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ABSTRACT

Wrong prediction is bad. For users, having high confidence on a wrong prediction
is even worse. Since even the best-trained class-label predictor will have some
chance of making mistakes, users, especially in some AI application areas such as
personalized medicine, may want to tell the high quality predictions from the low
quality ones. In convolutional neural networks (CNN), confidence on a prediction
is associated with the softmax output layer, which gives a probability distribution
on the class-labels. But even a prediction with 95% probability concentrated on
one class may still turn out wrong many times more often than the anticipated rate
of 5%. There are at least three main sources of uncertainty to cause a large antic-
ipation gap. The first one is that some of the test samples may not belong to the
same distribution of the training samples. The second one is the sever population
heterogeneity within each class, causing the variation of prediction quality across
some hidden subpopulations. The third one is the imperfectness of the predic-
tion model. While most researches are focused on the first source of prediction
uncertainty, the other two receive much less attention. Here we take a different
approach, termed post-prediction confidence training (PPCT), to guide users how
to discern the high-quality predictions from the low-quality ones. Distinctively
different from other methods including conformal prediction, PPCT entertains all
three sources of uncertainty by searching features to anchor the criticism of pre-
diction quality. An enhancement to CNN configuration is required during network
training. We propose a blueprint by coupling each logit node (T channel) in the
layer feeding to softmax with an additional node (C channel) and using maxout
to link the pair to the softmax layer. The C channel is introduced to counter the
T channel as a contrastive feature against the feature of the target class. A high-
quality prediction must follow a logically-lucid pattern between T and C for every
class. Successful implementation of our methods on popular image datasets are
reported.

1 INTRODUCTION

Despite the enormous accomplishments in supervised learning, the research is thin on a post-
prediction confidence issue concerning how trustworthy a given prediction is. This concern is not
about the overall performance of a prediction algorithm. Rather it is about the particular predic-
tion the algorithm is made for an input that the user is interested in. A great mindset difference is
clear between the machine learning developers and users. In developing algorithms for supervised
learning, the overall prediction-accuracy improvement is the developer’s primary task. In contrast,
an individual user may worry more about whether a specific prediction made by the algorithm is
trustworthy or not. An algorithm with demonstrated 99% or higher overall accuracy rate is no guar-
antee to ease the user’s anxiety that the prediction for his/her case may go wrong. Such demands
can be specially keen in some AI applications for the personalized usage such as medical imaging
or other health-related recommendations. At the bottom line, users would like to be informed not
just what the prediction is but also whether it is a high-quality prediction or not. Up to date, not
enough search attention has been paid to meet the demand on post-prediction confidence evaluation.
Without well-disciplined rule guidance, discerning a high-quality prediction from a low-quality one
is often decided on an ad hoc basis.
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Figure 1: (a) An illustration of the architecture of a conventional neural network, (b) The reliability
diagram.

In this paper, we focus on the deep neural network for object-class membership prediction. The
configuration of a deep convolutional neural network (CNN) can be broken down into two parts -
the first part for image feature representation in a d-dimension space and the second part for im-
plementing multi-class logistic regression with d regressors. Formally, the model can be written as
ŷ = softmax(t); t = ϕh; h = f(x, θ), where x is the input image, h is a d-dimensional image
feature vector, f denotes a nonlinear transformation constituted of many layers of nodes with the
connection weight θ, ϕ is a K by d matrix and t is a vector of K target-class features (the logit layer
of K-class logistic regression). The predicted class is k̂ = argmax{ŷk : k = 1, · · · ,K}. The task
of network parameter training is to optimize the overall prediction accuracy. In multi-class logistic
regression, ŷ is interpreted as an estimate of the class-probability distribution with input regressor
h, that is pk = P{yk = 1|h} for k = 1, · · · ,K. Thus seeing a prediction on x with very high
probability, ŷk̂, higher than 0.95, for example, one would have a high anticipation that the prediction
is true. However, over-reliance on this quantity can be disappointing. As an illustration, we run a
deep CNN on the image dataset FMINST (Xiao et al. (2017)). Among all test cases falling between
.95 and .96, less than 60% cases are correctly predicted. Compared to the anticipated error rate 5%,
the actual error rate is more than 8 times higher. For this experiment, the overall accuracy is 95%
(Figure 1(b)).

Researchers have long been aware of the weakness of making a single prediction without attaching
any level of confidence. Several approaches to quantify confidence have been developed for general
applications in supervised learning. Because difference in the population distribution between the
training dataset and testing dataset is a likely reason for a disappointing prediction, several p-value
based confidence measures developed under the paradigm of conformal prediction are proposed to
qualify the likelihood that the test case may come from a different distribution. However, to the
best of our knowledge, successful applications of these methods, including inductive conformal
prediction, to deep CNN on large image datasets have not been reported.

Setting aside the computational burden issue, there are two more major sources of prediction uncer-
tainty that most confidence measures have not yet paid the due attention to: population heterogeneity
and prediction model imperfectness. For the datasets that deep CNN are designed for, we expect
that each class is composed of many subpopulations. Due to model imperfectness, the prediction
performance is likely to vary substantially between subpopulations. Therefore it is likely that a dis-
appointing prediction may come from some particular subpopulations that model imperfectness is
more pronounced. Here is a summary of our contributions :

1. We pinpoint three sources that may cause prediction uncertainty in deep CNN: distributional
non-conformability, population heterogeneity, model imperfectness.

2. To address the issue of model inadequacy in deep CNN due to population heterogeneity, we
analyze the difficulties in conducting model criticism for large models involving more parameters
than the sample size of training set. Leveraging the decomposability of the CNN configuration, we
conceive a strategy to focus on the component of multi-class logistic regression.

3. We propose a post-prediction confidence training (PPCT) task to complement the prediction-
accuracy task in supervised learning. PPCT aims at finding features to anchor the criticism of
prediction quality due to the aforementioned three sources of uncertainty.
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4. Keeping the same blueprint of network configuration for testing, our strategy is to modify the
blueprint for training by augmenting the logit layer with a dual-channel representation layer that
couples each target-class feature node (T) with a contrastive feature node (C). C versus T is inter-
preted as a duel between positive feature and negative feature to compete for representing the class.
Thus in addition to the target features, additional features hidden in the image feature layer, can be
brought up for challenging the representativeness of the target-class features.

5. We theorize a set of rules to differentiate the roles of T node and C node. Following these rules, a
molding plate, named Yo-Yo, is introduced to represent the ideal pattern of features captured through
the two channels after training. Algorithms are developed to facilitate PPCT.

6. Our method outputs a summary of post-prediction diagnostics, ready for users to evaluate the pre-
diction quality from multiple angles. In addition to the categorical and the finer-numerical grading,
plots for visualizing the C-T scoring patterns are also provided.

2 RELATED WORK

Several lines of advances in machine learning have influence our work. Although different, our
idea of bringing in a contrastive feature for prediction quality criticism may find roots in the con-
trastive self-supervised learning based on joint-embedding with a siamese architecture (Bromley
et al., 1993)), and the the notion of “contrastive between samples or between dimensions” (Garrido
et al. (2023)).

The use of maxout operator of is critical in our network configuration for training. Leveraging the
property of being an universal approximator, the maxout network configuration was designed as an
alternative to the technique of ‘drop-out’ model averaging for facilitating optimization by dropout
and improving prediction accuracy (Goodfellow et al. (2013)). Our use of maxout is not aimed at
prediction accuracy improvement, however.

Conformal prediction (CP) is invented by Vovk et al. (2005) as a method to counter the Bayesian
methods for obtaining confidence values without knowing the prior probabilities. The key notion is
a p-value reflecting the unusualness of a candidate prediction value compared to the training sets.
Since its inception, CP has stimulated many new ideas, techniques and theory covering regression,
classification and clustering (Vovk et al., 2009; Lei et al., 2015; 2018).

CP is computational inefficient, especially for large neural network. Using the idea of split sample,
inductive CP (ICP) is first introduced for ridge regression (Papadopoulos et al. (2002)). Papadopou-
los et al. (2007) demonstrated the successful implementation of ICP for neural networks without the
massive computation overhead of CP. Matiz & Barner (2019) applied IPC to active learning. Unlike
our approach, the same network configuration for training and testing are used in these works.

The discrepancy between the prediction accuracy in the testing set and the forecasted probability
by multi-class logistic regression in neural network has been reported earlier in Guo et al. (2017).
There are many other works on uncertainty quantification of prediction; for a comprehensive review,
see Abdar et al. (2021) and Gawlikowski et al. (2023)

3 METHOD

3.1 LIMITATION OF CURRENT CNN TRAINING FOR POST-PREDICTION EVALUATION OF
MODEL ADEQUACY

Complex models such as CNN involve more parameters than cases for training. It would be imprac-
tical to performance a global model criticism without compartmentalizing the model into smaller
components. Consider a model taking the form o = g(h, θ1),h = f(x, θ2) where the dimension
of θ1 is of a smaller order than the training sample size. The model criticism is focused on the first
component. In supervised learning, training and testing often follow the same model. The task of
training is to minimize certain loss functions that measure the inaccuracy of prediction. After the
training is completed, the prediction step is easy :

(1) Set the parameter values to the trained values, θ1 = θ̂1, θ2 = θ̂2.
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(2) Input a test case x∗ of interest to the model and receive the output o∗ = g(h∗, θ̂1),h∗ =

f(x∗, θ̂2).

However, this practice leaves very little room for investigating the potential model inadequacy that
may harm the quality of prediction for this particular input case. After prediction, all information
about x∗ has been trimmed down to o∗ and h∗. Because o∗ and h∗ are obtained under the framework
of f and g, it is self-limiting to rely only on them for model criticism. For example, if the prediction
for x∗ fails because other features in x∗ have escaped the scrutiny of the prediction model, then
there are no ways to find out. Such features may be unique to a small subpopulation of the class
that x∗ belongs to and yet are also present in members of other classes. To alleviate the limitation
of CNN training, it is imperative to separate the training model configuration from the prediction
model configuration.
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Figure 2: An illustration of (a) the training configuration and (b) the prediction configuration.

3.2 THE AUGMENTATION OF PREDICTION MODEL CONFIGURATION IN TRAINING FOR
PARTIAL MODEL CRITICISM

We use “e” and “r” to differentiate testing and training. We augment the model for testing: oe =
ge(h, θ1), h = f(x, θ2), to a large model for training: or = gr(h, θ1, γ), h = f(x, θ2). Certain
relationship between ge and gr must be established so that the training model can be viewed as
an augmentation of the testing model. Consider the situation that ge can be broken down into the
composite of two functions: ge = g0(g1(h, θ1)). Then an augmented model may take the form
of gr = g0(g2(g1(h, θ1), g1(h, γ))). After the training is completed, we obtain optimal parameter
values θ̂1, θ̂2, γ̂. The prediction will proceed in the following way:

(1) Setup the parameter values in the testing model: θ1 = θ̂1, θ2 = θ̂2

(2) Input a test case x∗ of interest to the testing model and receive the output o∗ = g0(g1(h
∗, θ̂1),

h∗ = f(x∗, θ̂2) for prediction.

(3) For model criticism, input x∗ to the training model and receive g2(h
∗, γ̂).

(4) Use g1(h
∗, θ̂1) and g2(h

∗, γ̂) to perform post-prediction diagnosis.
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For Deep CNN, take θ1 as ϕ and recognize t = g1(h, θ1) and g0(t) = softmax(t). For g2, we shall
consider the bivariate maxout function, g2(a, b) = max{a, b}. Figure 2 is a blueprint of the network
configuration.

3.3 T CHANNEL AND C CHANNEL: THE DESIGN PRINCIPLE OF YO-YO MOLDING PLATE.

There are K pairs of T versus C channels in Figure 2(a). For pair k, the T channel is designed to
capture the primary feature of class k (the target group) and the C channel is designed to capture
main features for members of other classes (the contrastive group). The following four rules are
required to differentiate the roles of T channels and C channels if training is completed perfectly.
Consider the range of values (t, c) of T and C channels.

1. T t > Ct, Cc > T c: For members from the target group, t > c; for members form the contrastive
group, t < c.

2. T t
min > T c

max: The minimal value of the T channel for members from the target group T t
min =

min{t|target group} is larger than the maximal value of the T channel for the contrastive group
T c
max = max{t|contrastive group}.

3. Cc
min > Ct

max: The minimal value of the C channel for the contrastive group Cc
min =

min{c|contrative group} is larger than the maximal value of the C channel for the target group
Ct

max = max{c|target group}.

4. T t
min > Cc

max: The minimal value of the T channel of the target group T t
min =

min{t|target group} is larger than the maximal value of the C channel of contrast group Cc
min =

max{c|contrative group}.

Following these rules, a molding plate, named Yo-Yo, is introduced to represent the ideal pattern of
features captured through the two channels after training for every class. An illustration of Yo-Yo
plate is shown in Figure. 3.

T-channel

C-channel Maxout channel

Zone 2

Zone 1

Figure 3: The Yo-Yo Plate

3.4 MOULDING BONUS AND ALGORITHM OF TRAINING

To coerce a batch of training samples into the Yo-Yo molding during training, we specify a bonus
function to award the rule-obeying.

MB =
1

N

1

K

N∑
i=1

K∑
k=1

PB(tik, cik, yik;µ
T
1 , µ

C
1 , µ

T
0 , µ

C
0 , ω

T
1 , ω

C
1 , ω

T
0 , ω

C
0 ), (1)

=
1

N

1

K

N∑
i=1

K∑
k=1

λyik
[SB(tik;µ

T
yik

, ωT
yik

) + SB(cik;µ
C
yik

, ωC
yik

)], (2)

SB(x;µ, ω) = log(σ(x− (µ− ω/2))) + log(σ(−(x− (µ+ ω/2))))), (3)

where SB is the bonus of a single channel, PB is the bonus of a pair of (T,C) channels, and MB is the
total molding bonus. Here ti and ci are the values of T channel and C channel of an input xi with
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1-hot class membership vector yi. The (µT
1 , µ

C
1 , µ

T
0 , µ

C
0 ) are the designed centers of T channel and

C channel for target and contrastive groups respectively. The (ωT
1 , ω

C
1 , ω

T
0 , ω

C
0 ) are the designed

distribution width. The λ1 and λ0 is the weights designed to balance sample sizes of target group
and contrastive group. In addition to the bonus function, we also keep the cross-entropy

CE = − 1

N

N∑
i=1

K∑
k=1

yik ∗ log(ŷik) (4)

where yik = 1 if the label of ith case is k and yik = 0 otherwise. Our goal is to maximize bonus
while minimizing CE. Putting together, we shall minimize the final loss function

Loss = CE −MB (5)

3.5 POST-PREDICTION QUALITY EVALUATION

For a given input x∗, we use T channel for class membership prediction k̂ = argmax(t∗). We also
receive K pairs of Yo-Yo scores (t∗i , c

∗
i ), i = 1, · · · ,K. Comparing each Yo-Yo score pair with the

Yo-Yo plate rule, we also receive a rule-violation indicator (v1, · · · , vK) where vi = 1 if (t∗i , c
∗
i )

does not fall inside of the proper zone setup by Yo-Yo plate. Since the predicted class is k̂, for plate
i = k̂, must fall in Zone 1 (the target group zone), not Zone 2 (the constrative group zone). That is:
(i) vk̂ = 0 if (t∗

k̂
, c∗

k̂
) ∈ Zone 1, vk̂ = 1 otherwise, and (ii) vi = 0 if (t∗i , c

∗
i ) ∈ Zone 2, vi = 1

otherwise for i ̸= k̂.

Two-category grading. High quality prediction (HQP): no zone violations are found. Low quality
prediction(LQP): one or more zone-violations are found.

Numerical grading by distance inside the target zone. For a prediction k̂ with HQP, we can
assign a finer numerical quality score by examining the Yo-Yo plate of the predicted class k̂ more
closely. We measure how far away from the side of zone boundary facing the constructive zone, the
point (t∗

k̂
, c∗

k̂
) lands. The closer the distance, the lower the quality relatively. Let d∗ be the obtained

distance. It is easier to interpret the distance score by comparing with a reference distribution. We
use the distances obtained by the training dataset as the reference, and report the quantile as an
estimated p-value; namely p̂ = F̂−1(d∗), where F̂ is the empirical distribution of dn, n = 1, · · · , N ,
N is the total number of training datapoints, and dn is a distance score.

Graphical output for detailed diagnostics. For a batch of B input queries, x∗
1, · · · ,x∗

B, the output
Yo-Yo scores are displaced in the K Yo-Yo plates. The Yo-Yo plates use the data clouds of the
reference distance distribution as the background. Figure 4 is an example of Yo-Yo plates for B=4.
The target classes for Yo-Yo plates are 1=airplane, 2=automobile, 3=bird, 4=cat, 5=deer, 6=dog,
7=frog, 8=horse, 9=ship, 10=truck. CIFAR-10 is used in the illustration.

(a)

High Quality (large p_value)

airplane (pred:airplane)

High Quality (small p_value)

cat (pred:bird)

Low Quality

bird (pred:cat)

Low Quality

horse (pred:deer)

(b)

Figure 4: (a) The Yo-Yo plates; (b) Images of 4 test examples.
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4 EXPERIMENTS

Two popular CNN architecture, ResNet (He et al., 2016) and VGG (Simonyan & Zisserman, 2014),
are chosen as our backbones. All experiments were performed on a single NVIDIA Quadro RTX
8000 GPU with an 1.5T-memory server using TensorFlow.

Datasets. Five image datasets, MNIST (Deng (2012)), Fashion-MNIST (Xiao et al. (2017)),
CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100, STL-10 (Coates et al. (2011)) are used to im-
plement our method. Before training procedure, we calculate the mean and standard deviation of the
training set and use them to normalize the training and testing set. The normalization is performed
individually in each R, G, and B channel if the dataset is color coded. The image size is (28, 28,
1) for the black-white MNIST and Fashion MNIST. For the color-coded images, CIFAR-10 and
CIFAR-100 have (32, 32, 3) while STL-10 has (96, 96, 3).

Backbone CNN architecture. VGG16 is adopted for MNIST and Fashion-MNIST datasets. The
VGG16’s capability is enable to handle these two datasets because of the relatively lower complexity
of these two datasets. For CIFAR-1 and CIFAR-100, we use ResNet50 as the backbone with input
size (224, 224). The number of output image features extracted by these two backbones are 512 and
2048 respectively.

Training the Yo-Yo augmented CNN. We adopt the pre-trained parameters with ImageNet as the
seeding in training the augmented CNN. Figure 2(a) shows the configuration of our Yo-Yo train-
ing model. Adam (Kingma & Ba, 2014) optimizer with default β1 and β2. During training, the
batch size is 32 for MNIST and Fashion-MNIST, and is 200 for CIFAR-10 and CIFAR-100. The
DataAugmentation and ReduceLROnPlateau strategies are applied. For the Yo-Yo molding bonus
functions, the parameters values are that (µT

1 , µC
1 , µT

0 , µC
0 ) = (15, -10, -10, 5) and (ωT

1 , ωC
1 , ωT

0 ,
ωC
0 ) = (10, 20, 20, 10).

The following figure, Figure 5, shows a typical datapoint pattern of Yo-Yo plates for the first epoch
of training and the last epoch. For the first epoch, many training cases are landing outside of the
target. At the end of zone, all cases approximately land inside the target zone. CIFAR-10 is used in
the illustration.

(a)

(b)

Figure 5: (a) The first epoch; (b) The end epoch.

Results. The overall prediction accuracy of our method and that of the backbone CNN are com-
pared, and the results are shown in Table. 1. Our method performs as well as the backbone in four
datasets and outperform the backbone in one dataset. Furthermore, the high quality predictions have
achieved a much higher level of accuracy than the lower quality predictions. The error rate ratio,
1−accuracy of LQP
1−accuracy of HQP , ranges between 3.90 (STL-10) to 50.73 (MNIST).

5 DISCUSSION

5.1 COMPRESSED CLASS-LABEL REPRESENTATION

For CIFAR-100, although the precision for HQP is high (98.77%), out of 10000 test cases, only
4146 cases are HQP. This is due to the increased number of Yo-Yo plates to monitor. To overcome
this limitation, we used a compressed representation to reduce the Yo-Yo plates from 100 to 15.
Instead of using one-hot vector (100 dimension) to represent a class, we use a two-hot vector (15

7
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Table 1: Comparison Table

Dataset MNIST Fashion MNSIT CIFAR-10 CIFAR-100 CIFAR-100
(k-hot) STL-10

Backbone VGG16 VGG16 ResNet50 ResNet50 ResNet50

Image size (28,28,1) (28,28,1) (32,32,3) (32,32,3) (96,96,3)
Size of Training set 6000*10 6000*10 5000*10 500*100 500*10
Size of Testing set 1000*10 1000*10 1000*10 100*100 800*10

Accuracy of backbone model(%) 99.65 95.02 96.57 83.45 - 65.00
Accuracy of Yo-Yo model (%) 99.43 95.12 96.52 83.55 80.50 73.75

Accuracy of HQP (%) 99.77 (9940) 97.25 (9349) 98.71 (9208) 98.77 (4146) 94.42 (6956) 86.54 (5387)
Accuracy of LQP (%) 88.33 (60) 60.83 (651) 73.11 (792) 72.60 (5854) 48.62 (3044) 47.46 (2613)

error rate ratio 50.73 14.24 20.84 22.28 9.21 3.90

dimension) to represent a class and employ cross-entropy loss function between the softmax of the
fifteen logits and the two-hot vector. Imagine there are 15 different bags. Each class is connected
to the 15 bags with two edges. So each class is represented by a 0-1 vector of dimension 15, with 1
appearing in exactly two places. Since there are

(
15
2

)
= 105 two-hot vectors available, there are five

unused two-hot vectors. This causes a slight unevenness in the number of classes connected to each
bag. To resolve this issue, we employ an idea form PPS (probability proportion to size) sampling in
the survey sampling literature to modify the cross entropy. See Appendix for details. As a result, the
number of HQP is increased to 6957.

5.2 THE DISTRIBUTION OF EXTRACTED IMAGE FEATURES

Compared to the backbone CNN, the augmented Yo-Yo network configuration also induces a great
change on the extracted image feature layer h. To visualize the change, we conduct a principal
component analysis on h for the data yielded by the backbone and Yo-Yo models. The results for
CIFAR-10 is given in Figure 6. The lower-left halt of the scatterplot matrix is the result of Yo-Yo
model and upper-right half is from the backbone model.

(a) (b)

Figure 6: Scatterplot matrix for the first five PCA directions (a) Training set of CIFAR-10; (b)
Testing set of CIFAR-10.

5.3 MOLDING BONUS FUNCTION

The molding bonus function in our implementation is plotted in Figure 7. The center and width are
set to 10 and 20 respectively. The function reaches the highest point at x = 10. It should be noted
that the gradient of the bonus curve stays approximately zero in a window centered at 10.

There are many other choices to serve the same purpose that can explored function. In principle,
any hill-like convex function with flat hill top can be a candidate.
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Figure 7: The curves of the molding bonus function (left) and its gradient (right)

5.4 P-VALUE FOR INSIDE-PLATE DISTANCE

The reference distribution we used is based on the entire set of training set. Alternatively, we can
use the split-sample strategy to perform training on a proper training set and use the remaining cases
in the training set for generating a reference distribution. We have tried this strategy but found little
difference from the curve generated by using the whole training set; see Appendix.

5.5 LOW QUALITY PREDICTION

For some applications including active learning, the LQP cases will receive more attention than the
HQP cases. The Yo-Yo plates can be examined in detail to prioritize the order of selecting the cases
that may receive most benefit from the teacher. For instance, in medical application, the bioassay
for determining the exact class membership may be more expansive than imaging. Upon receiving
a batch of image-based prediction with mixed quality, one may want to send the LQP for bioassay.
Suppose the assays should be conducted separately for determining different classes. Then a choice
has to be made which cases of LQP should be sent out first and for what assays. For example, one
may start with LQP with one or two Yo-Yo plate violations and send out for assaying the target
classes with Yo-Yo plate violations. Such decisions should be explored to meet the purpose of each
application.

6 CONCLUSION

This work is concerned about multiple aspects on the quality of a prediction from a user’s perspective
after a prediction is made. Three sources of prediction uncertainty are addressed. Post-prediction
confidence training aims at offering users a wider spectrum of prediction quality summary useful
for building up their confidence. One distinctive feature of our approach is the required network
architecture enhancement in order to open up the angle for model criticism. This is enabled by a
maxout Yo-Yo plate design. Both categorical quality grading and numerical grading are offered
after prediction, along with the graphical out of Yo-Yo plates for more detailed quality inspection.
In addition, the inside zone distance can be used as a conformance metric in applying inductive CP
for addressing the uncertainty due to the population mismatching between training and testing. Our
efforts of imposing logic lucidity on the Yo-Yo plate design is in line with the recent demand on
explainable AI.

7 REPRODUCIBILITY STATEMENT

In this paper, we use the ImageNet pre-trained parameter and datasets providing from TensorFlow
2.0 libraries. We also provide the customized loss function, including molding bonus function in
Appendix. In the experiment section, we provide the values of µ and ω used in our experiments for
the reproducibility. The results are reproducible based on the provided information.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad
Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra Acharya, et al. A
review of uncertainty quantification in deep learning: Techniques, applications and challenges.
Information fusion, 76:243–297, 2021.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. Signature verifi-
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A APPENDIX

A.1 REFERENCE DISTANCE DISTRIBUTION

We provide the curves of cumulative distribution function of the training, validation and testing set.
We randomly select the images from training set as the validation set. Its size is equal to the size
of testing set. It should be noted that the curve of the testing set is similar to the validation set.
CIFAR-10 is the dataset used in the illustration (Figure 8).
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Figure 8: The curves of cumulative distribution function, including training, HQP validation set and
HQP testing set.

A.2 COMPRESSED CLASS-LABEL REPRESENTATION

Ŷq = Pi ∗ Pj ∗ (
1

1− Pi
+

1

1− Pj
) (6)

Pi =
emi∑14
s=0 e

ms

(7)

The Ŷq is the output value of the q-th class connected with the i-th and j-th nodes of the maxout
layer. The architecture of PPS module is shown in the Figure 9. The configuration of CIFAR-100
dataset is the example used in the illustration.

A.3 YO-YO PLATES

In additional to CIFAR-10 result, we provide the Yo-Yo plates of the end epoch of other datasets,
MNIST, Fashion MNIST and 10 examples of CIFAR-100. It should be noted that the cases approx-
imately land inside the target zone.
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Figure 9: The architecture of the classification part in the PPS-based model

Figure 10: The end epoch of the training set of MNIST

Figure 11: The end epoch of the training set of Fashion MNIST

Figure 12: The end epoch of the training set of the 10 Yo-Yo plats of the CIFAR-100
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A.4 SOURCE CODE

In appendix, we provide the some snapshots of the key source codes including the molding bonus
function. They are implemented with TensorFlow 2.0 version. We also can provide the complete
through the anonymized link for downloading

Figure 13: The source code of final loss function, including molding bonus and cross-entropy.

Figure 14: The source code of the model, including Yo-Yo and backbone models.
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