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Abstract

Neural scaling laws have revolutionized the design and optimization of large-scale AI mod-
els by revealing predictable relationships between model size, dataset volume, and com-
putational resources. Early research established power-law relationships in model perfor-
mance, leading to compute-optimal scaling strategies. However, recent studies highlighted
their limitations across architectures, modalities, and deployment contexts. Sparse mod-
els, mixture-of-experts, retrieval-augmented learning, and multimodal models often deviate
from traditional scaling patterns. Moreover, scaling behaviors vary across domains such
as vision, reinforcement learning, and fine-tuning, underscoring the need for more nuanced
approaches. In this survey, we synthesize insights from current studies, examining the the-
oretical foundations, empirical findings, and practical implications of scaling laws. We also
explore key challenges, including data efficiency, inference scaling, and architecture-specific
constraints, advocating for adaptive scaling strategies tailored to real-world applications.
We suggest that while scaling laws provide a useful guide, they do not always generalize
across all architectures and training strategies.

1 Introduction

Scaling laws have become a fundamental aspect of modern AI development, especially for large language
models (LLMs). In recent years, researchers have identified consistent relationships between model size,
dataset volume, and computational resources, demonstrating that increasing these factors leads to systematic
improvements in performance. These empirical patterns have been formalized into mathematical principles,
known as scaling laws, which provide a framework for understanding how the capabilities of neural networks
evolve as they grow. Mastering these laws is crucial for building more powerful AI models, optimizing
efficiency, reducing costs, and improving generalization.
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Figure 1: Papers surveyed under different categories. A detailed
list of papers is provided in Table 13 of Appendix A.

The study of neural scaling laws gained
prominence with the foundational work
of Kaplan et al. (2020), who demon-
strated that model performance follows
a power-law relationship with respect to
size, data, and compute. Their find-
ings suggested that larger language mod-
els (LMs) achieve lower loss when trained
on sufficiently large datasets with in-
creased computational resources. Later,
Hoffmann et al. (2022) refined these
ideas, introducing the notion of compute-
optimal scaling, which revealed that
training a moderate-sized model on a
larger dataset is often more effective than
scaling model size alone. However, re-
cent studies (Muennighoff et al., 2023;
Caballero et al., 2023; Krajewski et al., 2024) have challenged the universality of these laws, highlight-
ing cases where sparse models, mixture-of-experts architectures, and retrieval-augmented methods introduce
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Category Choshen et al. (2024) Li et al. (2024b) Ours
Covers neural scaling laws broadly Yes No Yes
Discusses fitting methodologies Yes Yes Yes
Analyzes architectural considerations No Limited Yes
Includes data scaling and pruning No Limited Yes
Explores inference scaling No Limited Yes
Considers domain-specific scaling No No Yes
Provides practical guidelines Yes Yes Yes
Critiques limitations of scaling laws Limited Yes Yes
Proposes future research directions Limited Yes Yes

Table 1: Key differences between our survey and existing surveys on neural scaling laws (Choshen et al.,
2024; Li et al., 2024b).
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Figure 2: A taxonomy of neural scaling laws.

deviations from traditional scaling patterns. These findings suggested that while scaling laws provide a useful
guide, they do not always generalize across all architectures and training strategies.

Despite the growing importance of scaling laws, existing research remains fragmented, with limited synthesis
of theoretical foundations, empirical findings, and practical implications. Given the rapid evolution of this
field, there is a need for a structured analysis that consolidates key insights, identifies limitations, and outlines
future research directions. While theoretical studies have established the mathematical principles governing
scaling, their real-world applications, such as efficient model training, optimized resource allocation, and
improved inference strategies, are less explored. To address this gap, we reviewed over 50 research articles
(Figure 1 highlights papers on scaling laws on different topics) to comprehensively analyze scaling laws,
examining their validity across different domains and architectures.

While prior surveys have made valuable contributions to understanding scaling laws, they have primarily
focused on specific aspects of the scaling phenomenon (See Table 1). Choshen et al. (2024) emphasized
statistical best practices for estimating and interpreting scaling laws using training data, while Li et al.
(2024b) emphasized on methodological inconsistencies and reproduction crisis in existing scaling laws. Our
survey distinguishes itself by offering comprehensive coverage of architectural considerations, data scaling
implications, and inference scaling – areas that previous surveys either overlooked or addressed only partially.

2 Taxonomy of neural scaling laws

Understanding the scaling laws of neural models is crucial for optimizing performance across different do-
mains. We predominantly explore the scaling principles for language models, extending to other modalities
such as vision and multimodal learning. We also examine scaling behaviors in domain adaptation, inference,
efficient model architectures, and data utilization. We highlight the taxonomy tree of scaling laws research
in Figure 2 with list of paper covered under each taxonomy branch in Table 2. As highlighted in Figure 1,
neural scaling laws have been proposed predominantly for pre-training and fine-tuning scaling of large neural
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Taxonomy Cited Papers
Data Scaling Muennighoff et al. (2023); Ye et al. (2024); Liu et al. (2024);

Kang et al. (2024); Que et al. (2024); Allen-Zhu & Li (2024);
Tao et al. (2024)

Pre-training → Vision Models Zhai et al. (2022); Alabdulmohsin et al. (2022)
Pre-training → Multimodal Models Henighan et al. (2020); Aghajanyan et al. (2023); Li et al.

(2024a)
Pre-training → Language Models → Large
LMs

Kaplan et al. (2020); Hoffmann et al. (2022); Tay et al.
(2022); Caballero et al. (2023)

Pre-training → Language Models → Small
LMs

Hu et al. (2024)

Pre-training → Language Models → Effi-
cient LMs

Clark et al. (2022); Krajewski et al. (2024); Yun et al. (2024)

Post-training → Transfer learning Hernandez et al. (2021)
Post-training → Fine-tuning Zhang et al. (2024); Chen et al. (2024c); Lin et al. (2024b)
Post-training → Model Compression Frantar et al. (2023); Chen et al. (2024b)
Inference → Retrieval Shao et al. (2024)
Inference → Inference Compute Brown et al. (2024); Wu et al. (2024); Sardana et al. (2024)
Inference → Compression Dettmers & Zettlemoyer (2023); Cao et al. (2024); Kumar

et al. (2024)
Criticisms Sorscher et al. (2023); Diaz & Madaio (2024)

Table 2: Papers covered under different taxonomy.

Encoder-DecoderConvolutional
Networks

MoE Vision
Transformers

Decoder-only
Transformer

1

10

20

30

Nu
m

be
r o

f p
ap

er
s

(a) Architecture-wise statistics

Number
Latents

Fine-tuning
Data

Compute Data Model
Parameters

2

8

14

20

Nu
m

be
r o

f p
ap

er
s

(b) Variable-wise statistics

Code
Generation

Video
Modeling

Image
Recognition

Language
Generation

1

10

20

30

Nu
m

be
r o

f p
ap

er
s

(c) Task-wise statistics

Figure 3: Number of papers studied in this survey for different model architectures (a), scaling variables (b),
and scaling tasks (c). The detailed paper list is provided in Table 13 of Appendix A.

models. Among the models studied, as highlighted in Figure 3a, decoder-only Transformers dominate the
subject, followed by vision transformers (ViT) and Mixture-of-Experts (MoE).

The most common neural scaling laws take the form of power laws (Equation 1), where the model’s loss (L)
or performance metric assumes to follow a predictable relationship with different scaling variables,

L(Pi....n) =
n∑

i=1

αi · P −βi
i (1)

with appropriate scaling parameters βi and fitting parameters αi for different scaling parameter Pi. Figure 3b
highlights that the number of model parameters and data size are the most common used scaling factors.
Intuitively, the exponent βi measures the rate of performance saturation: larger βi implies faster improvement
with scale, while smaller βi indicates slower convergence. The empirical intuition of power laws in neural
models stems from statistical physics and information theory principles, where performance improvements
exhibit diminishing returns as scale increases. In neural networks, the marginal gain in loss reduction with
respect to an increase in model parameters or data size tends to follow a sublinear pattern, indicating similar
behaviour across scales. This observation aligns with complexity–capacity trade-offs, where each additional
parameter contributes progressively less new information. As shown by Kaplan et al. (2020) and later
formalized in Hoffmann et al. (2022), the power-law exponents quantify how efficiently a model converts
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compute and data into predictive performance. The exact forms of all the scaling laws are highlighted in
Table 14 of Appendix A.

Among all the tasks, Figure 3c suggests that language generation is the most common task used for de-
veloping these scaling laws, where the training cross-entropy loss is widely used to fit the laws. Based on
the values obtained empirically, the scaling laws are fitted with non-linear optimization, most commonly by
running algorithms like least square and BFGS (Broyden-Fletcher-Goldfarb-Shanno). Statistical methods
like goodness-of-fit metrics are used to validate the correctness of the fitted curves. We elaborate on the
evaluation of neural scaling laws in Section 3. In the following sections, we review the existing literature on
neural scaling across various domains.

Model scaling includes both parameter and data scaling. Parameter scaling is often studied in decoder-only
Transformers (Kaplan et al., 2020; Hoffmann et al., 2022), with newer works addressing small and efficient
models (Hu et al., 2024; Clark et al., 2022). These studies establish power-law relationships between loss
and model size or compute (Equation 1). In parallel, power laws also implicitly encode the compute-optimal
frontier: the point where increasing parameters or data yields equivalent marginal benefits. This equilibrium
condition forms the basis of the Chinchilla scaling rule, where D ∝ N , derived by equating the partial
derivatives of Equation 1 with respect to N and D.

Data scaling research has proposed laws for optimizing mixtures (Ye et al., 2024), repeated training expo-
sures (Muennighoff et al., 2023), vocabulary size (Tao et al., 2024), and knowledge capacity (Allen-Zhu & Li,
2024). These formulations often assume that information gain from additional data follows a diminishing-
return process similar to Zipfian or Pareto distributions observed in natural language frequency, justifying
why scaling laws adopt a power-law rather than logarithmic form.

Pre-training scaling laws extend beyond language to vision and multimodal settings. Vision models
exhibit power-law scaling that saturates at large compute (Zhai et al., 2022), while multimodal models
demonstrate competition-to-synergy transitions as scale increases (Aghajanyan et al., 2023).

Post-training scaling captures fine-tuning and transfer learning behaviors. Transfer scaling shows larger
pre-trained models yield better generalization with limited downstream data (Hernandez et al., 2021). Recent
works propose scaling laws for PEFT (Zhang et al., 2024), downstream loss prediction (Chen et al., 2024c),
and early stopping (Lin et al., 2024b).

Inference scaling explores compute-efficient strategies during model deployment. Adaptive test-time com-
pute (Chen et al., 2024a; Brown et al., 2024) and retrieval augmentation (Shao et al., 2024) allow small
models to rival larger ones. Inference-specific scaling laws characterize the tradeoff between sampling cost
and performance (Wu et al., 2024).

Efficient model scaling addresses sparsity, quantization, and distillation. Sparse and MoE models provide
multiplicative efficiency gains (Krajewski et al., 2024), while pruning and quantization laws enable compute-
aware compression (Chen et al., 2024b; Cao et al., 2024).

Scaling behavior in reinforcement learning (RL) diverges from language or vision tasks. In single-
agent RL, performance scales sublinearly with model size and environment interaction (Hilton et al., 2023).
Horizon length, rather than task difficulty, determines scaling efficiency. In multi-agent games, predictable
scaling laws govern compute-to-performance relationships, but generalization to complex domains like Chess
or Go remains limited (Neumann & Gros, 2023). Meanwhile, graph neural networks (GNNs) lack stable
scaling laws; despite self-supervised loss improving with more data, downstream performance often fluctuates
unpredictably (Ma et al., 2024).

Finally, the taxonomy captures two outer branches: commendations, such as practical data laws and
compression-aware training (Liu et al., 2024), and criticisms, which question the generalizability and repro-
ducibility of scaling laws (Sorscher et al., 2023; Diaz & Madaio, 2024). Detailed discussion on these scaling
law studies are provided in Appendix A.

4



Under review as submission to TMLR

Taxonomy Node Addressed RQs
Model scaling RQ1, RQ2, RQ8
Data scaling RQ3
Post-training scaling RQ5
Inference scaling RQ4
Efficient and compressed model scaling RQ6, RQ7

Table 3: Mapping taxonomy categories to relevant research questions.

3 Fitting and validating scaling laws

Fitting scaling laws involves several key methodological choices that can significantly impact the final results
and conclusions. The choice of optimization approach, loss function, initialization strategy, and validation
method all play crucial roles in determining the reliability and reproducibility of scaling law studies.

3.1 Optimization methods

The most common approaches for fitting scaling laws involve non-linear optimization algorithms like BFGS
(Broyden-Fletcher-Goldfarb-Shanno) (used by Frantar et al. (2023)), L-BFGS (used by Tao et al. (2024))
and least squares (used by Caballero et al. (2023)). Some studies (Covert et al., 2024; Hashimoto, 2021)
also use optimizers like Adam or Adagrad, though these may be less suitable for scaling law optimization
due to their data-hungry nature and assumptions about gradient distributions. Recent works (Hoffmann
et al., 2022; Sorscher et al., 2023; Yun et al., 2024) emphasize that the choice of optimization method directly
affects the stability of fitted exponents and intercepts. Second-order methods such as BFGS and L-BFGS
typically converge more reliably for low-dimensional, smooth objective surfaces, whereas first-order methods
can oscillate under noisy residuals.

3.2 Loss functions and objectives

Several loss functions are commonly used for fitting scaling laws:

• Mean squared error (MSE): Emphasizes larger errors due to quadratic scaling (used by Ghorbani
et al. (2021)).

• Mean absolute error (MAE): Provides more robust fitting less sensitive to outliers (used by Hilton
et al. (2023)).

• Huber loss: Combines MSE’s sensitivity to small errors with MAE’s robustness to outliers (used by
Hoffmann et al. (2022)).

While most studies minimize residuals between predicted and observed loss, the choice of loss function
carries distinct theoretical implications. MSE magnifies the influence of outliers, which can distort estimated
power-law exponents, whereas Huber loss mitigates this by switching to a linear penalty beyond a threshold.
Hoffmann et al. (2022) used Huber loss to down-weight outlier data points in the Chinchilla law, improving
stability in under-trained regimes. In contrast, Muennighoff et al. (2023) and Sorscher et al. (2023) employed
MSE on log-transformed loss, prioritizing proportional (relative) rather than absolute error.

3.3 Initialization strategies

The initialization of scaling law parameters proves to be critically important for achieving good fits. Common
approaches include grid search over parameter spaces (Aghajanyan et al., 2023), random sampling from
parameter ranges (Frantar et al., 2023), and multiple random restarts to avoid local optima (Caballero
et al., 2023). Caballero et al. (2023); Li et al. (2024b) show that initialization sensitivity increases for
broken or multi-regime scaling laws. Caballero et al. (2023) used multiple initializations per run to stabilize
piecewise fits, while Aghajanyan et al. (2023) proposed grid-based seeding for cross-modal scaling consistency.
Proper initialization ensures convergence to the global rather than local optima, crucial for robust exponent
estimation.
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3.4 Validation methods

It is hugely important to understand if the scaling law fit achieved is accurate and valid. Most of the papers
surveyed lack in validating their fits. Several approaches can help validating the effectiveness of scaling law
fits. Statistical methods like computing confidence intervals can act as a goodness-of-fit metric (Alabdul-
mohsin et al., 2022). Furthermore, researchers can perform out-of-sample testing by extrapolation to larger
scales (Hoffmann et al., 2022). Yun et al. (2024); Covert et al. (2024) additionally use RMSE-based model
selection, likelihood-based comparisons, and extrapolation validation. Covert et al. (2024) applied maximum
likelihood estimation to derive uncertainty intervals for fitted parameters, while Yun et al. (2024) validated
on held-out extrapolated data points. Extrapolation testing remains the gold standard for evaluating scaling
law robustness, whether the law generalizes beyond observed scales.

3.5 Limitations of fitting techniques

Li et al. (2024b) revealed several critical methodological considerations in fitting scaling laws. Different
optimizers can converge to notably different solutions even with similar initializations, underscoring the need
for careful justification of optimizer choice. Similarly, the analysis showed that different loss functions can
produce substantially different fits when working with real-world data containing noise or outliers, suggesting
that loss function selection should be guided by specific data characteristics and desired fit properties.
Perhaps most importantly, the paper demonstrated that initialization can dramatically impact the final
fit, with some methods exhibiting high sensitivity to initial conditions. Furthermore, many fits implicitly
assume single-regime power laws, overlooking emerging evidence for broken or multi-phase scaling (Caballero
et al., 2023). Systematic reporting of residual distributions, uncertainty intervals, and robustness checks is
now regarded as best practice for reproducibility. Together, these findings emphasize the importance of
thorough methodology documentation across all aspects of the fitting process - from optimizer selection and
loss function choice to initialization strategy - to ensure reproducibility and reliability in scaling law studies.

In the next section, we formulate key research questions (mapping between the taxonomy and research
questions highlighted in Table 3) derived from these studies and present practical guidelines for leveraging
scaling laws in real-world model development.

4 Research questions and guidelines

Grounded in the taxonomy of neural scaling laws (Figure 2), we identify key research questions spanning six
dimensions: model scaling, architectural bottlenecks, inference scaling, data scaling, post-training strategies,
and efficient model design. For each, we synthesize multiple studies to extract overarching patterns, identify
conflicting evidence, and propose actionable guidelines for researchers and practitioners navigating large-scale
model development.

RQ1. Importance on model and pre-training data size on performance [taxonomy: model scaling →
pre-training]

Kaplan et al. (2020) established a power-law relationship:

L(N, D) =
[(

Nc

N

)αN
αD + Dc

D

]αD

, D ∝ N0.74. (2)

Hoffmann et al. (2022) refined this into a compute-optimal formulation:

L(N, D) = A

Nα
+ B

Dβ
+ E, D ∝ N. (3)

Recent research has challenged linear extrapolations. Muennighoff et al. (2023) and Sardana et al. (2024)
showed that training small models longer can outperform larger models, especially under constrained data.
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Scaling Law Primary Goal Where It Works Where It Doesn’t Work
Kaplan et al.
(2020)

Predict model performance
scales for model size and
dataset size.

Large-scale autoregressive
language models (e.g.,
GPT-style) trained in a
pre-asymptotic regime with
consistent data quality and
full training to convergence.

Breaks down when data is
exhausted or models under-
train; fails for non-i.i.d.
data distributions, trans-
fer learning, and mixture-of-
experts models.

Hoffmann et al.
(2022)

To establish a compute-
optimal scaling law by
balancing model size and
dataset size for minimal loss
under fixed compute.

Effective for large dense
LMs trained on curated text
corpora where both model
and data scaling are co-
optimized.

Fails under multimodal
or non-text regimes, fine-
tuning stages, or domains
with variable data redun-
dancy; assumes uniform
data quality and linear
compute cost.

Caballero et al.
(2023)

To capture multi-regime be-
havior by allowing scaling
exponents to change across
parameter or data regimes
(piecewise power laws).

Accurately models perfor-
mance when a clear satura-
tion or “phase change” oc-
curs

Breaks in extrapolation be-
yond trained regimes; sensi-
tive to breakpoint initializa-
tion and noise in small-scale
regions.

Table 4: Comparison of prominent scaling laws under RQ1 in terms of their primary goal, effective regimes,
and known failure cases.

Caballero et al. (2023) proposed Broken Neural Scaling Laws (BNSL):

L(N, D) =
{

aN−α + bD−β , N < Nc

cN−α′ + dD−β′
, N ≥ Nc

(4)

Where these laws work (and fail). As summarized in Table 4, Kaplan-style laws are effective for
large, dense autoregressive LMs trained on abundant, i.i.d. text with full convergence, but they break down
when data is exhausted, models are under-trained, or regimes depart from i.i.d. text. Chinchilla’s compute-
optimal form works well when both model and data are co-optimized on curated corpora, yet it can fail
in multimodal or highly redundant-data regimes and assumes uniform data quality and linear cost. BNSL
accurately models performance when clear saturation or “phase changes” occur across scale, but it is sensitive
to breakpoint initialization, noise in small-scale regions, and can mislead when extrapolating far beyond the
fitted regimes. Figure 4 demonstrates an instance of “double-descent”/multi-regime behavior (Nakkiran
et al., 2021) where a single-slope Kaplan fit systematically misses the curvature, while a BNSL fit, with
learned breakpoints (annotated near ∼175 and ∼450 training examples in the figure), captures the transition
and yields non-negligible lower extrapolation error (RMSE of 0.02 vs. 0.14). This example highlights why
piecewise formulations are needed once the learning curve crosses saturation or phase-change regions.

Synthesis and guidelines

• Model scaling success depends not only on size but also on training strategy, data quality, and saturation
thresholds.

• Use Table 4 to match regime to law: Kaplan/Chinchilla for dense, well-curated i.i.d. text at scale; BNSL
when empirical curves show slope changes or saturation; and data-aware/repetition-aware formulations in
data-limited settings.

• Before extrapolating, test for regime breaks (as in Figure 4); if present, prefer piecewise fits and report
breakpoint uncertainty to avoid overconfident forecasts.

• Practitioners should allocate compute across parameters, data, and training duration based on observed
inflection points. Use Kaplan/Chinchilla scaling when data is abundant; otherwise, extend training epochs
or adopt data-efficient curricula (see Figure 7a).
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Figure 4: “Double descent” behavior is not well-captured by traditional power-law-based scaling laws such as
Kaplan et al. (2020). Piecewise-power-law-based parametric laws (Caballero et al., 2023) (BNSL) captures
the smooth transition across different loss regimes.

RQ2. Scaling behaviors for different neural architectures [taxonomy: model scaling → pre-training →
architecture]

According to Tay et al. (2022), the vanilla Transformer consistently demonstrates superior scaling properties
(P ∝ Cα, where P is the performance metric, C represents compute, and α are fitting parameters) compared
to other architectures, even though alternative designs might perform better at specific sizes. Architectural
bottlenecks manifest differently across these designs. For instance, linear attention models like Performer
and Lightweight Convolutions show inconsistent scaling behavior, while ALBERT demonstrates negative
scaling trends. This finding helps explain why most LLMs maintain relatively standard architectures rather
than adopting more exotic variants. Furthermore, Zhai et al. (2022) revealed that ViT reveals that these
models exhibit double saturation, where performance plateaus at both very low and very high compute
levels, suggesting architectural limitations specific to the vision domain (Equation 5). However, as shown
by Li et al. (2024a), simply scaling up vision encoders in multimodal models does not consistently improve
performance, indicating that architectural scaling benefits are not uniform across modalities.

E = a(C + d)−b + c, (5)

where E denotes downstream error, C represents compute, and a, b, c, d are fitting parameters.

Synthesis and guidelines

• Architectural bottlenecks vary across domains and compute scales. Transformer inductive biases generalize
best under scale.

• Use architectures with proven scaling profiles (e.g., vanilla Transformer) unless task-specific benefits out-
weigh risks. For multimodal or domain-specialized setups, consult scaling behavior across compute ranges
(Figure 7a).

RQ3. Data strategies for performance scaling [taxonomy: data scaling]

Ye et al. (2024) proposed an exponential model for data mixing:

Li(r1...M ) = ci + ki exp

(
M∑

j=1

tijrj

)
, (6)

while Liu et al. (2024) and Kang et al. (2024) developed proxy models (REGMIX, AUTOSCALE) to pre-
optimize mixtures. The Domain-Continual Pretraining (D-CPT) law (Que et al., 2024) provides a theoretical
grounding on optimal mixture ratio between general and domain-specific data :

L(N, D, r) = E + A

Nα
+ B · rη

Dβ
+ C

(r + ϵ)γ
, (7)
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Scaling Law Primary Goal Where It Works Where It Doesn’t Work
Ye et al. (2024) Predict optimal data compo-

sitions for compute-efficient
pre-training.

Pre-training LLMs, espe-
cially for optimizing hetero-
geneous datasets.

Scenarios with a very large
number of data domains,
due to the complexity and
number of fitting parame-
ters.

Que et al. (2024) Balance general and domain-
specific data for continual
pre-training.

Adapting pre-trained mod-
els to new domains effi-
ciently and for long-term
updates.

Optimizing a single, static
data mixture from scratch,
as it is specifically designed
for continual pre-training.

Table 5: Comparison of prominent scaling laws under RQ3 in terms of their primary goal, effective regimes,
and known failure cases.
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Figure 5: Importance of data-constrained scaling laws, where traditional scaling laws fail to incorporate the
data-dependence factors in multi-epoch pre-training.

where N represents the number of model parameters, D is the dataset size, r is the mixture ratio,
E, A, B, C, α, β, γ, η, ϵ are fitting parameters.

Where these laws work (and do not). Table 5 summarizes effective regimes for these scaling laws.
The data-mixing formulation is effective for pre-training LLMs on heterogeneous corpora where the goal is
compute-efficient composition, but becomes cumbersome when the number of data domains is very large
due to the growth in fitting parameters. D-CPT (Que et al., 2024) is well-suited for continual pre-training,
adapting a base model to new domains and supporting long-term updates, yet it is not designed to optimize
a single, static mixture from scratch. Figure 5 demonstrates the lack of effectiveness of traditional scaling
laws under data-constrained settings, where Chinchilla law fails due to violations of data i.i.d condition
in multi-epoch training. As epochs increase, Chinchilla law continues to predict steady loss reductions,
whereas the observed test loss saturates; the data-constrained model (in the spirit of Muennighoff et al.,
2023) tracks the plateau and recommends allocating budget to more epochs on smaller models rather than
scaling parameters, capturing the regime dynamics.

Synthesis and guidelines

• Model performance is sensitive to data heterogeneity, mixture ratios, and interaction effects – especially
in multi-domain or continual settings.

• Use mixture-aware laws (e.g., Ye et al. (2024)) for heterogeneous pre-training; prefer D-CPT for continual
updates; and switch to data-constrained prescriptions when repeated exposures drive saturation (as in
Figure 5).

• Replace manual corpus aggregation with predictive data mixing. Use D-CPT law when adapting to specific
domains. Figure 7a outlines strategy paths based on data availability and domain constraints.
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RQ4. Test-time scaling for better scaling efficiency [taxonomy: model scaling → inference scaling]

Recent research examining the relationship between test-time computation and model size scaling has re-
vealed key insights. Brown et al. (2024) proposed that repeated sampling during inference significantly en-
hances model performance, with coverage C (fraction of problems solved) following an exponentiated power
law relationship with the number of samples k, log(C) = ak−b, where a, b are fitting parameters. Further ex-
ploration by Wu et al. (2024) suggested that employing sophisticated test-time computation strategies (such
as iterative refinement or tree search) with smaller models may be more cost-effective than using larger mod-
els with simple inference methods. Their work establishes a relationship between inference computational
budget and optimal model size for compute-efficient inference, expressed as log10(C) = 1.19 log10(N) + 2.03.

Synthesis and guidelines

• Inference scaling offers a complementary path to performance, particularly where model reuse is desired
but compute cost must remain low.

• Use adaptive compute, retrieval augmentation, or tree search for high-value queries. Integrate test-time
scaling laws into deployment workflows (Figure 7b).

RQ5. Scaling behaviors of model fine-tuning [taxonomy: model scaling → post-training scaling]

Fine-tuning scaling reflects how pre-trained models adapt across tasks and domains. Hernandez et al. (2021)
introduced a transfer scaling law based on effective data transferred Dt:

Dt(Df , N) = k(Df )α(N)β , (8)

while Lin et al. (2024b) refined this with a rectified law:

L(D) = B

Dt + Dβ
+ E, (9)

modeling diminishing returns from fine-tuning beyond a pre-learned threshold. In vision, Abnar et al. (2021)
linked downstream error to upstream error:

eDS = k(eUS)a + c, (10)

and Mikami et al. (2021) connected downstream accuracy to synthetic pretraining data size:

eDS = aD−α + c. (11)

FLOPS to Loss to Performance (FLP) method (Chen et al., 2024c) predicted downstream performance from
pretraining FLOPs, and Zhang et al. (2024) showed LoRA scales nonlinearly under PEFT:

L̂(X, Df ) = A × 1
Xα

× 1
Dβ

f

+ E. (12)

Synthesis and guidelines

• Transferability scales with both model size and pretraining loss, but task difficulty, data availability, and
adaptation type mediate returns.

• Use FLP or rectified laws to estimate post-training gains. Prefer PEFT for low-resource settings; switch
to full fine-tuning when compute permits. For domain adaptation, apply D-CPT strategies (Figure 7a).

RQ6. Scaling efficiency and performance for sparse and efficient models [taxonomy: model scaling →
model compression]

As the demand for resource-efficient models grows, sparse architectures such as pruned networks and MoEs
have emerged as promising alternatives to dense Transformers. These models aim to preserve the performance
benefits of scale while reducing compute and memory overhead. Frantar et al. (2023) proposed a general
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sparse scaling law showing that sparsity acts as a multiplicative efficiency factor rather than changing the
fundamental scaling behavior:

L(S, N, D) = (aS(1 − S)bS + cS) ·
( 1

N

)bN

+
(

aD

D

)bD

+ c, (13)

where S is sparsity, N is the number of non-zero parameters, and D is dataset size. In MoE models, where
only a subset of parameters is activated per input, Clark et al. (2022) proposed a loss scaling relationship
incorporating both model size and expert count:

log L = a log N + b log E + c log N · log E + d, (14)

with E denoting the expansion factor. This formulation was extended by Yun et al. (2024) to include dataset
size:

log L(N, D, E) = log
(

a

Nα
+ b

Eβ
+ c

Dγ
+ f
)

+ d log N log E (15)

These results emphasize that scaling MoEs effectively requires balancing expert granularity with sufficient
training data. Toward this, Krajewski et al. (2024) introduced a granularity parameter G to refine the
Chinchilla-style formulation:

L(N, D, G) = c +
(

g

Gγ
+ a
) 1

Nα
+ b

Dβ
. (16)

In parallel, structured pruning approaches have been formalized through the P 2 law (Chen et al., 2024b),
which relates post-pruning loss to pre-pruning model size N0, pruning ratio ρ, and post-training token count
D:

L(N0, D, ρ, L0) = L0 +
(

1
ρ

)γ ( 1
N0

)δ
(

NC

Nα
0

+ DC

Dβ
+ E

)
, (17)

where L0 is the uncompressed model loss, ρ is the pruning rate, N0 is the pre-pruning model size, D represents
the number of post-training tokens, and NC , DC , E, α, β, γ are fitting parameters.

How the sparse/MoE scaling functions evolved. Table 6 traces a progression from (i) sparsity-
as-efficiency laws for pruned dense networks (Frantar et al., 2023), where S multiplies standard size/data
terms, to (ii) MoE interaction laws that explicitly model the synergy between total parameters N and expert
count E (including N ×E interaction terms) (Yun et al., 2024), and finally to (iii) granularity-aware MoE
laws (Krajewski et al., 2024) that introduce a controllable G capturing expert specialization and yielding a
compute-optimal envelope across granularities.

Where these laws work (and do not). From Table 6: the Frantar et al. (2023) formulation works well for
models with static, unstructured sparsity (e.g., pruned nets) to select optimal sparsity at a given budget, but
it does not capture the complex interaction patterns of MoE routing. The Clark et al. (2022); Yun et al. (2024)
MoE laws are effective within MoE architectures to balance N against the number of experts E, yet they are
not applicable to standard dense/pruned models without experts. The granularity-based law of Krajewski
et al. (2024) is most useful for advanced MoE optimization when expert size/specialization is tunable, but
it becomes less general when a measurable G is unavailable. Figure 6 shows training-budget–vs–loss curves
where the dense Transformer (dashed) underperforms a family of MoE models with varying G at the same
FLOPs, and the optimal MoE envelope (solid) lies strictly below the dense curve across budgets. This
exemplifies a case where dense scaling laws fail to capture attainable efficiency, while the granularity-aware
MoE law correctly predicts that increasing expert granularity (up to a budget-dependent optimum) yields
better compute–quality trade-offs.

11



Under review as submission to TMLR

Scaling Law Primary Goal Where It Works Where It Doesn’t Work
Frantar et al.

(2023)
To model sparsity (S) as a
multiplicative efficiency fac-
tor on top of standard scaling
laws.

For models with static,
unstructured sparsity (e.g.,
pruned networks) to find the
optimal sparsity for a given
compute budget.

For dynamic, structured
sparsity like Mixture-
of-Experts (MoE), as it
doesn’t capture the complex
interaction between experts.

Clark et al.
(2022); Yun et al.
(2024)

To predict MoE performance
by modeling the synergis-
tic interaction between model
size (N) and the number of
experts (E).

Specifically for MoE archi-
tectures to balance total pa-
rameters against the num-
ber of experts for optimal
performance.

For standard dense models
or pruned networks where
the concept of "experts"
does not apply.

Krajewski et al.
(2024)

To refine MoE scaling by in-
troducing a granularity pa-
rameter (G), accounting for
expert size and specialization.

For advanced MoE opti-
mization where expert size
is tunable, helping decide
between many small experts
vs. fewer large ones.

When a quantifiable "granu-
larity" metric is unavailable,
making it too specific for
general MoE models.

Table 6: Comparison of prominent scaling laws under RQ6 in terms of their primary goal, effective regimes,
and known failure cases.
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Training budget (FLOPs)

100
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MoE (G=4)
MoE (G=8)
MoE (G=16)
Dense Transformer
MoE (optimal scaling)

Figure 6: Compute optimal scaling of mixture-of-experts are often better than dense transformers – high-
lighting the importance of sparser activations for achieving better performance at same compute cost. Scaling
shown in log-log scale.

Synthesis and guidelines

• Sparse models are scaling-compliant but require careful routing (MoE) and token-budget tuning (pruning)
to outperform dense counterparts.

• Match regime to law (Table 6): choose sparsity-efficiency laws for static pruning; interaction laws for
MoE size–expert balancing; and granularity-aware laws when expert specialization is a tunable knob and
compute-optimal envelopes matter.

• Use MoEs for general-purpose LLMs under compute limits. Apply pruning for deployment constraints.
For efficient inference, refer to Figure 7b.

RQ7. Model scaling with low-precision quantization [taxonomy: model scaling → model compression
→ quantization]

According to Dettmers & Zettlemoyer (2023), 4-bit precision appears to be the optimal sweet spot for
maximizing model performance while minimizing model size. Additionally, research on scaling with mixed
quantization (Cao et al., 2024), demonstrated that larger models can handle higher quantization ratios while
maintaining performance, following an exponential relationship where larger models require exponentially

12



Under review as submission to TMLR

fewer high-precision components to maintain a given performance level. Kumar et al. (2024) developed a
unified scaling law (Equation 18) that predicts both training and post-training quantization effects. It further
suggests that effects of quantizing weights, activations, and attention during training are independent and
multiplicative.

L(N, D, Pw, Pa, Pkv, Ppost) = AN−α
eff + BD−β + E + δP T Q, (18)

where Pw, Pa, Pkv denote training precision of weights, activations and attentions, respectively, Ppost de-
note end-time weight-precision, δP T Q denotes loss due to post training quantization, and α, β are fitting
parameters.

Synthesis and guidelines

• Scaling-aware quantization reduces memory while preserving performance. Larger models generalize better
to low precision.

• Apply mixed-precision for inference. Use quantization-aware training for smaller models. Refer to post-
training strategies (Figure 7b) to guide compression.

Development Objective

LLMs

Sufficient Data

Sufficient Compute

Scale data and model
(Kaplan/Chinchilla law)

MoE scaling
(Krajewski et al., 2024)

Sufficient Compute

Longer training
(Sardana et al., 2024)

Data mixing scaling
(Ye et al., 2024)

Multimodal Models

Multimodal scaling
(Aghajanyan et al., 2023)

Domain-Specific Models

Domain-continuous pre-training
(D-CPT law)

NoYes

Yes No Yes No

(a) Training strategies

Memory Constraint

Compression Strategy

P2 law
(Chen et al., 2024b)

Low-bit quantization
(Cao et al., 2024)

Efficient Inference Needed

Inference scaling
(Wu et al., 2024)

Pruning Quantization

Yes No

Yes

(b) Inference strategies

Figure 7: Practical roadmap summarizing training and inference strategies grounded in our eight research
questions and taxonomy branches. (a) Training scaling strategies can be utilized for pre-training or fine-
tuning unimodal and multimodal foundational and domain-adapted models. (b) Post-training inference
strategies can be followed to ensure that the model is utilized efficiently for the downstream applications.

RQ8. Beyond modalities: scaling for multimodal models [taxonomy: model scaling → multimodal
models]

Multimodal scaling behavior builds upon, but does not replicate, unimodal trends. Henighan et al. (2020)
first proposed multimodal scaling using L(x) = Ax−α + B, where x represents model size, data, or compute.
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Alabdulmohsin et al. (2022) refined this into a more flexible sigmoid-like form:

Lx − L∞

(L0 − Lx)α
= βxc, (19)

allowing transitions across saturation regimes. Aghajanyan et al. (2023) observed that smaller multimodal
models exhibit competition between modalities, while larger models cross a “competition barrier” and become
synergistic. They proposed a bimodal generalization of the Chinchilla law:

L(N, Di, Dj) =
[

L(N, Di) + L(N, Dj)
2

]
−Ci,j + Ai,j

Nαi,j
+ Bi,j

|Di| + |Dj |βi,j
,

(20)

where Ci,j captures the degree of positive interaction between modalities i and j.

Synthesis and guidelines

• Multimodal scaling is governed by modality alignment and architectural balance more than raw model
size.

• Ensure models are sufficiently large to benefit from synergy across modalities. Prioritize modality balance
in architecture and high-quality aligned datasets over isolated scaling. Refer to Figure 7a when designing
multimodal pretraining pipelines.

Cross-RQ synthesis

• Data-efficient scaling (RQ1, RQ3, RQ5) consistently beats brute-force model expansion, as shown in Hu
et al. (2024); Sardana et al. (2024).

• Architectural innovations (RQ2, RQ6) tend to scale poorly unless paired with precise training heuristics
(e.g., expert routing in MoEs).

• Inference-aware scaling (RQ4, RQ7) enables small models to rival larger ones but is rarely included in
current scaling laws - a key research gap.

While the research questions synthesized above highlight the strengths and practical applications of neu-
ral scaling laws, they also expose several limitations, especially in their generalizability, reliability under
constraints and applicability to modern model designs. In the next section, we critically examine these
limitations and discuss the foundational assumptions that may no longer hold as models evolve.

5 Criticisms of scaling laws

Diaz & Madaio (2024) challenged the generalizability of neural scaling laws, arguing that they fail in di-
verse real-world AI applications. They argued that scaling laws do not always hold when AI models serve
heterogeneous populations with conflicting criteria for model performance. Larger datasets inherently re-
flect diverse communities, making it difficult to optimize a single model for all users. Similar to issues in
multilingual AI, increasing data diversity often leads to performance degradation rather than improvement.
Universal evaluation metrics are inadequate for capturing these complexities, potentially reinforcing biases
against underrepresented groups. The authors further argued that smaller, localized AI models may be more
effective for specific communities, highlighting the need to move beyond one-size-fits-all scaling assumptions.

Beyond dataset expansion, data pruning contradicts traditional scaling laws by demonstrating that perfor-
mance improvements do not always require exponentially more data. Strategic pruning achieves comparable
or superior results with significantly fewer training samples (Sorscher et al., 2023). Not all data contributes
equally, and selecting the most informative examples enables more efficient learning. Experimental validation
on CIFAR-10, SVHN, and ImageNet shows that careful dataset curation can surpass traditional power-law
improvements, questioning the necessity of brute-force scaling.
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(b) Environment costs of increasing training data size

Figure 8: As synthesized by Goel et al. (2025), performance scales logarithmically with model and pre-
training data sizes, whereas, environmental factors like Carbon emission during pre-training increases linearly.
Outgrowing environmental cost highlights the infeasibility of power-law governing scaling laws for scaling up
beyond a fixed limit.

Despite their significant impact, many studies on scaling laws suffer from limited reproducibility (see Ta-
ble 15 in Appendix B) due to proprietary datasets, undisclosed hyperparameters, and undocumented train-
ing methodologies. The inability to replicate results across different computing environments raises concerns
about their robustness. Large-scale experiments conducted by industry labs often depend on private infras-
tructure, making independent verification challenging. This lack of transparency undermines the reliability of
scaling law claims and highlights the urgent need for open benchmarks and standardized evaluation frame-
works to ensure reproducibility. Furthermore, the field’s avoidance of rigorous scaling exponent analysis
constitutes a critical oversight. While exponents indeed vary across models, datasets, and hyperparame-
ters, this variability demands investigation rather than dismissal. This deliberate analytical gap undermines
confidence in extrapolation claims and raises questions about whether observed scaling behaviors represent
genuine properties or experimental artifacts.

Goel et al. (2025) further questioned the validity and practicality of neural scaling laws by emphasizing their
computational inefficiency, environmental unsustainability, and deployment constraints. They argued that
scaling approaches often overlook diminishing returns, particularly the disproportionate computational and
carbon emission costs associated with incremental performance gains. For example, their analysis (illustrated
in Figure 8) showed that modest improvements in model performance demand exponential increases in
resource usage, thus challenging the assumption that scaling laws represent sustainable progress. To address
these limitations, they proposed a systematic shift towards “downscaling”, advocating for smaller, domain-
adapted models trained with carefully curated datasets. This downscaling approach not only mitigates
environmental impacts but also promotes wider accessibility by lowering computational and financial barriers.
Their study highlights an urgent need for revising the prevailing scaling paradigm to ensure more efficient
and responsible AI development.

6 Beyond Scale: Future Directions for Practical and Sustainable AI

While neural scaling laws have provided valuable insights, they often mis-predict in settings that deviate from
the classic, dense, pre-training-on-i.i.d.-text paradigm. In particular, real deployments involve multiple com-
peting constraints (latency, energy, memory), non-i.i.d. data (duplicates, domain drift), modular inference
(retrieval, routing, MoE), and objective functions beyond cross-entropy. To make scaling laws decision-
useful (we highlight a guideded roadmap toward better scaling practices in Figure 9), we must move from
single-metric power-laws to modular, cost-aware, and inference-aware formulations that generalize across
data quality, domains, and hardware.

Reframing scaling laws for real-world constraints. Future scaling laws must account for compute
budgets, hardware latency, and energy consumption. This includes integrating training–inference trade-
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Figure 9: Roadmap from “what exists” to “better scaling.” The diagram contrasts current limits
(left) – data volume over quality, training-only laws, single-metric targets, and dense-only assumptions, with
a road to better scaling (right) that prioritizes: (1) Data Quality (curate diverse high-quality datasets,
no synthetic duplicated data); (2) Downscaling for small/edge models with quantization and pruning;
(3) Incorporating Compute & Energy constraints (budget, carbon, memory) while deriving the optimal
configuration; (4) Multi-objective optimization (Pareto trade-offs over loss/latency/energy/robustness);
(5) Robustness & Safety (reliability of scaling laws in practical applications).

offs, evaluating real-world performance under quantization or pruning, and predicting effectiveness across
resource-constrained environments. Concretely, we advocate reporting Pareto fronts over (loss, latency,
energy, memory) and learning cost-aware exponents that vary with hardware and batch/sequence shapes.
Empirically, the same architecture can move across Pareto fronts as tokenization, parallelism strategy, or
KV-cache policy changes; future laws should parameterize these deployment knobs.

Designing for downscaling. Rather than building ever-larger models, the field should invest in scaling
laws for small language models trained with optimal data, sparsity, and inference strategies. The emergence
of 1–3B parameter models that rival 13B+ models (Hu et al., 2024) highlights the viability of compact yet
performant systems. Building on this, Goel et al. (2025) formalize a downscaling law that predicts when an
ensemble of smaller, pruned models will outperform a single larger model under the same compute budget.
Let L0 denote the loss of a base model and n the number of models in a deep ensemble; the expected ensemble
loss scales as L(n) = L0 − b + b

na , with positive, task/model-specific fit parameters a, b. Combining this
with the P 2 post-pruning law (Chen et al., 2024b) (capturing the effect of pruning ratio and post-training
tokens on loss), they derive a compute-parity condition ensuring that an n-way ensemble of pruned models
attains strictly lower loss than the base model at equal cost:

(
na−1
na+γ

)
(n − 1)γ ≥ 1

b Nδ
0

, where N0 is the pre-
pruning parameter count and (γ, δ) are the pruning/finetuning exponents inherited from P 2. Practically,
this law trades model size, pruning/finetuning, and ensemble width to achieve the best attainable quality at
edge/mobile budgets. These downscaling laws complement our emphasis on token quality, routing capacity,
and quantization depth by offering a closed-form criterion for selecting the number of pruned/quantized
replicas that optimizes quality under tight deployment constraints.

Multi-objective scaling optimization. Current scaling laws often predict accuracy at scale but ignore
trade-offs between accuracy, compute, and robustness. Future work should develop multi-objective scaling
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frameworks that balance these factors to guide architecture and dataset design more holistically. We recom-
mend framing scaling as a multi-objective program with constraints on worst-case error/robustness, privacy,
and environmental factors. Analytically, this suggests replacing single power-laws with families of condi-
tional laws L(N, D, C) indexed by constraint bundle C, and optimizing over Pareto-efficient frontiers. For
instance, we can propose an augmenting loss function with compute cost, defining a multi-objective target
min(L + λ C) where C is compute or energy expenditure. This shifts scaling evaluation toward efficient,
sustainable regimes.

Inference-aware and modular scaling laws. Traditional scaling laws assume fixed inference procedures.
However, our synthesis in RQ4 and RQ7 shows that test-time compute allocation via sampling, retrieval,
or routing can drastically affect performance. Future scaling formulations should modularize inference and
allow flexible compute allocation per task or query. We propose inference-aware scaling that introduces
explicit knobs for retrieval volume, routing granularity (MoE experts per token), and speculative/iterative
decoding depth. The resulting laws predict quality as a joint function of training tokens, model parameters,
and inference budget. This also enables per-query optimal policies (e.g., adaptively increase retrieval or
expert budget for hard inputs).

Data quality over quantity. Instead of expanding datasets indiscriminately, laws like REGMIX (Liu
et al., 2024) and D-CPT (Que et al., 2024) emphasize optimized data composition. Future models should
prioritize informative examples and track dataset efficiency across tasks. We argue for quality-weighted token
accounting: let Deff =

∑
i wi with weights wi reflecting information value (deduplication, diversity, noise

filtering, curriculum). Scaling exponents should be learned over Deff instead of raw token counts. This
unifies observations that carefully curated or repeated data can outperform naive laws and explains regime
changes (e.g., when data pruning “beats” the baseline power-law).

Domain-specific laws (RL, diffusion, robotics). Many domains break classic power-law assumptions
(more descriptions in Appendix A) In RL, non-stationarity, horizon length, and exploration alter sample
complexity; scaling should condition on horizon and environment entropy. In diffusion models, quality
depends on training scale and sampling steps/schedulers; laws must tie generation compute to FID/IS and
downstream metrics. In robotics, data is interactive, multi-modal, and safety-bound; scaling should model
demonstration quality, sim2real gaps, and control latency. Dedicated, measurement-grounded laws will avoid
the “one-size-fits-all” fallacy.

Transfer, safety, and robustness at scale. Power-laws fitted on pre-training losses can overestimate
downstream reliability. Future laws should co-model transfer efficiency, interference between tasks (negative
transfer), and safety constraints (adversarial robustness, specification gaming). This suggests hierarchical
scaling: pre-training curves that map into downstream task families via transfer operators, with robustness
penalties that widen at larger scales unless mitigated by data curation or alignment.

What “good” future laws look like. A practical scaling law should: (i) admit deployment knobs (la-
tency, memory, precision, cache policy), (ii) be inference-aware (retrieval/routing budgets), (iii) operate on
quality-weighted tokens, and (iv) expose Pareto fronts and constraint-aware optima. Such laws turn scaling
from curve-fitting into design guidance for real systems, across both upscaling and downscaling regimes.

7 Conclusion

This survey provided a comprehensive analysis of neural scaling laws, exploring their theoretical foundations,
empirical findings, and practical implications. It synthesized insights across various modalities, including
language, vision, multimodal, and reinforcement learning, to uncover common trends and deviations from
traditional power-law scaling. While early research established predictable relationships between model size,
dataset volume, and computational resources, more recent studies have shown that these relationships are
not universally applicable. Sparse architectures, retrieval-augmented models, and domain-specific adapta-
tions often exhibit distinct scaling behaviors, challenging the notion of uniform scalability. Furthermore,
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advancements in fine-tuning, data pruning, and efficient inference strategies have introduced new perspec-
tives on compute-optimal scaling. Despite their significance, scaling laws remain an evolving area of research,
requiring further refinement to address real-world deployment challenges and architectural innovations.

Limitations

While this survey provides a broad synthesis of neural scaling laws, it primarily focuses on model size, data
scaling, and compute efficiency. Other important aspects, such as hardware constraints, energy consumption,
and the environmental impact of large-scale AI training, are not deeply explored. Another limitation is the
reliance on prior empirical findings, which may introduce variability due to differing experimental setups
and proprietary datasets. Without access to fully reproducible scaling law experiments, some conclusions
remain dependent on the methodologies employed in original studies.
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A Detailed scaling laws

A.1 Scaling laws of language models

Kaplan et al. (2020) suggested that larger LMs improve performance by reducing loss through power-law
scaling. However, this view evolved when studies showed that many large models were undertrained, and data
scaling plays an equally crucial role in compute efficiency (Hoffmann et al., 2022). More recent breakthroughs
challenged traditional scaling assumptions. Broken Neural Scaling Law (BNSL) introduced non-monotonic
trends, meaning that model performance can sometimes worsen before improving, depending on dataset
thresholds and architectural bottlenecks (Caballero et al., 2023). Another exciting development came from
small LMs, where optimized training strategies, such as a higher data-to-parameter ratio and adaptive
learning schedules, enable models ranging from 1.2B to 2.4B parameters to rival significantly larger 7B-13B
models (Hu et al., 2024). These findings reshape the fundamental assumptions of scaling laws, proving that
strategic training can outperform brute-force model expansion.

A.2 Scaling laws in other modalities

In computer vision, ViTs exhibit power-law scaling when model size, compute, and data grow together, but
their performance plateaus at extreme compute levels, with noticeable gains only when trained on datasets
exceeding 1B images (Zhai et al., 2022). Meanwhile, studies on scaling law extrapolation revealed that while
larger models generally scale better, their efficiency declines at extreme sizes, requiring new training strategies
to maintain performance (Alabdulmohsin et al., 2022). In multimodal learning, an interesting phenomenon
called the “competition barrier” has been observed where at smaller scales different input modalities compete
for model capacity, but as models grow, they shift into a synergistic state, enabling accurate performance
predictions based on model size and token count (Aghajanyan et al., 2023).

However, not all scaling trends align with expectations. Contrary to the assumption that larger is always
better, scaling vision encoders in vision-language models can sometimes degrade performance, highlighting
the fact that data quality and modality alignment are more critical than brute-force scaling (Li et al., 2024a).
These findings collectively emphasize that scaling laws are domain-dependent – optimal scaling strategies
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Modality Paper Key insights Applicability

Language

Kaplan et al. (2020)

Larger models are more sample-
efficient, needing fewer training ex-
amples to generalize well.

Predicts model loss decreases
with increasing parameters, used
in early LMs like GPT-3.

Hoffmann et al. (2022)
The best performance comes from
balancing model size and data,
rather than just increasing parame-
ters.

Balances compute, model size,
and dataset size for optimal ef-
ficiency, as seen in Chinchilla.

Caballero et al. (2023)
Performance does not always im-
prove smoothly; there are inflection
points where scaling stops working.

Identifies phase transitions, min-
imum data thresholds, and un-
predictability in scaling behav-
ior.

Hu et al. (2024)

Smaller models with better training
can rival much larger models.

Demonstrates that smaller mod-
els with optimized training can
outperform larger undertrained
models.

Vision Zhai et al. (2022)

ViTs follow power-law scaling but
plateau at extreme compute lev-
els, with benefits primarily seen in
datasets >1B images.

Image classification, object
detection, large-scale vision
datasets.

Multimodal

Aghajanyan et al. (2023)

Multimodal models experience com-
petition at smaller scales but transi-
tion into synergy as model and token
count grow.

Multimodal learning, mixed-
modal generative models,
cross-domain AI.

Li et al. (2024a)

Scaling vision encoders in vision-
language models does not always im-
prove performance, reinforcing the
importance of data quality over raw
scaling.

Vision-language models, image-
text alignment, multimodal scal-
ing challenges.

Table 7: Critical neural scaling laws for language, vision and multimodal models.

Paper Key insights Applicability
Zhai et al. (2022) ViTs follow power-law scaling but

plateau at extreme compute lev-
els, with benefits primarily seen in
datasets >1B images.

Image classification, object detec-
tion, large-scale vision datasets.

Aghajanyan et al.
(2023)

Multimodal models experience
competition at smaller scales but
transition into synergy as model
and token count grow, following a
"competition barrier."

Multimodal learning, mixed-
modal generative models, cross-
domain AI.

Li et al. (2024a) Scaling vision encoders in vision-
language models (VLMs) does not
always improve performance, re-
inforcing the importance of data
quality over raw scaling.

Vision-language models, image-
text alignment, multimodal scal-
ing challenges.

Table 8: Summary of key insights found in scaling laws paper for computer vision and multimodal domains.

require a careful balance between compute efficiency, dataset quality, and architecture rather than simply
increasing model size. Table 7 summarizes the scaling laws of pre-trained models for language and other
modalities.
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A.3 Scaling laws for domain adaptation

Pre-training and fine-tuning techniques have accelerated the adoption of large-scale neural models, yet the
extent to which these models transfer across tasks and domains remains a key research question tied to scaling
principles. Studies show that transfer learning follows a power-law where pre-training amplifies fine-tuning
effectiveness, especially in small data regimes. Even with limited downstream data, larger models benefit
significantly from pre-training, improving generalization (Hernandez et al., 2021). In vision, pre-training sat-
uration occurs due to upstream-downstream interactions, rather than just task complexity. Lower network
layers quickly specialize in simple tasks, while higher layers adapt to complex downstream objectives (Ab-
nar et al., 2021). Similarly, in synthetic-to-real transfer, larger models consistently reduce transfer gaps,
enhancing generalization across domains (Mikami et al., 2021).

Fine-tuning strategies scale differently depending on dataset size. Parameter-efficient fine-tuning (PEFT)
techniques like low-rank adaptation (LoRA) (Hu et al., 2021) and Prompt-tuning, both are well-suited for
small datasets, but LoRA performs best for mid-sized datasets, and full fine-tuning is most effective for large
datasets. However, PEFT methods provide better generalization in large models, making them attractive
alternatives to full-scale fine-tuning (Zhang et al., 2024).

Scaling laws are also being utilized to accurately predict the fine-tuning performance of models. The FLP
method (Chen et al., 2024c) estimates pre-training loss from FLOPs, enabling accurate forecasts of down-
stream performance, particularly in models up to 13B parameters. Further refinements like FLP-M improve
mixed-dataset predictions and better capture emergent abilities in large models. Finally, the Rectified scal-
ing law (Lin et al., 2024b) introduces a two-phase fine-tuning transition, where early-stage adaptation is
slow before shifting into a power-law improvement phase. This discovery enables compute-efficient model
selection using the “Accept then Stop” (AtS) algorithm to terminate training at optimal points.

Paper Key insights Applicability

Hernandez et al. (2021)

Pre-training amplifies fine-tuning, par-
ticularly for small datasets, and bene-
fits larger models even under data con-
straints.

Transfer learning, pre-training op-
timization, few-shot learning.

Abnar et al. (2021)

Large-scale pre-training improves
downstream performance, but effective-
ness depends on upstream-downstream
interactions, not task complexity.

Vision transfer learning,
upstream-downstream perfor-
mance interactions.

Zhang et al. (2024)

Optimal fine-tuning strategy depends
on dataset size: PEFT for small, LoRA
for mid-scale, and full fine-tuning for
large-scale datasets.

Fine-tuning strategies, parameter-
efficient tuning, LoRA, full fine-
tuning.

Lin et al. (2024b)

Fine-tuning follows a two-phase tran-
sition: slow early adaptation followed
by power-law improvements, guiding
compute-efficient model selection.

Compute-efficient fine-tuning,
early stopping, model selection
strategies.

Table 9: Key highlights from scaling of fine-tuned and domain-adapted models.

We summarize these findings in Table 9, suggesting that transfer learning is highly scalable, but effective
scaling requires precise tuning strategies rather than just increasing model size.

A.4 Scaling laws for model inference

Simply scaling up models is not always the best way to improve model performance. Chen et al. (2024a)
suggested that more efficient test-time compute strategies can dramatically reduce inference costs while
maintaining or even exceeding performance. Instead of blindly increasing LLM calls, they further suggested
for allocating resources based on query complexity, ensuring that harder queries receive more compute while
simpler ones use fewer resources. The importance of test-time compute strategies becomes even clearer
when dealing with complex reasoning tasks. While sequential modifications work well for simple queries,
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parallel sampling and tree search dramatically improve results on harder tasks. Adaptive compute-optimal
techniques have been shown to reduce computational costs by 4× without degrading performance, allowing
smaller models with optimized inference strategies to surpass much larger models (Snell et al., 2024;
Brown et al., 2024). Advanced inference approaches, such as REBASE tree search (Wu et al., 2024), fur-
ther push the boundaries of efficiency, enabling small models to perform on par with significantly larger ones.

Another breakthrough came from retrieval augmented models, where increasing the datastore size consis-
tently improves performance without hitting saturation (Shao et al., 2024). This allows smaller models to
outperform much larger ones on knowledge-intensive tasks, reinforcing that external datastores provide a
more efficient alternative to memorizing information in model parameters.

Paper Key insights Applicability

Brown et al. (2024)

Adaptive test-time compute strategies
reduce computational costs by 4× while
maintaining performance, enabling
smaller models to compete with much
larger ones.

Test-time compute efficiency, inference
cost reduction, compute-limited envi-
ronments.

Wu et al. (2024)

Advanced inference methods like RE-
BASE tree search allow smaller models
to match the performance of significantly
larger ones.

High-efficiency inference, performance
optimization for small models.

Shao et al. (2024)

Increasing datastore size in retrieval-
augmented models consistently improves
performance under the same compute
budget, without evident saturation.

Retrieval-augmented language models,
knowledge-intensive tasks, compute-
efficient architectures.

Clark et al. (2022)
Routing-based models show diminishing
returns at larger scales, requiring optimal
routing strategies for efficiency.

Routing-based models, MoEs, trans-
former scaling.

Krajewski et al. (2024)
Fine-grained MoEs achieve up to 40×
compute efficiency gains when expert
granularity is optimized.

Mixture of Experts models, large-scale
compute efficiency.

Frantar et al. (2023)
Sparse model scaling enables predicting
optimal sparsity levels for given compute
budgets.

Sparse models, structured sparsity op-
timization, parameter reduction.

Table 10: Scaling laws of efficient models.

A.5 Scaling laws for efficient models

Paper Key insights Applicability
Clark et al. (2022) Routing-based models show di-

minishing returns at larger scales,
requiring optimal routing strate-
gies for efficiency.

Routing-based models, MoEs,
transformer scaling.

Krajewski et al. (2024) Fine-grained MoEs achieve up
to 40× compute efficiency gains
when expert granularity is opti-
mized.

Mixture of Experts models, large-
scale compute efficiency.

Frantar et al. (2023) Sparse model scaling enables pre-
dicting optimal sparsity levels for
given compute budgets.

Sparse models, structured spar-
sity optimization, parameter re-
duction.

Table 11: Scaling laws for routing, sparsity, pruning, and quantization.

Scaling laws have expanded beyond simple parameter growth, introducing new methods to optimize routing,
sparsity, pruning, and quantization for efficient LLM scaling. Routing-based models benefit from optimized
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expert selection, but their returns diminish at extreme scales, requiring careful expert configuration (Clark
et al., 2022). In contrast, fine-grained MoE models consistently outperform dense transformers, achieving up
to 40× compute efficiency gains when expert granularity is properly tuned (Krajewski et al., 2024). However,
balancing the number of experts (E) is crucial, where models with 4-8 experts offer superior inference
efficiency, but require 2.5 − 3.5× more training resources, making 16-32 expert models more practical when
combined with extensive training data (Yun et al., 2024). Sparse model scaling offers another efficiency
boost. Research has demonstrated that higher sparsity enables effective model scaling, allowing 2.15× more
parameters at 75% sparsity, improving training efficiency while maintaining performance (Frantar et al.,
2023). Additionally, pruning laws (P2 scaling laws) predict that excessive post-training data does not always
improve performance, helping optimize resource allocation in pruned models (Chen et al., 2024b). Dettmers
& Zettlemoyer (2023) showed that 4-bit quantization provides the best trade-off between accuracy and
model size, optimizing zero-shot performance while reducing storage costs. Larger models tolerate lower
precision better, following an exponential scaling law where fewer high-precision components are needed to
retain performance (Cao et al., 2024). Meanwhile, training precision scales logarithmically with compute
budgets, with 7-8 bits being optimal for balancing size, accuracy, and efficiency (Kumar et al., 2024). Recent
reserach has expanded into distillation as well, developing a mathematical framework that predicts how well
a student model will perform based on the student model’s size, the teacher model’s performance and the
compute budget allocation between the teacher and the student (Busbridge et al., 2025). We summarize
these practical insights in Table 10 for better readability.

A.6 Data scaling laws

Paper Key insights Applicability

Ye et al. (2024)

Predicts optimal data composi-
tions before training, reducing
compute costs by up to 27% while
maintaining performance.

Pre-training optimization, data effi-
ciency improvements.

Liu et al. (2024)
REGMIX optimizes data mix-
tures using proxy models, achiev-
ing 90% compute savings.

Compute-efficient training, automated
data selection, large-scale models.

Allen-Zhu & Li (2024)

Language models can store 2 bits
of knowledge per parameter, with
knowledge retention dependent on
training exposure.

Knowledge encoding, model compres-
sion, retrieval-augmented models.

Table 12: Critical scaling laws for data mixing and knowledge capacity.

Scaling models involves more than just increasing parameters; optimizing data mixtures, training duration,
and vocabulary size also plays a crucial role in enhancing performance and efficiency. Data mixing laws
allow AI practitioners to accurately predict optimal data compositions before training, leading to 27% fewer
training steps without compromising accuracy (Ye et al., 2024). Techniques like REGMIX optimize data
selection using proxy models and regression, reducing compute costs by 90% compared to manual data
selection (Liu et al., 2024). Meanwhile, AUTOSCALE revealed that data efficiency depends on model scale,
where high-quality data like Wikipedia helps small models but loses effectiveness for larger models, which
benefit from diverse datasets like CommonCrawl (Kang et al., 2024). For continual learning, the D-CPT Law
provided a theoretical framework for balancing general and domain-specific data, guiding efficient domain
adaptation and long-term model updates (Que et al., 2024). Additionally, Chinchilla scaling assumptions
were challenged by evidence showing that training models for more epochs on limited data can outperform
simply increasing model size (Muennighoff et al., 2023). Repeated data exposure remains stable up to
4 epochs, but returns diminish to zero after around 16 epochs, making longer training a more effective
allocation of compute resources. Furthermore, the vocabulary scaling law suggested that as language models
grow larger, their optimal vocabulary size should increase according to a power law relationship (Tao et al.,
2024). Finally, knowledge capacity scaling laws established that language models store 2 bits of knowledge
per parameter, meaning a 7B model can encode 14B bits of knowledge – surpassing English Wikipedia and
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textbooks combined (Allen-Zhu & Li, 2024). Table 12 summarizes the data scaling laws for developing neural
models when data is not available in abundance.

A.7 Scaling laws for reinforcement learning

Scaling laws in reinforcement learning (RL) and reward model optimization reveal both similarities and differ-
ences with generative modeling. Single-agent RL follows power-law scaling with model size and environment
interactions, with optimal scaling exponents between 0.4-0.8 across tasks lower than the 0.5 exponent ob-
served in language models (Hilton et al., 2023). RL tasks require orders of magnitude smaller models than
generative tasks, correlating with task horizon length, which dictates environment interaction scaling. Task
difficulty increases compute needs but does not affect scaling exponents, highlighting horizon length as a key
factor in RL scaling efficiency.

In board games like Hex which involves multi-agent RL, Jones (2021) showed that AlphaZero performance
follows predictable scaling trends, with compute requirements increasing 7× per board size increment for
perfect play and 4× for surpassing random play (Jones, 2021). Neumann & Gros (2023) extended this study
to Pentago and ConnectFour, proposing scaling laws which show that player strength scales with network
size as αN ≈ 0.88, performance with compute as αC ≈ 0.55, and optimal network size with compute budget
as αopt ≈ 0.63 (Neumann & Gros, 2023). Larger multi-agent models exhibit higher sample efficiency, though
these trends may not generalize to highly complex games like Chess and Go.

Reward model overoptimization in RLHF follows distinct functional forms: Best-of-n (BoN) reward opti-
mization is governed by d(αbon − βbond), whereas RL reward optimization follows d(αRL − βRL log d), where
d represents KL divergence from the initial policy (Gao et al., 2022). RL requires higher KL divergence
than BoN for optimization, and reward model overoptimization scales logarithmically with model size, while
policy size has minimal impact. These findings reinforce the importance of balancing compute allocation,
environment complexity, and optimization techniques to achieve scalable and efficient RL models.

A.8 Scaling laws for sparse autoencoders

Recent research has established scaling laws for dictionary learning, providing insights into how latent repre-
sentations and sparsity impact reconstruction error and computational efficiency. Sparse autoencoders with
top-K selection follow power-law scaling for reconstruction error (MSE) in terms of the number of latents n
and sparsity k, though this relationship only holds for small k relative to model dimension (Gao et al., 2024).
Larger language models require more latents to maintain the same MSE at a fixed sparsity, reinforcing that
latent dimensionality must scale with model size for effective reconstruction. Additionally, MSE follows a
power-law relationship with the compute used during training, suggesting that efficient scaling strategies
must balance sparsity, latent size, and training compute to minimize error effectively. This is reinforced by
Lindsey et al. (2024), showing that feature representations follow predictable scaling trends, where larger
models develop richer, more interpretable dictionaries as the number of learned features increases.

A.9 Scaling laws for graph neural networks

Unlike in computer vision and natural language processing, where larger datasets typically improve gener-
alization, graph self-supervised learning methods fail to exhibit expected scaling behavior and performance
fluctuates unpredictably across different data scales (Ma et al., 2024). However, self-supervised learning
pretraining loss does scale with more training data, but this improvement does not translate to better down-
stream performance. The scaling behavior is method-specific, with some approaches like InfoGraph showing
more stable scaling than others like GraphCL.

A.10 Scaling laws in robotics

Recent evidence suggests that robotic learning exhibits scalable regularities akin to language and vision, but
with embodiment-specific twists. A large meta-analysis of Robot Foundation Models (RFMs) and LLM-
based robotics systems reports consistent power-law improvements as model size, data, and compute scale,
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Paper Category Task Architecture Datasets Used Model Range Data Range
Kaplan et al. (2020) Pre-Training Language Generation Decoder-only Transformer WebText2 0M - 1B 22M - 23B
Hoffmann et al.
(2022)

Pre-Training Language Generation Decoder-only Transformer MassiveText,Github, C4 70M - 16B 5B - 500B

Tay et al. (2022) Pre-Training ,
Transfer Learning

Language Generation Switch, T5 Encoder-Decoder,
Funnel, MoS, MLP-mixer, GLU,
Lconv, Evolved, Dconv, Per-
former,Universal, ALBERT

Pretraining: C4, Fine-Tuning: GLUE, SuperGLUE,
SQuAD

173M - 30B

Hu et al. (2024) Pre-Training Language Generation Decoder-only Transformer Large mixture 40M - 2B
Caballero et al.
(2023)

Pre-Training Downstream Image Recognition
and Language Generation

ViT, Transformers, LSTM Vision pretrained: JFT-300M, downstream :
Birds200, Caltech101, CIFAR-100; Language : Big-
Bench

Hernandez et al.
(2021)

Transfer Learning Code Generation Decoder-only Transformer Pre-train: WebText2, CommonCrawl, English
Wikipedia, Books; FineTune: Github repos

Abnar et al. (2021) Transfer Learning Image Recognition ViT, MLP-Mixers, ConvNets Pre-train: JFT, ImageNet21K 10M - 10B
Mikami et al.
(2021)

Transfer learning Image Recognition ConvNets Syntheic Data

Zhang et al. (2024) Transfer Learning Machine Translation and Lan-
guage Generation

Decoder-only Transformer WMT14 English-German (En-De) and WMT19
English-Chinese (En-Zh), CNN/Daily-Mail, ML-
SUM

1B - 16B 84B - 283B

Chen et al. (2024c) Transfer learning Language Generation Decoder-only Transformer Pre-Train: RedPajama v1, Validation:
GitHub,ArXiv,Wikipedia, C4, RedPajama vali-
dation sets, ProofPile

43M - 3B

Lin et al. (2024b) Transfer learning Language Generation Decoder-only Transformer,
Encoder-Decoder Transformer,
Multilingual, MoE

Fine Tune: WMT19 English-Chinese (En-Zh), Giga-
word, FLAN

100M - 7B

Dettmers & Zettle-
moyer (2023)

Quantization Infer-
ence

Language Generation Decoder-only Transformer The Pile, Lambada, PiQA, HellaSwag, Windogrande 19M - 176B

Cao et al. (2024) Quantization Infer-
ence

Language Generation Decoder-only Transformer WikiText2, SlimPajama, MMLU, Alpaca 500M - 70B

Kumar et al. (2024) Quantization Pre-
Training, Quantiza-
tion Inference

Language Generation Decoder-only Transformer Dolma V1.7 30M - 220M 1B - 26B

Chen et al. (2024a) Inference Language Generation Decoder-only Transformer MMLU Physics, TruthfulQA, GPQA, Averitec
Snell et al. (2024) Inference Language Generation Decoder-only Transformer MATH
Brown et al. (2024) Inference Language Generation Decoder-only Transformer GSM8K, MATH, MiniF2F-MATH, CodeContests,

SWE-bench lite
70M - 70B

Wu et al. (2024) Inference Language Generation Decoder-only Transformer MATH500, GSM8K 410M - 34B
Sardana et al.
(2024)

Inference Language Generation Decoder-only Transformer Jeopardy, MMLU, BIG bench, WikiData, ARC,
COPA, PIQA, OpenBook QA, AGI Eval, GSM8k,
etc

150M-6B 1.5B - 1.2T

Clark et al. (2022) Sparsity Language Generation Decoder-only Transformer, MoE MassiveText 0 - 200B 0-130B
Frantar et al.
(2023)

Sparsity Language Generation, Image
Recognition

Encoder-decoder, ViT JFT-4B, C4 1M - 85M 0 - 1B

Krajewski et al.
(2024)

Sparsity Language generation Decoder-only Transformer, MoE C4 129M - 3B 16B - 130B

Yun et al. (2024) Sparsity Language generation Decoder-only Transformer, MoE Slim Pajama 100M - 730M 2B - 20B
Chen et al. (2024b) Sparsity Language Generation Decoder-only Transformer SlimPajama 500M - 8B 0.5B
Busbridge et al.
(2025)

Distillation Language generation Teacher-Student Decoder-only
Transformer

C4 100M - 12B 0 - 500B

Henighan et al.
(2020)

Multimodality Generative Image Modeling,
Video Modeling, Language Gen-
eration

Decoder-only Transformer FCC100M, and various modal datasets 0.1M-100B 100M

Zhai et al. (2022) Multimodality Image Recognition ViT ImageNet-21K 5M - 2B 1M - 3B
Alabdulmohsin
et al. (2022)

Multimodality Image Recognition, Machine
Translation

ViT, MLP Mixers, Encoder-
decoder, Decoder-only Trans-
former, Transformer encoder-
LSTM decoder

JFT-300M, ImageNet, Birds200, CIFAR100, Cal-
tech101, Big-Bench

10M-1B 32M-494M

Aghajanyan et al.
(2023)

Multimodality Multimodal Tasks Decoder-only Transformers OPT, Common Crawl, LibriSpeech , CommonVoice,
VoxPopuli, Spotify Podcast, InCoder, SMILES from
Zincand People’s Speech

8M - 30B 5B - 100B

Li et al. (2024a) Multimodality Multimodal tasks ViT, Decoder-only Transformer CC12M, LAION-400M 7B - 13B 1M - 10M
Jones (2021) Multi-agent RL Hex AlphaZero with neural networks
Neumann & Gros
(2023)

Multi-agent RL Pentago, ConnectFour AlphaZero with neural networks

Gao et al. (2022) RL Reward Model training with
Best of n or RL

Decoder-only Transformers

Hilton et al. (2023) Single-agent RL ProcGen Benchmark, 1v1 ver-
sion of Dota2, toy MNIST

ConvNets, LSTM 0M - 10M

Ye et al. (2024) Data Mixture Language Generation Decoder-only Transformer RedPajama 70M - 410M
Liu et al. (2024) Data Mixture Language Generation Decoder-only Transformer Pile
Kang et al. (2024) Data Mixture Language Generation Decoder-only Transformer ,

Encoder-only Transformer
RedPajama

Que et al. (2024) Data Mixture Language Generation, Continual
Pre-training

Decoder-only Transformer various mixture of Code, Math, Law, Chemistry, Mu-
sic, Medical

0.5B-4B 0.1B-26B

Tao et al. (2024) Vocabulary Language Generation Decoder-only Transformer SlimPajama 33M - 3B 0 - 500B
Lindsey et al.
(2024)

Sparse Autoen-
coder

Training Autoencoder Decoder-only Transformer

Gao et al. (2024) Sparse Autoen-
coder

Find Interpretable Latents Decoder-only Transformer

Shao et al. (2024) Retrieval Language Generation Decoder-only Transformer language modelling:RedPajama, S2ORC, Down-
stream : TriviaQA, NQ, MMLU, MedQA

Muennighoff et al.
(2023)

Pre-Training Language Generation Decoder-only transformer C4 10M - 9B 0 - 900B

Allen-Zhu & Li
(2024)

Knowledge Capac-
ity

Language Generation Decoder-only transformer bioD

Ma et al. (2024) Graph Supervised
learning

Graph Classification Task InfoGraph, GraphCL, JOAO,
GraphMAE

reddit-threads , ogbg-molhiv,ogbg-molpcba

Diaz & Madaio
(2024)

Criticize

Sorscher et al.
(2023)

Criticize Image Recognition ConvNets, ViT SVHN, CIFAR-10, and ImageNet

Bahri et al. (2021) Theoretical
Bordelon et al.
(2024)

Theoretical

Hutter (2021) Theoretical
Lin et al. (2024c) Theoretical
Sharma & Kaplan
(2020)

Theoretical

Jin et al. (2023) Downscaling

Table 13: Details on task, architecture of models and training setup for each paper surveyed.
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Paper Dependent variable Scaling variable Functional form

Kaplan et al. (2020) Pre-Training Loss Model Parameters, Compute,
Data, Training Steps

L(N, D) =
[(

Nc

N

)αN
αD + Dc

D

]αD

Hoffmann et al. (2022) Pre-Training Loss Model Parameters, Data L(N, D) = A
Nα + B

Dβ + E
Tay et al. (2022) Performance metric Compute P ∝ Cα

Hu et al. (2024) Pre-Training Loss Model Parameters, Data L(P, D) = A
Nα + B

Dβ + E

Caballero et al. (2023) Performance metric Model Parameters, Compute,
Data, Input Size, Training
Steps

y = a + (bx−c0)
∏n

i=1

(
1 +

(
x
di

)1/fi
)−ci∗fi

Hernandez et al.
(2021)

Data Transferred Model Parameters, Fine-
tuning Data

Dt(Df , N) = k(Df )α(N)β

Abnar et al. (2021) Downstream Error Upstream Error eDS = k(eUS)a + c
Mikami et al. (2021) Downstream Error Pre-training Data eDS = aD−α + c

Zhang et al. (2024) Downstream Loss Fine-tuning Data, Data,
Model Parameters, PET
parameter

L̂(X, Df ) = A ∗ 1
Xα ∗ 1

Dβ
f

+ E

Chen et al. (2024c) Downstream perfor-
mance

Pre-training Loss, Compute L(C) = ( C
CN

)α; P (L) = w0 + w1 · L

Lin et al. (2024b) Downstream Loss Data, Fine-tuning Data L(D) = B
Dt+Dβ + E

Dettmers & Zettle-
moyer (2023)

Accurancy Total Model Bits After Quan-
tization

Cao et al. (2024) Total parameters Quantization Ratio
Kumar et al. (2024) Loss Data, Model Parameters,

Training Precision, Post-
train Precision

L(N, D, Pw, Pa, Pkv, Ppost) = AN−α
eff + BD−β + E + δP T Q

Chen et al. (2024a) Optimal LLM Calls Fraction Of Easy And Diffi-
cult Queries

Brown et al. (2024) Coverage Number Of Samples log(C) = ak−b

Wu et al. (2024) Optimal Compute Model Parameters log10(C) = 1.19 log10(N) + 2.03
Sardana et al. (2024) Pre-Training Loss Model Parameters, Data L(N, D) = A

Nα + B
Dβ + E

Clark et al. (2022) Loss Model Parameters, Number
Of Experts , Data

log(L(N, E)) = a log N + b log E + c log N · log E + d

Frantar et al. (2023) Loss Sparsity, Model Parameters,
Data

L = (aS(1 − S)bS + cS) ·
( 1

N

)bN +
(

aD

D

)bD + c

Krajewski et al. (2024) Loss Granularity, Model Parame-
ters, Data

L(N, D, G) = c +
(

g
Gγ + a

) 1
Nα + b

Dβ

Yun et al. (2024) Loss Model Parameters, Number
Of Experts , Data

log L(N, D, E) ≜ log
(

A
Nα + B

Eβ + C
Dγ + F

)
+ d log N log E

Chen et al. (2024b) Post-Training Loss Uncompressed Model Loss,
pruned ratio, Model param-
eters before pruning, Post-
training Data

L(N0, D, ρ, L0) = L0 +
(

1
ρ

)γ (
1

N0

)δ (
NC

Nα
0

+ DC

Dβ + E
)

Henighan et al. (2020) Loss Model Parameters, Compute,
Data

L(x) = Ax−α + B

Zhai et al. (2022) Downstream Error Compute E = aCb + c
Alabdulmohsin et al.
(2022)

Loss Compute, Model Parameters,
Data

Lx−L∞
(L0−Lx)α = βxc

Aghajanyan et al.
(2023)

Loss Model Parameters, Data L(N, Di, Dj) =
[

L(N,Di)+L(N,Dj)
2

]
− Ci,j + Ai,j

Nαi,j + Bi,j

|Di|+|Dj |βi,j

Li et al. (2024a) Loss Model Parameters, Data
Jones (2021) Elo Compute, Board Size Elo =

(
mplateau

boardsize · boardsize + cplateau
)

· clamp(mincline
boardsize · boardsize + mincline

flops ·
log flop + cincline, 0)

Neumann & Gros
(2023)

Game Score Model Parameters, Compute Ei = 1
1+(Xj/Xi)αX

Gao et al. (2022) Gold Reward model
scores

Root Of KL Between Initial
Policy And Optimized Policy
(d)

R(d) = d(α − β log d)

Hilton et al. (2023) Intrinsic performance Model Parameters, Environ-
ment Interactions

I−β =
(

Nc

N

)αN +
(

Ec

E

)αE

Ye et al. (2024) Loss on domain i Proportion Of Training Do-
mains

Li(r1...M ) = ci + ki exp
(∑M

j=1 tijrj

)
Que et al. (2024) Validation loss Model Parameters, Data,

Mixture Ratio
L(N, D, r) = E + A

Nα + B·rη

Dβ + C
(r+ϵ)γ

Tao et al. (2024) Unigram-Normalised
loss

Non-vocabulary Parameter,
Vocabulary Parameters,
Data

Lu = −E + A1
N

α1
nv

+ A2
N

α2
v

+ B
Dβ

Lindsey et al. (2024) Reconstruction error Compute, Number Of La-
tents

Gao et al. (2024) Reconstruction loss Number Of Latents, Sparsity
Level

L(n, k) = exp(α + βk log(k) + βn log(n) + γ log(k) log(n)) + exp(ζ + η log(k))

Shao et al. (2024) Downstream Accuracy Datastore , Model Parame-
ters, Data, Compute

Muennighoff et al.
(2023)

Loss Data, Model Parameters,
Epochs

L(N, D) = A
N ′α + B

D′β + E

Busbridge et al. (2025) Student Loss Teacher Loss, Student Pa-
rameters, Distillation Tokens

LS(NS , DS , LT ) = LT + 1
L

c0
T

(
1 +

(
LT

LS,d1

)1/f1
)−c1/f1 (

A
Nα′

S

+ B

Dβ′
S

)γ′

Table 14: Scaling law forms proposed in different papers we surveyed.
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Paper Training code Analysis code Github link
Kaplan et al. (2020) N N
Hoffmann et al. (2022) N N
Hoffmann et al. (2022) N N
Hu et al. (2024) Y N Link
Caballero et al. (2023) N Y Link
Hernandez et al. (2021) N N
Abnar et al. (2021) N N
Mikami et al. (2021) N Y Link
Zhang et al. (2024) N N
Chen et al. (2024c) N N
Lin et al. (2024b) N Y Link
Dettmers & Zettlemoyer (2023) N N
Cao et al. (2024) N N
Kumar et al. (2024) N N
Chen et al. (2024a) Y Y Link
Snell et al. (2024) N N
Brown et al. (2024) Y Y Link
Wu et al. (2024) Y N Link
Sardana et al. (2024) N N
Clark et al. (2022) N Y Link
Frantar et al. (2023) N N
Krajewski et al. (2024) Y Y Link
Yun et al. (2024) N N
Chen et al. (2024b) N N
Henighan et al. (2020) N N
Zhai et al. (2022) Y N Link
Alabdulmohsin et al. (2022) N Y Link
Aghajanyan et al. (2023) N N
Li et al. (2024a) N N
Jones (2021) Y Y Link
Neumann & Gros (2023) Y Y Link
Gao et al. (2022) N N
Hilton et al. (2023) N N
Ye et al. (2024) Y Y Link
Liu et al. (2024) Y Y Link
Kang et al. (2024) Y Y Link
Que et al. (2024) N N
Tao et al. (2024) Y Y Link
Lindsey et al. (2024) N N
Gao et al. (2024) Y Y Link
Shao et al. (2024) Y Y Link
Muennighoff et al. (2023) Y Y Link
Allen-Zhu & Li (2024) N N
Ma et al. (2024) Y N Link
Sorscher et al. (2023) N Y Link

Table 15: Reproducibility of different neural scaling law papers. Reproducibility status of 45 papers surveyed:
22 (48.9%) provided repositories; 29 (64.4%) did not share training code.
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https://github.com/OpenBMB/MiniCPM
https://github.com/ethancaballero/broken_neural_scaling_laws
https://github.com/pfnet-research/cg-transfer
https://github.com/linhaowei1/Fine-tuning-Scaling-Law/blob/main/benchmark/flan.csv
https://github.com/lchen001/CompoundAIScalingLaws
https://github.com/ScalingIntelligence/large_language_monkeys/tree/main
https://github.com/thu-wyz/inference_scaling
https://github.com/google-deepmind/scaling_laws_for_routing
https://github.com/llm-random/llm-random
https://github.com/google-research/vision_transformer
https://github.com/google-research/google-research/tree/master/revisiting_neural_scaling_laws
https://github.com/andyljones/boardlaw
https://github.com/OrenNeumann/AlphaZero-scaling-laws
https://github.com/yegcjs/mixinglaws
https://github.com/sail-sg/regmix
https://github.com/feiyang-k/AutoScale 
https://github.com/sail-sg/scaling-with-vocab
https://github.com/openai/sparse_autoencoder
https://github.com/RulinShao/retrieval-scaling
https://github.com/huggingface/datablations
https://github.com/HaitaoMao/Graph-Neural-Scaling-Law
https://github.com/rgeirhos/dataset-pruning-metrics
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with scaling exponents for RFMs comparable to those in vision and in some cases exceeding those observed
for language-only tasks; the study further emphasizes the role of task diversity and multimodality in realizing
these gains (Sartor & Thompson, 2024). Complementing this global view, an extensive empirical investigation
of imitation learning for manipulation establishes that generalization success follows an approximate power
law in the diversity of training environments and object categories, while exhibiting diminishing returns in
the number of demonstrations per environment once a modest threshold is reached; prioritizing coverage
over repetition yields substantially better zero-shot transfer to unseen scenes and objects (Lin et al., 2024a).
Together, these findings point to predictive, albeit still empirically grounded laws for robotics: performance
scales with model/data/compute in a manner that is measurable and forecastable, provided that datasets
broaden along the axes most relevant to embodiment (scene, object, and interaction diversity). Unlike static-
language settings, robotics introduces additional constraints that shape scaling behavior: data collection is
expensive and safety-critical, rewards can be sparse, sim-to-real gaps complicate extrapolation, and hardware
throughput/latency bound feasible training and deployment. Consequently, practical “robotics scaling laws”
should be framed over (i) model and dataset scale, (ii) diversity rather than counts alone, and (iii) system
constraints (embodiment, safety, and real-time compute), yielding design guidance that balances accuracy,
robustness, and cost at scale.

A.11 Scaling laws for diffusion-based models

Recent studies indicate that diffusion models exhibit recognizable scaling regularities, while also introducing
domain-specific nuances distinct from language and standard vision settings. For text-to-image Diffusion
Transformers (DiT), pre-training loss follows a power-law in compute across wide budgets, enabling fore-
casts of optimal model size and dataset size under fixed compute and showing that loss trends correlate
with downstream generative quality (e.g., FID) (Liang et al., 2024). In video diffusion, analogous com-
pute–performance regularities hold only when scale is modeled jointly with optimization hyperparameters:
learning rate and batch size exert outsized influence, and an extended law that predicts their optima as func-
tions of model/data/compute yields tighter fits and cheaper operating points (e.g., comparable performance
at markedly lower inference cost) (Yin et al., 2025). Uniquely for diffusion, a second axis of inference-
time scaling is operative: beyond the diminishing returns of simply increasing denoising steps, search and
verification-based sampling converts additional test-time compute into tangible quality gains, effectively
extending the scaling frontier post-training (Ma et al., 2025). Together, these results suggest formulating
“diffusion scaling laws” over training compute, model/data scale, hyperparameter optima, and inference bud-
get, rather than training alone to obtain predictive, design-useful guidance for both training-time allocation
and test-time compute–quality trade-offs.

B Reproducibility of scaling laws papers

The reproducibility status of neural scaling law papers presents a mixed landscape in terms of research
transparency. We consolidate and provide the links to github code repositories in the Table 15. Among the
45 surveyed papers proposing scaling laws, 22 papers (48.9%) provided repository links, indicating some level
of commitment to open science practices. However, more than half of the papers still lack basic reproducibility
elements, with 29 papers (64.4%) not sharing training code and 27 papers (60%) withholding analysis code.
This comprehensive survey suggests that while there is a growing trend toward reproducibility in neural
scaling law research, there remains substantial room for improvement in establishing standard practices for
code sharing and result verification.

31


	Introduction
	Taxonomy of neural scaling laws
	Fitting and validating scaling laws
	Optimization methods
	Loss functions and objectives
	Initialization strategies
	Validation methods
	Limitations of fitting techniques

	Research questions and guidelines
	Criticisms of scaling laws
	Beyond Scale: Future Directions for Practical and Sustainable AI
	Conclusion
	Detailed scaling laws
	Scaling laws of language models
	Scaling laws in other modalities
	Scaling laws for domain adaptation
	Scaling laws for model inference
	Scaling laws for efficient models
	Data scaling laws
	Scaling laws for reinforcement learning
	Scaling laws for sparse autoencoders
	Scaling laws for graph neural networks
	Scaling laws in robotics
	Scaling laws for diffusion-based models

	Reproducibility of scaling laws papers

