
Generative Factor Chaining: Coordinated
Manipulation with Diffusion-based Factor Graph

Anonymous Author(s)
Affiliation
Address
email

Abstract: Learning to plan for multi-step, multi-manipulator tasks is notoriously1

difficult because of the large search space and the complex constraint satisfaction2

problems. We present Generative Factor Chaining (GFC), a composable genera-3

tive model for planning. GFC represents a planning problem as a spatial-temporal4

factor graph, where nodes represent objects and robots in the scene, spatial factors5

capture the distributions of valid relationships among nodes, and temporal factors6

represent the distributions of skill transitions. Each factor is implemented as a7

modular diffusion model, which are composed during inference to generate feasi-8

ble long-horizon plans through bi-directional message passing. We show that GFC9

can solve complex bimanual manipulation tasks and exhibits strong generalization10

to unseen planning tasks with novel combinations of objects and constraints. More11

details can be found at: sites.google.com/view/generative-factor-chaining12

Keywords: Manipulation Planning, Bimanual Manipulation, Generative Models13

1 Introduction14

Solving real-world sequential manipulation tasks requires reasoning about sequential dependencies15

among manipulation steps. For example, a robot needs to grip the center or the tail of a hammer,16

instead of its head, in order to subsequently hammer a nail. The complexity of planning problems17

increases when multiple manipulators are involved, where spatial coordination constraints among18

manipulators need to be satisfied. In the example shown in Figure 1, the robot has to reason about19

the optimal pose to grasp the hammer with the left arm, such that the right arm can coordinate to20

re-grasp. Subsequently, the two arms must coordinate to hammer the nail. While classical Task21

and Motion Planning (TAMP) methods have shown to be effective at solving such problems by22

hierarchical decomposition [1], they require accurate system state and kinodynamic model. Further,23

searching in such a large solution space to satisfy numerous constraints poses a severe scalability24

challenge. In this work, we aim to develop a learning-based planning framework to tackle complex25

manipulation tasks with both sequential and spatial coordination constraints.26

To solve complex sequential manipulation problems, prior learning-to-plan methods have largely27

adopted the options framework and modeled the preconditions and effect of the options or primitive28

skills [2, 3, 4, 5, 6, 7]. Key to their successes are skill chaining functions that determine whether29

executing a skill can satisfy the precondition of the next skill in the plan, and eventually the success30

condition of the overall task. However, the use of vectorized states and the assumption of a linear31

chain of sequential dependencies limits the expressiveness of these methods. Consider a task where32

a robot fetches two items from a box. Intuitively, the skills for fetching one object should not33

influence the other. However, due to vectorized states and the linear dependency assumption, the34

skill-chaining methods are forced to model such sequential dependencies. Similarly, a skill intended35

to satisfy a future skill’s condition will be forced to influence the steps in between. Finally, the skill36

chain representation forbids these methods from effectively modeling multiple-arm manipulation37

tasks, where concurrent skills must be planned to jointly satisfy a constraint.38

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

https://sites.google.com/view/generative-factor-chaining

	𝐿!

	𝐻!

	𝑅!

	𝐵!

Left Arm

Hammer

Right Arm

Box

Grasped

	𝐿"

	𝐻"

	𝑅"

	𝐵!

Grasped

Grasped

	𝐿"

	𝐻#

	𝑅#

	𝐵"𝑎#

𝑎"

𝑎$

	𝐿!

	𝐻!

	𝐿!

	𝐻!

	𝐿"

	𝐻"𝑎"

	𝐿!

	𝐻!

	𝑅!

	𝐵!

	𝐿"

	𝐻"

	𝑅"

	𝐵!𝑎#

𝑎"

A

B

C

Inside
Input

Generative
Factor

Chaining

Symbolic-
Geometric

Plan
Solution

Gaussian
Prior

Diffusion-
based
Factor
Graph

Distribution
Composition

Samples
drawn from
composed

distributions

Figure 1: Factor graph for a multi-arm coordination task. Our factor graph-based planning
formulation solves for a sequence of spatial factor graphs from the initial state to a goal factor by
chaining them using temporal skill factors. The figure illustrates the temporal evolution of a factor
graph by executing single or multiple skills sequentially or in-parallel to handover a hammer, pick
up a nail, and coordinate both arms to strike the nail. Task: The task objective is to place the ham-
mer inside the box. However, since the left arm cannot reach the box, the hammer is handed over to
the right arm such that the right arm can complete the task. (a) Inputs: The initial scene and a sym-
bolically feasible spatial-temporal factor graph plan to complete the goal objective. (b) GFC: We
formulate all factors as distributions of the nodes connected to them. GFC represents spatial factors
as classifiers and temporal factors as diffusion models. We leverage compositionality of diffusion
models to compose spatial-temporal distributions and find the joint distribution of the complete plan
directly at inference. Finally, samples drawn from such a joint distribution are symbolically and
geometrically feasible solutions of the whole plan. (c) Output: A sequence of skill choices and
optimizer continuous parameters executed on robots with parameterized skill controllers.

To move beyond the linear chain and model complex coordinated manipulation, we introduce Gener-39

ative Factor Chaining (GFC), a learning-to-plan framework built on flexible composable generative40

models. For a given symbolically feasible plan graph, GFC adopts a spatial-temporal factor graph [8]41

representation, where nodes are objects and robot states, and spatial factors represent the relationship42

constraints between these nodes. Skills are temporal factors that connect these state-factor graphs43

via transition distributions. A single skill factor can simultaneously connect to multiple object and44

robot nodes, allowing for natural representation of complex multi-object interactions and steps that45

necessitate coordination between multiple manipulators. During inference, this factor graph can46

be treated as a probabilistic graphical model, where the learned skill factor and spatial constraint47

factor distributions are composed to form a joint distribution of complete plans. Through 13 long-48

2

horizon manipulation tasks in simulation and the real world, we show that GFC can solve complex49

bimanual manipulation tasks and exhibits strong generalization to unseen planning tasks with novel50

combinations of objects and constraints.51

2 Background52

Diffusion Models. A core component of our method is based on distributions learned using dif-53

fusion models. A diffusion model learns an unknown distribution p(x(0)) from its samples by ap-54

proximating the score function ∇ log p. It consists of two processes: a forward diffusion or noising55

process that progressively injects noise and a reverse diffusion or denoising process that iteratively56

removes noise to recover clean data. The forward process simply adds Gaussian noise ϵ to clean57

data as x(t) = x(0) + σtϵ for a monotonically increasing σt. The reverse process relies on the score58

function ∇x log pt(x(t)) where pt is the distribution of noised data x(t). In practice, the unknown59

score function is estimated using a neural network ϵϕ(x(t), t) by minimizing the denoising score60

matching [9] objective Et,ϵ,x(0) [λ(t)∥ϵ− ϵϕ(x(t), t)∥2] where λ(t) is a time-dependent weight. Sev-61

eral recent works have explored the advantages of diffusion models like scalability [10, 11, 12, 13]62

and the ability to learn multi-modal distributions [14, 15, 16, 17]. We are particularly interested in63

the compositional ability [18, 19, 20, 21, 6] of these models for the proposed method.64

Problem setup. We assume access to a library of parameterized skills [22] π ∼ Π such as primitive65

actions like Pick and Place. Each skill π requires a pre-condition to be fulfilled and is parame-66

terized by a continuous parameter a ∈ Aπ governing the desired motion while executing the skill67

in a state s. For a given symbolically feasible task plan from a starting state s0 to reach a specified68

goal condition sgoal, generated by a task planner or given by an oracle, the problem is to obtain69

the sequence of continuous parameters to make the plan geometrically feasible. For example, given70

a nail at a target location and a hammer on a table, the symbolic plan is to Pick the hammer and71

Reach the nail. A geometrically-feasible plan requires suitable Pick and Reach parameters such72

that the hammer’s head can strike the nail.73

Learning for skill chaining. Existing works along this direction model the planning problem as74

a “chaining” problem: They first model the pre-conditions and effect state distributions for every75

skill π ∼ Π from the available data and a symbolic plan skeleton ΦK = {π1, π2, ..., πK} consisting76

of K-skills is constructed. With this model, they search for the given skill sequence (plan) such77

that each skill satisfies the pre-conditions of the next skill in the plan. STAP [5] used learned pri-78

ors to perform data-driven optimization with the cross-entropy maximization method. In GSC [6],79

the policy and transition model is formulated as a diffusion model based distribution pπ(s, aπ, s
′)80

which allows for flexible chaining. While the forward chain ensures dynamics consistency in the81

plan, backward chain ensures that the goal is reachable from the intermediate states. For a forward82

rollout trajectory τ = {s0, aπ1
, s1, aπ2

, sgoal} associated with skeleton Φ2 = {π1, π2}, the resulting83

forward-backward combination based on GSC [6] can be represented as84

pτ (τ |s0, sgoal) ∝
pπ1

(s0, aπ1
, s1)pπ2

(s1, aπ2
, sgoal)√

pπ1(s1)pπ2(s1)
(1)

3 Method85

We aim to solve unseen long-horizon planning problems by exploiting the inter-dependencies be-86

tween the objects important for the task at hand in the scene. Our method uses a spatial-temporal87

factor graph [8] to represent states and realize their temporal evolution by the application of skills.88

While previous works have considered vectorized state representations making it difficult to de-89

couple spatial-independence, we focus on factorized state representations such that the state of the90

environment is entirely modular, containing information about all the objects in the scenario and91

the task-specific constraints between them. We transform the graph into a probabilistic graphical92

model by representing temporal factors as skill-level transition distributions and spatial factors as93

constraint-satisfaction distributions. A composition of all the factors jointly represents sequential94

and coordinated manipulation plans directly at inference and can be solved by sampling optimal95

node variables using reverse diffusion sampling.96

3

3.1 Representing States, Skills, and Plans in Factor Graphs97

States as factor graphs. We define a factor graph {V,F} of a state s consisting of the decision98

variable V and factor F nodes. Every robot and object is represented as a decision variable node99

v ∈ V containing their respective state. Factors f ∈ F between nodes in a given state are spatial100

constraints. For example, a Grasped spatial factor specifies admissible rigid transforms between a101

gripper and an object. Mathematically, we construct a probabilistic graphical model from to formu-102

late the distribution of a state, p(s) as the composition of all the factor distributions:103

p(s) ∝
∏
f∈F

pf (Sf) where s ≡
⋃
f∈F

Sf (2)

where pf (Sf) represents the joint factor potential of nodes v ∈ Sf ⊆ V , i.e. all nodes involved in a104

factor 1 and s is the joint distribution of all such nodes. This indicates that the joint distribution of105

all the nodes must satisfy each of the factors, also explored by Diffusion-CCSP [21].106

Skills as temporal factors. To represent transitions between states, we adapt parameterized107

skills [22] for a factor graph formulation. We define the preconditions of a skill as a set of nodes108

and factors, thus considering a skill feasible iff the precondition factors are satisfied. For example,109

for state s0 illustrated in Figure 1, the nodes of a factor graph are {L0, H0, R0, B0} and the factors110

existing in this scene are {Grasped(L0, H0)=True}. Now, since this factor is a precondition of the111

skill Move(L0, H0) that moves the hammer in hand to align with the box, it must be satisfied for the112

skill to be feasible. The effect of executing a skill creates a new factor graph s′ by changing the state113

of the nodes involved and, optionally, adding or removing their factors. This results in a temporal114

factor between the transitioned nodes of s and s′ with the continuous action parameter of the skill115

aπ . The skill definitions can be extracted from standard PDDL symbolic skill operator with minor116

adaptations, following the duality of factor graphs and plan skeletons [1]. Eventually, we solve an117

optimization problem: satisfying the Aligned, Grasped, and the transition dynamics constraints by118

finding the correct Move parameters aπ1 . Each skill in a plan introduces additional nodes and factors119

to the factor graph, with added complexity for optimization.120

Mathematically, we can use the distribution p(s) as established in Equation 2 with all the spatial121

factors, and represent the temporal skill factor distribution of kth-skill πk as the joint distribution:122

pπk
(s, a, s′) ≡ pπk

(Sπk
, a, S′

πk
), Sπk

⊆ Vπk
pre which is executable iff the skill’s pre-condition123

sπk
pre ≡ {Vπk

pre,Fπk
pre} is satisfied by the current state i.e. Vπk

pre ⊆ V and Fπk
pre ⊆ F . Once executed,124

it leads to the transitioned state S′
πk

. Based on the above formulation of a short-horizon transition125

distribution, we extend to construct a plan-level distribution as already established by GSC [6] and126

shown in Equation 1. We leverage the modularity of factored states by replacing states s with a set127

of decision variables Sπk
in the interest of skill πk allowing us to rewrite Equation 1 as:128

p(τ) ∝
∏

πk∈Φ pπk
(vk ∈ Vπk

pre, ak, v
′
k ∈ Vπk

effect)√∏
vi∈Vi

pπi−(vi)pπi+(vi)
(3)

if we consider that some set of intermediate nodes Vi are connected by two sequential skills πi− and129

πi+ i.e. Vi ∈ S′
πi−

∩ Sπi+
.130

Representing coordination. A key advantage of the factor graph representation is the ability to131

model multi-arm coordination tasks by connecting the temporal chains of each arm using spatial132

constraints. Such tasks often require skills to be simultaneously executed on each arm to operate133

on different or the same objects. We consider two cases for parallel skill execution, where multiple134

robots are operating on: (1) independent objects and (2) the same object, leading to independent and135

dependent temporal chains respectively. With our factorized state representation, we can indepen-136

dently control the execution of individual skills correlated with the nodes of interest and calculate137

the cumulative effect by applying the union of the effects of all the skills to the current factor graph.138

We consider a scenario shown in Figure 2 (Left). The left and right gripper arm L0, R0 are hold-139

ing the pink C0 and green M0 cup ({Grasped(L0, C0)=True} and {Grasped(R0,M0)=True})140

1i.e. a factor f is included iff there is an edge between f and some v ∈ V which also implies v ∈ Sf ⊆ V .

4

Green Cup

Pink Cup

Right Arm

Left Arm

Pot

Right Arm

Left Arm

Figure 2: (Left) Parallel independent chaining The figure shows the execution of two skills (π1

and π2) in-parallel on two independent sets of nodes (L, C and R, M) to modify their ex-
isting factors (Grasped). The two independent executions can be connected via external fac-
tors µ1 (FixedTransform) introducing spatial dependencies between nodes C and M. (Right) Par-
allel dependent chaining The figure shows overlapping nodes of interest while parallel execution of
two skills. The pot is to be picked by using both arms simultaneously. The effect of this is resulting
factors (Grasped) between (L, P and R, P) and external factor µ2 (FixedTransform) between L
and R. Overlapping nodes satisfy both skill’s temporal effects.

respectively. While both the grippers can independently execute the skill Move to modify separate141

factors (fπ1
1 and fπ2

2), one can add a constrained relationship factor (µ1) between the two mugs142

representing a set of transforms that satisfy the precondition of Pour. Such an ability to augment143

constraints flexibly allows zero-shot coordination planning for unseen tasks at test time even with144

parallel skill executions on the same object as shown in Figure 2 (Right).145

3.2 Generative Factor Chaining146

Now we have a formulation to construct a symbolic spatial-temporal factor graph plan for a task and147

chain them using spatial factor and temporal skill factors sequentially or in parallel. To make this148

plan geometrically feasible, we must find the optimal node variable values. While classical solvers149

require modeling the transition dynamics of complex manipulation tasks, sampling-driven optimiza-150

tion with learned models provides less flexibility and modularity [6]. In this work, we leverage the151

expressive generative model to capture the transition dynamics and exploit the compositionality of152

diffusion models. Given a symbolically feasible factor graph plan, our method, termed Generative153

Factor Chaining (GFC), can flexibly compose spatial-temporal factor distributions to sample optimal154

node variable values for the complete plan.155

Probabilistic model for trajectory plan as spatial-temporal factor graphs. Now, we again con-156

sider the spatial graph for representing the state, where the probability of finding a state s is the joint157

distribution of all the nodes in the factor graph. We will now integrate the spatial factors with the158

temporal factors considering the compensation term introduced in Equation 2 and Equation 3 along159

with the constraint factors across the chain µ ∈ M as:160

p(τ) ∝
∏

πk∈Φ pπk
(vk ∈ Vπk

pre, ak, vk+1 ∈ Vπk

effect)
∏K

k=0

∏
f∈Fk

pf (Sf)√∏
vi∈Vi

pπi−(vi)pπi+
(vi)

ΠMfµ(Sµ) (4)

This completes the joint distribution of all the nodes in the spatial-temporal factor graph plan consid-161

ering the temporal factors for all skills with their pre-condition and effect nodes, all spatial factors for162

all states in the plan, and all intermediate nodes in the temporal chain. We show our implementation163

of this formulation in algorithm 1.164

For the sake of simplicity, we will formulate the probabilistic model for the two chains shown in Fig-165

ure 2 by following the forward-backward analysis introduced by GSC and discussed in section 2.166

We can write the bottom chain can be constructed based on Equation 4 as:167

pπ1(L0, P0, aπ1 , L1, P1)pπ2(R0, P0, aπ2 , R1, P1)√
pπ1(P1)pπ2(P1)

pµ2(L1, R1) (5)

where the factors are dependent on each other. It is worth noting that the augmented constraint168

factors pµ work as a weighing function and can be more precisely represented by pµ(Sµ) ≡ pµ(y =169

1|Sµ) for some constraint-satisfaction index y.170

5

Figure 3: Evaluation tasks: (a) Hook reach: Hook is used to pull an object in the robot’s workspace
followed by other skills. (b) Constrained packing: Multiple objects must be placed on a rack
without collisions. (c) Rearrangement push: Hook is used to push objects to a desired arrangement
followed by other skills. (d) Hammer place: A hammer must be handed over to another manipulator
and placed in a target box. (e) Hammer nail: A hammer must be handed over to another manipulator
and a configuration must be achieved to strike a nail. (f) Pour cup: Cups must be brought in a
configuration that allows successful pouring from one to another.

We align towards diffusion model-based learned distributions to represent the probabilities in the171

formulated probabilistic graphical model. We transform the probabilities into their respective score172

functions ϵ(x(t), t) for a particular reverse diffusion sampling step t and train it using score matching173

loss. Hence, for sampling a scene-graph for Equation 4, we have174

ϵ(τ (t), t) =
∑
πk∈Φ

ϵπk
(v

(t)
k ∈ Vπk

pre, a
(t)
k , v

(t)
k+1 ∈ Vπk

effect, t) +

K∑
k=0

∑
f∈Fk

ϵf (S(t)
f , t)

−1

2

∑
vi∈Vi

[
ϵπi−(v

(t)
i , t)ϵπi+(v

(t)
i , t)

]
+

∑
M

ϵfµ(S
(t)
µ , t)

Following this, we can show for the dependent factor chain in Equation 5 as:175

ϵ(L
(t)
0 , P

(t)
0 , R

(t)
0 , L

(t)
1 , P

(t)
1 , R

(t)
1 , t) = ϵπ1(L

(t)
0 , P

(t)
0 , a(t)

π1
, L

(t)
1 , P

(t)
1 , t)+

ϵπ2(R
(t)
0 , P

(t)
0 , a(t)

π2
R

(t)
1 , P

(t)
1 , t)− 1

2
ϵπ1(P

(t)
1 , t)− 1

2
ϵπ2(P

(t)
1 , t) + ϵµ2(L

(t)
1 , R

(t)
1 , t)

Such a representation leads to a cumulative score calculation of the joint distribution of all the nodes176

of interest to the factor using linear addition and subtraction. We can realize from Equation 3.2177

that the final score function depends on the composition of all the factors in the spatial-temporal178

factor graph. While factors f ∈ F are mostly modeled implicitly by the temporal skills, the external179

factors can be any arbitrary spatial constraints that ensure the satisfaction of the pre-condition of the180

subsequent skills. Hence, with new additions to the set of external factors µ′ ∈ M′, one can reuse181

the same temporal skills with added new spatial constraints.182

4 Experiment183

In this section, we seek to validate the following hypotheses: (1) GFC relaxes strict temporal depen-184

dency to allow spatial-temporal reasoning, performing better or on par with prior works in single-185

arm long-horizon sequential manipulation tasks, (2) GFC can effectively solve unseen coordination186

tasks, and (3) GFC is adept in reasoning about long-horizon action dependency while being robust187

to increasing task horizons. We systematically evaluated our method on 9 long-horizon single-arm188

manipulation tasks from prior works and 4 complex multi-arm coordination tasks in simulation. We189

also demonstrate deploying GFC on a bimanual Franka Panda setup in the real world.190

Relevant baselines and metrics: Our proposed method is based on factorized states and supports191

long-horizon planning for collaborative tasks directly at inference via probabilistic chaining. In this192

context, we consider prior methods based on probabilistic chaining with vectorized states (GSC [6])193

and discriminative search-based approaches for solving long-horizon planning by skill chaining:194

with uniform priors (Random CEM or RCEM) or learned policy priors (STAP [5]). Since all195

prior works use sequential planning, we compare the performance of the proposed method on the196

sequential version of the parallel skeleton. Further information on data collection, training of skill197

diffusion models and real robot setup is provided in Supp. S3 and Supp. S4 respectively.198

GFC relaxes strict linear dependency assumptions. We first evaluate GFC on single-manipulator199

long-horizon tasks introduced by STAP [5]. These tasks consider manipulation by reasoning about200

the usage of a tool (a hook) to manipulate blocks out of or into the robot workspace (sample initial201

states shown in Figure 3(a-c)) and provide the descriptions of each considered task in the caption.202

6

Table 1: We show performance comparison of our method with relevant baselines on 9 single ma-
nipulator tasks and 3 two-manipulator tasks based on 100 trials for each of them. The task length
shows the relative difficulty of solving them. We also conduct evaluation on 3 extended tasks to
show robustness of GFC to task length (|T |) and efficient reasoning about interstep dependencies.

Evaluation Tasks RCEM DAF [4] STAP [5] GSC [6] GFC |T |

Single
Manipulator

Hook Reach
T1 0.54 0.32 0.88 0.84 0.82 4
T2 0.40 0.05 0.82 0.84 0.82 5
T3 0.30 0.00 0.76 0.76 0.80 5

Rearrangement
Push

T1 0.30 0.0 0.40 0.68 0.68 4
T2 0.10 0.08 0.52 0.60 0.65 6
T3 0.02 0.0 0.18 0.18 0.25 8

Constrained
Packing

T1 0.45 0.45 0.65 0.75 0.75 6
T2 0.45 0.70 0.68 1.0 1.0 6
T3 0.10 0.0 0.20 1.0 1.0 8

Bimanual
Manipulation

Hammer Place 0.05 - 0.28 0.41 0.63 8
Pour Cup 0.10 - 0.18 0.15 0.41 4

Hammer Nail 0.02 - 0.15 0.15 0.34 11
Longer Horizon Evaluation Tasks

Handback Hammer Nail 0.24 16
Handback Hammer Nail w/ auxilliary tasks 0.25 18

Handback Hammer Nail w/ extended auxilliary tasks 0.21 20

While these tasks are originally designed to highlight linear sequential dependencies, there are steps203

with indirect dependencies or independence that only GFC can effectively model because of the204

factorized states. For example, in Rearrangement Push, the picking pose of the cube should not205

affect the tool use steps. As shown in Table 1, we observe that the performance of GFC is con-206

sistently on-par with the baseline for tasks with strict linear dependencies such as Hook Reach and207

on-par or better for tasks with more complex dependency structures such as Rearrangement Push.208

This validates our hypothesis that GFC effectively models sequential dependencies, in addition to209

independence and skipped-step dependencies in long-horizon tasks.210

(Pick Pot)

(Pick Pot)

(Move Pot)

(Move Pot)

Figure 4: Evaluating GFC on
bimanual reorientation where
two arms simultaneously pick
and reorient a pot.

GFC can solve complex coordinated manipulation tasks. Here,211

we aim to validate that GFC can effectively plan and solve different212

types of coordinated manipulation tasks. We present results on tasks213

with increased collaboration challenges. First, we consider tasks214

that require coordination but can be serialized into interleaved skill215

chains and solved by prior skill-chaining methods. Hammer Place,216

as shown in Figure S16, is for one arm to pick a hammer, hand it217

over to another arm for placemement into a target box. Hammer218

Nail is an extension where, after hammer handover, first arm picks219

up a nail and both arms coordinate to move to positions such that the220

hammer’s head is aligned with the nail for the subsequent striking221

step. The task is illustrated in Figure S16. As evident from Table 1,222

GFC outperforms all baselines in both tasks. The gap is larger in223

the more challenging Hammer Nail task, which includes additional224

spatial and temporal constraints such as the hammer must be re-225

grasped towards the tail end for the subsequent hammering step,226

and the hammer and nail must be aligned for a successful strike.227

This demonstrates that GFC can effectively model and resolve both spatial and temporal constraints228

in complex tasks.229

GFC can zero-shot generalize to new bimanual tasks by composing single-arm skill chains.230

The Pour Cup (Figure S11) task is to Pick a cup with each arm, Move to position the two cups, and231

Pour the content of one into the other. GFC can directly reuse Pick and Move skill models and adapt232

the Strike skill model for the Pour step by adding a new spatial constraint. Unlike hammer that can233

strike from either face of the head, the cups can only be poured using the open top and not the closed234

bottom. The constraint can be directly added as a spatial factor. A quantitative comparison is shown235

in Table 1. Finally, we consider the Bimanual Reorientation (Figure S12) task where two arms236

must simultaneously operate on the same object of interest (a pot), lift it up, and rotate it to a target237

reorientation angle (about z-axis) as illustrated in Figure 4 (Top) for a 45-deg angle. The tasks must238

be solved via parallel skill chaining with spatial constraints and hence none of the prior baselines can239

be used. The factor graph (Figure 2 Right) includes a spatial fixed transform constraint between both240

the arms and hence the subsequent skills operate while satisfying the constraint. Figure 4 (Bottom)241

7

Figure 5: Linear chaining has limitations. Baseline methods with linear chain assumption suffers
from performance drop when given inconsistent skill chains, where steps with sequential dependen-
cies are swapped. GFC retains high success rate using the parallel skeleton.

Figure 6: Analysis of coordination. We show that the planner is able to reason about the long-
horizon action dependency of Pick and Grasp skills. (Left) While we see that Hammer Place
can be solved by pick/grasp at head/tail and vice versa, to satisfy the precondition of Strike in
Hammer Nail, the hammer must be grasped near tail so must be picked near head. (Right) We show
orientation reasoning, where the hammer can either be grasped on the same side or the flip side.

shows a detailed task success rate breakdown given different orientation goals. The spatial and242

temporal challenges posed by the task are detailed further in Supp. S5.243

GFC can handle independence and inconsistent skill chains. Here, we analyze how independent244

steps in a sequential manipulation chain affects the performance of each method. We consider Ham-245

mer Place, where the order of transporting the cube and handing over hammer is interchangeable.246

As illustrated in Figure 5, we consider a consistent plan skeleton where sequentially-dependent steps247

for the two main objectives, i.e., (1) opening lid then transporting cube and (2) picking, handing over,248

and placing hammers, are completely sequentially. We also consider an inconsistent plan skeleton249

where the steps are interleaved. We show the handover success and overall task success in Fig-250

ure 5 (Right). A successful handover requires choosing compatible parameters for Pick, Regrasp,251

and Move skills. While this increases the difficulty leading to lower scores in the handover suc-252

cess rate, even with a minor distraction in inconsistent skeleton, the previous approaches failed to253

propagate the skipped-step dependencies as evident from the task success rate.254

GFC can reason about action dependency while being robust to increasing task horizons. We255

observe in Figure 6 (left) that while Hammer Place task can be solved by picking or grasping on256

any end of the hammer handle, Hammer Nail requires more constrained parameter sampling. Fur-257

ther, in addition to the parameter selection along the handle axis, the method also samples suitable258

orientation (same or flip side) for grasping as shown by two examples in Figure 6 (right). We further259

give an example of the capability of our method in handling longer horizon inter-step dependencies260

in Figure S17 and simultaneously being robust with respect to the task length as shown in Table 1.261

5 Conclusion262

We presented GFC, a learning-to-plan method for complex coordinated manipulation tasks. GFC263

can flexibly represent multi-arm manipulation with one or more objects with a spatial-temporal264

factor graph. During inference, GFC composes factor graphs where each factor is a diffusion model265

and samples long-horizon plans with reverse denoising. GFC is shown to solve sequential and266

coordinated tasks directly at inference and reason about long-horizon action dependency across267

multiple temporal chains. Our framework generalizes well to unseen multiple-manipulator tasks.268

8

References269

[1] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez.270

Integrated task and motion planning. Annual review of control, robotics, and autonomous271

systems, 4:265–293, 2021.272

[2] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Proceedings of the AAAI273

conference on artificial intelligence, volume 31, 2017.274

[3] D. Driess, J.-S. Ha, and M. Toussaint. Learning to solve sequential physical reasoning prob-275

lems from a scene image. The International Journal of Robotics Research, 40(12-14):1435–276

1466, 2021.277

[4] D. Xu, A. Mandlekar, R. Martı́n-Martı́n, Y. Zhu, S. Savarese, and L. Fei-Fei. Deep affor-278

dance foresight: Planning through what can be done in the future. In 2021 IEEE International279

Conference on Robotics and Automation (ICRA), pages 6206–6213. IEEE, 2021.280

[5] C. Agia, T. Migimatsu, J. Wu, and J. Bohg. Taps: Task-agnostic policy sequencing. arXiv281

preprint arXiv:2210.12250, 2022.282

[6] U. A. Mishra, S. Xue, Y. Chen, and D. Xu. Generative skill chaining: Long-horizon skill283

planning with diffusion models. In 7th Annual Conference on Robot Learning, 2023. URL284

https://openreview.net/forum?id=HtJE9ly5dT.285

[7] J. Liang, M. Sharma, A. LaGrassa, S. Vats, S. Saxena, and O. Kroemer. Search-based task286

planning with learned skill effect models for lifelong robotic manipulation. In 2022 Interna-287

tional Conference on Robotics and Automation (ICRA), pages 6351–6357. IEEE, 2022.288

[8] F. Dellaert. Factor graphs: Exploiting structure in robotics. Annual Review of Control,289

Robotics, and Autonomous Systems, 4:141–166, 2021.290

[9] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based gen-291

erative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456,292

2020.293

[10] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural294

Information Processing Systems, 33:6840–6851, 2020.295

[11] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. arXiv preprint296

arXiv:2010.02502, 2020.297

[12] Q. Zhang, M. Tao, and Y. Chen. gddim: Generalized denoising diffusion implicit models.298

arXiv preprint arXiv:2206.05564, 2022.299

[13] Q. Zhang and Y. Chen. Fast sampling of diffusion models with exponential integrator. arXiv300

preprint arXiv:2204.13902, 2022.301

[14] J. Ho and T. Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,302

2022.303

[15] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. Advances in304

Neural Information Processing Systems, 34:8780–8794, 2021.305

[16] A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and L. Van Gool. Repaint: In-306

painting using denoising diffusion probabilistic models. In Proceedings of the IEEE/CVF307

Conference on Computer Vision and Pattern Recognition, pages 11461–11471, 2022.308

[17] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal. Is conditional generative309

modeling all you need for decision-making? arXiv preprint arXiv:2211.15657, 2022.310

[18] Q. Zhang, J. Song, X. Huang, Y. Chen, and M.-Y. Liu. Diffcollage: Parallel generation of large311

content with diffusion models. ArXiv, abs/2303.17076, 2023.312

[19] T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang, J. Singh, C. Tan, J. Peralta,313

B. Ichter, et al. Scaling robot learning with semantically imagined experience. arXiv preprint314

arXiv:2302.11550, 2023.315

9

https://openreview.net/forum?id=HtJE9ly5dT

[20] Y. Du, S. Li, and I. Mordatch. Compositional visual generation with energy based models.316

Advances in Neural Information Processing Systems, 33:6637–6647, 2020.317

[21] Z. Yang, J. Mao, Y. Du, J. Wu, J. B. Tenenbaum, T. Lozano-Pérez, and L. P. Kaelbling. Com-318

positional diffusion-based continuous constraint solvers. arXiv preprint arXiv:2309.00966,319

2023.320

[22] L. P. Kaelbling and T. Lozano-Pérez. Learning composable models of parameterized skills.321

In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 886–893.322

IEEE, 2017.323

[23] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for tem-324

poral abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.325

[24] D. Shah, P. Xu, Y. Lu, T. Xiao, A. Toshev, S. Levine, and B. Ichter. Value function spaces:326

Skill-centric state abstractions for long-horizon reasoning. arXiv preprint arXiv:2111.03189,327

2021.328

[25] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.329

Advances in neural information processing systems, 31, 2018.330

[26] W. Masson, P. Ranchod, and G. Konidaris. Reinforcement learning with parameterized actions.331

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.332

[27] I. Kapelyukh, V. Vosylius, and E. Johns. Dall-e-bot: Introducing web-scale diffusion models333

to robotics. IEEE Robotics and Automation Letters, 2023.334

[28] T. Pearce, T. Rashid, A. Kanervisto, D. Bignell, M. Sun, R. Georgescu, S. V. Macua, S. Z. Tan,335

I. Momennejad, K. Hofmann, et al. Imitating human behaviour with diffusion models. arXiv336

preprint arXiv:2301.10677, 2023.337

[29] C. Chi, S. Feng, Y. Du, Z. Xu, E. A. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:338

Visuomotor policy learning via action diffusion. ArXiv, abs/2303.04137, 2023.339

[30] U. A. Mishra and Y. Chen. Reorientdiff: Diffusion model based reorientation for object ma-340

nipulation. arXiv preprint arXiv:2303.12700, 2023.341

[31] Y. Du, M. Yang, B. Dai, H. Dai, O. Nachum, J. B. Tenenbaum, D. Schuurmans, and P. Abbeel.342

Learning universal policies via text-guided video generation. ArXiv, abs/2302.00111, 2023.343

[32] M. Reuss, M. Li, X. Jia, and R. Lioutikov. Goal-conditioned imitation learning using score-344

based diffusion policies. arXiv preprint arXiv:2304.02532, 2023.345

[33] M. Reuss and R. Lioutikov. Multimodal diffusion transformer for learning from play. In 2nd346

Workshop on Language and Robot Learning: Language as Grounding, 2023. URL https:347

//openreview.net/forum?id=nvtxqMGpn1.348

[34] M. Janner, Y. Du, J. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior349

synthesis. In International Conference on Machine Learning, 2022.350

[35] J. Chen, J. Li, Y. Huang, C. Garrett, D. Sun, C. Fan, A. Hofmann, C. Mueller, S. Koenig, and351

B. C. Williams. Cooperative task and motion planning for multi-arm assembly systems. arXiv352

preprint arXiv:2203.02475, 2022.353

[36] L. Nägele, A. Hoffmann, A. Schierl, and W. Reif. Legobot: Automated planning for coordi-354

nated multi-robot assembly of lego structures. In 2020 IEEE/RSJ International Conference on355

Intelligent Robots and Systems (IROS), pages 9088–9095. IEEE, 2020.356

[37] L. P. Ureche and A. Billard. Constraints extraction from asymmetrical bimanual tasks and their357

use in coordinated behavior. Robotics and autonomous systems, 103:222–235, 2018.358

[38] F. Amadio, A. Colomé, and C. Torras. Exploiting symmetries in reinforcement learning of359

bimanual robotic tasks. IEEE Robotics and Automation Letters, 4(2):1838–1845, 2019.360

10

https://openreview.net/forum?id=nvtxqMGpn1
https://openreview.net/forum?id=nvtxqMGpn1
https://openreview.net/forum?id=nvtxqMGpn1

[39] R. Chitnis, S. Tulsiani, S. Gupta, and A. Gupta. Efficient bimanual manipulation using learned361

task schemas. In 2020 IEEE International Conference on Robotics and Automation (ICRA),362

pages 1149–1155. IEEE, 2020.363

[40] H. Ha, J. Xu, and S. Song. Learning a decentralized multi-arm motion planner. arXiv preprint364

arXiv:2011.02608, 2020.365

[41] J. Grannen, Y. Wu, B. Vu, and D. Sadigh. Stabilize to act: Learning to coordinate for bimanual366

manipulation. In Conference on Robot Learning, pages 563–576. PMLR, 2023.367

[42] A. Tung, J. Wong, A. Mandlekar, R. Martı́n-Martı́n, Y. Zhu, L. Fei-Fei, and S. Savarese. Learn-368

ing multi-arm manipulation through collaborative teleoperation. In 2021 IEEE International369

Conference on Robotics and Automation (ICRA), pages 9212–9219. IEEE, 2021.370

[43] F. Dellaert. Factor graphs: Exploiting structure in robotics. Annu. Rev. Control. Robotics371

Auton. Syst., 4:141–166, 2021. URL https://api.semanticscholar.org/CorpusID:372

234254791.373

[44] M. Toussaint. Logic-geometric programming: An optimization-based approach to combined374

task and motion planning. In IJCAI, pages 1930–1936, 2015.375

[45] Y. Lee, P. Huang, K. M. Jatavallabhula, A. Z. Li, F. Damken, E. Heiden, K. Smith,376

D. Nowrouzezahrai, F. Ramos, and F. Shkurti. Stamp: Differentiable task and motion planning377

via stein variational gradient descent. arXiv preprint arXiv:2310.01775, 2023.378

[46] F. Dellaert. Factor graphs: Exploiting structure in robotics. Annual Re-379

view of Control, Robotics, and Autonomous Systems, 4(1):141–166, 2021. doi:380

10.1146/annurev-control-061520-010504. URL https://doi.org/10.1146/381

annurev-control-061520-010504.382

[47] Q. Xiao, Z. Zaidi, and M. Gombolay. Multi-camera asynchronous ball localization and trajec-383

tory prediction with factor graphs and human poses. arXiv preprint arXiv:2401.17185, 2024.384

[48] Y. Hao, Y. Gan, B. Yu, Q. Liu, S.-S. Liu, and Y. Zhu. Blitzcrank: Factor graph accelerator for385

motion planning. In 2023 60th ACM/IEEE Design Automation Conference (DAC), pages 1–6.386

IEEE, 2023.387

[49] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez. Active model learning and388

diverse action sampling for task and motion planning. In 2018 IEEE/RSJ International Con-389

ference on Intelligent Robots and Systems (IROS), pages 4107–4114. IEEE, 2018.390

[50] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez. Learning compositional models391

of robot skills for task and motion planning. The International Journal of Robotics Research,392

40(6-7):866–894, 2021.393

[51] B. Kim, L. P. Kaelbling, and T. Lozano-Perez. Guiding the search in continuous state-action394

spaces by learning an action sampling distribution from off-target samples. arXiv preprint395

arXiv:1711.01391, 2017.396

[52] X. Fang, C. R. Garrett, C. Eppner, T. Lozano-Pérez, L. P. Kaelbling, and D. Fox. Dimsam:397

Diffusion models as samplers for task and motion planning under partial observability. arXiv398

preprint arXiv:2306.13196, 2023.399

[53] W. Peebles and S. Xie. Scalable diffusion models with transformers. arXiv preprint400

arXiv:2212.09748, 2022.401

[54] W. Crooks, G. Vukasin, M. O’Sullivan, W. Messner, and C. Rogers. Fin ray® effect inspired402

soft robotic gripper: From the robosoft grand challenge toward optimization. Frontiers in403

Robotics and AI, 3:70, 2016.404

[55] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,405

A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick. Segment anything. arXiv:2304.02643, 2023.406

11

https://api.semanticscholar.org/CorpusID:234254791
https://api.semanticscholar.org/CorpusID:234254791
https://api.semanticscholar.org/CorpusID:234254791
http://dx.doi.org/10.1146/annurev-control-061520-010504
http://dx.doi.org/10.1146/annurev-control-061520-010504
http://dx.doi.org/10.1146/annurev-control-061520-010504
https://doi.org/10.1146/annurev-control-061520-010504
https://doi.org/10.1146/annurev-control-061520-010504
https://doi.org/10.1146/annurev-control-061520-010504

[56] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,407

P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-408

sion. In International conference on machine learning, pages 8748–8763. PMLR, 2021.409

[57] frankx. https://github.com/pantor/frankx, 2021.410

12

https://github.com/pantor/frankx

S1 Main Contributions411

Generative Factor Chaining (GFC) is proposed with the motivation of zero-shot motion planning412

for long-horizon tasks. The goal is to use short-horizon skill transition distributions and efficiently413

compose them to structure a long-horizon task-level distribution at inference. The factorized state414

representation of GFC allows explicit reasoning of inter-object and skill-object interactions and415

satisfying spatial constraints for coordinate manipulation. The primary contributions of GFC are as416

follows:417

1. A generalized task representation to formulate complex long-horizon coordination tasks418

as a spatial-temporal factor graph of single-arm manipulation skill sequences connected via419

spatial dependencies.420

2. A compositional framework to compose short-horizon skill-level transition distributions421

learned via diffusion models to represent long-horizon task-level distributions.422

3. Easy plug-and-play via learning skill distributions with skill-level data only and add it423

to the skill library. Any skill from the library can be plugged as temporal factors in the424

spatial-temporal factor graph directly at inference for a given long-horizon task.425

S2 Related Works426

Task and Motion Planning (TAMP). TAMP frameworks decompose a complex planning problem427

into constraint satisfaction problems at task and motion levels [23, 2, 24, 25, 26]. Notably, Garret428

et al. [1] drew connections between TAMP and factor graphs [8], representing constraints as factors429

and objects/robots as nodes. This formalism naturally allows reusing per-constraint solvers across430

tasks. However, classical TAMP approaches often rely on accurate perception and system dynamics,431

limiting their practical applications and scalability. We instead opt for a learning approach, while our432

compositional factor graph representation remains heavily inspired by the classical TAMP paradigm.433

Generative models for planning. Modern generative models have been applied to offline imita-434

tion [19, 27, 28, 29, 30, 31, 32, 33] and reinforcement learning [34, 17]. In addition to modeling435

complex state and action distributions, generative models have also been shown to encourage com-436

positional generalization [18, 6, 20] by combining data across tasks [17, 34]. Most relevant to us are437

Generative Skill Chaining (GSC) [6] and Diffusion-CCSP [21], both designed to achieve system-438

atic compositional generalization. GSC composes skill chains through a guided diffusion process.439

However, similar to other skill-chaining methods [4, 5], GSC cannot model non-linear dependencies440

such as parallel skills and independence among skills. Diffusion-CCSP trains diffusion models to441

generate object configurations to satisfy spatial constraints, while relying on external solvers to plan442

the manipulation sequence. Our method is a unified framework to solve the combined problem: it443

generates skill plans to satisfy both spatial and temporal constraints represented in a factor graph.444

Learning for coordinated manipulation. Coordinating two or more arms for manipulation445

presents numerous planning challenges [35, 36, 37], including the combinatorial search space446

complex constraints for coordinated motion. Recent works have utilized learning-based frame-447

works [38, 39, 40, 41, 42] in both Reinforcement Learning [38, 40] and offline Imitation Learn-448

ing [42, 41]. However, most existing works have focused on learning task-specific policies [38, 41]449

or require multi-arm demonstration data collected through a specialized teleoperation device [42].450

In contrast, our factor graph-based representation enables solving multi-arm tasks by composing451

multiple single-arm skills through inference-time optimization.452

Factor-graph representation for TAMP. The graphical abstraction of a system for understand-453

ing several inter-dependencies has been used in various domains [43]. Specifically in context to454

task and motion planning (TAMP), such a representation allows the decomposition of multiple455

modalities (discrete and continuous variables) in the state of a system [1]. Solving together for456

discrete (logical decision variables) and continuous (motion parameters) can be formulated as a Hy-457

brid Constraint Satisfaction Problem (H-CSP) problem, Logic-Geometric Program (LGP) [44], and458

more recently by advanced gradient descent methods [45]. By following the factor-graph represen-459

tation, the state space can be represented as a Cartesian product of all the subspaces and the action460

space can be compactly represented based on the modalities they affect. We particularly follow the461

dynamic factor graph representation used by Garrett et al. [1] to represent all the objects and action462

13

parameters as the variable nodes of the graph and all the kinematic inter-dependencies as the factors463

of the graph.464

Optimization for factor graphs. Factor graphs are graphical models where the directed and undi-465

rected factors, respectively represent the joint or conditional distribution of the variable nodes con-466

nected to them. Most directed factors graphs as used for localization [46, 47] are formulated into467

probabilistic graphical models of hidden-markov chains and solved for the maximum a posteri-468

ori (MAP) [46, 48] estimates of the unknown node variables. Particularly in motion planning, opti-469

mizing for all the variable nodes is often formulated as a constraint satisfaction problem [1, 21].470

Additional related works on learning for TAMP. Recent works have shown that a number of471

components of a TAMP system benefit from powerful generative models. Wang et al [49, 50] use472

Gaussian Processes to learn continuous-space sampler for TAMP. Similarly, Kim et al. [51] use473

GANs to learn action samplers. Fang et al. [52] propose to use Diffusion Models to capture complex474

distributions such as Inverse Kinematics solutions, grasps, and contact dynamics. However, they475

still rely on an overarching TAMP system to consume the generated samples to perform planning.476

In contrast, our method directly forms a geometric plan sampler by chaining together factor-level477

diffusion models.478

14

Algorithm 1: Generative Factor Chaining (GFC) Algorithm
1 Hyperparameters:
2 Number of reverse diffusion steps T

3 Inputs:
4 Pre-defined skill library Π = {π1, π2, . . . , πM}
5 Individual skill diffusion score functions ϵπ
6 Task skeleton ΦK = {π0, π1, . . . , πK}: a sequence of skills of length K
7 Scene graph sequence ΦS = {s0, s1, . . . , sK}: a sequence of scene factors of length K +

1 where sk ≡ {Vk,Fk}
8 Goal condition g ≡ {Vg,Fg}
9 Noise schedule σ

10 Initialize t = T = 1
11 Initialize ∆t

12 Initial node sequence x(T) =
[
v
(T)
k ∀ v ∈ Vk, a

(T)
πk , . . .∀ k ∈

[0,K]
]

sampled from N (0, σT I)

13 while t ≥ 0 do

14 // Score of the joint distribution of all the nodes
15 ϵΦ(v

(t)
k ∀ v ∈ Vk, a

(t)
πk , . . .∀ k ∈ [0,K], t) = 0

16 // Calculating the effective score of each node
17 ϵΦ(x

(t), t) =
∑K

k=0 ϵπk
(x(t), t) +

∑K
k=0

∑
f∈Fk

ϵf (x
(t), t) ∀x ∈

x (Computational assumption, Equation 4)

18 // Only for nodes connected with two temporal factors fx,1 and fx,2
19 ϵΦ(x

(t), t) =

ϵΦ(x
(t), t)− 1

2

[
ϵfx,1

(x(t), t) + ϵfx,2
(x(t), t)

]
(Denominator compensation, Equation 4)

20 // calculating updated noised samples for the next reverse diffusion timestep
21 x̃(t−1) = x(t) + σ̇tσtϵΦ(v

(t)
k ∀ v ∈ Vk, a

(t)
πk , . . .∀ k ∈ [0,K], t)∆t

22 t = t−∆t
23 end
24 Return x(0)

15

S3 Experiment Setup, Model Training and Architecture479

Skill Data Collection and Skill Training We consider a finite set of parameterized skills in our480

skill library. While our framework supports flexible addition of new skills to the skill library, we481

choose skills appropriate for the considered tasks. The parameterization, data collection, and train-482

ing method for each of the skills is described as follows:483

1. Pick: Gripper picks up an object from the table and the parameters contain 6-DoF pose in484

the object’s frame of reference. The skill diffusion models are trained on successful pick485

actions on all the available set of objects namely lid, cube, hammer, and nail/stake.486

2. Place: Gripper places an object at the target location and parameters contain 6-DoF pose in487

the place target’s frame of reference. This skill requires specifying two set of parameters,488

the target pose and the target object (e.g. box, table). The picked object is placed and489

successful placements are used to train the skill diffusion model.490

3. Move: Gripper reaches a target location with an object in hand and parameters contain 6-491

DoF pose in the manipulator’s frame of reference within the workspace. This skill captures492

the distribution of the reachable workspace of the robot. When composed with the Move493

skill of the second manipulator, the combined distribution captures the common workspace.494

4. ReGrasp: Gripper grasps object mid-air and the parameters contain 6-DoF pose in the495

object’s frame of reference. While collecting data directly for this skill is non-trivial, we496

consider that if an object is picked up with parameters q1 and moved with parameters q2,497

then the object can be grasped at the workspace location defined by q2 with the ReGrasp498

parameters as q1. Thus, we reuse Pick and Move data to train the skill diffusion model for499

ReGrasp. While this is a design choice, with appropriate skill level data, we can train this500

skill separately too.501

5. Push: Gripper uses the grasped object to push away another object. The skill is motivated502

from prior work [6, 5] where a hook object is used to Push blocks. The parameters of503

this skill are (x, y, r, θ) such that the hook is placed at the (x, y) position on the table and504

pushed by a distance r in the radial direction θ w.r.t. the origin of the manipulator. The505

skill diffusion models is trained following GSC [6].506

6. Pull: Gripper uses the grasped object to pull another object inwards. The skill is also mo-507

tivated from prior work [6, 5] where a hook object is used to Pull blocks. The parameters508

of this skill are (x, y, r, θ) such that the hook is placed at the (x, y) position on the table509

and pulled by a distance r in the radial direction θ w.r.t. the origin of the manipulator. The510

skill diffusion models is trained following GSC [6].511

7. Strike: Gripper strikes another object with one object in hand (e.g., a hammer). As a512

design choice, we do not train a skill diffusion model for this skill. Strike is primarily513

used as a terminal skill. We are only concerned about the pre-condition as their effects can514

be designed manually, which is similar to “subgoal skill” used in prior work. For example,515

in order to satisfy the pre-condition of Strike, the hammer and nail must be aligned.516

This can be satisfied in diverse configurations. However, the effect is achieved through a517

deterministic motion.518

8. Pour: Gripper rotates the object in hand in a pouring fashion. Similar to Strike, we use519

Pour as a terminal skill too. In order to satisfy the pre-condition of Pour, the transform520

between the source and target mug must belong to the family of admissible distributions.521

We achieve the actual trajectory by designing a deterministic motion. With appropriate522

skill level data, we can also train skill diffusion models, however, such improvement is out523

of scope of this work.524

Training. We train individual skill diffusion score-functions using the denoising score-525

matching (DSM) loss following algorithm 2. We collect datasets of transitions observed during526

the execution of a skill on an object and use them to train the score networks. The dataset size varies527

according to the difficulty and diversity of a skill’s execution on a particular object. For example, we528

need 100 successful Pick parameters for training the skill to pick the hammer and 300 successful529

Move parameters to cover the whole workspace of the robot. For ReGrasp, we use both the Pick530

and Move parameters.531

16

Effect of training data coverage. If we consider “ideal” score functions and a perfect representation532

of the factor distributions, a solution exists if there is an overlap between two connected factor533

distributions. If such an overlapping segment does not exist, GFC will not be able to complete the534

spatial-temporal plan. Hence, the training data for each factor (here temporal factors only) must be535

diverse enough to ensure that the overlap exists. For example, a successful handover in Hammer536

Place and Hammer Strike is not possible if the training data only consists of Pick parameters to537

pick the hammer from the center of the handle. Similarly, if the training data for Move does not538

cover the common workspace of both robots, our proposed algorithm will be unable to complete the539

coordinated plan.540

Model architecture. Our transformer-based score-network architecture is derived from the Dif-541

fusion Models with Transformers (DiT) [53] implementation, also open-sourced at: https://542

github.com/facebookresearch/DiT. We follow a similar concept to that of patchifying an im-543

age into many smaller patches, encoding each one of them using a common encoder and passing544

it as a sequence to the transformer architecture with respective positional embeddings. In our case,545

we consider a sequence of nodes consisting of both the object and skill parameters nodes in the546

factor graph as the input sequence. Each node variable is encoded into a common dimension using547

a common object node encoder and skill parameter encoder for object and skill parameter nodes548

respectively. The output is decoded into their respective dimensions using similar decoder setup.549

Time Embedding Positional Embedding

Temporal Skill Factor Score Function

Figure S7: Transformer-based skill diffusion model. We use the noisy pre-condition, action and
effect node value distribution at diffusion step t to obtain the corresponding ϵ during sampling.

Algorithm 2: Training skill score functions for a particular skill π
1 Inputs:
2 Pre-condition, skill parameter and Effect nodes (Vπ

pre, aπ,Vπ
effect)

3 Dataset of transitions D
4 Parameterized skill score function ϵϕ
5 Noise schedule σ
6 DSM loss weight schedule λ

7 while not converged do
8 Sample batch from dataset x(0) ∼ D
9 Sample forward diffusion timestep t ∼ [0, 1]

10 Sample Gaussian noise ϵ ∼ N (0, I)
11 Calculate noise coefficient σt

12 Calculate noisy data x(t) = x(0) + σtϵ
13 end

14 Optimize parameters ϕ using:
15 ∇ϕEt,ϵ,x(0) [λ(t)∥ϵ− ϵϕ(x(t), t)∥2]

16 Return ϵπ ≡ (Optimized) ϵϕ

Hyperparameters and computation. We consider the hyperparameters as shown in Table S2 for550

building our score-network.551

17

https://github.com/facebookresearch/DiT
https://github.com/facebookresearch/DiT
https://github.com/facebookresearch/DiT

Table S2: Hyperparameters for Score-Network with Transformer Backbone

Hyper-parameter Value
Hidden Dimension 128
Number of Blocks 2
Number of Heads 2

MLP Ratio 2
Dropout Probability 0.1

Number of Input Channels Varies (3-11)
Number of Output Channels Varies (3-11)

For the reverse sampling steps while inference, we find the best performance using 50 steps and552

all results have been reported accordingly. Considering skill-object score functions with varying553

input nodes leads to a loss of parallel batched inference (advantage of vectorized states) and hence,554

an increase in computation time as compared to chaining with vectorized states. On an NVIDIA555

RTXTM A6000 GPU, it takes 2.6 secs for the smallest horizon task Pour Cup and 6 secs for the556

longest horizon task Hammer Nail to give 10 candidate node variable values. These candidates are557

sorted based on their extent of goal-condition satisfaction and the top 5 are selected to calculate the558

success performance.559

Example of spatial factors. Previous work [21] considered a family of spatial factors like (left,560

right, top, bottom, near and far) to model collision-free object configurations. In this work,561

we are particularly interested in constructing a family of fixed transforms (FixedTransform) to562

model coordinated manipulation motion. For example, in order to satisfy the pre-condition of563

strike(A, B), the transform between nodes A and B must satisfy a family of transforms sig-564

nifying that B must be Aligned with A to strike it. Thus the factor for strike(A, B) with565

Aligned transforms HA will look like: f ≡ distance(transform(A,B),HA) ≤ permisible error566

for at least one transform. In that case, the distribution of the factor will be: p(f = True|A,B) ∝567

exp[−distance(transform(A,B),HA)]. The score of such a distribution can then be calculated as568

ϵf (A
(t), B(t), t) = −∇A(t),B(t)distance(transform(A(t), B(t)), hA)

where hA ∈ HA is the closest transform to the current transform. The distance between transforms569

is calculated as the summation of the Cartesian distance and the quaternion distance.570

18

S4 Real Robot Experiments571

Kinect Azure
Camera

X

Y
Z

Figure S8: Real-World Experimen-
tal Setup

Complete setup. We use two Franka Panda robot arms572

placed in parallel to demonstrate the coordinated tasks as il-573

lustrated in Figure S8. A pair of flexible Finray fingers [54] is574

attached to the parallel jaw grippers. For each of the arm, we575

set up a Kinect Azure camera calibrated to the origin of the576

arm. We use objects like mallet (hammer), stake (tent peg,577

nail), garden foam, a kitchen pot, two types of mugs and a578

rack for the considered tasks. We use segment-anything [55]579

and CLIP [56] to segment the objects from the RGBD image580

based on text descriptions and use the segmented masks to581

obtain the point clouds for the objects. Finally, we use ICP582

to align the obtained and model point clouds to calculate the583

transformation of the object. The procedure is done for both584

cameras to obtain transforms for all the detected objects in585

both robot’s frame of reference. For a particular object, we586

select the transform from the arm closest to the object to get precise pose estimation (due to better587

depth data). We finally use the obtained transforms to recreate the physical scene in simulation,588

employ GFC in simulation and rollout the results in the real-world. While planning, the Frankx589

controller [57] is used to generate smooth motion toward the desired pose.590

Qualitative analysis. We perform qualitative analysis for all four coordinated tasks using the hard-591

ware setup as shown in Figure S9,Figure S10, Figure S11 and Figure S12. We further provide592

detailed videos of execution in the supplementary video.593

(Pick Hammer) (ReGrasp Hammer)

(Move Hammer)

(Place Hammer)

Figure S9: Coordination task: Hammer Place The left arm must handover the hammer to the right
arm such that the hammer can be placed inside the box.

(Move Hammer)
(ReGrasp Hammer) (Pick Nail) (Move Nail)

(Move Hammer)

Figure S10: Coordination task: Hammer Nail The left arm must handover the hammer to the right
arm and pick up the nail. Both arms have to coordinate in order to move the hammer and nail to a
configuration in which the hammer can strike the nail.

(Pick Pink Mug)
(Pick Green Mug) (Move Green Mug)

(Move Pink Mug) (Pour)

Figure S11: Coordination task: Pour Cup The left arm and right arm must pick up the pink
mug and green mug respectively. Both arms have to coordinate in order to move the mugs to a
configuration in which the left arm can pour the pink mug contents into the green mug.

Failure analysis. We try to analyze the reason for the failure of GFC in certain cases. A limit-594

ing factor of our planning framework is that the nodes denote waypoints required to be reached for595

19

(Pick Pot)

(Pick Pot)

(Move Pot)

(Move Pot)

Figure S12: Coordination task: Bimanual Reorientation The left arm and right arm must pick up
the pot simultaneously. Both arms have to coordinate in order to rotate the pot to a specified target
reorientation angle. For the above illustration, the reorientation angle is 30deg.

completing the geometric execution and satisfying the goal condition without caring about the tra-596

jectory between them. Since we do not explicitly provide the intuition of inverse kinematics (IK) or597

collision, we assume that these properties are learned implicitly using the successful transitions in598

the training data. Hence, apart from sim-to-real gap (consisting of pose-estimation error, nature of599

surfaces in contact, and weight of the objects like hammer and pot), the primary reasons for failure600

are: (1) sampling a pose where IK cannot be computed, i.e. unreachable. (2) The sampled pose is601

not collision-free. We provide sim-to-real gap failures in the supplementary video.602

20

S5 More Details on Evaluation Tasks603

S5.1 Hammer Nail604

Task Description: Given a scene with three boxes, a hammer in placed in one of the box covered605

by a lid as shown in Figure S13. There is a nail on the table. Only left arm can reach the lid, hammer606

and the nail. The task objective is to strike the nail by the hammer within a provided region. There607

is a cube in one of the boxes, picking and placing it are task-irrelevant distractions.608

Left: Pick Lid
Right: Pick Cube

Left: Place Lid
Right: Place Cube

Left: Pick Hammer
Right: Idle

Left: Move Hammer
Right: ReGrasp Hammer

Left: Pick Nail
Right: Idle

Left: Move Nail
Right: Move Hammer

Left: Idle
Right: Strike Hammer

Figure S13: Hammer Nail. The illustration shows the Hammer Nail task. A successful solution to
this task must complete a successful handover and coordinate to align the hammer and the nail to
conduct a successful strike.

What it takes to solve? From a superficial symbolic analysis, the task can be completed if the609

left arm can handover the hammer to the right arm, left arm can pick up the nail to take it to the610

admissible region and the right arm can strike the nail by the hammer. However, the following611

challenges exist:612

1. Hammer must be picked up and moved at a location such that the right arm can re-grasp it613

for a successful handover.614

2. The handover must allow the right arm to satisfy the pre-condition of strike i.e. the right615

arm must grasp the hammer away from the head, hence the left arm must reason and pick616

it up by grasping close to head.617

3. The re-grasp pose will affect the region where the hammer head can be reached. The618

left arm must reason about the hammer head’s reachability to move the nail such that the619

hammer and nail can be aligned.620

Why is this challenging? All the above reasonings are interdependent and the effect of the initial621

pick pose can be seen at multiple stages of the task. This makes the task challenging as the plans622

fails:623

1. if the initial pick pose fails to reason about handover requirements.624

2. if the nail move target pose fails to satisfy the reachability of the hammer-head, which625

actually depends on the handover.626

Hammer
Place Hammer Nail

Hammer
Place Hammer Nail

Figure S14: Handover variations. The hammer handover can be done in multiple ways, four of
which are shown above. While placement of the hammer in the box for Hammer Place task can
be done by re-grasping the hammer anywhere, for hammer strike in Hammer Nail, the hammer is
encouraged to be regrasped near the tail of the handle.

21

Failure cases: The failures in the proposed method occur in the following situations:627

1. Method failure: when it predicts in-feasible poses (where IK cannot be computed) or which628

does not satisfy the pre-condition of the next skill.629

2. Trajectory planning failure: If IK can be computed for current and target poses but no630

collision-free trajectory can be computed (via pybullet-planning cite). This is expected as631

GFC only solves for high-level skill transitions.632

3. Simulation failure: While executing Pick skill, sometimes the contact vectors are noisy633

and hence leads to pick-up failures.634

S5.2 Bimanual Pot Reorientation635

Task Description: Given a pot on a table, the task is to reorient the pot to some target orientation636

angle (along z-axis) using two manipulators as shown in Figure S15. It is worth noting that we have637

Pick and Move skills for individual manipulators such that we know where the pot can be grasped638

and the reachable workspace of the manipulator.639

(Pick Pot)

(Pick Pot)

(Move Pot)

(Move Pot)

Figure S15: Bimanual Pot Reorientation. The task is to coordinate planning strategies to grasp a
pot using two manipulators and rotate it to a target reorientation angle. The task must be done with
only single-manipulator data.

What it takes to solve? This particular task can be completed if:640

1. we find pick poses for both the manipulators.641

2. we find feasible move poses in the workspace that satisfies the target orientation.642

3. we ensure that the relative transform between two gripper poses while picking and in the643

predicted move target poses is the same, because the grasp poses relative to the pot cannot644

change while moving.645

Why is this challenging? The task is challenging because the algorithm must decide the initial pick646

pose by considering sequential and parallel dependencies:647

1. the same pick pose relative to the pot must exist for the target reorientation angle648

2. the move pose for both manipulators must satisfy both the workspace reachability for indi-649

vidual manipulators and also have the same fixed transform as the pick poses.650

Failure cases: The failures in the proposed method occur in the following situations:651

1. Method failure: when it predicts in-feasible poses (where IK cannot be computed) or which652

does not satisfy the fixed transform condition.653

2. Trajectory planning failure: If IK can be computed for current and target poses but no654

collision-free trajectory can be computed (via pybullet-planning cite). This is expected as655

GFC only solves for high-level skill transitions.656

3. Simulation failure: While executing Pick skill, sometimes the contact vectors are noisy657

and hence lead to pick-up failures.658

22

S6 Extending Hammer Nail task to longer horizons659

In order to evaluate the extensive long-horizon planning capabilities of our proposed algorithm,660

we have further extended the Hammer Nail task to longer horizons as shown in Figure S16. The661

extended tasks particularly emphasize adding a second handover such that the hammer is handed662

back to the left arm after a successful hammer strike.663

Figure S16: Extension of Hammer Nail task. We have added three new extensions to the Hammer
Nail task. All of the new tasks focus on handling a second handover. The nature of the first handover
adds further constraints into possible ways to perform the second handover. Further, we add task-
irrelevant skills in between the plan skeleton to evaluate the robustness of GFC and the spatial-
temporal factor graph plan representation.

We classify the failure cases as:664

• Type 1: Method failure i.e. when the proposed algorithm fails to find suitable target param-665

eters.666

• Type 2: Trajectory planning failure i.e. no collision-free trajectory can be computed be-667

tween two suitable poses.668

• Type 3: Simulation failure i.e. when simulator fails to detect suitable contacts.669

23

Table S3: Failure breakdown and task success analysis of hammer nail task and its extensions with
two handovers (based on 100 trials)

Task Task Horizon Type 1
failure

Type 2
failure

Type 3
failure

Task
Success

Hammer Nail 11 42 14 10 34
Extended Hammer Nail v1 16 43 28 5 24
Extended Hammer Nail v2 18 44 21 10 25
Extended Hammer Nail v3 20 41 25 13 21

Now, we show the failure breakdown and task success for all the considered Hammer Nail task and670

their extensions in Table S3. While we see a drop in success rates by adding a second handover to the671

vanilla Hammer Nail task, GFC proved to be robust for all other task-irrelevant skills in the chain.672

The task success of all “two handover” variants is similar even with an increasing task horizon.673

24

S7 Analyzing Inter-step dependencies674

Our work focuses on solving long-horizon tasks that have strong inter-step dependencies [3] and675

requirements for coordinated manipulation [35, 36, 37]. For example, hammering a nail not only676

requires extensive affordance planning to perform a handover but also requires allowing sufficient677

reachable workspace to align the hammer head with the nail. This also affects the success of the678

second handover, thus increasing the action-dependency horizon. Our framework is able to compose679

learned factors (diffusion models) to solve a wide variety of tasks, as long as their solutions fall in680

the combinatorial space.

Improper
ReGrasp

Reduced reachable
workspace of the

hammer

More collision prone
second handover

Pick
Lid

Place
Lid

Pick
Cube

Place
Cube

Pick
Hammer

Move
Hammer

ReGrasp
Hammer IdleIdle

Pick
Nail

Move
Hammer

Move
Nail

Strike
Hammer

Idle

Idle Idle Move
Hammer

ReGrasp
Hammer

Idle

Place
Hammer

Pick
Lid

Place
Lid

Pick
Cube

Place
Cube

Idle Idle

Idle Idle

Pick
Lid

Place
Lid

1

1 2 3 4

2 3 4

Improper
Pick

Reduced options for
collsion-free handover

Figure S17: Inter-step dependencies. We show the steps and reasoning required to solve the Ham-
mer Nail task. An improper initial pick can lead to a failed or unfavorable handover which might
lead to difficulty in performing Strike and the second handover. Thus the algorithm must reason
about inter-step action dependency over longer horizons to solve the task successfully.

681

25

S8 Justifying success rates with breakdowns682

We elaborate on the failure and success breakdown for the vanilla Hammer Nail task in Table S4.683

Revisiting the failure categories, we classify the failure cases as:684

• Type 1: Method failure i.e. when the proposed algorithm fails to find suitable target param-685

eters.686

• Type 2: Trajectory planning failure i.e. no collision-free trajectory can be computed be-687

tween two suitable poses.688

• Type 3: Simulation failure i.e. when simulator fails to detect suitable contacts.689

Table S4: Failure breakdown and task success analysis per skill-step of hammer nail task (based on
100 trials)

Skill.No. Skills Type 1
failure

Type 2
failure

Type 3
failure

Accu.
Success

1 Pick Lid 5 0 0 95
2 Place Lid 0 0 0 95
3 Pick Cube 0 0 0 95
4 Place Cube 6 0 0 89
5 Pick Hammer 3 0 2 84

6-7 Move Hammer - Regrasp Hammer 8 6 0 70
8 Pick Nail 4 0 8 58

9-10 Move Nail - Move Hammer 11 8 0 39
11 Hammer Strike 5 0 0 34

We also elaborate on the failure and success breakdown for the bimanual reorientation task in Ta-690

ble S5. It is worth to be noted that the skills are executed in parallel and the serialized representation691

of the skill sequence is shown only as a part of the analysis.692

Table S5: Failure breakdown and task success analysis per skill step of bimanual pot reorientation
(based on 100 trials)

Skill.No. Skills Type 1
failure

Type 2
failure

Type 3
failure

Accu.
Success

1 Grasp Pot Left 13 0 4 83
2 Grasp Pot Right 12 0 3 68

3-4 Move Pot Left - Move Pot Right 13 12 0 53

We further continue the analysis for all the two handover extensions of the Hammer Nail task,693

namely for Extended Hammer Nail v1 in Table S6, for Extended Hammer Nail v2 in Table S7,694

and for Extended Hammer Nail v3 in Table S8. We primarily note the accumulative success at the695

first handover, coordination for the hammer Strike, and the second handover. With an increasing696

task horizon, the proposed approach is invariant to task-irrelevant distractions and maintains similar697

success.698

26

Table S6: Failure breakdown and task success analysis per skill-step of hammer nail task extension
v1 with two handovers (based on 100 trials)

Skill.No. Skills Type 1
failure

Type 2
failure

Type 3
failure

Accu.
Success

1 Pick Lid 4 0 0 96
2 Place Lid 0 0 0 96
3 Pick Cube 0 0 0 96
4 Place Cube 5 0 0 91
5 Pick Hammer 4 0 2 85

6-7 Move Hammer - Regrasp Hammer 11 13 0 61
8 Pick Nail 3 0 3 55

9-10 Move Nail - Move Hammer 7 9 0 39
11 Hammer Strike 3 0 0 36

12-13 Move Hammer - Regrasp Hammer 4 6 0 26
14 Place Hammer 0 0 0 26
15 Pick Lid 2 0 0 24
16 Place Lid 0 0 0 24

Table S7: Failure breakdown and task success analysis per skill-step of hammer nail task extension
v2 with two handovers and some task-irrelevant skills (based on 100 trials)

Skill No. Skills Type 1
failure

Type 2
failure

Type 3
failure

Accu.
Success

1 Pick Lid 4 0 0 96
2 Place Lid 0 0 0 96
3 Pick cube 0 0 0 96
4 Place Cube 4 0 0 92
5 Pick Hammer 5 0 2 85

6-7 Move Hammer - Regrasp Hammer 12 14 0 59
8 Pick Nail 2 0 1 56

9-10 Move Nail - Move Hammer 4 0 7 45
11 Hammer Strike 1 0 0 44
12 Pick Lid 3 0 0 41
13 Place Lid 0 0 0 41

14-15 Move Hammer - Regrasp Hammer 6 7 0 28
16 Place Hammer 0 0 0 28
17 Pick Lid 3 0 0 25
18 Place Lid 0 0 0 25

27

Table S8: Failure breakdown and task success analysis per skill-step of hammer nail task extension
v3 with two handovers and many task-irrelevant skills (based on 100 trials)

Skill No. Skills Type 1
failure

Type 2
failure

Type 3
failure

Accu.
Success

1 Pick Lid 5 0 0 95
2 Place Lid 0 0 0 95
3 Pick cube 0 0 2 93
4 Place Cube 4 0 0 89
5 Pick Hammer 3 0 2 84

6-7 Move Hammer - Regrasp Hammer 4 8 0 72
8 Pick Nail 3 0 6 63

9-10 Move Nail - Move Hammer 7 9 0 47
11 Hammer Strike 5 0 0 42
12 Pick Lid 1 0 2 39
13 Place Lid 0 0 0 39

14-15 Move Hammer - Regrasp Hammer 5 8 0 26
16 Pick cube 0 0 0 26
17 Place Cube 1 0 0 25
18 Place Hammer 3 0 0 22
19 Pick Lid 0 0 1 21
20 Place Lid 0 0 0 21

28

	Introduction
	Background
	Method
	Representing States, Skills, and Plans in Factor Graphs
	Generative Factor Chaining

	Experiment
	Conclusion
	Main Contributions
	Related Works
	Experiment Setup, Model Training and Architecture
	Real Robot Experiments
	More Details on Evaluation Tasks
	Hammer Nail
	Bimanual Pot Reorientation

	Extending Hammer Nail task to longer horizons
	Analyzing Inter-step dependencies
	Justifying success rates with breakdowns

