

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OBJECT-CONSISTENT DISTILLATION FOR TEXT-TO-3D GENERATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Score Distillation Sampling (SDS) struggles to ensure that the pseudo ground truths from different viewpoints generated by the diffusion model correspond to the same 3D object in 3D generation. To analyze object inconsistency in SDS more directly and precisely, we theoretically model the renderings of a 3D object under continuous viewpoints as a connected subset of the image space. Based on this formulation, we introduce an object consistency constraint and identify two key sources of inconsistency: cross-view image discrepancy variation and cross-view distributional estimation error. In contrast to prior works, we focus on the former and propose Object-Consistent Distillation (OCD) which enforces the object consistency constraint during the generation of multi-view pseudo ground truths. Specifically, we estimate a dynamic object proxy using a sliding window and move the rendering of each viewpoint toward this proxy. We compare OCD with several recent generative baselines, and experiments demonstrate that OCD significantly mitigates irregular structures and unrelated artifacts in the generated objects. Code is provided in the supplemental material.

1 INTRODUCTION

In recent years, 3D generation has been attracting increasing attention due to its closer alignment with the physical world and its broad application prospects in fields such as human digitization [27], scene generation [3], and 3D editing [12]. However, training generative models typically demands large-scale datasets, and the collection of 3D data remains challenging due to factors such as acquisition difficulty and high annotation costs [38]. Fortunately, recent advancements in 2D generative models, especially diffusion models [15; 44; 35], have achieved remarkable success, reaching photo-realistic levels in terms of fidelity, diversity, and controllability. As a result, leveraging 2D generative models for 3D object synthesis holds great promise.

A prevailing paradigm for leveraging 2D generative models to synthesize 3D objects is Score Distillation Sampling (SDS) [33], whose core idea is to utilize diffusion models to supervise multi-view 2D renderings. Specifically, a 3D representation is rendered into 2D images from multiple camera viewpoints, which are then processed by a diffusion model to obtain denoised targets through a forward and reverse denoising process, serving as pseudo ground truth (pseudo-GT) for optimizing the 3D representation. Ideally, multi-view pseudo-GTs should correspond to consistent renderings of a single realistic 3D object. However, due to the one-to-many nature of the mapping between a text prompt and realistic images, the pseudo-GTs generated from different viewpoints may correspond to different 3D objects. As illustrated in Figure 1, varying only the rendering viewpoint while keeping the prompt fixed leads to pseudo-GTs that differ in shape, color, and background, a phenomenon we term object inconsistency. Such inconsistency can degrade the 3D optimization process, causing the resulting object to exhibit unnatural geometry or undesired artifacts. Recent works have investigated the inconsistency of multi-view images, and have proposed mitigating this issue by replacing the stochastic noise in SDS with more structured or deterministic noise [50; 23; 28]. While these methods have demonstrated improvements in visual coherence and clarity, they fall short of providing a comprehensive analysis of the root causes of object inconsistency. In this work, we first provide a theoretical perspective by characterizing the set of 2D renderings of a 3D object as a connected set in image space. Building on this insight, we show that the pseudo-GTs derived in the SDS paradigm may correspond to various underlying 3D objects due to the lack of object consistency constraints. Additionally, our analysis identifies two main sources of object inconsistency: cross-view image discrepancy variation and cross-view distributional estimation error. Unlike prior works [50; 23; 28]

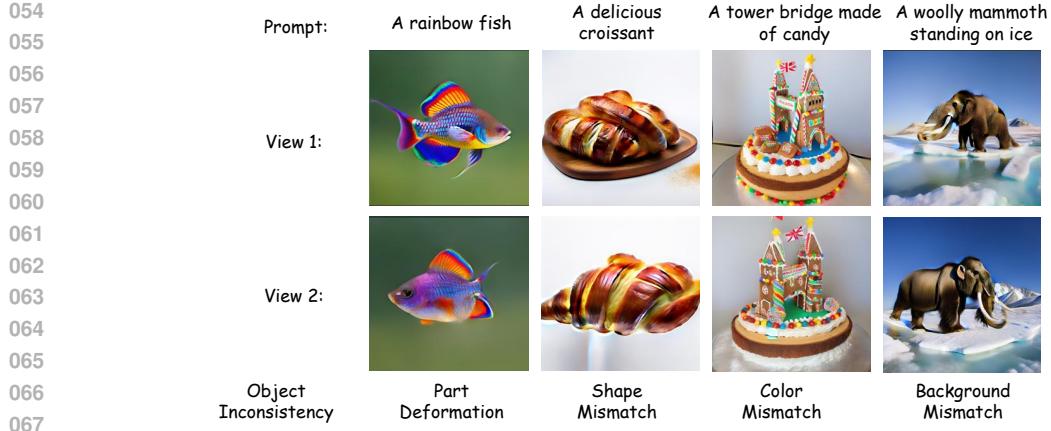


Figure 1: Given the same prompt, renderings from different viewpoints are input into the diffusion model, resulting in real images that correspond to inconsistent objects.

that primarily focus on the latter, we propose Object-Consistent Distillation (OCD), which explicitly enforces object consistency across multiple views. Specifically, we estimate a cross-view object proxy using previously sampled random viewpoints, serving as the representation of the target object, and each view-specific rendering is moved toward this estimated object proxy before being passed to the diffusion model. By introducing this object consistency constraint, the pseudo-GTs from different views are encouraged to align with the same underlying 3D object.

In summary, our main contributions are as follows:

- We conduct a theoretical analysis of the relationship between 3D objects and their 2D renderings, and formulate that under continuous viewpoint rendering, a 3D object corresponds to a connected subset of the image space.
- By examining the diffusion and denoising processes in diffusion models, we identify the sources of multi-view inconsistency in pseudo-GTs, attributing them to cross-view image discrepancy variation and cross-view distributional estimation error, noting that previous studies have largely neglected the former by focusing solely on the latter.
- We propose Object-Consistent Distillation (OCD), which moves view-specific renderings towards a cross-view object proxy, leading to more consistent and coherent supervision across views.
- We compare OCD with several state-of-the-art score distillation methods and demonstrate that it significantly improves generation fidelity and object coherence, while also alleviating the Janus problem, all with negligible additional computational and memory overhead.

2 RELATED WORK

Diffusion Models. The generation process of diffusion models consists of two key stages [40; 15; 41]: a forward diffusion process that gradually adds Gaussian noise to the image, and a reverse denoising process that reconstructs the image from the noisy input. By incorporating conditional prompts into the denoising process, the model can be guided to generate images that align with the given conditions [14]. Owing to their impressive generative capabilities, particularly in producing detailed and diverse samples, diffusion models have been widely adopted in various generative tasks, such as image generation [19; 25; 9], image super-resolution [34; 36], and image editing [32; 2] and are also considered promising for 3D generation [33; 45; 24; 26]. Despite the popularity of diffusion models for their diverse outputs [7; 4; 51], this diversity can compromise multi-view consistency when used as supervision for 3D reconstruction.

Score Distillation Sampling for 3D Content Generation. Score Distillation Sampling (SDS) [33; 45] is a paradigm that extends diffusion models, originally designed for 2D image generation, to the domain of 3D object synthesis. In this framework, a 3D representation is rendered into 2D images from multiple views, and a pretrained diffusion model provides supervision signals for these rendered images. Rather than requiring explicit 3D supervision, SDS leverages the generative power of large-scale diffusion models to indirectly guide the learning of 3D representations. Building

upon the successful text-to-3D paradigm established by SDS, subsequent studies have improved the generation process, achieving higher fidelity and greater diversity from multiple perspectives. For instance, they adopt annealed diffusion timestep strategies [18; 54; 22], introduce structured diffusion noise [28; 23; 50], decouple [6] or randomize 3D representations [47], and employ enhanced classifier-free guidance [52]. Nevertheless, the outputs of SDS often exhibit repeated patterns or structural collapse across views, which are manifestations of the multi-view consistency problem. To address this issue, mainstream approaches can be broadly divided into two categories. The first incorporates external prior knowledge, typically by leveraging additional datasets, 3D models or classifier [31; 39; 37; 5; 53], while the second enforces consistency regularizations within the original framework. The latter takes various forms, such as clipping the diffusion model’s predicted scores [16], debiasing the input prompt [16; 1], introducing additional consistency losses [21; 48], aligning noise across different views [50; 23], and adopting adaptive view sampling strategies [17]. Unlike prior multi-view consistency methods, our approach analyzes the relationships across renderings, through which consistency constraints are effectively enforced.

3 PRELIMINARIES

Diffusion Models. Diffusion models are a class of deep generative models built upon two processes [15; 40]: a forward diffusion process that gradually adds Gaussian noise to real images, and a reverse denoising process that reconstructs the original images from pure Gaussian noise. Formally, given a data sample x_0 drawn from the real data distribution $p_0(x_0)$, the diffusion process incrementally adds Gaussian noise ϵ over time. At a specific time step t , the noisy data x_t follows the distribution $\mathcal{N}(\sqrt{\bar{\alpha}_t}x_0, (1 - \bar{\alpha}_t)I)$, where $\bar{\alpha}_t = \prod_{i=1}^t \alpha_t$ and α_t is a time-dependent hyperparameter predefined by the diffusion schedule. In the reverse process, the diffusion model conditionally predicts the added noise at each time step given a prompt y . The model is then trained by minimizing the mean squared error (MSE) between the predicted noise $\epsilon_\phi(x_t, t, y)$ and the true noise ϵ :

$$\mathcal{L}_{mse} = \mathbb{E}_{x_0, \epsilon, t} [\omega(t) \|\epsilon_\phi(x_t, t, y) - \epsilon\|_2^2], \quad (1)$$

where $\omega(t)$ denotes the weights at timestep t . After training, the denoised result can be obtained using the following simplified iterative formula:

$$x_{t-1} = \frac{1}{\sqrt{\bar{\alpha}_t}} (x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\phi(x_t, t, y)) \quad (2)$$

Through this formulation, pure noise is transformed into real data via the denoising process.

Score Distillation Sampling. Diffusion models have demonstrated remarkable performance in terms of both generation quality and diversity [7]. Leveraging this advantage, [33] first proposed the Score Distillation Sampling (SDS) framework, which utilizes the realistic images generated by a diffusion model as pseudo-GTs for 3D model optimization. Specifically, SDS first renders a randomly initialized 3D object representation θ into 2D images $g(\theta, c)$ from multiple viewpoints c . These images are perturbed with Gaussian noise at randomly sampled timestep t :

$$x_t(c) = \sqrt{\bar{\alpha}_t}g(\theta, c) + \sqrt{1 - \bar{\alpha}_t}\epsilon \quad (3)$$

Subsequently, the noisy images $x_t(c)$ are fed into the diffusion model ϕ , which generates a conditional denoising prediction $\epsilon_\phi(x_t, t, y)$ guided by a given prompt y . Since SDS mirrors the two processes of diffusion models, the resulting gradient with respect to θ closely resembles Equation 1:

$$\nabla_\theta \mathcal{L}_{SDS} = \mathbb{E}_{t, \epsilon, c} [\omega(t) (\epsilon_\phi(x_t, t, y) - \epsilon)] \frac{\partial g(\theta, c)}{\partial \theta} \quad (4)$$

In the absence of direct 3D supervision, SDS successfully enables gradient updates to the 3D object by rendering it into images in a differentiable manner and supervising in the image space.

4 VARIABILITY OF UNDERLYING 3D OBJECTS IN SDS

By examining the gradient shown in Equation 4, it is observed that the generation of pseudo-GTs in SDS is performed independently for each viewpoint. Specifically, the diffusion model takes as input a rendering from a single viewpoint and performs diffusion and denoising operations under the guidance of a view-shared prompt. Ideally, each rendering carries view-specific information and, through the denoising process, reconstructs a realistic image of a realistic 3D object described by

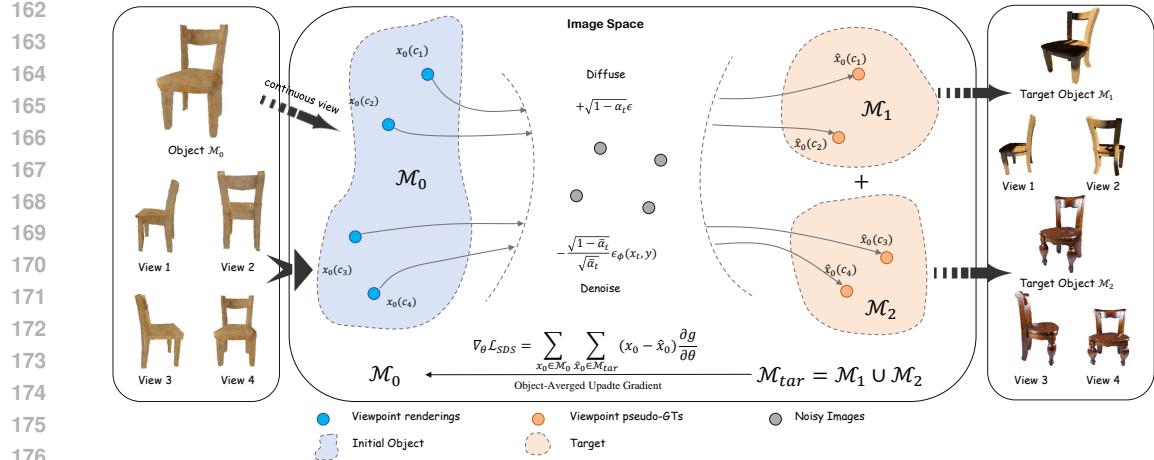


Figure 2: The relationship between 3D objects and their 2D renderings in SDS. The set of images obtained by rendering a 3D object from continuous viewpoints forms a connected subset of the image space. SDS randomly samples viewpoint images from this subset and applies independent noise and denoising to each. Since pseudo-GTs for each view are generated independently, the corresponding denoised pseudo-GTs are not guaranteed to be consistent. As a result, the optimization tends to drive the initial object towards an average of multiple potential target objects.

the prompt from its viewpoint. However, due to the inherently one-to-many relationship between a text prompt and realistic images, feeding renderings from different viewpoints as input can produce significantly different outputs, which may correspond to various underlying 3D objects. Since both the renderings and the pseudo ground truth are images, we analyze the variability of the underlying 3D objects in SDS within the image space.

First, the pseudo-GT $\hat{x}_0(c|y)$, obtained by feeding the rendered image under viewpoint c , $x_0(c) = g(\theta, c)$, into the diffusion model, is computed as:

$$\hat{x}_0(c|y) = \frac{x_t(c) - \sqrt{1 - \bar{\alpha}_t}\epsilon_\phi(x_t, t, y)}{\sqrt{\bar{\alpha}_t}} \quad (5)$$

Then, based on the diffusion process applied to $x_0(c)$, we can transform the noise alignment loss in Equation 4 into image alignment form:

$$\nabla_\theta \mathcal{L}_{SDS} = \mathbb{E}_{t, \epsilon, c} \left[\frac{\omega(t)}{\gamma(t)} (x_0(c) - \hat{x}_0(c|y)) \right] \frac{\partial g}{\partial \theta} \quad (6)$$

Here, $\gamma(t) = \sqrt{1 - \bar{\alpha}_t} / \sqrt{\bar{\alpha}_t}$. Equation 6 reveals that the underlying principle of SDS is to supervise single-view images using pseudo-GTs generated by a diffusion model, thereby updating the 3D object representation. The central question is whether, by modifying only the input image to a diffusion model, the resulting outputs can consistently depict the same underlying object. Intuitively, this consistency is difficult to guarantee, as diffusion models are highly sensitive to input variations, and a single text prompt may correspond to a diverse set of real-world images. To examine this issue, we develop a theoretical framework aimed at representing 3D objects in image space, bridging the dimensional gap between images and objects. This enables a direct and intuitive representation of the 3D object indicated by the pseudo-GTs, thereby facilitating analysis of the variability of the underlying 3D objects.

We begin with an intuitive insight: for a 3D object, its rendering under a camera view c corresponds to a single point in image space. As the view c varies continuously, the corresponding renderings change continuously in image space. Motivated by this insight, we define the view parameter c as a vector that encodes the coordinates determining the camera's position and orientation, as well as the location of a point light source [30], and proceed to state the following theorem.

Theorem 1 (Connectedness of the Viewpoint–Image Set). *Let:*

- $C \subset \mathbb{R}^d$ be a connected set representing the continuous viewpoint parameter space;
- $\mathcal{I} = \mathbb{R}^N$ be the image space, where $N = 3HW$ (flattening an $H \times W$ RGB image);

216 • $g : C \rightarrow \mathcal{I}$ be a continuous rendering function, i.e., $g \in C^0(C, \mathcal{I})$.
 217

218 Then the image set $\mathcal{M} := g(C) \subset \mathcal{I}$ is connected.
 219

220 The formal proof of Theorem 1 is provided in the Appendix A.1. Based on Theorem 1, the optimization
 221 paradigm of SDS becomes more intuitive. As shown in Figure 2, within an initial object (the
 222 object to be optimized), denoted as an image set \mathcal{M}_0 , SDS randomly samples a finite set of views and
 223 renders a set of images $\{x_0(c_1), x_0(c_2), \dots, x_0(c_n)\}$. For each image, the diffusion model generates
 224 a corresponding pseudo-GT, $\{\hat{x}_0(c_1|y), \hat{x}_0(c_2|y), \dots, \hat{x}_0(c_n|y)\}$. Next we analyze whether these
 225 pseudo-GTs could originate from the same object or, equivalently, from the same region.
 226

227 If the pseudo-GTs generated from all sampled views correspond to the same target object \mathcal{M}_{target} ,
 228 these randomly sampled viewpoint images are expected to lie in a connected set according to
 229 Theorem 1. To formalize the notion, we propose the following object consistency constraint:
 230

$$||\hat{x}_0(c_1|y) - \hat{x}_0(c_2|y)||_2 \leq \delta(c_1, c_2), \quad (7)$$

231 where $\delta(c_1, c_2)$ denotes the distance between the pseudo-GTs of two viewpoints in the target object.
 232 While diffusion models are celebrated for their generative diversity [34; 15; 8], producing a wide
 233 range of realistic outputs depending on the input and injected noise, this very property becomes
 234 problematic in 3D generation tasks. When renderings originate from different viewpoints and are
 235 independently corrupted by noise, their resulting latent representations diverge significantly. As a
 236 consequence, the final outputs often fail to maintain consistency across views, violating the object
 237 consistency constraint in Equation 7. This ultimately results in inconsistencies in the underlying 3D
 238 object representations inferred from different viewpoints:
 239

$$\nabla_{\theta} \mathcal{L}_{SDS} = \sum_{k=1}^m \mathbb{E}_{t, \epsilon} \left[\frac{\omega(t)}{\gamma(t)} \sum_{x_0 \in \mathcal{M}_0} \sum_{\hat{x}_0 \in \mathcal{M}_{tar}} (x_0 - \hat{x}_0) \right] \frac{\partial g(\theta, c)}{\partial \theta}, \quad \mathcal{M}_{tar} = \bigcup_{k=1}^m \mathcal{M}_k \quad (8)$$

240 Here, \mathcal{M}_{tar} denotes the composite target object formed by the m real objects to which the n pseudo-
 241 labels. As a result, the initial object is implicitly encouraged to update toward all m target objects
 242 simultaneously. In other words, the optimization process effectively treats the average of these m
 243 objects as an object-level pseudo-GT, as illustrated in Figure 2. However, due to structural, color, and
 244 background variations among these target objects, this averaging process can introduce artifacts into
 245 the generated geometry, including unnatural structures or elements unrelated to the intended subject.
 246

247 5 OBJECT-CONSISTENT SCORE DISTILLATION

248 To address the inconsistency of pseudo-GTs from different viewpoints with respect to the underlying
 249 3D object, we investigate the generation process of viewpoint-specific pseudo-GTs, aiming to identify
 250 the contributing factors to such inconsistency. Specifically, for an image $x_0(c_i)$ rendered from an
 251 arbitrary viewpoint c_i , the pseudo-GT is obtained through a process of diffusion and denoising:
 252

$$\hat{x}_0(c_i|y) = x_0(c_i) + \gamma(t_i)(\epsilon - \epsilon_{\theta}(x_{t_i}(c_i), t_i, y)), \quad i \in \{1, 2, \dots, n\} \quad (9)$$

253 Since the combination of random noise ϵ and the predicted noise $\epsilon_{\theta}(x_{t_i}(c_i), t_i, y)$ are used to
 254 transform the original image into a realistic one, effectively estimating the discrepancy between
 255 the original and target distributions, we denote their combined noise as $\delta_D(c_i|y) = \gamma(t_i)(\epsilon -$
 256 $\epsilon_{\theta}(x_{t_i}(c_i), t_i, y))$. Subsequently, we replace the pseudo ground truth in the object consistency
 257 constraint in Equation 7:
 258

$$||x_0(c_i) - x_0(c_j) + \delta_D(c_i|y) - \delta_D(c_j|y)||_2 \leq \delta(c_i, c_j), \quad \forall i \neq j, i, j \in \{1, 2, \dots, n\} \quad (10)$$

259 It is observed that the failure of the object consistency constraint arises from two main sources:
 260 cross-view image discrepancy variation, $x_0(c_i) - x_0(c_j)$, and cross-view distributional estimation
 261 error, $\delta_D(c_i|y) - \delta_D(c_j|y)$. Most existing works [50; 23] attribute multi-view inconsistency solely to
 262 the latter, while overlooking the former. They argue that the randomness and independence of noise
 263 across different viewpoints prevent diffusion models from generating consistent pseudo ground truths.
 264 In contrast, we place greater emphasis on the former, which refers to the fact that discrepancies in the
 265 renderings themselves across different viewpoints can lead to variations in their positions in the latent
 266 space, thereby amplifying the diversity in the outputs of the diffusion model. For example, as shown
 267 in Figure 2, the inconsistencies between the 3D chairs corresponding to the pseudo-GTs of views
 268 1 and 3 can be attributed approximately half to the diffusion and denoising process, and half to the
 269 intrinsic differences between the two renderings themselves.

Since our focus is on the differences between renderings from different viewpoints, we first decouple the distributional discrepancy from the cross-view image difference:

$$\|x_0(c_i) - x_0(c_j)\|_2 \leq \tilde{\delta}(c_i, c_j) \quad (11)$$

$$\tilde{\delta}(c_i, c_j) = \delta(c_i, c_j) - \|\delta_D(c_i) - \delta_D(c_j)\|_2 \quad (12)$$

In Equation 11, enforcing object consistency for a given viewpoint c_i requires computing the distances between c_i and all other sampled viewpoints, resulting in $n - 1$ pairwise constraints. To reduce the computational overhead, we propose to approximate this by using the distance between each viewpoint and an estimated object proxy of the target object, denoted as O_i :

$$\|x_0(c_i) - O_i\|_2 < \tilde{\delta}(c_i, O_i) \quad (13)$$

$$O_i = \sum_{j=i-l}^{j=i-1} \hat{x}_0(c_j) \quad (14)$$

Since the sampled viewpoints in SDS are optimized sequentially, we estimate the object proxy for each viewpoint using a sliding window. As shown in Equation 14 and Fig 3, the sliding window spans the preceding l viewpoints relative to the current one, and the mean of the pseudo ground truths within the windowed views is taken as the object proxy. Note that the window size l is small relative to the total number of views (e.g., about 1%), allowing the pseudo-ground-truths within the window to be approximated as renderings of the same target object.

Another issue lies in how to modify the input image of the diffusion model based on the object consistency constraint. Our intuition is that this constraint enforces the input image to be sufficiently close to the object proxy O , or equivalently, encourages the image to move towards the proxy. To this end, we adopt a moving average strategy to move the image towards the object proxy:

$$\tilde{x}_0(c_i) = \tau x_0(c_i) + (1 - \tau)O_i, \quad (15)$$

where we relax the distance $\tilde{\delta}$ to a momentum hyperparameter τ . A smaller value of τ implies that the moved image is closer to the object proxy, which in turn corresponds to a tighter $\tilde{\delta}$ constraint.

By replacing the view image in Equatio 9 with the moved version, our method yields the update gradient for the 3D object representation as follows:

$$\nabla_{\theta} \mathcal{L}_{SDS} = \mathbb{E}_{t, \epsilon, c} \left[\frac{\omega(t)}{\gamma(t)} (x_0(c) - \tilde{x}_0(c) - \delta_D(c|y)) \right] \frac{\partial g(\theta, c)}{\partial \theta} \quad (16)$$

It is important to emphasize that our method only modifies the images fed into the diffusion model to enforce consistency of target object, without altering the original per-view images themselves.

6 EXPERIMENTS

Following prior work [28; 50], we employ the same Stable Diffusion v2.1 [34] model and the Three-studio codebase [11]. We compare our proposed OCD method against three baselines: SDS [33], SDI [28], and CFD [50]. Specifically, these baselines differ in their approaches to estimating the distributional discrepancy δ_D : SDS uses view-independent random noise, SDI leverages DDIM inversion to predict noise, and CFD employs cross-view consistent noise. Our final results combine OCD with these three baselines. Note that since the SDS code is not publicly available, we approximate SDS by replacing the cross-view consistent noise in CFD with view-independent random noise. Moreover, we adopt only the single-stage pipeline from CFD, i.e., directly distilling Stable Diffusion without any initialization. The momentum hyperparameter is set to $\tau = 0.9$ and , and the window length l is defined as 1% of the total training steps (i.e., the total number of sampled views). Experiments are

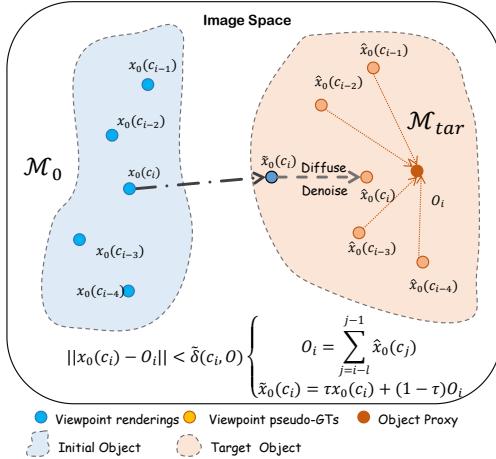


Figure 3: Overview of Object-Consistent Distillation. For each viewpoint, an object proxy is estimated based on the pseudo-GTs from preceding views. The current view’s rendering is then moved toward this proxy, enforcing consistency such that the pseudo ground truths from different viewpoints correspond to the same target object.

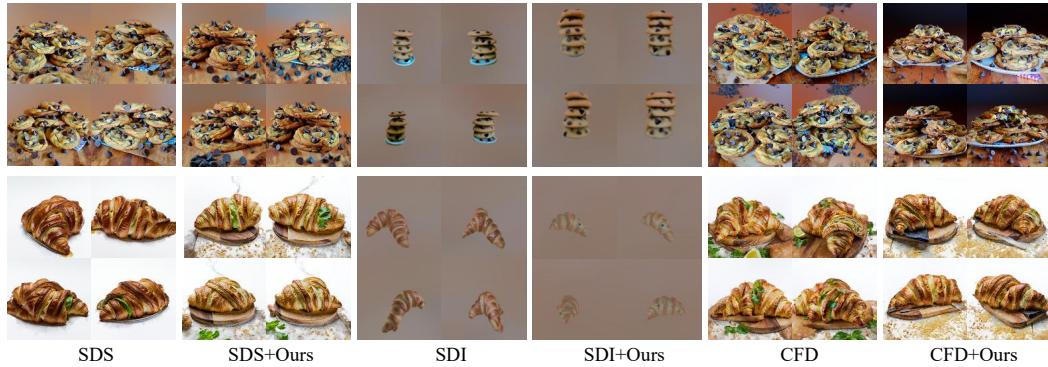


Figure 4: Comparison with other baselines on 3D generation. The first row uses the prompt “A plate piled high with chocolate chip cookies”, while the second row uses “A delicious croissant”.

Table 1: Quantitative comparisons to baselines for text-to-3D generation, evaluated by Eval3D [10] and CLIP IQA [46]. We report mean and standard deviation across 10 prompts and 50 views for each.

Method	Eval3D (%) (\uparrow)		CLIP IQA (%)			IR (\uparrow)	Time	VRAM
	Geometric	Structural	“natural” \uparrow	“real” \uparrow	“complexity” \downarrow			
SDS [33]	56.66 \pm 25.34	85.92 \pm 5.24	39 \pm 9.6	40 \pm 6.1	74 \pm 7.7	-0.47 \pm 0.18	150min	14.4GB
SDS+ours	60.51 \pm 24.55	87.23 \pm 1.68	47 \pm 8.4	67 \pm 10.1	69 \pm 8.1	0.23 \pm 0.10	151min	14.4GB
SDI [28]	76.39 \pm 19.9	85.15 \pm 4.11	18 \pm 6.6	7 \pm 3.8	63 \pm 8.3	-2.10 \pm 0.19	83min	7.9GB
SDI+Ours	89.36 \pm 2.51	87.11 \pm 1.55	55 \pm 5.2	21 \pm 6.8	53 \pm 6.7	-2.03 \pm 0.17	88min	7.9GB
CFD [50]	66.77 \pm 19.69	86.45 \pm 1.41	42 \pm 5.9	60 \pm 7.0	73 \pm 4.3	-0.14 \pm 0.15	152min	14.4GB
CFD+ours	70.10 \pm 23.21	88.46 \pm 1.61	52 \pm 4.4	71 \pm 5.6	70 \pm 6.3	0.26 \pm 0.15	155min	14.4GB

conducted on RTX 3090 GPUs, and images are generated at a resolution of 128×128 . More detailed experimental settings and higher-resolution results can be found in Appendix B, C, and D.

Qualitative Comparision Figure 4 presents a comparison between our method and other approaches that adopt different noise configurations. In the generation results of SDS [33] with random noise and CFD [50] with multi-view consistent noise, the main objects often appear cluttered, and unrelated content may emerge in the background. This is because the pseudo-GTs derived from independent views correspond to different underlying objects. Under the same prompt, such as “cookies”, the placement, shape, and background context of the cookies vary significantly across different viewpoints. As a result, the inconsistent pseudo-GTs lead to outputs that blend multiple possible objects. Moreover, both SDI [28] and CFD sometimes produce objects with distorted or unrealistic structures. This issue also stems from the inconsistency among the 3D objects implied by the pseudo-GTs across views. For example, in the croissant generated by SDI, since the pseudo-GTs corresponding to the front and side views conflict, the resulting geometry becomes a malformed artificial shape. In contrast, our method incorporates an object-level consistency constraint, which significantly improves the coherence of the generated results. By moving the images away from regions that are likely to cause conflicts in object shape or position across different viewpoints, our approach reduces inconsistency and aligns the generation toward a more unified 3D representation.

Quantitive Comparision Following prior works [28; 33; 52], we adopt CLIP [46] and ImageReward (IR) [49], and additionally incorporate Eval3D [13] to quantitatively assess the quality of the generated results, aiming to approximate human perception of the synthesized objects. We first adopt the “Geometric Consistency” and “Structural Consistency” metrics from Eval3D [13] to evaluate the multi-view consistency of the generated objects. As shown in Table 1, by introducing object proxies to impose consistency constraints, geometric consistency and structural consistency are improved by 6.72% and 1.76% on average, respectively. Next, we include the CLIP Image Quality Assessment (IQA) [46] to evaluate the naturalness, realism, and complexity of the rendered views, achieving an average improvement of 13.89%. It is worth noting that the first two metrics measure the realism of the renderings, while the last reflects the presence of irrelevant artifacts. On the IR metric, which is designed to mimic human preferences, OCD significantly boosts the performance of both SDS and CFD methods, and yields a slight improvement for the SDI method, with an average gain of 0.39. This demonstrates the advantage of OCD in enhancing the realism of the generated 3D objects. It is indicated that perturbing the input images effectively encourages the output images to converge toward a consistent set of target objects, thereby producing 3D reconstructions that are more

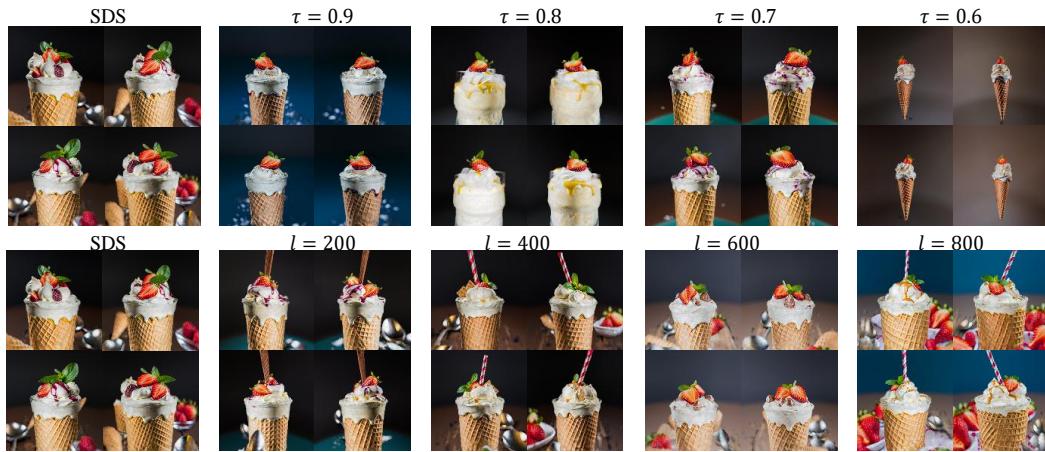


Figure 5: Effect of momentum hyperparameter τ and window size l on generation. Prompt: "A DSLR photo of an ice cream sundae".

faithful to real-world objects. Finally, the last two columns of Table 1 present the training time and memory usage of different methods. As shown, our method incurs less than 1% additional overhead, highlighting its computational efficiency and demonstrating its advantage as a resource-efficient solution for enforcing object-level consistency.

6.1 ABLATION STUDIES

Ablation on momentum hyperparameter τ . The first row of Figure 5 shows the effect of varying the momentum hyperparameter τ on the generation quality. As τ decreases, the generated results become increasingly focused on the target object described by the prompt, while substantially reducing irrelevant elements introduced by the prompt's ambiguous semantics. This is because a smaller τ places greater emphasis on the estimated object proxy, which encapsulates semantics shared across multiple views, thereby substantially reducing the semantic ambiguity within each individual view.

Ablation on window size l . The second row of Figure 5 illustrates the effect of varying the window size on the performance of our method. As the window size increases, the generated results exhibit undesired and irrelevant artifacts, and the overall appearance becomes increasingly similar to that of SDS. This suggests that when the window size is large, the composite target object in Equation 8 encompasses a larger set of real objects. As a result, the estimated object proxy tends to approximate an average over multiple objects, which severely compromises the object consistency among pseudo-GTs. In contrast, when a smaller window size is used, the variability of the underlying 3D objects is substantially reduced, making the generations more faithful to the prompt.

6.2 GENERATION DIVERSITY

Figure 6: 3D generated objects under different random seeds. The prompts from left to right are: A baby bunny sitting on top of a stack of pancakes; A small saguaro cactus planted in a clay pot; A 3D model of an adorable cottage with a thatched roof; A hamburger; A highly detailed DSLR photo of a 3D model of a historical stone castle.

A potential concern is that aligning the pseudo-GTs from all viewpoints toward a object proxy might compromise the generation diversity. Figure 6 shows results under different seeds, demonstrating that our method preserves diversity while improving consistency. This benefit stems from the momentum-based moving average used to estimate the proxy, which balances current view information with a stable reference, avoiding over-constraining the diffusion process.

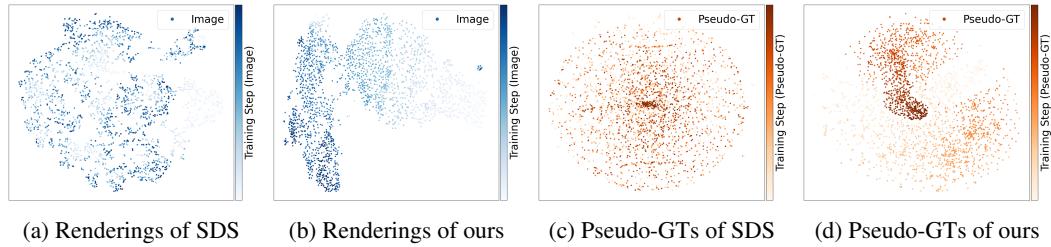


Figure 7: T-SNE visualization of renderings and pseudo-GTs in the image space. (a)/(c): Distributions of viewpoint renderings and pseudo-GTs obtained with SDS. (b)/(d): Corresponding distributions obtained with OCD. Darker colors indicate samples from later training steps.

6.3 IMAGE SPACE VISUALIZATION

To more directly and clearly demonstrate the effect of introducing the object proxy on 3D object generation, we visualize the renderings and pseudo-GTs during the optimization process using t-SNE [43]. As shown in Figure 7 (a) and (c), before applying the object consistency constraint, the distributions of renderings and pseudo-ground-truths remain dispersed and show little change throughout optimization. In contrast, after introducing the constraint, as shown in (b) and (d), both renderings and pseudo-GTs progressively concentrate and converge toward a consistent single target object. This difference arises from the object proxy, which conditions each pseudo-GT on previous views during optimization, resulting in a more concentrated distribution. Consequently, the supervisory signals enforce tighter consistency in 3D renderings from different views.

6.4 JANUS PROBLEM

Figure 8: Effect of OCD on the Janus Problem. Prompt: a ceramic lion.

The Janus problem refers to the phenomenon where a generated 3D object inaccurately presents the canonical view from multiple viewpoints. This typically arises when the pseudo-GTs generated by the diffusion model for a given view does not match that view, for instance, producing a front-facing image when conditioned on a back view rendering. Since OCD is designed to enhance multi-view consistency, it proves effective in alleviating this problem. In Figure 8 and Table 1, we qualitatively and quantitatively demonstrate the effectiveness of OCD in alleviating the Janus problem. These baselines either do not impose any multi-view consistency constraints or only enforce consistency from the perspective of noise, yet all exhibit severe manifestations of the Janus problem. In contrast, applying OCD significantly alleviates this issue. This highlights the critical role of the renderings' positions in the latent space in influencing the diffusion model's output. Through the utilization of cross-view information, our method provides more consistent multi-view supervisory signals, thereby enhancing the realism and coherence of the generated 3D objects.

7 CONCLUSION

By modeling the rendering of a 3D object under continuous viewpoints as a connected subset of the image space, we provide a more intuitive and effective formulation for the Score Distillation Sampling (SDS) paradigm. To analyze the variability of 3D objects corresponding to the pseudo-GTs produced by diffusion models, we introduce an object consistency constraint. Integrating this constraint into the pseudo-GT generation process allows us to attribute multi-view inconsistency to cross-view image discrepancy variation and cross-view distributional estimation error. Focusing on the inconsistencies caused by the former, we propose Object-Consistent Distillation (OCD), which incorporates object-consistency constraints during the generation of multi-view pseudo ground truths. Specifically, a view-dependent sliding window is used to estimate an object proxy, and renderings from each viewpoint are moved toward this proxy before being fed into the diffusion model. Experimental results show that OCD enhances generation fidelity and object coherence, while also contributes to alleviate the Janus problem with minimal overhead.

486 REFERENCES
487

488 [1] Mohammadreza Armandpour, Ali Sadeghian, Huangjie Zheng, Amir Sadeghian, and Mingyuan
489 Zhou. Re-imagine the negative prompt algorithm: Transform 2d diffusion into 3d, alleviate
490 janus problem and beyond. *arXiv preprint arXiv:2304.04968*, 2023.

491 [2] Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended diffusion for text-driven editing of
492 natural images. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
493 *recognition*, pp. 18208–18218, 2022.

494 [3] Miguel Angel Bautista, Pengsheng Guo, Samira Abnar, Walter Talbott, Alexander Toshev,
495 Zhiyuan Chen, Laurent Dinh, Shuangfei Zhai, Hanlin Goh, Daniel Ulbricht, et al. Gaudi: A
496 neural architect for immersive 3d scene generation. *Advances in Neural Information Processing*
497 *Systems*, 35:25102–25116, 2022.

498 [4] Hanqun Cao, Cheng Tan, Zhangyang Gao, Yilun Xu, Guangyong Chen, Pheng-Ann Heng, and
499 Stan Z Li. A survey on generative diffusion models. *IEEE Transactions on Knowledge and*
500 *Data Engineering*, 2024.

501 [5] Cheng Chen, Xiaofeng Yang, Fan Yang, Chengzeng Feng, Zhoujie Fu, Chuan-Sheng Foo,
502 Guosheng Lin, and Fayao Liu. Sculpt3d: Multi-view consistent text-to-3d generation with
503 sparse 3d prior. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
504 *Recognition*, pp. 10228–10237, 2024.

505 [6] Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fantasia3d: Disentangling geometry
506 and appearance for high-quality text-to-3d content creation. In *Proceedings of the IEEE/CVF*
507 *international conference on computer vision*, pp. 22246–22256, 2023.

508 [7] Florinel-Alin Croitoru, Vlad Hondu, Radu Tudor Ionescu, and Mubarak Shah. Diffusion
509 models in vision: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
510 45(9):10850–10869, 2023.

511 [8] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
512 *Advances in neural information processing systems*, 34:8780–8794, 2021.

513 [9] Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-based generative modeling with
514 critically-damped langevin diffusion. *arXiv preprint arXiv:2112.07068*, 2021.

515 [10] Shivam Duggal, Yushi Hu, Oscar Michel, Aniruddha Kembhavi, William T Freeman, Noah A
516 Smith, Ranjay Krishna, Antonio Torralba, Ali Farhadi, and Wei-Chiu Ma. Eval3d: Interpretable
517 and fine-grained evaluation for 3d generation. In *Proceedings of the Computer Vision and*
518 *Pattern Recognition Conference*, pp. 13326–13336, 2025.

519 [11] Yuan-Chen Guo, Ying-Tian Liu, Ruizhi Shao, Christian Laforte, Vikram Voleti, Guan Luo,
520 Chia-Hao Chen, Zi-Xin Zou, Chen Wang, Yan-Pei Cao, et al. threestudio: A unified framework
521 for 3d content generation, 2023.

522 [12] Ayaan Haque, Matthew Tancik, Alexei A Efros, Aleksander Holynski, and Angjoo Kanazawa.
523 Instruct-nerf2nerf: Editing 3d scenes with instructions. In *Proceedings of the IEEE/CVF*
524 *International Conference on Computer Vision*, pp. 19740–19750, 2023.

525 [13] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
526 reference-free evaluation metric for image captioning. *arXiv preprint arXiv:2104.08718*, 2021.

527 [14] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint*
528 *arXiv:2207.12598*, 2022.

529 [15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances*
530 *in neural information processing systems*, 33:6840–6851, 2020.

531 [16] Susung Hong, Donghoon Ahn, and Seungryong Kim. Debiasing scores and prompts of 2d
532 diffusion for view-consistent text-to-3d generation. *Advances in Neural Information Processing*
533 *Systems*, 36:11970–11987, 2023.

540 [17] Tianyu Huang, Yihan Zeng, Zhilu Zhang, Wan Xu, Hang Xu, Songcen Xu, Rynson WH Lau,
 541 and Wangmeng Zuo. Dreamcontrol: Control-based text-to-3d generation with 3d self-prior.
 542 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 543 5364–5373, 2024.

544 [18] Yukun Huang, Jianan Wang, Yukai Shi, Boshi Tang, Xianbiao Qi, and Lei Zhang. Dream-
 545 time: An improved optimization strategy for diffusion-guided 3d generation. *arXiv preprint*
 546 *arXiv:2306.12422*, 2023.

548 [19] Yuming Jiang, Shuai Yang, Haonan Qiu, Wayne Wu, Chen Change Loy, and Ziwei Liu.
 549 Text2human: Text-driven controllable human image generation. *ACM Transactions on Graphics*
 550 (*TOG*), 41(4):1–11, 2022.

551 [20] Oren Katzir, Or Patashnik, Daniel Cohen-Or, and Dani Lischinski. Noise-free score distillation.
 552 *arXiv preprint arXiv:2310.17590*, 2023.

554 [21] Min-Seop Kwak, Donghoon Ahn, Inès Hyeonsu Kim, Jin-Hwa Kim, and Seungryong Kim.
 555 Geometry-aware score distillation via 3d consistent noising and gradient consistency modeling.
 556 *arXiv preprint arXiv:2406.16695*, 2024.

558 [22] Kyungmin Lee, Kihyuk Sohn, and Jinwoo Shin. Dreamflow: High-quality text-to-3d generation
 559 by approximating probability flow. *arXiv preprint arXiv:2403.14966*, 2024.

560 [23] Yixun Liang, Xin Yang, Jiantao Lin, Haodong Li, Xiaogang Xu, and Yingcong Chen. Lucid-
 561 dreamer: Towards high-fidelity text-to-3d generation via interval score matching. In *Proceedings*
 562 *of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6517–6526, 2024.

564 [24] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten
 565 Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-3d
 566 content creation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 567 *recognition*, pp. 300–309, 2023.

568 [25] Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional
 569 visual generation with composable diffusion models. In *European Conference on Computer*
 570 *Vision*, pp. 423–439. Springer, 2022.

572 [26] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl
 573 Vondrick. Zero-1-to-3: Zero-shot one image to 3d object. In *Proceedings of the IEEE/CVF*
 574 *international conference on computer vision*, pp. 9298–9309, 2023.

576 [27] Jonathan Lorraine, Kevin Xie, Xiaohui Zeng, Chen-Hsuan Lin, Towaki Takikawa, Nicholas
 577 Sharp, Tsung-Yi Lin, Ming-Yu Liu, Sanja Fidler, and James Lucas. Att3d: Amortized text-to-3d
 578 object synthesis. In *Proceedings of the IEEE/CVF International Conference on Computer*
 579 *Vision*, pp. 17946–17956, 2023.

580 [28] Artem Lukoianov, Haitz Sáez de Ocáriz Borde, Kristjan Greenewald, Vitor Guizilini, Timur
 581 Bagautdinov, Vincent Sitzmann, and Justin M Solomon. Score distillation via reparametrized
 582 ddim. *Advances in Neural Information Processing Systems*, 37:26011–26044, 2024.

584 [29] David McAllister, Songwei Ge, Jia-Bin Huang, David Jacobs, Alexei Efros, Aleksander Holyn-
 585 ski, and Angjoo Kanazawa. Rethinking score distillation as a bridge between image distributions.
 586 *Advances in Neural Information Processing Systems*, 37:33779–33804, 2024.

587 [30] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi,
 588 and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis.
 589 *Communications of the ACM*, 65(1):99–106, 2021.

591 [31] Utkarsh Nath, Rajeev Goel, Eun Som Jeon, Changhoon Kim, Kyle Min, Yezhou Yang, Yingzhen
 592 Yang, and Pavan Turaga. Deep geometric moments promote shape consistency in text-to-3d
 593 generation. In *2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*,
 pp. 4331–4341. IEEE, 2025.

594 [32] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
 595 Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing
 596 with text-guided diffusion models. *arXiv preprint arXiv:2112.10741*, 2021.

597 [33] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using
 598 2d diffusion. *arXiv preprint arXiv:2209.14988*, 2022.

600 [34] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 601 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF*
 602 *conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.

603 [35] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton,
 604 Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al.
 605 Photorealistic text-to-image diffusion models with deep language understanding. *Advances in*
 606 *neural information processing systems*, 35:36479–36494, 2022.

607 [36] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad
 608 Norouzi. Image super-resolution via iterative refinement. *IEEE transactions on pattern analysis*
 609 *and machine intelligence*, 45(4):4713–4726, 2022.

611 [37] Junyoung Seo, Wooseok Jang, Min-Seop Kwak, Hyeonsu Kim, Jaehoon Ko, Junho Kim, Jin-
 612 Hwa Kim, Jiyoung Lee, and Seungryong Kim. Let 2d diffusion model know 3d-consistency for
 613 robust text-to-3d generation. *arXiv preprint arXiv:2303.07937*, 2023.

615 [38] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. Ntu rgb+ d: A large scale dataset
 616 for 3d human activity analysis. In *Proceedings of the IEEE conference on computer vision and*
 617 *pattern recognition*, pp. 1010–1019, 2016.

618 [39] Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li, and Xiao Yang. Mvdream: Multi-
 619 view diffusion for 3d generation. *arXiv preprint arXiv:2308.16512*, 2023.

621 [40] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
 622 vised learning using nonequilibrium thermodynamics. In *International conference on machine*
 623 *learning*, pp. 2256–2265. pmlr, 2015.

624 [41] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
 625 Ben Poole. Score-based generative modeling through stochastic differential equations. *arXiv*
 626 *preprint arXiv:2011.13456*, 2020.

627 [42] Wilson A Sutherland. *Introduction to metric and topological spaces*. Oxford University Press,
 628 2009.

630 [43] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine*
 631 *learning research*, 9(11), 2008.

633 [44] Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural*
 634 *computation*, 23(7):1661–1674, 2011.

635 [45] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh, and Greg Shakhnarovich. Score
 636 jacobian chaining: Lifting pretrained 2d diffusion models for 3d generation. In *Proceedings of*
 637 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 12619–12629, 2023.

638 [46] Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look
 639 and feel of images. In *Proceedings of the AAAI conference on artificial intelligence*, volume 37,
 640 pp. 2555–2563, 2023.

641 [47] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
 642 lificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation.
 643 *Advances in Neural Information Processing Systems*, 36:8406–8441, 2023.

645 [48] Zike Wu, Pan Zhou, Xuanyu Yi, Xiaoding Yuan, and Hanwang Zhang. Consistent3d: Towards
 646 consistent high-fidelity text-to-3d generation with deterministic sampling prior. In *Proceedings*
 647 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9892–9902,
 2024.

648 [49] Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
649 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
650 *Advances in Neural Information Processing Systems*, 36:15903–15935, 2023.

651 [50] Runjie Yan, Yinbo Chen, and Xiaolong Wang. Consistent flow distillation for text-to-3d
652 generation. *arXiv preprint arXiv:2501.05445*, 2025.

653 [51] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
654 Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
655 applications. *ACM Computing Surveys*, 56(4):1–39, 2023.

656 [52] Xin Yu, Yuan-Chen Guo, Yangguang Li, Ding Liang, Song-Hai Zhang, and Xiaojuan Qi.
657 Text-to-3d with classifier score distillation. *arXiv preprint arXiv:2310.19415*, 2023.

658 [53] Chenxi Zheng, Yihong Lin, Bangzhen Liu, Xuemiao Xu, Yongwei Nie, and Shengfeng He.
659 Recdreamer: Consistent text-to-3d generation via uniform score distillation. In *The Thirteenth
660 International Conference on Learning Representations*, 2025.

661 [54] Junzhe Zhu, Peiye Zhuang, and Sanmi Koyejo. Hifa: High-fidelity text-to-3d generation with
662 advanced diffusion guidance. *arXiv preprint arXiv:2305.18766*, 2023.

663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A PROOF**
 703

704 **A.1 PROOF THE THEOREM 1**
 705

706 In this subsection, we present the proof of Theorem 1: Connectedness of the Viewpoint–Image Set.
 707 We begin by discussing the rationale behind the assumptions of the theorem.

708 Assumption 1: $C \subset \mathbb{R}^d$ be a connected set representing the continuous viewpoint parameter space.
 709 We define the viewpoint parameter $c \in C \subset \mathbb{R}^d$ as a vector that encodes both the *camera configuration*
 710 and the *position of a point light source*. Specifically,

711 $c = [\mu_{\text{cam}}, \zeta_{\text{cam}}, \text{dis}_{\text{cam}}, \text{la}_{\text{cam}}, \text{up}_{\text{cam}}, x_{\text{lig}}, y_{\text{lig}}, z_{\text{lig}}]$

712 where:

713

- 714 • $\mu_{\text{cam}}, \zeta_{\text{cam}}, \text{dis}_{\text{cam}}$ denote the *elevation angle*, *azimuth angle*, and *distance from the origin*,
 715 respectively. Together, they determine the camera position in spherical coordinates.
- 716 • la_{cam} and up_{cam} represent the camera’s *look-at* direction and *up* vector, which define its
 717 orientation.
- 718 • $[x_{\text{lig}}, y_{\text{lig}}, z_{\text{lig}}]$ specifies the location of a *point light source*.

719 All of these components are continuous variables. For instance, we define

720 $\mu_{\text{cam}} \in [-90^\circ, 90^\circ], \quad \zeta_{\text{cam}} \in [0^\circ, 360^\circ], \quad \text{dis}_{\text{cam}} \in [0, 2],$
 721
 722 $\text{la}_{\text{cam}} \in \mathbb{S}^2 = \{\mathbf{x} \in \mathbb{R}^3 \mid \|\mathbf{x}\| = 1\},$
 723
 724 $\text{up}_{\text{cam}} \in \mathbb{S}^2 = \{\mathbf{x} \in \mathbb{R}^3 \mid \|\mathbf{x}\| = 1\},$
 725
 726 $x_{\text{lig}}, y_{\text{lig}}, z_{\text{lig}} \in \mathbb{R}.$

727 Since each component varies continuously in \mathbb{R} , the resulting parameter space C is a connected
 728 subset of \mathbb{R}^d .

729 Assumption 2: $\mathcal{I} = \mathbb{R}^N$ be the image space, where $N = 3HW$ (flattening an $H \times W$ RGB image).
 730 The image space \mathcal{I} is often taken as \mathbb{R}^N with $N = 3HW$ by flattening an $H \times W$ RGB image.
 731 Since each pixel channel value is normalized and constrained within the continuous interval $[0, 1]$,
 732 the realistic image space is actually a bounded, continuous subset: $\mathcal{I} \subseteq [0, 1]^N \subset \mathbb{R}^N$. This subset
 733 forms a compact and connected space under the standard Euclidean topology, ensuring that the image
 734 representations vary continuously with respect to pixel intensity changes.

735 Assumption 3: $g : C \rightarrow \mathcal{I}$ be a continuous rendering function, i.e., $g \in C^0(C, \mathcal{I})$. In the SDS
 736 rendering pipeline [33], the viewing parameter uniquely determines the camera’s projection center.
 737 From this center, rays are cast through each pixel into the scene using only continuous operations
 738 such as matrix multiplication and vector addition. Thus, the mapping from viewing parameters to
 739 ray directions is continuous. Subsequently, SDS samples points densely along each ray in 3D space.
 740 Although this sampling is discrete, the high sampling density allows us to approximate the process
 741 as a continuous integral along the ray. Specifically, the sampled points $\{\mathbf{p}(s_i)\}$ represent discrete
 742 locations along the ray, where each point is defined as

743
$$\mathbf{p}(s_i) = \mathbf{o} + s_i \mathbf{d},$$

744 with \mathbf{o} being the camera origin and \mathbf{d} the ray direction. Here, s_i denotes the distance from the camera
 745 origin along the ray.

746 At each sampled point $\mathbf{p}(s_i)$, the multi-layer perceptron (MLP) is queried to produce the volumetric
 747 density $\rho(\mathbf{p}(s_i))$ and the view-dependent RGB color $\text{cl}(\mathbf{p}(s_i))$. Although the sampling is discrete, the
 748 dense sampling allows the discrete summation of these values to closely approximate the continuous
 749 volume rendering integral:

750
$$C(\mathbf{r}) = \int_{s_{\min}}^{s_{\max}} S(s) \rho(\mathbf{p}(s)) \text{cl}(\mathbf{p}(s)) ds,$$

 751
 752
$$S(s) = \exp \left(- \int_{s_{\min}}^s \rho(\mathbf{p}(u)) du \right),$$

756 where $C(\mathbf{r})$ is the final pixel color along ray \mathbf{r} , $S(s)$ is the accumulated transmittance. The process
 757 of mapping a view parameter \mathbf{c} to the RGB color of a pixel can be viewed as a composition of several
 758 continuous functions. First, the view parameter \mathbf{c} determines the camera origin \mathbf{o} and direction \mathbf{d} in a
 759 continuous manner. Then, for each depth value $s \in [s_{\min}, s_{\max}]$, the point along the ray is given by
 760 $\mathbf{p}(s) = \mathbf{o} + s\mathbf{d}$, which is also continuous in \mathbf{o} and \mathbf{d} , hence continuous in \mathbf{c} . The volumetric density
 761 $\rho(\cdot)$ and color $\mathbf{cl}(\cdot)$ are computed by a multi-layer perceptron (MLP), which is a composition of
 762 continuous functions and thus itself continuous. Finally, the volume rendering integral is continuous
 763 with respect to \mathbf{o} and \mathbf{d} , and hence with respect to \mathbf{c} . Therefore, the overall rendering function
 764 $g : \mathcal{C} \mapsto \mathcal{I}$ can be regarded as a continuous function.

765 Given the assumptions of Theorem 1, $\mathcal{M} := g(\mathcal{C})$ is connected in \mathcal{I} by the basic topological fact
 766 that continuous maps preserve connectedness [42].

767 A.2 DEFORMATION OF THE GRADIENT FORMULATION IN SDS

769 In the main paper, we transform the noise-alignment gradient formulation of SDS (Equation 4 in the
 770 main text), into the image-alignment gradient formulation (Equation 6 in the main text). Below, we
 771 provide the detailed derivation of this transformation.

$$773 \nabla_{\theta} \mathcal{L}_{SDS} = \mathbb{E}_{t, \epsilon, c} [\omega(t)(\epsilon_{\phi}(x_t, t, y) - \epsilon)] \frac{\partial g(\theta, c)}{\partial \theta} \quad (17)$$

$$775 = \mathbb{E}_{t, \epsilon, c} [\omega(t)(\epsilon_{\phi}(x_t, t, y) - \epsilon) + \omega(t) \frac{(x_t(c) - x_t(c))}{\sqrt{1 - \bar{\alpha}_t}}] \frac{\partial g(\theta, c)}{\partial \theta} \quad (18)$$

$$777 = \mathbb{E}_{t, \epsilon, c} [\omega(t) \frac{x_t(c) - \sqrt{1 - \bar{\alpha}_t} \epsilon}{\sqrt{1 - \bar{\alpha}_t}} - \omega(t) \frac{x_t(c) - \sqrt{1 - \bar{\alpha}_t} \epsilon_{\phi}(x_t, t, y)}{\sqrt{1 - \bar{\alpha}_t}}] \frac{\partial g(\theta, c)}{\partial \theta} \quad (19)$$

$$780 = \mathbb{E}_{t, \epsilon, c} \left[\frac{\omega(t)}{\gamma(t)} \frac{x_t(c) - \sqrt{1 - \bar{\alpha}_t} \epsilon}{\sqrt{\bar{\alpha}_t}} - \frac{\omega(t)}{\gamma(t)} \frac{x_t(c) - \sqrt{1 - \bar{\alpha}_t} \epsilon_{\phi}(x_t, t, y)}{\sqrt{\bar{\alpha}_t}} \right] \frac{\partial g(\theta, c)}{\partial \theta} \quad (20)$$

$$782 = \mathbb{E}_{t, \epsilon, c} \left[\frac{\omega(t)}{\gamma(t)} (x_0(c) - \hat{x}_0(c|y)) \right] \frac{\partial g(\theta, c)}{\partial \theta} \quad (21)$$

$$783 \quad (22)$$

786 B IMPLEMENTATION DETAILS

788 B.1 EXPERIMENT CONFIGURATION

790 Our experiments are conducted on 8 NVIDIA RTX 3090 GPUs, each equipped with 24GB of VRAM.
 791 Since the implementation of the SDI [28] baseline requires larger GPU memory, we adopt a resolution
 792 of 128×128 in the experiments involving SDI, specifically in parts of Figures 4 and 8 in the main
 793 text and Figure 11 in the Appendix, to avoid memory overflow. Nevertheless, these results still
 794 demonstrate the effectiveness of our method. We also present the results of applying OCD on top
 795 of the CFD [50] and SDS [33] baselines at a resolution of 512×512 in Figures 10, 12, 13 and 14,
 796 which showcase finer details and high-fidelity generation quality. For the teacher diffusion model,
 797 we follow most prior works [23; 28; 50] and adopt Stable Diffusion v2.1 [34]. It is worth noting that
 798 Stable Diffusion v2.1, as a Latent Diffusion Model, performs the noising and denoising processes
 799 in the latent space rather than in the pixel space. Accordingly, the object proxy computations are
 800 also carried out in the latent space of the diffusion model. Additionally, several studies have shown
 801 that timestep annealing [28; 18; 54] and the use of extra negative prompts [20; 29; 50] are beneficial
 802 for 3D generation; thus, we incorporate both strategies in our framework. By default, we use the
 803 same classifier-free guidance (CFG) scale of 7.5. Except for applying our method to SDI, where 10k
 804 training steps and a learning rate of 10^{-2} are used, we adopt 25k steps and a learning rate of 10^{-3} in
 805 all other cases.

806 B.2 ALGORITHM

808 Algorithm 1 and 2 illustrate the difference between the original SDS pipeline and our proposed OCD
 809 method. The key distinction lies in that OCD incorporates cross-view information before feeding the
 810 image into the diffusion model. The differences between OCD and SDS are highlighted in red.

810
 811 **Algorithm 1** Dreamfusion (SDS)
 812 **Require:** θ - 3D object representation
 813 c - camera view parameter
 814 y - text prompt
 815 $g : \mathcal{C} \rightarrow \mathcal{I}$ - differentiable renderer
 816 $\epsilon_{\phi}^{(t)}$ - trained diffusion model
 817 **Ensure:** 3D shape θ of y
 818 **procedure** DREAMFUSION(y)
 819 **for** i in range(n_iters) **do**
 820 $t \leftarrow \text{Uniform}(0, 1)$
 821 $c \leftarrow \text{Uniform}(\mathcal{C})$
 822 $\epsilon \leftarrow \text{Normal}(0, I)$
 823 $x_t \leftarrow \sqrt{\bar{\alpha}(t)}g(\theta, c) + \sqrt{1 - \bar{\alpha}(t)}\epsilon$
 824 $\nabla_{\theta}\mathcal{L}_{SDS} = \sigma(t) \left[\epsilon_{\phi}^{(t)}(x_t, y) - \epsilon \right] \frac{\partial g}{\partial \theta}$
 825 Backpropagate $\nabla_{\theta}\mathcal{L}_{SDS}$
 826 SGD update on θ
 827

828
 829 **Algorithm 2** Ours (OCD)
 830 **Require:** θ - 3D object representation
 831 c - camera view parameter
 832 y - text prompt
 833 $g : \mathcal{C} \rightarrow \mathcal{I}$ - differentiable renderer
 834 $\epsilon_{\phi}^{(t)}$ - trained diffusion model
 835 τ - strength of the object consistency constraint
 836 **Ensure:** 3D shape θ of y
 837 **procedure** OURS(y)
 838 **for** i in range(n_iters) **do**
 839 $t \leftarrow \text{Time_annealing}(i)$
 840 $c \leftarrow \text{Uniform}(\mathcal{C})$
 841 $O_i \leftarrow \sum_{j=1}^{j=i-1} \hat{x}_0(c_j)$
 842 $\tilde{x} \leftarrow \tau g(\theta, c) + (1 - \tau)O_i$
 843 $\epsilon \leftarrow \text{Normal}(0, I)$
 844 $x_t \leftarrow \sqrt{\bar{\alpha}(t)}\tilde{x} + \sqrt{1 - \bar{\alpha}(t)}\epsilon$
 845 $\nabla_{\theta}\mathcal{L}_{SDS} = \sigma(t) \left[\epsilon_{\phi}^{(t)}(x_t, y) - \epsilon \right] \frac{\partial g}{\partial \theta}$
 846 $\hat{x}_0(c_i) \leftarrow g(\theta, c) + \gamma(t)(\epsilon - \epsilon_{\theta}(x_t(c), t, y))$
 847 Backpropagate $\nabla_{\theta}\mathcal{L}_{SDS}$
 848 SGD update on θ
 849

850 In Section 5, we identify two primary sources of object inconsistency: cross-view image discrepancy
 851 variation and cross-view distributional estimation error. Since prior work has largely overlooked
 852 the former, we proposed OCD to explicitly address cross-view image discrepancies. In Section 6,
 853 we compare the performance of OCD combined with various cross-view distributional estimation
 854 methods. In this section, we provide additional results using various distributional estimation
 855 techniques in conjunction with OCD, and further analyze how the combination of these two factors
 856 influences the quality of the generated 3D content. In Figure 9, we demonstrate the combination
 857 of OCD with the original SDS [33]; in Figure 10, we show the results of combining OCD with
 858 CFD [50]; and in Figure 11, we present the results of combining OCD with SDI [28]. All results
 859 consistently demonstrate that the introduction of OCD significantly improves the original generation
 860 quality, effectively eliminating implausible structures or components, and even leading to a noticeable
 861 reduction of the Janus problem.

862 C ADDITIONAL GENERATION

863 In Figure 12, we present additional high-fidelity 3D object generation results obtained using the
 864 OCD algorithm illustrated in Algorithm 2, including examples with multiple objects and complex
 865 prompts. OCD consistently achieves high-fidelity and realistic results across diverse generation

864
 865 Table 2: Quantitative comparisons to baselines for text-to-3D generation, evaluated by Eval3D [10]
 866 and CLIP IQA [46]. We report mean and standard deviation across 10 prompts and 50 views for each.
 867

Method	Eval3D (%) (↑)		CLIP IQA (%)			IR (↑)	CLIP Score
	Geometric	Structural	“natural”↑	“real”↑	“complexity”↓		
SDS [33]	56.66 ± 25.34	85.92 ± 5.24	39 ± 9.6	40 ± 6.1	74 ± 7.7	-0.47 ± 0.18	22.87 ± 0.05
SDS+ours	60.51 ± 24.55	87.23 ± 1.68	47 ± 8.4	67 ± 10.1	69 ± 8.1	0.23 ± 0.10	23.15 ± 0.03
SDI [28]	76.39 ± 19.9	85.15 ± 4.11	18 ± 6.6	7 ± 3.8	63 ± 8.3	-2.10 ± 0.19	21.16 ± 0.03
SDI+Ours	89.36 ± 2.51	87.11 ± 1.55	55 ± 5.2	21 ± 6.8	53 ± 6.7	-2.03 ± 0.17	21.26 ± 0.03
CFD [50]	66.77 ± 19.69	86.45 ± 1.41	42 ± 5.9	60 ± 7.0	73 ± 4.3	-0.14 ± 0.15	22.89 ± 0.02
CFD+ours	70.10 ± 23.21	88.46 ± 1.61	52 ± 4.4	71 ± 5.6	70 ± 6.3	0.26 ± 0.15	22.90 ± 0.08

874
 875 scenarios, covering single and multiple objects, simple and complex structures, and scenes with
 876 complex backgrounds. More importantly, the renderings from different viewpoints consistently
 877 correspond to the same underlying real-world object.

D ADDITIONAL COMPARISION

880
 881 Following prior works [28; 33; 52], we additionally report CLIP Score in Table 2 for quantitative
 882 comparison. This metric provides an overall evaluation of the generation quality across different
 883 methods. Since our approach primarily focuses on producing natural and realistic object geometry
 884 with strong multi-view consistency, the improvement on the CLIP Score metric is limited, though it
 885 still remains at a competitive level.

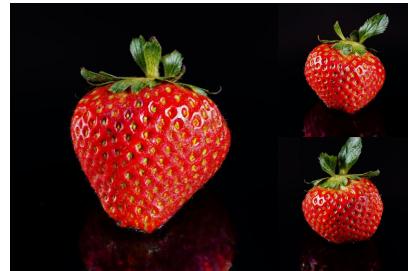
886 In Section 2, we point out that numerous strong approaches for text-to-3D generation have been
 887 proposed. To highlight the advantages of our method, we compare it against several representative
 888 baselines in the main text and below. In Figures 13 and 14, we present 3D objects generated at a
 889 resolution of 512×512 using the algorithm described in the Algorithm 2, and compare them against
 890 several baselines, including DreamFusion [33], Magic3D [24], NFSD [20], SDI [28], ISM [23],
 891 HiFA [54], Fantasia3D [6] and CFD [50]. It is worth noting that some comparisons are limited
 892 due to the unreproducibility of certain methods [17; 23], while others rely on additional external
 893 information [31; 39; 37; 5; 53], which would lead to an unfair comparison. The results demonstrate
 894 that OCD significantly improves the realism of generated 3D objects while preserving fine-grained
 895 details at high resolutions. This enhancement is evident in multiple aspects. First, the generated
 896 objects exhibit a notable reduction in unnatural artifacts or ambiguous structures that are often present
 897 in baseline methods. Second, the geometric configuration of the objects becomes more coherent
 898 and semantically meaningful, with clearer contours and physically plausible shapes. These findings
 899 suggest that the integration of OCD contributes not only to higher visual fidelity but also to better
 900 alignment with the real-world physical characteristics of the target objects.

E LIMITATIONS

901 While our proposed OCD method demonstrates strong performance in enhancing cross-view consis-
 902 tency and alleviating the Janus problem, it is not without limitations. First, the introduction of an
 903 object-level proxy into the generation process may potentially introduce bias into the generations.
 904 This proxy acts as an intermediate representation across views, which could influence the generated
 905 content in unintended ways. We have not yet conducted a systematic study on how such bias may
 906 manifest or how it might impact different object categories, viewpoints, or styles. Second, although
 907 OCD shows promising results in mitigating the Janus problem, suggesting a strong connection
 908 between object-level consistency and view-dependent artifacts, we have not thoroughly explored
 909 the theoretical or empirical relationship between the two. In particular, it remains unclear whether
 910 enforcing cross-view consistency alone is sufficient to fully eliminate the problem, or whether ad-
 911 dditional geometric or semantic constraints are necessary. Finally, In our current implementation,
 912 the object-consistency constraint strength, denoted as τ , is uniformly applied across all camera
 913 viewpoints. While this simplification enables stable optimization and reduces hyperparameter tuning
 914 complexity, it may limit the expressiveness and adaptability of the method. A uniform consistency
 915 strength may under-constrain some views while over-constraining others, potentially impeding the
 916 generation of more view-consistent or multi-object genreation.

918
919
920
921
922
923
924
925
926
927
928
929
930

SDS



Ours

“A ripe strawberry”

“A car made of sushi”

931

932

933

934

935

936

937

938

939

940

941

942

Figure 9: Comparison between SDS and SDS combined with OCD (Ours).

943

944

945

946

947

948

949

950

CFD

Ours

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

Figure 10: Comparison between CFD and CFD combined with OCD (Ours). From left to right, the prompts used are: “a ripe strawberry,” “a car made of sushi,” “a baby bunny sitting on top of a stack of pancakes,” and “a delicious croissant.”

972

973

974

975

976

977

978

979

980

981

982

983

984

985

“A highly detailed DSLR photo of a 3d model of historical stone castle”

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

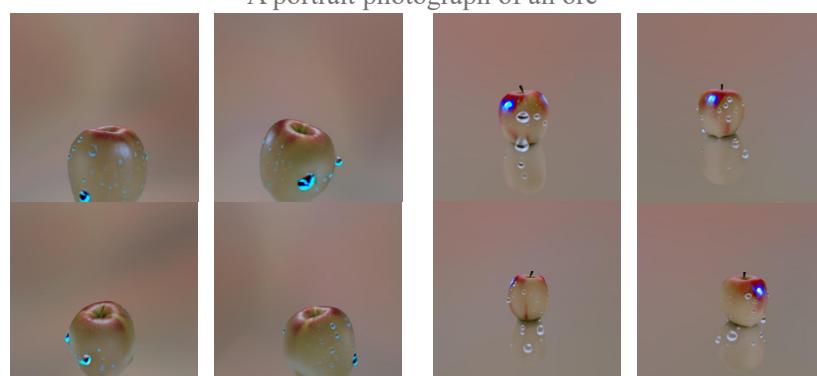
SDI

Ours

“A highly detailed DSLR photo of a 3d model of historical stone castle”

“a ceramic lion”

“A portrait photograph of an orc”



“a DSLR photo of a shiny red apple with droplets of water on its surface”

Figure 11: Comparison between SDI and SDI combined with OCD (Ours).

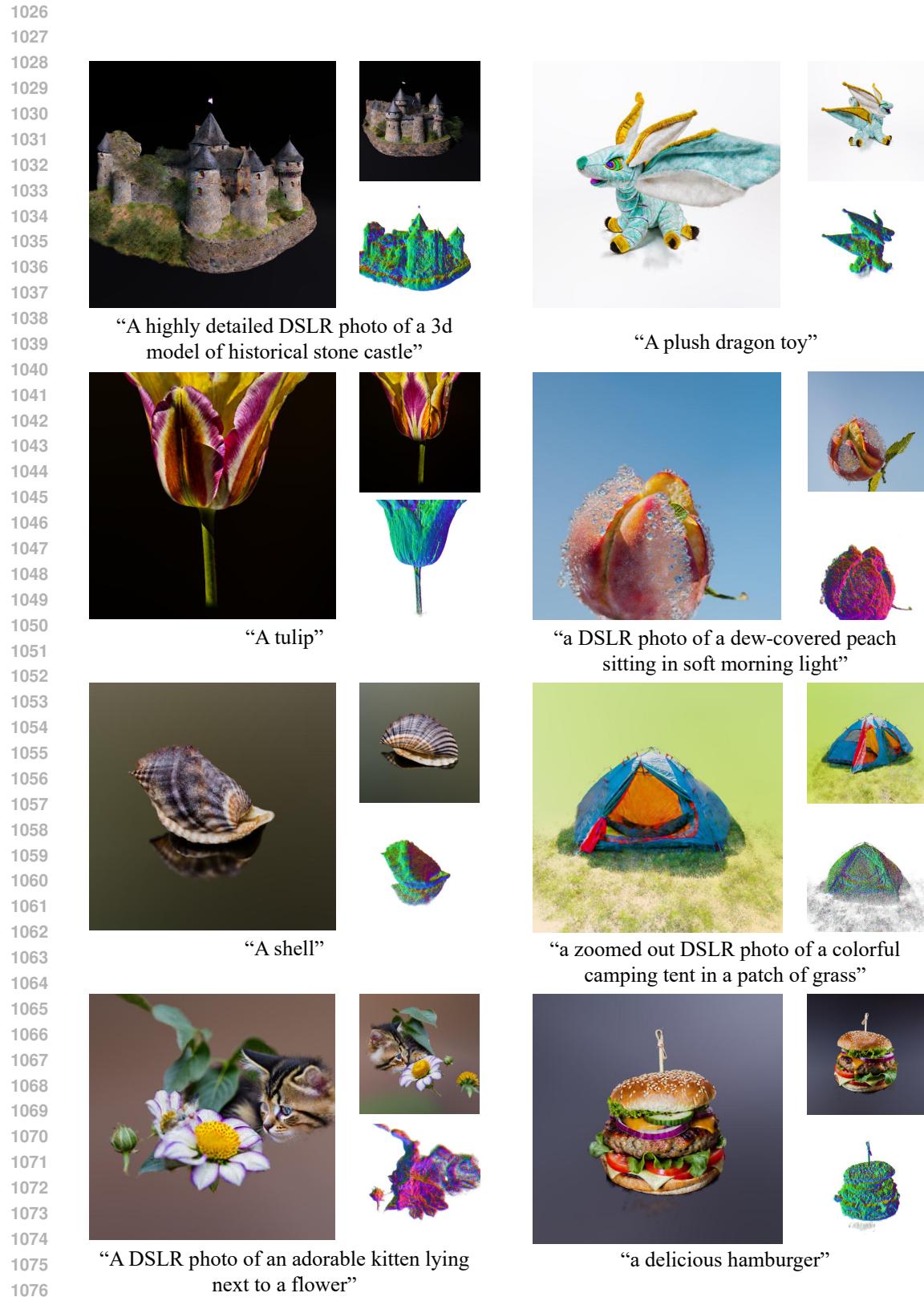


Figure 12: Additional generation results produced by OCD.

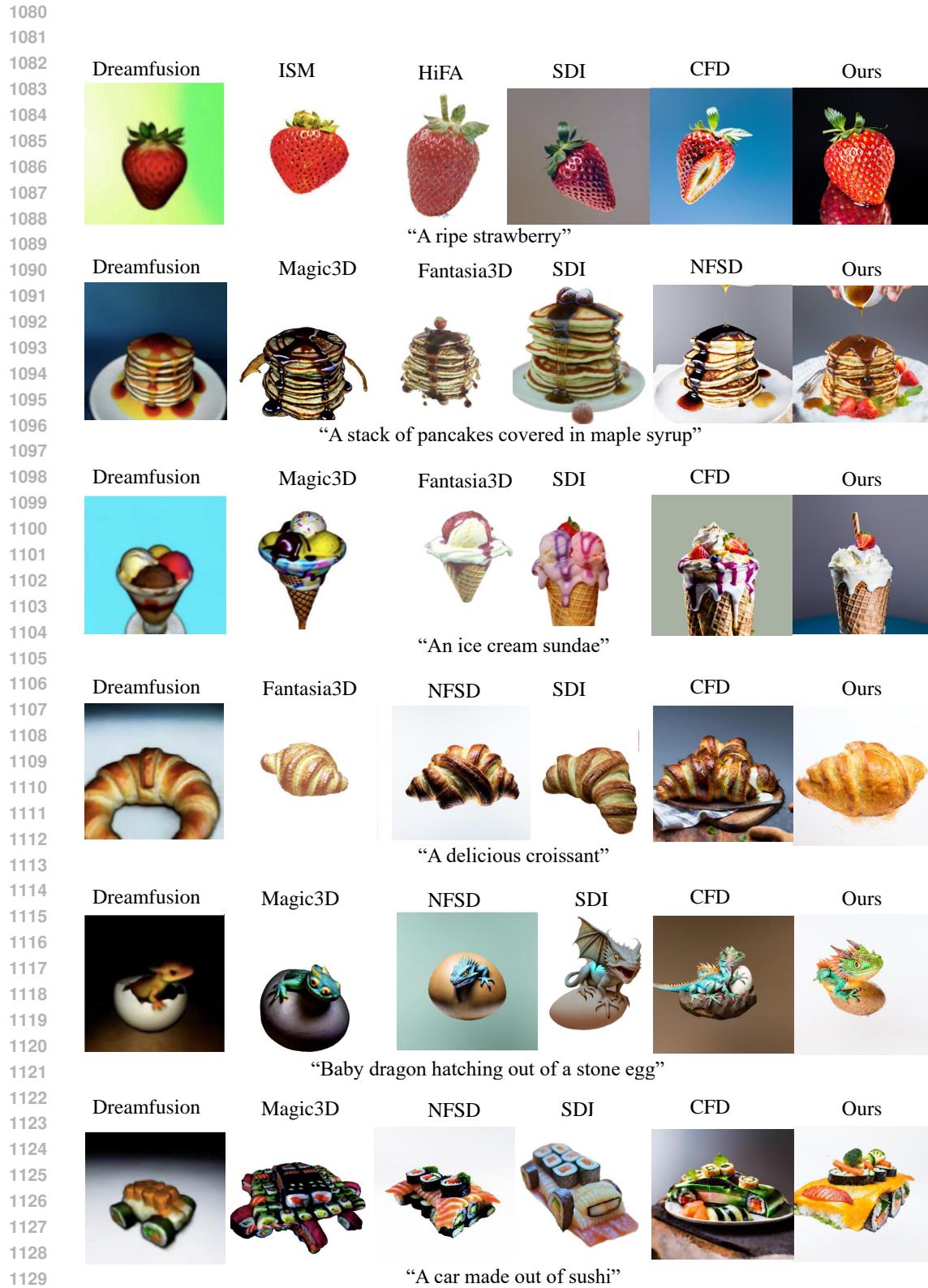


Figure 13: Comparison between OCD and other baselines. Our method employs Algorithm 2 to generate 3D objects at a resolution of 512×512 .

