasis on reasoning-dependent
manipulation. Specifically, each task incorporates reasoning chal-
lenges. We draw inspiration from several popular table reasoning
tasks, including table question answering datasets WikiTableQues-
tions and FeTaQA, and table fact verification task TabFact. We
analyze cases within these datasets that most models struggled
with and identify four types of reasoning challenges, namely Com-
plex Computational Logic, Vague Requirements, Incoherent
Data Format, and Information Extraction. We find that these

reasoning challenges are prevalent in real-world spreadsheet ma-
nipulation tasks due to the diversity of human expression. Thus,
integrating practical insights, we incorporate these reasoning chal-
lenges into our spreadsheet manipulation tasks. We elaborate these
challenges with descriptions and specific examples:

Complex Computational Logic

Description:
Problems that require more than one reasoning steps to be
solved.
Example Sheet:

Name Date of Entry Educational Qualification Salary
Alice 3/1/2001 Master 11,100
Bob 12/1/2006 Bachelor 10,350
...

John 1/9/2011 Doctor 41,100

Instruction:
Which period, 2001-2006 or 2007-2012, had a higher propor-
tion of employees with bachelor’s degrees? For the period
with the higher proportion, calculate the average salary of
the undergraduate employees and put it in cell E1.
Challenge:
To fulfill this instruction, the capability of multi-step rea-
soning is required.

Vague Requirements

Description:
Problems that refer to incomplete or ambiguous specifi-
cations which lack clarity and precision, making it chal-
lenging to understand and fulfill the intended goals or
objectives.
Example Sheet:

BookID Book Name Unit Price
BK-83024 VB Programming 38
BK-83026 Access Programming 35

...
BK-83029 Network Technology 43

Instruction:
Highlight database-related books in yellow.
Challenge:
To fulfill this instruction, Reasoning over the sheet contents
to identify which books are relevant to the database.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW ’25, April 28 – May 2, 2025, Sydney, Australia Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 6: Comparison of statistical data between SheetRM and SCB.

Dataset Name # Files # Sheets # Task Instructions # Subtasks Avg. of Task Length Median of Task Length Max Task Length

SheetRM (Ours) 41 137 317 1625 5.13 5 10
SCB 28 31 221 431 1.95 2 7

Incoherent Data Format

Description:
Problems that arise when the description provided pertains
to the spreadsheet data, yet the units or formats mentioned
do not align with those represented in the spreadsheet.
Example Sheet:

Name Date of Birth
Alice 12/27/1964
Bob 9/28/1974
... ...

John 7/19/1987

Instruction:
Mark the names of employees born after 1985-1-1 in red.
Challenge:
To fulfill this instruction, the “Date of Birth” column should
be inferred to align the format.

Information Extraction

Description:
Problems that require specific information to be extracted
from the spreadsheet.
Example Sheet:

Venue Opponent Final Score
Memphis, Tennessee, USA Jim Courier 7-5, 6-7, 6-7
Australian Open, Melbourne, Australia Pete Sampras 6-7, 4-6, 4-6
...
Estoril, Portugal Albert Costa 6-2, 3-6

Instruction:
Extract the scores from the first round of the finals into
the new column "First Round Score".
Challenge:
To fulfill this instruction, Information about the “Final
Score” is required to determine how to extract the first
round score.

C Explanations of The Code-Centric Design in
Planner

What is generated by the Planner is crucial for precise manipulation.
Li et al. [20] introduces a set of virtual APIs as the action space for
its proposed agent. However, these APIs lack scalability and are
prone to hallucinations when invoked due to conflicts with the in-
herent knowledge of LLMs. Considering the strong code generation
capabilities of LLMs [3], we assign the Planner to generate codes

to control spreadsheets. During the process of dataset construction
(Section 2.2), we find that Python, compared with VBA, is suitable
for manipulating spreadsheets and aligns well with existing train-
ing corpus [4, 30] for LLMs. As shown in Table 9, we assess various
Python libraries for spreadsheet manipulation. Morden software
features considers support for newer spreadsheet software func-
tionalities like complex formulas, charts, and conditional format-
ting. LLM familiarity measures how extensively language models
like me can understand, explain, and generate code examples us-
ing these libraries. We select a few natural language description
and code snippets written by these libraries, prompt several LLMs
(gpt-3.5-turbo-1106, qwen-14b-chat, etc.) to generate and ex-
plain code examples, and evaluate the results manually. During
this process, we found that xlwings code can hardly be understood
by these LLMs despite its strengths in other aspects. Finally, We
choose to primarily use openpyxl3 and pandas4 as a combination
of them can cover all operations shown in Figure 2.

D Details of Code Collection for the Retriever
The Retriever’s code comes from GitHub open-source projects and
external Python libraries like openpyxl and pandas, focusing on
high-quality, popular code to ensure data representativeness. We
organized these codes by operations covered in SheetRM and then
abstracted them for universality. For operations without existing
code, we gathered more from the same sources or wrote code our-
selves, ensuring coverage of all defined operations. The organized
code is related to the corresponding tasks, mainly demonstrating
the application programming interfaces and providing high-level
guidance. However, the specific implementations of these APIs and
the generated solutions are different. Since we abstracted and en-
capsulated the collected codes, we only provided information on
how to operate in it, while the application of the actual data is rele-
vant to the task scenario. Thus, we anticipate that LLMs learn from
the knowledge provided by these code snippets and reflect on past
trajectories to generate more robust and higher-quality solutions
to the task. We provide several code examples in Listing 1-2.

E Dataset Details
The details of datasets mentioned in Section 4.1 are provides as
follows:
• WikiTableQuestions includes intricate questions created by

crowd workers from Wikipedia tables. These questions necessi-
tate multiple advanced operations like comparison, aggregation,
and arithmetic, demanding a detailed compositional analysis of
table entries. This dataset uses CC-BY-SA-4.0 license.

• FeTaQA features free-form questions derived from tables that
call for profound reasoning and comprehension. Predominantly,

3https://openpyxl.readthedocs.io
4https://pandas.pydata.org

12

https://openpyxl.readthedocs.io
https://pandas.pydata.org

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

SheetAgent: Towards a Generalist Agent for Spreadsheet Reasoning and Manipulation via Large Language Models WWW ’25, April 28 – May 2, 2025, Sydney, Australia

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Education

20.9%

Marketing

30.2%

Accounting

20.9%

Administration
16.3%

Infrastructure

11.6%

set

mark

fill

create

ca
lcu
lat
e

in
se
rt

add
put

copy

highlight

cell

co
lum

n

font

he
ig
ht

name

titlescore

number

columncell
nameprice

sheet

chart
grap

h

histo
gram

sco
re

am
ou
nt

co
lum

n
va
lue column

in
ve

nt
or
y

sh
ee

t

colum
n

border
row total

result
number

price

salary

sheet
class
sale
total

name
cell
category
course

Figure 8: (Left) Distribution of fields to which the spreadsheet files belong. (Right) An illustration of verb-noun phrases in
the task instructions. We count the top 10 most frequent root verbs and their associated nouns, ranking the top four for each.
These verb-noun combinations showcases the diversity of the generated instructions.

1 2 3 4 5
Manipulation Categories

0

20

40

60

80

100

120

C
ou

nt

2 3 4 5 6 7 8 9 10 11
Subtasks

0

10

20

30

40

50

60

C
ou

nt

Figure 9: (Left) Distribution of manipulation categories in each task. (Right) Histogram of the task length.

the questions in FetaQA arise from non-contiguous segments of
the table. The performance is measured by accuracy on a test set
of 2,003 samples. This dataset uses CC-BY-SA-4.0 license.

• TabFact serves as a benchmark for table-based fact verification,
with crowd workers composing statements from Wikipedia ta-
bles. For instance, the statement: “The industrial and commercial
panel has four more members than the cultural and educational
panel.” must be validated as “True” or “False” based on the table
information. Accuracy is reported on a smaller test set of 2,024
statements across 298 tables. It uses MIT license.

• SCB is a spreadsheet manipulation dataset, which contains 28
spreadsheets collected the Internet. The 221 spreadsheet control
tasks within this dataset are generated using GPT-4, including

analyzing sales data, calculating financial metrics, and visualizing
data with charts. It uses GPL-3.0 license.

• SheetRM introduced in Section 2 comprises of 317 real-world
spreadsheet tasks. Each task includes multi-category and long-
horizon manipulation sequences, along with a specific reasoning
challenge. This dataset comprehensively assess the reasoning and
manipulation capabilities of LLM-based agents. It also supports
finer-grained and more flexible automatic evaluation. For more
details of our proposed SheetRM benchmark, please refer to
Appendix B. Our SheetRM dataset follows the CC-BY-SA-4.0
license.

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

WWW ’25, April 28 – May 2, 2025, Sydney, Australia Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Table 7: A short natural language description of the spreadsheet files we collect in SheetRM dataset.

Spreadsheet File Description

BookSales This workbook presents data related to book sales.
StudentsGrade This workbook is about organizing and analyzing student transcripts for first-grade students.
ABProductSales This workbook presents data related to product A and B.
Reimbursement The workbook shows the company’s travel expense reimbursement status for the year 2013.
ElectronicsSales The workbook is about conducting statistical analysis of the company’s sales.
PayrollSummary The workbook is the March 2014 employee salary sheet.
TeachingFees This workbook shows the teaching situation and instructor hourly fees for the courses in the Teaching

Research Office in the year 2012.
Deposit The workbook is a bank deposit journal.
ComputerBookSales The workbook depicts the sales figures for computer-related books in December 2012.
ScienceMajorGrade The workbook shows the final exam grades for the Information and Science major.
PersonnalInformation This workbook is the personnel file information of company employees.
ComputerBookSales2 This workbook represents the sales statistics of computer-related books.
AppliancesSales This workbook shows the sales statistics of various household appliances.
DepartmentSales This workbook documents the sales performance of company’s products in the first half of the year.
QuartersSales This workbook summarizes the sales performance for the first two quarters.
FinalGrade This workbook provides a detailed analysis of students’ final grades.
ParkingFees This workbook keeps track of parking fees and the associated rates.
LivingCosts This workbook displays an individual’s monthly expense report.
StudentsGrade2 This workbook displays the grades for each subject in the class.
LawMajorGrade This workbook presents the final grade analysis of law students from the 2012 cohort.
YearsSales This workbook documents the sales statistics of company products in 2012 and 2013.
YearEndSalary This workbook provides the year-end salary details of employed staff members.
AirQuality This workbook illustrates the air quality data for major cities in China.
SalesAndPurchase This workbook is a record of this year’s sales and purchase data.
PersonnelChange This workbook contains the personal details of company employees for the year 2019, including their

entry and departure information.
ProductLaunchPlan This workbook outlines the product launch timeline, key milestones, and marketing strategies.
StudentAttendance This workbook tracks the attendance records of students across various grades.
QuarterlyEarnings This workbook presents the company’s earnings and financial reports for each quarter of 2020.
OfficeInventory This workbook lists office supplies, including current stock levels and reorder statuses.
RoadMaintenanceLog This workbook logs the maintenance schedule and costs associated with road repairs in the city.
CustomerSurvey This workbook compiles customer feedback from recent marketing campaigns and product surveys.
TeacherPerformance This workbook evaluates teacher performance based on student feedback and exam results.
BudgetForecast This workbook forecasts the company’s budget allocations for the next fiscal year.
HRLeaveTracker This workbook tracks employee leave, including vacation days and sick leave balances.
BridgeInspection This workbook contains the results of bridge safety inspections conducted in 2021.
CampaignROI This workbook analyzes the return on investment (ROI) of various marketing campaigns.
CourseEnrollments This workbook tracks student enrollment numbers for various courses during the academic year.
TaxFilingSummary This workbook summarizes the company’s tax filings for the past three years.
MeetingMinutes This workbook records the minutes and action items from weekly department meetings.
PowerGridStatus This workbook monitors the status of the city’s power grid, including outages and repairs.
AdBudgetAllocation This workbook details the allocation of the advertising budget across different channels.

F Implementation Details
Baselines. As for table reasoning tasks, we run Binder and DATER
using the official implementations. The only difference is that we
revise the code to use publicly available gpt-3.5-turbo-16k-0613 as
the LLM backbone instead of Codex due to its inaccessibility. We

also run StructGPT on TabFact small-test set and FeTaQA using its
open-sourced code with the same LLM backbone. On the proposed
SheetRM, we have improved SheetCopilot based on the simplified
open-source version5 with error feedback functionality for fair

5https://github.com/BraveGroup/SheetCopilot.

14

https://github.com/BraveGroup/SheetCopilot

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

SheetAgent: Towards a Generalist Agent for Spreadsheet Reasoning and Manipulation via Large Language Models WWW ’25, April 28 – May 2, 2025, Sydney, Australia

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Table 8: Description of each fine-grained operation involved in SheetRM dataset.

Manipulation Category Operation Description

Value Processing Calculate Calculations and statistics.
Insert Insert rows or columns.
Delete Delete cells, rows or columns.
Auto Fill Fill according to the control relationship.
Sort Sort rows or columns in ascending or descending order.
Copy & Paste Copy and paste cell values.
Replace Replace the values of a cell at a specified location.
Hyperlink Set up hyperlinks.
Distinction Remove duplicates.
Filter Filter specified cells according to certain conditions.

Worksheet Management Create Worksheet Create a new worksheet.
Delete Worksheet Delete the specified worksheet.
Rename Worksheet Rename the specified worksheet.
Label Color Modify the color of worksheet name labels.
Page Size Modify page size.
Orientation Set the page orientation.

Format Adjustment Font Name Set the font category.
Font Color Set the font color.
Font Size Set the font size.
Bold & Italic Set the font to be bold or slanted.
Underline Underline cell contents.
Merge & Unmerge Merge or split cells.
Alignment Align cells horizontally or vertically.
Row Height & Column Width Set cell row height or column width.
Background Fill Set cell background fill color.
Numeric Format Set cell number formatting.

Chart Design Chart Type Set the Chart Type.
Chart Data Source Set the data source for the chart.
Chart Caption Set the title of the chart.
Chart Legend Set the Chart Legend.
Chart Position Specify where to place the chart.
Chart Axis Set the axes of a chart.
Data Label Set data labels for charts.
Trendline Add a trendline to the chart.

Content Summary Pivot Creation Create pivot table.
Summary Function Set statistical functions of the pivot.

Table 9: Comparison of Python libraries for spreadsheet manipuation.

Library Read Write Additional Features Cross-Platform Modern Software Features LLM Familiarity

xlrd ! % % ! Limited High
xlwt % ! % ! Limited High
openpyxl ! ! ! ! High High
xlwings ! ! ! ! High Low
xlsxwriter % ! % ! Limited High

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

WWW ’25, April 28 – May 2, 2025, Sydney, Australia Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

create_pie_chart.py

from openpyxl import Workbook

from openpyxl.chart import PieChart, Reference

data = [

["Pie", "Sold"],

["Apple", 50],

["Cherry", 30],

["Pumpkin", 10],

["Chocolate", 40],

]

wb = Workbook()

ws = wb.active

for row in data:

ws.append(row)

pie = PieChart()

labels = Reference(ws, min_col=1, min_row=2, max_row=5)

data = Reference(ws, min_col=2, min_row=1, max_row=5)

pie.add_data(data, titles_from_data=True)

pie.set_categories(labels)

pie.title = "Pies sold by category"

ws.add_chart(pie, "D1")

Listing 1: Implementation for pie chart creation.

comparison. For the VBA method, we adjust the prompt of SheetA-
gent to generate pywin32 code and remove the Retriever module
due to code repository mismatch. FormaT5 and SpreadsheetCoder
are implemented using the official open-sourced code. For the rest
baselines, we report the performance obtained from papers.
LLM Backbones for SheetAgent. In the main experiments,
we select various LLMs as the backbones for our proposed
SheetAgent. As for proprietary LLMs, we choose GPT-3.5, GPT-
46, and Claude 3 (claude-3-sonnet-202402297). In terms of
open-source LLMs, we adopt Qwen-1.5 (qwen-14b-chat8) and
Llama 3 (llama3-8b-instruct9). Note that multiple versions of
GPTs are involved for alignment with other baselines. Specif-
ically, for SCB, WikiTableQuestions, FeTaQA, and TabFact, we
use gpt-3.5-turbo-16k-0613. For our SheetRM, we employ
gpt-3.5-turbo-1106 and gpt-4-turbo-0409.
Choice of In-context Examples. For the SCB dataset, we align
with SheetCopilot by using only one in-context example. For other

6https://platform.openai.com/docs/models
7https://docs.anthropic.com/claude/docs/models-overview
8https://huggingface.co/Qwen/Qwen-14B-Chat
9https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

add_second_axis.py

from openpyxl import Workbook

from openpyxl.chart import BarChart, LineChart,

Reference↩→

wb = Workbook()

ws = wb.active

rows = [

["Aliens", 2, 3, 4, 5, 6, 7],

["Humans", 10, 40, 50, 20, 10, 50],

]

for row in rows:

ws.append(row)

c1 = BarChart()

v1 = Reference(ws, min_col=1, min_row=1, max_col=7)

c1.add_data(v1, titles_from_data=True,

from_rows=True)↩→

c1.x_axis.title = "Days"

c1.y_axis.title = "Aliens"

c1.y_axis.majorGridlines = None

c1.title = "Survey results"

Create a second chart

c2 = LineChart()

v2 = Reference(ws, min_col=1, min_row=2, max_col=7)

c2.add_data(v2, titles_from_data=True,

from_rows=True)↩→

c2.y_axis.axId = 200

c2.y_axis.title = "Humans"

Display y-axis of the second chart on the right by

setting it to cross the x-axis at its maximum↩→

c1.y_axis.crosses = "max"

c1 += c2

ws.add_chart(c1, "D4")

Listing 2: Implementation for adding second axis in a chart.

16

https://platform.openai.com/docs/models
https://docs.anthropic.com/claude/docs/models-overview
https://huggingface.co/Qwen/Qwen-14B-Chat
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

SheetAgent: Towards a Generalist Agent for Spreadsheet Reasoning and Manipulation via Large Language Models WWW ’25, April 28 – May 2, 2025, Sydney, Australia

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

datasets, we utilized two in-context examples each. Specifically, for
SCB, we selected the same task as SheetCopilot. We initially had
VBA and SheetAgent generate a trajectory for the task under a zero-
shot setting using GPT-4, then made appropriate modifications to
ensure correctness. The modified trajectory was ultimately used as
the in-context example. For SheetRM benchmark, we constructed
two additional tasks not present in the dataset and employed VBA,
SheetAgent and SheetCopilot to generate trajectories for these
tasks, in the same manner, to serve as in-context examples. For
other datasets, including WTQ, FeTaQA, and TabFact, where our
experiments were conducted on the test sets, we chose two tasks
from their respective training sets as examples. It is worth noting
that our SheetAgent only uses 2 in-context examples while Binder
uses 14. SheetAgent still achieves superior performance.
Computing Power.All the results in our experiments are obtained
by running the code on a server equipped with an Intel(R) Xeon(R)
Gold 6338 CPU @ 2.00GHz and 2*NVIDIA A800.
Accessibility of Code and Data. Supplementary information is
available in the Appendix. Additional information such as code and
data is available at https://anonymous.4open.science/r/SheetAgent.
We also present a video demo at the project website.

G Additional Experimental Results
G.1 Full Results on Table Reasoning Tasks
Table 10-11 show the full evaluation results on table reasoning
tasks.

Table 10: Results of different methods on WTQ test set and
TabFact small-test set. We report the accuracy metric. Best
results are bolded and second-best results are underlined.

Method WTQ TabFact

Fine-tuning based LLMs
TAPAS [16] 48.8 83.9
TAPEX [22] 57.5 84.2
UnifiedSKG [38] 49.3 85.4
OmniTab [18] 62.8 82.8
Prompting based LLMs
GPT-3 CoT [5] 45.7 76.0
Binder [8] 59.9 82.9
DATER [39] 61.6 80.7
StructGPT [17] 52.2 81.2

SheetAgent (Ours) 64.4 84.8

G.2 Vision-Enabled SheetAgent
We have explored the potential of leveraging GPT-4V(ision)’s vi-
sual capabilities by substituting spreadsheet snapshots for the text-
modal sheet state in the observation. Given the cost of GPT-4V and
the challenges in automatic snapshot capture of spreadsheets, we
test this approach with 10 representative tasks from the SheetRM
dataset. We have ensured these tasks span all five manipulation
categories defined in SheetRM. As vision-eanbled SheetAgent can
observe full state of spreadsheets, we remove the Informer mod-
ule for fair comparison. We present the differences in sheet state

Table 11: Results of different methods on FeTaQA test
set. Best results are bolded and suboptimal results are
underlined.

Method sacreBLEU

Fine-tuning based LLMs
T5-small [23] 21.6
T5-base [23] 28.1
T5-large [23] 30.5
TAPEX [22] 34.7
UnifiedSKG [38] 33.4
PeaQA [24] 33.5
OmniTab [18] 34.9
Prompting based LLMs
GPT-3 CoT [5] 27.0
Binder [8] 31.6
DATER [39] 30.9
StructGPT [17] 32.5

SheetAgent (Ours) 36.7

Table 12: Performance comparison between SheetAgent (GPT-
4) and SheetAgent (GPT-4V) on 10 representative tasks from
SheetRM. Vison-enabled SheetAgent removes the Informer
module.

Method Pass@1 ↑ SubPass@1 ↑
SheetAgent (GPT-4V) 40.0 66.5
SheetAgent (GPT-4) 50.0 74.1

between GPT-4V and GPT-4 in Figure 10. Results are presented
in Table 12. Through this intriguing experiment, we observe that
when tasks involved visual elements, such as formatting and chart
modification, SheetAgent can better adjust styles based on the vi-
sual feedback, improving task completion. However, SheetAgent
(GPT-4V) has difficulty processing large-scale spreadsheets and cor-
rectly identifying sheet data due to low image solution, resulting in
task failure. We also obtain an interesting finding that there exists
an overlap between the visual aspect of GPT-4V and the Informer
module. While GPT-4V allows SheetAgent to perceive multimodal
content within spreadsheets (charts, pivot tables, frozen panes, etc.),
it faces challenges capturing accurate information in larger-scale
tables compared with the Informer. We leave this for our future
work.

G.3 Ablation Study on Table Representation
Tabular data is a kind of information-dense structured data, it is
crucial to design reliable representations to enable LLMs clearly
recognize the attribute relationships. To investigate what repre-
sentation can better help LLMs to reason over tables. We ablate 4
prevalent table representations: JSON, DFLoader, Markdown, and
HTML for SheetAgent on WikiTableQuestions and SheetRM. We
provide an illustration of these representations, as shown in Fig-
ure 11. Notably, DFLoader is represented by the corresponding

17

https://anonymous.4open.science/r/SheetAgent
https://sheetagent.github.io

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

WWW ’25, April 28 – May 2, 2025, Sydney, Australia Anon.

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

Planner

Create	 a	 dictionary	 to	 map	 "Bookid"	 to	 "Bookname"	 from	 the
"Numbering	 Reference"	 sheet	 and	 use	 it	 to	 fill	 in	 the	 "Bookname"
column	in	the	"Order	Details"	sheet.

#	Create	a	dictionary	mapping	Bookid	to	Bookname
bookid_to_name	=	{}
for	row	in	numbering_reference_sheet.iter_rows(min_row=2,
max_row=18,	values_only=True)(
bookid_to_name[row[0]]	=	row[1]

#	Fill	the	Bookname	in	Order	Details	sheet	using	the	dictionary
for	row	in	order_details_sheet.iter_rows(min_row=2,	max_row=635,
min_col=4,	max_col=5)(
book_id	=	row[0].value
if	book_id	in	bookid_to_name:
row[1].value	=	bookid_to_name[book_id]

Sandbox

Executed	successfully,
no	output.

STDOUT:

Sandbox

Executed	successfully,
no	output.

STDOUT:

Sheet	"Order	Details"	has	635	rows	(Including	the	header	row)
and	 8	 columns	 (A(1):	 "Orderid"	 (<class	 'str'>),	 B(2):	 "Date"
(<class	 'datetime.datetime'>),	C(3):	 "Bookstore	Name"	 (<class
'str'>),	D(4):	"Bookid"	(<class	 'str'>),	E(5):	"Bookname"	(<class
'str'>),	 F(6):	 "Unit	 Price"	 (<class	 'int'>),	 G(7):	 "Sales	 Volume"
(<class	'int'>),	H(8):	"Subtotal"	(<class	'int'>)).

Sheet	 "Numbering	 Reference"	 has	 18	 rows	 (Including	 the
header	row)	and	3	columns	(A(1):	"Bookid"	(<class	'str'>),	B(2):
"Bookname"	(<class	'str'>),	C(3):	"Unit	Price"	(<class	'int'>)).	

(b)	Text	sheet	state(a)	Snapshot
GPT-4Vision GPT-4

Figure 10: An illustration depicting the differences in sheet state between GPT-4V and GPT-4. For brevity, the Informer and
Retriever modules are excluded. The snapshots (namely the visual representation of sheet state) are partial due to the limitation
of spreadsheet scale.

Python code snippet that uses the pandas DataFrame API to define
the table. The results shown in Table 5 reveal that JSON outperform
other formats. HTML format achieves a suboptimal result on WTQ,
but ranks lowest on SheetRM. Its open-and-close structure helps
LLMs understand better, but the verbosity risks exceeding token
limits, thus hindering efficiency. We also observe that DFLoader
format achieve commendable results, possibly due to its code struc-
ture, which might be easier for LLMs to comprehend. Overall, JSON
is a preferable choice for both reasoning intensive tasks, like WTQ,
and long-horizon tasks with fewer reasoning elements, such as
SheetRM.

G.4 Ablation Study on LLM Temperature
We conduct evaluations of our method using the proposed SheetRM
dataset under varying conditions by adjusting the temperature set-
tings to investigate the impact of temperature on the performance
of LLMs. For these experiments, gpt-3.5-turbo-1106 is selected
as the LLM backbone. Our findings reveal that our method, Shee-
tAgent, achieves its best performance at a temperature of 0.0, with
minor performance fluctuations observed at a temperature of 0.2.
However, a noticeable decline in performance across all metrics
occurs when the temperature is increased to 0.4. This trend sug-
gests that higher temperature settings lead to more unpredictable
outcomes from SheetAgent, reflecting a decrease in the stability
and reliability of the solutions it generates.

18

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

SheetAgent: Towards a Generalist Agent for Spreadsheet Reasoning and Manipulation via Large Language Models WWW ’25, April 28 – May 2, 2025, Sydney, Australia

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

pd.DataFrame({
				"Name":	["John",	"Emily",	"Michael",	���],
				"Age":	[28,	36,	29,	���],
				"Occupation":	["Engineer",	"Teacher",	"Doctor",	���]
})

HTML

|	Name				|			Age	|	Occupation			|
|-.///////0/////1-|-.////////////2
John	28	Engineer
Emily	36	Teacher
Michael	29	Doctor
���	���	���

Markdown

DFLoader

{
				{"Name":"John","Age"-28,"Occupation":"Engineer"},
				{"Name":"Emily","Age"-36,"Occupation":"Teacher"},
				{"Name":"Michael","Age"-29,"Occupation":"Doctor"},
				���
}

JSON

<table>
		<thead>
				<tr>
						<th>Name67th>
						<th>Age67th>
						<th>Occupation67th>
				67tr>
		67thead>
		<tbody>
				<tr>
						<td>John67td>
						<td>2867td>
						<td>Engineer67td>
				67tr>
				<tr>
						<td>Emily67td>
						<td>3667td>
						<td>Teacher67td>
				67tr>

				���
		67tbody>
67table>

Figure 11: An illustration of 4 different table representations we use in our experiments.

Table 13: Ablation study on the temperature of LLM.

Temperature Exec@1 ↑ Pass@1 ↑ SubPass@1 ↑
0.0 92.4 31.2 69.8
0.2 93.5 30.3 68.1
0.4 90.2 28.7 66.2

Table 14: Token and time consumption comparison. Con-
sumption of tokens is calculated by stage.

Method Avg. # Tokens Avg. Time (s)

SheetAgent (GPT-3.5) System Prompt: 324 + Few-shot Demon-
strations: 2013 + Planner: 589.7 + Informer:
513.9 + Retriever: 625.3 = 4065.9

6.9

SheetCopilot (GPT-3.5) System Prompt: 1895 + Few-shot Demon-
strations: 1592 + Plan: 628.5 = 4115.5

5.8

G.5 Performance-Cost Analysis
We have conducted extra experiments to calculate the token
and time consumption of our method on SheetRM. We use
gpt-3.5-turbo-1106 as the LLM backbone. We compare our pro-
posed SheetAgent with SheetCopilot. It is noteworthy that since
SheetCopilot is insufficiently capable of fulfilling a complete task
from SheetRM, we select 20 subtasks for which both can generate

successful trajectories and calculate metrics based on these. The
results are presented in Table 14. On average, our approach con-
sumes fewer tokens compared to SheetCopilot, primarily because
SheetCopilot oftenmakes errors, which leads to reflection. However,
SheetAgent involves querying multiple LLMs and a vector database,
which places us at a disadvantage in terms of time efficiency.

As for cost, we have calculated the cost of successful trajecto-
ries by our SheetAgent (GPT-3.5) on SheetRM. The average cost to
finish a complete task is $0.0049. Notably, excellent results of Shee-
tAgent shown in Table 2 can be achieved even with relatively cheap
backbone GPT-3.5 and Claude 3 Sonnet, which is a trade-off be-
tween cost and performance. We believe the superior performance
of SheetAgent compared to other methods justify this resource use.

H Failure Cases Analysis
In the main text (Section 4.6), we briefly highlighted the key differ-
ences in the error distributions of various LLM backbones. To gain
a clearer understanding of the differences between the LLM back-
bones compared in Sections Section 4.2 and Section 4.3, we conduct
a detailed error analysis to determine the causes and locations of
failures. We classify the reasons for failure as follows:

• Improper function calls: The Planner inaccurately invokes
function interfaces for certain operations. For example, it uses
chart.set_title("Chart Title") instead of chart.title =

19

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

WWW ’25, April 28 – May 2, 2025, Sydney, Australia Anon.

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

"Chart Title", resulting in an AttributeError. Additionally,
it performs worksheet.cell_range() (a method deprecated in
newer versions of openpyxl) instead of worksheet.iter_rows()
or worksheet.iter_cols().

• Inaccurate queries: The Informer generates imprecise SQL
statements leading to incorrect or incomplete information being
input. For example, it attempts to query books related to of-
fice software but produces a statement like SELECT * FROM
w WHERE BookName LIKE ‘%Excel%’ OR BookName LIKE
‘%PowerPoint%’ while ignoring Word.
• Retrieval of irrelevant code snippets: The Retriever sources

irrelevant code fragments, which impedes the Planner’s correc-
tion process. This happens due to similarities in code segments
within the code repository, resulting in the retrieval of irrelevant
code.

• Hallucinations: It performs operations on rows and columns
that are out of scope, ignoring the actual data, or creates data
that does not exist.

• Failure to follow instructions: It terminates tasks prematurely
or fails to comply with the given instructions. For example, it
only completes a part of subtasks from a long-horizon task or
highlights entries in colors not specified by the task.

We present the proportions of different failure cases for various
LLM backbones on our SheetRM in Figure 6. Combining the results
in Figure 4, we can observe that: (i) LLMs with poorer performance
on the benchmark (e.g., llama3-8b-instruct and qwen-14b-chat) have
a significantly higher proportion of errors related to “hallucinations”
and “failure to follow instructions”. In contrast, well-tuned LLMs
with extensive parameters, such as GPT-3.5, GPT-4, and Claude 3
Sonnet, have their errors predominantly concentrated in “improper
function calls”, “inaccurate queries”, and “retrieval of irrelevant
code snippets”. This indicates that advanced LLMs perform better
on complex tasks, whereas smaller open-sourced LLMs struggle
significantly with understanding and executing instructions. (ii)
Among proprietary LLMs, GPT-3.5 and GPT-4 exhibit similar error
distributions, with high proportions of errors in “inaccurate queries”
and “improper function calls” (29.6% and 28.3% for GPT-4, 26.8%
and 25.2% for GPT-3.5, respectively). In contrast, Claude 3 Sonnet
shows a different pattern, with a similar proportion of “inaccurate
queries” (24.0%) but a relatively higher proportion of “improper
function calls” (28.5%). This may reflect that GPTs are adept at gen-
erating proficient Python code, while Claude can better understand
complicated instructions and translate them into accurate SQLs. (iii)
Smaller open-source LLMs, such as llama3-8b-instruct and qwen-
14b-chat, display similar error patterns, primarily in “hallucinations”
and “failure to follow instructions”. Llama3-8b-instruct possesses a
“failure to follow instructions” error rate of 32.4%, whereas qwen-
14b-chat has a significantly higher rate of 37.5%. This phenomenon
may be attributed to their training corpus and model scale.

We further perform a deep analysis of specific failure cases across
different LLM backbones, which reveals distinct patterns and chal-
lenges. GPT-4 and GPT-3.5 are prone to make errors in generating
correct SQLs. After inspecting the specific bad cases, we find that in
most cases, they understand the task instruction but generate SQLs
that semantically fail to fulfill the task requirements. In other cases,
they generate syntactically incorrect SQL statements that cause

execution to fail. Differently, Claude 3 Sonnet owns a highest rate
of improper function calls but fewer errors of inaccurate queries.
It usually calls a function that does not exist or is deprecated, or
misunderstands the function usage. For instance, it uses openpyxl’s
iter_rows() function to iterate through the spreadsheet. The ex-
act code it produces is for row in ws.iter_rows(min_row=1,
max_row=10, max_col="E"):, where max_col should be an in-
teger instead of a string. Llama3-8b-instruct and qwen-14b-chat
share the highest proportions of instruction-following failures and
hallucinations, suggesting difficulties in maintaining task context
and adhering to long-horizon instructions. We note that there are
a large number of incomplete solutions in the llama3-8b-instruct
failure case, due in large part to its limited context length of 8K.
For qwen-14b-chat, we observe that it can hardly follow the com-
plicated and long-horizon task instructions, and tends to generate
irrelevant contents. We assume this may have something to do with
its training strategy and corpus.

We have further proposed potential strategies to overcome the
proposed failure cases, which may provide insights for future re-
search in this community:
• Regarding addressing improper function calls, we found

conflicts between the LLM’s training corpus on openpyxl versions
and current versions. Enhancing understandings of library func-
tions through fine-tuning or tool augmentation might mitigate
this.

• For inaccurate queries, improving model training with diverse
SQL examples through fine-tuning and incorporating a validation
layer to check queries against database schemas could enhance
accuracy.

• To combat irrelevant code snippet retrieval, refining the
code repository with detailed descriptions of each example’s
functionality and intended task scenarios could improve retrieval
accuracy.

• For hallucinations and failure to follow instructions, we
attribute these to the model’s inherent limitations, noticing a
significant increase in these issues on weaker LLM backbones
like llama3-8b-instruct and qwen-14b-chat. Switching to a more
robust LLM might alleviate these problems. Explicitly managing
task progress (e.g., adding a task decompositionmodule for proce-
dural execution) or incorporating an LLM-driven Critic module
(for sanity check on generated solutions) could also partially
address these issues.

I Prompts
I.1 Prompt for Subtask Generation
The subtask generation stage involves two aspects, namely generat-
ing subtasks with diverse fine-grained operations, and generating
subtasks with four reasoning challenges. Figure 12 lists the prompt
for the first aspect. To ensure the generation quality, we prompt
GPT-4 to choose 4-5 fine-grained operation at a time. To narrow the
gap with realistic requirements, we ask GPT-4 to express in a tone of
real-life users. Moreover, an in-context example is provided to teach
GPT-4. With these prerequisites, GPT-4 can continuously generate
diverse and sufficient subtasks. Fig. 13-16 showcase the prompts for
generating subtaks with 4 reasoning challenges. Particularly, GPT-4
is prompted under the principle that the generated subtasks should

20

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

SheetAgent: Towards a Generalist Agent for Spreadsheet Reasoning and Manipulation via Large Language Models WWW ’25, April 28 – May 2, 2025, Sydney, Australia

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

only be solved by reasoning over spreadsheets. This guarantees the
existence of reasoning factors in the subtasks to some extent. For
the last three challenges, we ask GPT-4 to annotate response with
its thinking logic so that we could verify that it makes sense.

I.2 Prompt for Planner
Figure 17 lists the prompt template for the Planner in SheetAgent.
The Planner is prompted to mainly use openpyxl and pandas to
manipulate spreadsheets. We also prompt Planner to reason and
plan in a ReAct way. It can invoke Python tool to interact with a
Python sandbox for solution evaluation, and Answer tool to submit
the answer corresponding to the question.

I.3 Prompt for Informer
The prompt for the Informer is shown in Figure 18. To increase
the robustness and reliability of generated SQLs, we provide the
Informer with the table schemas of all sheets, along with 3 example
rows.

J Limitations and Potential Social Impact
We list the limitations of our proposed SheetAgent as follows:
• Library limitations: SheetAgent automates spreadsheet tasks

through Python code generation, utilizing libraries like openpyxl
and pandas. Although this has covered a wide range of opera-
tions, it is still missing some customizable functionality at the
software level. For instance, complex spreadsheet manipulations
that involve advanced Excel features such as pivot tables, macros,
or specific formatting options are not fully supported. Enhance-
ments in library capabilities or integration with additional tools
could address these gaps.

• High token usage: Like existing research to automate spread-
sheet manipulation [20], SheetAgent inevitably faces higher to-
ken usage for long-horizon tasks. This can lead to increased
computational costs and slower processing times. Future work
will focus on optimizing task descriptions through more efficient
prompting techniques or manual refinement to reduce token
consumption and improve overall efficiency.
The implementation of SheetAgent has the potential to bring

about several positive social impacts. By automating repetitive and
time-consuming spreadsheet tasks, SheetAgent can significantly
enhance productivity and efficiency in various industries. This can
free up human resources for more strategic and creative work, ulti-
mately leading to better utilization of talent and skills. Additionally,
SheetAgent can democratize access to advanced data analysis and
processing, making these capabilities available to a broader audi-
ence, including individuals with limited technical expertise. This
democratization can empower more people to leverage data for
informed decision-making and innovation.

However, the introduction of SheetAgent might pose negative
social impacts. As with any automation technology, there is a risk
of job displacement for roles traditionally centered around man-
ual spreadsheet manipulation. This could lead to economic and
social challenges for affected individuals. Moreover, the reliance
on computational resources for running SheetAgent, especially for
large-scale or long-horizon tasks, could contribute to environmen-
tal concerns such as increased energy consumption. Addressing

these issues requires proactive measures, including reskilling and
upskilling programs to help displaced workers transition to new
roles and optimizing the efficiency of SheetAgent to minimize its
environmental footprint. Ethical considerations must also be pri-
oritized to ensure transparency, fairness, and the safeguarding of
user data privacy and security.

21

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

WWW ’25, April 28 – May 2, 2025, Sydney, Australia Anon.

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

System prompt

Role

As a spreadsheet expert, you have the ability to formulate specific questions for given spreadsheets. These questions are utilized to evaluate the large

language model's capabilities to manipualte spreadsheets.

Constraints

1.Choose 4-5 fine-grained operations from the classification below. Use the provided spreadsheet to create tasks, and then merge them into a complete

question.

2.Generate an appropriate number of questions each time.

3.Generate questions from the user's perspective, considering elements such as thought process and tone of speech.

4.Simplify the language by focusing only on subproblems composed of fine-grained operations.

5.List the fine-grained operations involved behind each problem. For example, (fine-grained operation：Numeric Format, Auto Fill, Font Color)

6.Make each question more complex and comprehensive.

Fine-grained operations

Here are the fine-grained operations you can choose within the five categories:

A.Value Processing:Calculate,Insert,Delete,Auto Fill,Sort,Copy & Paste,Replace,Hyperlink,Distinction,Filter

B.Worksheet Management:Create Worksheet,Delete Worksheet,Rename Worksheet,Label Color,Page Size,Orientation

C.Format Adjustment:Font Name,Font Color,Font Size,Bold & Italic,Underline,Merge & Unmerge,Alignment,Row Height & Column Width,Background

Fill,Numeric Format

D.ChartDesign:Chart Type,Chart Data Source,Chart Caption,Chart Legend,Chart Position,Chart Axis,Data Label,Trendline

E:ContentSummary:Pivot Creation,Summary Function

In-context example

I will give you an example first:

Given a spreadsheet:

Sheet name "Order Details":

|Orderid|Date|Bookstore Name|Bookid|Bookname|Unit Price|Sales Volume|Subtotal|Purchaser|

|BTW-08634|2012/10/31|A|BK-83024|VB Language Programming|38|36| 1,368.0|Hongyu Ma|

|BTW-08633|2012/10/30|B|BK-83036|Database Principles|37|49|1,813.0|Bob|

|BTW-08632|2012/10/29|C|BK-83032|Information Security Technology |39|20|780.0|Dave|

Referring to the details provided in the table above, I'll present the following complex computational logic questions:

1.In sheet "Order Details", adjust "Unit Price" and "Subtotal" to accounting with 2 decimal places and CNY currency symbol format. Fill the "Bookname"

column based on "Bookid". Identify the bookstore with the largest decrease in "Subtotal" in January to October 2012 compared to January to October

2011. （fine-grained operation：Numeric Format，Auto Fill, Font Color）

2.In sheet "Order Details", fill in the "BookiD" based on the "Bookname". Add a column named "Adjusted Quantity" to the last column of the sheet.

Calculate the data in this column by multiplying 20 with the current values in the "Subtotal" column and then dividing by the maximum value of Subtotal.

（fine-grained operation：Auto Fill, Calculate, Shading, Font Color）

User instruction

Now it’s your turn.

Given a spreadsheet:

Sheet name "Grade":

|Student Number|Name|Class|Chinese|Mathematics|English|Biological|Geography|History|Politics|Total Score|Average Score|

|120305|Alice|class 3|91.5|89|94|92|91|86|86|629.5|89.93|

|120203|Charlie|class 2|93|99|92|86|86|73|92|621|88.71|

|120206|Frank|class 2|100.5|103|104|88|89|78|90|652.5|93.21|

GPT response

Sort the students' names alphabetically. Identify the student who has the highest average score after sorting. (fine-grained operation: Sort, Calculate)

Merge cells to group students based on their "Class". Find out which class has the highest total sum of all subjects combined. (fine-grained operation:

Merge & Unmerge, Calculate, Sort)

Create a new column called "Science Total", which sums up the scores for "Biological", "Geography", and "History". Then, find the student with the

lowest sum in "Science Total". (fine-grained operation: Calculate, Insert)

Adjust the "Total Score" and "Average Score" columns to display only one decimal place. After this adjustment, determine if there are any students

whose average score is exactly equal to the rounded "Average Score". (fine-grained operation: Numeric Format, Operation)

Generation of Subtasks

Figure 12: Prompt for generating subtasks with diverse fine-grained operations.
22

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

SheetAgent: Towards a Generalist Agent for Spreadsheet Reasoning and Manipulation via Large Language Models WWW ’25, April 28 – May 2, 2025, Sydney, Australia

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

System prompt

Role

As a spredsheet expert, you have the ability to formulate specific questions for given spreadsheets. These questions are utilized to evaluate the large

language model's comprehension of spreadsheets.

Constraints

1.Begin by grasping the content of the provided worksheets, then formulate questions related to "Complex Computational Logic." These types of questions

necessitate the use of multiple statistical procedures for resolution.

2.Keep the focus of the question on asking, without delving into the specifics of the procedural steps.

3.The guiding principle for formulating questions is that they should only be solvable by referencing the content of the worksheets.

4.Generate an appropriate number of questions each time you approach the task.

5.Conclude each question with a fine-grained operation, integrating it with the problem to present the result.

6.Elevate the complexity and comprehensiveness of each question.

Fine-grained operations

Here are the fine-grained operations you can choose within the five categories:

A.Value Processing: Calculate,Insert,Delete,Auto Fill,Sort,Copy & Paste,Replace,Hyperlink,Distinction,Filter

B.Worksheet Management: Create Worksheet,Delete Worksheet,Rename Worksheet,Label Color,Page Size,Orientation

C.Format Adjustment: Font Name,Font Color,Font Size,Bold & Italic,Underline,Merge & Unmerge,Alignment,Row Height & Column Width,Background

Fill,Numeric Format

D.ChartDesign: Chart Type,Chart Data Source,Chart Caption,Chart Legend,Chart Position,Chart Axis,Data Label,Trendline

E:ContentSummary: Pivot Creation,Summary Function

In-context example

I will give you an example first:

Given a spreadsheet

Sheet name "Order Details":

|Orderid|Date|Bookstore Name|Bookid|Bookname|Unit Price|Sales Volume|Subtotal|Purchaser|

|BTW-08634|2012/10/31|A|BK-83024|VB Language Programming|38|36| 1,368.0|Hongyu Ma|

|BTW-08633|2012/10/30|B|BK-83036|Database Principles|37|49|1,813.0|Bob|

|BTW-08632|2012/10/29|C|BK-83032|Information Security Technology |39|20|780.0|Dave|

Referring to the details provided in the table above, I'll present the following complex computational logic questions:

1.In sheet "Order Details", identify the quarter with the highest book sales in 2011, then determine which bookstore has the most sales in this quarter, and

fill its name of bookstore in B6 cell.（fine-grained operation：Calculate）

2.Identify the bookstore with the largest decrease in "Subtotal" in January to October 2012 compared to January to October 2011. Then, determine the

best-selling book with the most volume in that year for this bookstore and highlight its row in red font in the "Order Details" sheet.（fine-grained

operation：Font Color）

User instruction

Given a spreadsheet:

Sheet name "Grade":

|Student Number|Name|Class|Chinese|Mathematics|English|Biological|Geography|History|Politics|Total Score|Average Score|

|120305|Alice|class 3|91.5|89|94|92|91|86|86|629.5|89.93|

|120203|Charlie|class 2|93|99|92|86|86|73|92|621|88.71|

|120206|Frank|class 2|100.5|103|104|88|89|78|90|652.5|93.21|

GPT response

From the "Grade" sheet, calculate the average score of each subject across all classes, identify the subject with the lowest class average, and replace the

title of that subject with "Needs Improvement" in cell D1.（fine-grained operation：Replace）

In the "Grade" sheet, determine the student with the highest total score for each class, then create a new worksheet named "Top Students" and copy &

paste the information of these students into the new worksheet.（fine-grained operation：Copy & Paste）

On the "Grade" sheet, filter the students who scored above 90 in English and then sort these records in descending order by their Total Score. Once

sorted, apply a background fill of light green to these rows.（fine-grained operation：Background Fill）

Within the "Grade" sheet, identify the class with the highest average total score and then merge cells A1 and B1 and label this merged cell with "Best

Performing Class".（fine-grained operation：Merge & Unmerge）

Generation of Subtasks with Reasoning Challenges
Complex Computational Logic

Figure 13: Prompt for generating subtasks with “complex computational logic” reasoning challenge.

23

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

WWW ’25, April 28 – May 2, 2025, Sydney, Australia Anon.

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

System prompt

Role

As a spreadsheet expert, you have the ability to formulate specific questions for given spreadsheets. These questions are utilized to evaluate the large

language model's comprehension of spreadsheets.

Constraints

1.First, grasp the content of the provided worksheet, and then formulate questions about "Vague Requirements". Questions about vague requirements

involve using synonyms or generic terms to identify statistical objects instead of directly using their real names.

2.Focus the questions on asking without delving into the specifics of how to accomplish it.

3.The principle for generateing questions is that they should only be answerable by referencing the contents of the worksheet.

4.Generate an appropriate number of questions each time.

5.Generate questions from the user's perspective, considering elements such as thought process and tone of speech.

6.Conclude each question with a fine-grained operation, integrating it with the problem to present the result.

7.Specify the referenced object; for instance, when mentioning "Office-related books", it refers to "MS Office Advanced Applications" and "Word

Applications."

Fine-grained operations

Here are the fine-grained operations you can choose within the five categories:

A.Value Processing: Calculate,Insert,Delete,Auto Fill,Sort,Copy & Paste,Replace,Hyperlink,Distinction,Filter

B.Worksheet Management:Create Worksheet,Delete Worksheet,Rename Worksheet,Label Color,Page Size,Orientation

C.Format Adjustment:Font Name,Font Color,Font Size,Bold & Italic,Underline,Merge & Unmerge,Alignment,Row Height & Column Width,Background

Fill,Numeric Format

D.ChartDesign:Chart Type,Chart Data Source,Chart Caption,Chart Legend,Chart Position,Chart Axis,Data Label,Trendline

E:ContentSummary:Pivot Creation,Summary Function

In-context example

I will give you an example first:

Given a spreadsheet:

Sheet name "Order Details":

|Orderid|Date|Bookstore Name|Bookid|Bookname|Unit Price|Sales Volume|Subtotal|Purchaser|

|BTW-08634|2012/10/31|A|BK-83024|VB Language Programming|38|36| 1,368.0|Hongyu Ma|

|BTW-08633|2012/10/30|B|BK-83036|Database Principles|37|49|1,813.0|Bob|

|BTW-08632|2012/10/29|C|BK-83032|Information Security Technology |39|20|780.0|Dave|

Referring to the details provided in the table above, I'll present the following vague requirements questions:

1.In sheet "Order Details", determine the month with the highest sales volume of programming language-related books(“programming language-related

books” are synonyms or generic terms for “VB Language Programming” and “C Language Programming”) in 2012, and then calculate its proportion to the

total sales volume of that month. Put the result in A1 of the new sheet（fine-grained operation：Calculate）

2. In sheet "Order Details", mark the Office-related books(“Office-related books” are synonyms or generic terms for “MS Office Advanced Applications”

and “Word Applications”) in red font color.（fine-grained operation：Font Color）

User instruction

Now it’s your turn.

Given a spreadsheet:

Sheet name "Grade":

|Student Number|Name|Class|Chinese|Mathematics|English|Biological|Geography|History|Politics|Total Score|Average Score|

|120305|Alice|class 3|91.5|89|94|92|91|86|86|629.5|89.93|

|120203|Charlie|class 2|93|99|92|86|86|73|92|621|88.71|

|120206|Frank|class 2|100.5|103|104|88|89|78|90|652.5|93.21|

GPT response

In the "Grade" sheet, figure out which student performed best in language courses (language courses is a generic term for "Chinese" and "English") and

put the student's name and average score of the language courses in A1 and B1 of a new worksheet. （fine-grained operation: Calculate, Create

Worksheet）

In the "Grade" sheet, determine the average score for science courses (science courses is a generic term for "Biological", "Geography") in class 3, filter

the students with average science courses scores below this average and highlight their name in yellow. （fine-grained operation: Calculate, Filter,

Background Fill）

Generation of Subtasks with Reasoning Challenges
Vague Requirements

Figure 14: Prompt for generating subtasks with “vague requirements" reasoning challenge.
24

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

SheetAgent: Towards a Generalist Agent for Spreadsheet Reasoning and Manipulation via Large Language Models WWW ’25, April 28 – May 2, 2025, Sydney, Australia

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

System prompt

Role

As a spreadsheet expert, you have the ability to formulate specific questions for given spreadsheets. These questions are utilized to evaluate the large

language model's comprehension of spreadsheets.

Constraints

1.Start by comprehending the content of the provided form, and then generate questions related to "Incoherent Data Format" where the description

involves the same meaning but different units or data formats.

2.Focus the questions on asking without delving into the specifics of how to accomplish it.

3.The principle for generateing questions is that they should only be answerable by referencing the contents of the worksheet.

4.Generate an appropriate number of questions each time.

5.Generate questions from the user's perspective, considering elements such as thought process and tone of speech.

6.Conclude each question with a fine-grained operation, integrating it with the problem to present the result.

7.List equivalent data at the end of the question.

Fine-grained operations

Here are the fine-grained operations you can choose within the five categories:

A.Value Processing:Calculate,Insert,Delete,Auto Fill,Sort,Copy & Paste,Replace,Hyperlink,Distinction,Filter

B.Worksheet Management:Create Worksheet,Delete Worksheet,Rename Worksheet,Label Color,Page Size,Orientation

C.Format Adjustment:Font Name,Font Color,Font Size,Bold & Italic,Underline,Merge & Unmerge,Alignment,Row Height & Column Width,Background

Fill,Numeric Format

D.ChartDesign:Chart Type,Chart Data Source,Chart Caption,Chart Legend,Chart Position,Chart Axis,Data Label,Trendline

E:ContentSummary:Pivot Creation,Summary Function

In-context example

I will give you an example first:

Given a spreadsheet:

Sheet name "Employee Information":

|Job number| Name|Sex|Section|Educational background|Telephone|Telephone type|Date of birth|

|19|Bob|Female|Technical department|Master|12383605517|Cell phone|1980/11/16|

|20|Charlie|Male|Technical department|Undergraduate course|12733582889|Cell phone|1985/6/28|

|21|David|Male|Technical department|Master|90870409|Landline|1969/4/24|

Referring to the details provided in the table above, I'll present the following incoherent data format questions:

1. In sheet "Employee Information", italicize the owner's name of 86-12733582889.（The phone numbers 86-12733582889 and 12733582889 are

equivalent.）（fine-grained operation：Bold & Italic）

2. In sheet "Employee Information", highlight the names of people born on July 21, 1981 in red.（The date July 21, 1981 and 1981/7/21 are equivalent)

（fine-grained operation：Font Color）

User instruction

Now it’s your turn.

Given a spreadsheet:

Sheet name "Payroll":

|Name|Department|Position|Id Number|Gender|Date Of Birth|Age|EducationalBackground|On-Board Time|Length Of Service (years)|Contract Monthly

Wages| Monthly Seniority Wage|Basic Monthly Wage|

|Faythe|Management department|General manager|110108196301020119|Male|1963/1/2|115|Doctor|1981/2/1|34|40000|1700|41700|

|Grace|Administration department|Secretary|110105198903040128|Female|1989/3/4|115|Junior college|2012/3/1|3|4800|60|4860|

|Judy|Management department|Manager|310108197712121139|Male|1977/12/12|115|Master|2003/7/1|12|12000|360|12360|

GPT response

In the current sheet, apply a green background fill to the cell of the employee who joined the company in February 1981. (The date 'Feb-1981' and

'1981/2/1' are equivalent.) (fine-grained operation: Background Fill)

Please adjust the Basic Monthly Wage cell for Chunqiu Ding to display it in thousands. (given that $4860 is equivalent to $4.86K.) (fine-grained operation:

Numeric Format)

Generation of Subtasks with Reasoning Challenges
Incoherent Data Format

Figure 15: Prompt for generating subtasks with “incoherent data format” reasoning challenge.

25

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

WWW ’25, April 28 – May 2, 2025, Sydney, Australia Anon.

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

System prompt

Role

As a spreadsheet expert, you have the ability to formulate specific questions for given spreadsheets. These questions are utilized to evaluate the large

language model's comprehension of spreadsheets.

Constraints

1.First, grasp the content of the provided form and then generate questions related to Information Extraction. The Information Extraction problem

involves extracting additional information from the content in the sheet.

2.Focus the questions on asking without delving into the specifics of how to accomplish it.

3.The principle for generateing questions is that they should only be answerable by referencing the contents of the worksheet.

4.Generate an appropriate number of questions each time.

5.Generate questions from the user's perspective, considering elements such as thought process and tone of speech.

6.Conclude each question with a fine-grained operation, integrating it with the problem to present the result.

7.Provide examples of the extracted sources and content. For example, extract the birthday "1986-05-15" from the string "220303198605153610."

Fine-grained operations

Here are the fine-grained operations you can choose within the five categories:

A.Value Processing:Calculate,Insert,Delete,Auto Fill,Sort,Copy & Paste,Replace,Hyperlink,Distinction,Filter

B.Worksheet Management:Create Worksheet,Delete Worksheet,Rename Worksheet,Label Color,Page Size,Orientation

C.Format Adjustment:Font Name,Font Color,Font Size,Bold & Italic,Underline,Merge & Unmerge,Alignment,Row Height & Column Width,Background

Fill,Numeric Format

D.ChartDesign:Chart Type,Chart Data Source,Chart Caption,Chart Legend,Chart Position,Chart Axis,Data Label,Trendline

E:ContentSummary:Pivot Creation,Summary Function

In-context example

I will give you an example first:

Given a spreadsheet:

Sheet name "Statistical Report":

|Orderid|Date|Bookstore Name|Bookid|Bookname|Unit Price|Sales Volume|Subtotal|Purchaser|PurchaserID|

|BTW-08634|2012/10/31|A|BK-83024|VB Language Programming|38|36| 1,368.0|Hongyu Ma|211322198509260317|

|BTW-08633|2012/10/30|B|BK-83036|Database Principles|37|49|1,813.0|Bob|211481198401154411|

|BTW-08632|2012/10/29|C|BK-83032|Information Security Technology |39|20|780.0|Dave|522324197508045617|

Referring to the details provided in the table above, I'll present the following information extraction questions:

1.In sheet "Statistical Report", bold the name of the buyer with the surname "Ma"（Extract the last name "Ma" from "Hongyu Ma"）.（fine-grained

operation：Bold & Italic）

2. In sheet "Statistical Report", extract the buyer's date of birth based on the Purchaser ID, create a new column labeled "Birthday," and put the

result（Extract the birthday "1986-05-15" from "220303198605153610"）.（fine-grained operation：Font Color）

User instruction

Now it’s your turn.

Given a spreadsheet:

Sheet name "Championship":

|Outcome|Date|Venue|Surface|Opponent in the final|Score in the final|

|Runner-up|February 15, 1993|Memphis, Tennessee, USA|Hard (i)|Jim Courier|7-5, 6-7(4-7), 6-7(4-7)|

|Winner|May 17, 1993|Coral Springs, Florida, USA|Clay|David Wheaton|6-3, 6-4|

|Runner-up|July 26, 1993|Washington D.C., USA|Hard|Amos Mansdorf|6-7(3-7), 5-7|

GPT response

In the provided worksheet, could you filter out and display all matches that have a "Score in the final" that includes a tie-breaker set? (Extract the score

"6-7(4-7)" as an example of a tie-breaker set). (fine-grained operation: Filter)

In the workbook, identify all the occasions where the final match was won in straight sets and label these rows with a distinct background color (for

example, the final against David Wheaton with the score 6-3, 6-4). (fine-grained operation: Background Fill)

Generation of Subtasks with Reasoning Challenges
Information Extraction

Figure 16: Prompt for generating subtasks with “information extraction” reasoning challenge.

26

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

SheetAgent: Towards a Generalist Agent for Spreadsheet Reasoning and Manipulation via Large Language Models WWW ’25, April 28 – May 2, 2025, Sydney, Australia

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

System prompt

Role

You are a spreadsheet agent and a python expert who can find proper functions to solve complicated spreadsheet-related tasks based on language

instructions.

Prerequisites

1. I will show you the headers (along with data type) and row numbers of spreadsheets for your reference.

2. Your partner, "Informer," aids in task completion by providing sheet content represented in {table_representation}, known as "potentially helpful

information". This information might be truncated due to token limits, so it's essential to deduce the complete information from what is provided.

3. Please provide step-by-step solutions without explanation.

4. You can use any python library, but when it comes to manipulating spreadsheets, you shoud primarily use the openpyxl and pandas library, which has

been already imported as `openpyxl` and `pd`.

5. You should only give one python code snippet at a time. Try not to add comments, and if you must, keep them as concise as possible.

6. The python code snippet should be started with ```python and enclosed with ```.

7. If you want to see the output of a value, you should print it out with `print(x)` instead of `x`.

Response Format Guidance

1. If you think a python code snippet is needed, write using the following output format:

Think: (what you need to solve now and how to solve)

Action: Python

Action Input: (your python code snippet, which should be in accordance with above prerequisites)

2. If you think there is a question to be answered, give your answer using the following format:

Think: (how do you get the answer)

Action: Answer

Action Input: (your answer)

2. If you think task instruction is accomplished, finish with the following format:

Finish: Done!

In context example

...

Instruction

Now it's your turn. This Workbook presents data related to book sales. The workbook is already loaded as `workbook` using openpyxl, you only need to

load the sheet(s) you want to use manually. Besides, the workbook will be automatically saved, so you don't need to save it manually.

Sheet state: Sheet "Order Details" has 635 rows (Including the header row) and 8 columns (A(1): "Orderid" (<class 'str'>), B(2): "Date" (<class

'datetime.datetime'>), C(3): "Bookstore Name" (<class 'str'>), D(4): "Bookid" (<class 'str'>), E(5): "Bookname" (<class 'NoneType'>), F(6): "Unit Price"

(<class 'int'>), G(7): "Sales Volume" (<class 'int'>), H(8): "Subtotal" (<class 'int'>)). Sheet "Numbering Reference" has 18 rows (Including the header row)

and 3 columns (A(1): "Bookid" (<class 'str'>), B(2): "Bookname" (<class 'str'>), C(3): "Unit Price" (<class 'int'>)). Sheet "Statistical Report" has 5 rows

(Including the header row) and 2 columns (A(1): "Statistical Item" (<class 'str'>), B(2): "Statistical Value" (<class 'int'>)).

Task instruction: Format the "Order Details" worksheet, adjust "Unit Price" and "Subtotal" to accounting with 2 decimal places and CNY currency symbol

format. Fill the "Bookname" column based on Bookid. Identify the bookstore with the largest decrease in sales subtotal in 2012 compared to January to

October 2011. Then, determine the best-selling book in that year for this bookstore and highlight its row in red in the "Numbering Reference" worksheet.

Please provide your first step according to the "Response Format Guidance".

Planner response

Think: Apply accounting format with 2 decimal places and CNY currency symbol to the "Unit Price" and "Subtotal" columns in the "Order Details"

worksheet.

Action: Python

Action Input:

```python

# Load the "Order Details" sheet

order_details_sheet = workbook["Order Details"]

# Apply accounting format with 2 decimal places and CNY currency symbol to "Unit Price" and "Subtotal" columns

for cell in order_details_sheet["F"][1:] + order_details_sheet["H"][1:]:

    cell.number_format = '"¥"#,##0.00_);[Red]("¥"#,##0.00)'

```

......

Planner

Figure 17: A prompt template for the Planner.
27

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

WWW ’25, April 28 – May 2, 2025, Sydney, Australia Anon.

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

Informer

System prompt

You are a table retrieval expert who team up with a spreadsheet agent named "Planner" to accomplish complicated spreadsheet-related tasks. Your partner

excel in manipulating spreadsheets. However, some of manipulations require an understanding of specific content of the spreadsheet. Therefore, your

role is to retrieve key information from spreadsheets for your partner's reference.

In context example

...

Instruction

Now it's your turn. To make it easier for you to retrieve, all sheets are stored in a SQLite database.

Table schema of "First semester final grades":

CREATE TABLE "First semester final grades" (

 "Student Number" INTEGER,

 "Name" TEXT,

 "Class" REAL,

 ...

)

/*

3 example rows:

SELECT * FROM "First semester final grades" LIMIT 3;

{

 "1":{"Student Number":120305,"Name":"Alice","Class":null,"Chinese":91.5,"Mathematics":89,"English":94,"Biological":92,"Geography":91,"History":

86,"Politics":86,"Total Score ":null,"Average Score":null},

 "2":{"Student Number":120203,"Name":"Charlie","Class":null,"Chinese":93.0,"Mathematics":99,"English":92,"Biological":86,"Geography":86,"History":

73,"Politics":92,"Total Score ":null,"Average Score":null},

 ...

}

*/

Task instruction: Calculate the total score and average score of each student, and fill in the "Total Score" and "Average Score" columns respectively. Fill

in the "Class" column according to the "Student Number". There are three classes: 1, 2, and 3. Fill the cells with scores of no less than 110 points in the

three subjects of Chinese, Mathematics, and English in red respectively, and mark the cells with scores above 95 points in the other four subjects in red

font.

Previous completed subtasks of the spreadsheet agent (which is presented from your partner's point of view and is more of your partner's thought while

finishing the subtasks):

1. Load the "First semester final grades" sheet and calculate the total and average scores for each student.

Given the task instruction and subtasks your partner has completed, predict what your patner will solve next, and determine what content is most needed

by your partner. Write a SQLite select statement to achieve this goal. If there is no need to retrieve information from any spreadsheet, please type

"pass".

Based on above, responde in the following format:

Think: (how do you think)

Action: (your SQLite statement, e.g., `SELECT * FROM w WHERE age < 18;`, or "pass")

Informer response

Think: According to the task instruction and completed subtasks, the next step for the Planner is more likely be to fill the "Class" column. The rule for

filling "Class" depends on the "Student Number" column, so I should provide the agent with the "Student Number" information.

Action: SELECT "Student Number" FROM "First semester final grades" LIMIT 3;

Figure 18: A prompt template for the Informer.

28

	Abstract
	1 Introduction
	2 SheetRM Benchmark
	2.1 Task Schema
	2.2 Dataset Construction
	2.3 Automatic Evaluation

	3 SheetAgent Framework
	3.1 Proficient Spreadsheet Manipulation with Planner
	3.2 Accurate Spreadsheet Perception with Informer
	3.3 Robust Solution Generation with Retriever

	4 Experiment
	4.1 Experiment Setup
	4.2 Versatility (RQ1)
	4.3 Universality (RQ2)
	4.4 Difficulty (RQ3)
	4.5 Ablation (RQ4)
	4.6 Case Study

	5 Related Work
	6 Conclusion
	References
	A Pseudo Code of SheetAgent
	B Details of SheetRM Benchmark
	B.1 Details of Dataset Collection
	B.2 Comparison Between SheetRM and SCB
	B.3 Detailed Statistics of Dataset
	B.4 Explanation of Reasoning Challenges

	C Explanations of The Code-Centric Design in Planner
	D Details of Code Collection for the Retriever
	E Dataset Details
	F Implementation Details
	G Additional Experimental Results
	G.1 Full Results on Table Reasoning Tasks
	G.2 Vision-Enabled SheetAgent
	G.3 Ablation Study on Table Representation
	G.4 Ablation Study on LLM Temperature
	G.5 Performance-Cost Analysis

	H Failure Cases Analysis
	I Prompts
	I.1 Prompt for Subtask Generation
	I.2 Prompt for Planner
	I.3 Prompt for Informer

	J Limitations and Potential Social Impact

