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ABSTRACT

Score Distillation Sampling (SDS) struggles to ensure that the pseudo ground
truths from different viewpoints generated by the diffusion model correspond to
the same 3D object in 3D generation. To analyze object inconsistency in SDS
more directly and precisely, we theoretically model the renderings of a 3D object
under continuous viewpoints as a connected subset of the image space. Based
on this formulation, we introduce an object consistency constraint and identify
two key sources of inconsistency: cross-view image discrepancy variation and
cross-view distributional estimation error. In contrast to prior works, we focus on
the former and propose Object-Consistent Distillation (OCD) which enforces the
object consistency constraint during the generation of multi-view pseudo ground
truths. Specifically, we estimate a dynamic object proxy using a sliding window
and move the rendering of each viewpoint toward this proxy. We compare OCD
with several recent generative baselines, and experiments demonstrate that OCD
significantly mitigates irregular structures and unrelated artifacts in the generated
objects. Code is provided in the supplemental material.

1 INTRODUCTION

In recent years, 3D generation has been attracting increasing attention due to its closer alignment with
the physical world and its broad application prospects in fields such as human digitization [27], scene
generation [3], and 3D editing [12]. However, training generative models typically demands large-
scale datasets, and the collection of 3D data remains challenging due to factors such as acquisition
difficulty and high annotation costs [38]. Fortunately, recent advancements in 2D generative models,
especially diffusion models [15; 44; 35], have achieved remarkable success, reaching photo-realistic
levels in terms of fidelity, diversity, and controllability. As a result, leveraging 2D generative models
for 3D object synthesis holds great promise.

A prevailing paradigm for leveraging 2D generative models to synthesize 3D objects is Score
Distillation Sampling (SDS) [33], whose core idea is to utilize diffusion models to supervise multi-
view 2D renderings. Specifically, a 3D representation is rendered into 2D images from multiple
camera viewpoints, which are then processed by a diffusion model to obtain denoised targets through
a forward and reverse denoising process, serving as pseudo ground truth (pseudo-GT) for optimizing
the 3D representation. Ideally, multi-view pseudo-GTs should correspond to consistent renderings of
a single realistic 3D object. However, due to the one-to-many nature of the mapping between a text
prompt and realistic images, the pseudo-GTs generated from different viewpoints may correspond to
different 3D objects. As illustrated in Figure 1, varying only the rendering viewpoint while keeping
the prompt fixed leads to pseudo-GTs that differ in shape, color, and background, a phenomenon we
term object inconsistency. Such inconsistency can degrade the 3D optimization process, causing the
resulting object to exhibit unnatural geometry or undesired artifacts. Recent works have investigated
the inconsistency of multi-view images, and have proposed mitigating this issue by replacing the
stochastic noise in SDS with more structured or deterministic noise [50; 23; 28]. While these methods
have demonstrated improvements in visual coherence and clarity, they fall short of providing a
comprehensive analysis of the root causes of object inconsistency. In this work, we first provide a
theoretical perspective by characterizing the set of 2D renderings of a 3D object as a connected set in
image space. Building on this insight, we show that the pseudo-GTs derived in the SDS paradigm
may correspond to various underlying 3D objects due to the lack of object consistency constraints.
Additionally, our analysis identifies two main sources of object inconsistency: cross-view image
discrepancy variation and cross-view distributional estimation error. Unlike prior works [50; 23; 28]
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A rainbow fishPrompt:

View 1:

View 2:

A delicious 
croissant
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Shape 
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Figure 1: Given the same prompt, renderings from different viewpoints are input into the diffusion
model, resulting in real images that correspond to inconsistent objects.

that primarily focus on the latter, we propose Object-Consistent Distillation (OCD), which explicitly
enforces object consistency across multiple views. Specifically, we estimate a cross-view object
proxy using previously sampled random viewpoints, serving as the representation of the target object,
and each view-specific rendering is moved toward this estimated object proxy before being passed to
the diffusion model. By introducing this object consistency constraint, the pseudo-GTs from different
views are encouraged to align with the same underlying 3D object.

In summary, our main contributions are as follows:

• We conduct a theoretical analysis of the relationship between 3D objects and their 2D ren-
derings, and formulate that under continuous viewpoint rendering, a 3D object corresponds
to a connected subset of the image space.

• By examining the diffusion and denoising processes in diffusion models, we identify the
sources of multi-view inconsistency in pseudo-GTs, attributing them to cross-view image
discrepancy variation and cross-view distributional estimation error, noting that previous
studies have largely neglected the former by focusing solely on the latter.

• We propose Object-Consistent Distillation (OCD), which moves view-specific renderings
towards a cross-view object proxy, leading to more consistent and coherent supervision
across views.

• We compare OCD with several state-of-the-art score distillation methods and demonstrate
that it significantly improves generation fidelity and object coherence, while also alleviating
the Janus problem, all with negligible additional computational and memory overhead.

2 RELATED WORK

Diffusion Models. The generation process of diffusion models consists of two key stages [40; 15; 41]:
a forward diffusion process that gradually adds Gaussian noise to the image, and a reverse denoising
process that reconstructs the image from the noisy input. By incorporating conditional prompts
into the denoising process, the model can be guided to generate images that align with the given
conditions [14]. Owing to their impressive generative capabilities, particularly in producing detailed
and diverse samples, diffusion models have been widely adopted in various generative tasks, such as
image generation [19; 25; 9], image super-resolution [34; 36], and image editing [32; 2] and are also
considered promising for 3D generation [33; 45; 24; 26]. Despite the popularity of diffusion models
for their diverse outputs [7; 4; 51], this diversity can compromise multi-view consistency when used
as supervision for 3D reconstruction.
Score Distillation Sampling for 3D Content Generation. Score Distillation Sampling (SDS) [33;
45] is a paradigm that extends diffusion models, originally designed for 2D image generation, to
the domain of 3D object synthesis. In this framework, a 3D representation is rendered into 2D
images from multiple views, and a pretrained diffusion model provides supervision signals for these
rendered images. Rather than requiring explicit 3D supervision, SDS leverages the generative power
of large-scale diffusion models to indirectly guide the learning of 3D representations. Building

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

upon the successful text-to-3D paradigm established by SDS, subsequent studies have improved
the generation process, achieving higher fidelity and greater diversity from multiple perspectives.
For instance, they adopt annealed diffusion timestep strategies [18; 54; 22], introduce structured
diffusion noise [28; 23; 50], decouple [6] or randomize 3D representations [47], and employ enhanced
classifier-free guidance [52]. Nevertheless, the outputs of SDS often exhibit repeated patterns or
structural collapse across views, which are manifestations of the multi-view consistency problem.
To address this issue, mainstream approaches can be broadly divided into two categories. The first
incorporates external prior knowledge, typically by leveraging additional datasets, 3D models or
classifier [31; 39; 37; 5; 53], while the second enforces consistency regularizations within the original
framework. The latter takes various forms, such as clipping the diffusion model’s predicted scores [16],
debiasing the input prompt [16; 1], introducing additional consistency losses [21; 48], aligning noise
across different views [50; 23], and adopting adaptive view sampling strategies [17]. Unlike prior
multi-view consistency methods, our approach analyzes the relationships across renderings, through
which consistency constraints are effectively enforced.

3 PRELIMINARIES

Diffusion Models. Diffusion models are a class of deep generative models built upon two pro-
cesses [15; 40]: a forward diffusion process that gradually adds Gaussian noise to real images,
and a reverse denoising process that reconstructs the original images from pure Gaussian noise.
Formally, given a data sample x0 drawn from the real data distribution p0(x0), the diffusion process
incrementally adds Gaussian noise ϵ over time. At a specific time step t, the noisy data xt follows the
distribution N (

√
ᾱtx0, (1− ᾱt)I), where ᾱt =

∏t
i=1 αt and αt is a time-dependent hyperparameter

predefined by the diffusion schedule. In the reverse process, the diffusion model conditionally predicts
the added noise at each time step given a prompt y.The model is then trained by minimizing the mean
squared error (MSE) between the predicted noise ϵϕ(xt, t, y) and the true noise ϵ:

Lmse = Ex0,ϵ,t[ω(t)||ϵϕ(xt, t, y)− ϵ||22], (1)

where ω(t) denotes the weights at timestep t. After training, the denoised result can be obtained
using the following simplified iterative formula:

xt−1 =
1

√
αt

(xt −
1− αt√
1− ᾱt

ϵϕ(xt, t, y)) (2)

Through this formulation, pure noise is transformed into real data via the denoising process.

Score Distillation Sampling. Diffusion models have demonstrated remarkable performance in
terms of both generation quality and diversity [7]. Leveraging this advantage, [33] first proposed the
Score Distillation Sampling (SDS) framework, which utilizes the realistic images generated by a
diffusion model as pseudo-GTs for 3D model optimization. Specifically, SDS first renders a randomly
initialized 3D object representation θ into 2D images g(θ, c) from multiple viewpoints c. These
images are perturbed with Gaussian noise at randomly sampled timestep t:

xt(c) =
√
ᾱtg(θ, c) +

√
1− ᾱtϵ (3)

Subsequently, the noisy images xt(c) are fed into the diffusion model ϕ, which generates a conditional
denoising prediction ϵϕ(xt, t, y) guided by a given prompt y. Since SDS mirrors the two processes
of diffusion models, the resulting gradient with respect to θ closely resembles Equation 1:

∇θLSDS = Et,ϵ,c[ω(t)(ϵϕ(xt, t, y)− ϵ)]
∂g(θ, c)

∂θ
(4)

In the absence of direct 3D supervision, SDS successfully enables gradient updates to the 3D object
by rendering it into images in a differentiable manner and supervising in the image space.

4 VARIABILITY OF UNDERLYING 3D OBJECTS IN SDS

By examining the gradient shown in Equation 4, it is observed that the generation of pseudo-GTs
in SDS is performed independently for each viewpoint. Specifically, the diffusion model takes as
input a rendering from a single viewpoint and performs diffusion and denoising operations under
the guidance of a view-shared prompt. Ideally, each rendering carries view-specific information and,
through the denoising process, reconstructs a realistic image of a realistic 3D object described by
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Figure 2: The relationship between 3D objects and their 2D renderings in SDS. The set of images
obtained by rendering a 3D object from continuous viewpoints forms a connected subset of the image
space. SDS randomly samples viewpoint images from this subset and applies independent noise and
denoising to each. Since pseudo-GTs for each view are generated independently, the corresponding
denoised pseudo-GTs are not guaranteed to be consistent. As a result, the optimization tends to drive
the initial object towards an average of multiple potential target objects.

the prompt from its viewpoint. However, due to the inherently one-to-many relationship between a
text prompt and realistic images, feeding renderings from different viewpoints as input can produce
significantly different outputs, which may correspond to various underlying 3D objects. Since both
the renderings and the pseudo ground truth are images, we analyze the variability of the underlying
3D objects in SDS within the image space.

First, the pseudo-GT x̂0(c|y), obtained by feeding the rendered image under viewpoint c, x0(c) =
g(θ, c), into the diffusion model, is computed as:

x̂0(c|y) =
xt(c)−

√
1− ᾱtϵϕ(xt, t, y)√

ᾱt
(5)

Then, based on the diffusion process applied to x0(c), we can transform the noise alignment loss in
Equation 4 into image alignment form:

∇θLSDS = Et,ϵ,c[
ω(t)

γ(t)
(x0(c)− x̂0(c|y))]

∂g

∂θ
(6)

Here, γ(t) =
√
1− ᾱt/

√
ᾱt. Equation 6 reveals that the underlying principle of SDS is to supervise

single-view images using pseudo-GTs generated by a diffusion model, thereby updating the 3D object
representation. The central question is whether, by modifying only the input image to a diffusion
model, the resulting outputs can consistently depict the same underlying object. Intuitively, this
consistency is difficult to guarantee, as diffusion models are highly sensitive to input variations, and
a single text prompt may correspond to a diverse set of real-world images. To examine this issue,
we develop a theoretical framework aimed at representing 3D objects in image space, bridging the
dimensional gap between images and objects. This enables a direct and intuitive representation of
the 3D object indicated by the pseudo-GTs, thereby facilitating analysis of the variability of the
underlying 3D objects.

We begin with an intuitive insight: for a 3D object, its rendering under a camera view c corresponds
to a single point in image space. As the view c varies continuously, the corresponding renderings
change continuously in image space. Motivated by this insight, we define the view parameter c as a
vector that encodes the coordinates determining the camera’s position and orientation, as well as the
location of a point light source [30], and proceed to state the following theorem.
Theorem 1 (Connectedness of the Viewpoint–Image Set). Let:

• C ⊂ Rd be a connected set representing the continuous viewpoint parameter space;

• I = RN be the image space, where N = 3HW (flattening an H ×W RGB image);
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• g : C → I be a continuous rendering function, i.e., g ∈ C0(C, I).

Then the image set M := g(C) ⊂ I is connected.

The formal proof of Theorem 1 is provided in the Appendix A.1. Based on Theorem 1, the optimiza-
tion paradigm of SDS becomes more intuitive. As shown in Figure 2, within an initial object (the
object to be optimized), denoted as an image set M0, SDS randomly samples a finite set of views and
renders a set of images {x0(c1), x0(c2), . . . , x0(cn)}. For each image, the diffusion model generates
a corresponding pseudo-GT, {x̂0(c1|y), x̂0(c2|y), . . . , x̂0(cn|y)}. Next we analyze whether these
pseudo-GTs could originate from the same object or, equivalently, from the same region.

If the pseudo-GTs generated from all sampled views correspond to the same target object Mtarget,
these randomly sampled viewpoint images are expected to lie in a connected set according to
Theorem 1. To formalize the notion, we propose the following object consistency constraint:

||x̂0(c1|y)− x̂0(c2|y)||2 ≤ δ(c1, c2), (7)

where δ(c1, c2) denotes the distance between the pseudo-GTs of two viewpoints in the target object.
While diffusion models are celebrated for their generative diversity [34; 15; 8], producing a wide
range of realistic outputs depending on the input and injected noise, this very property becomes
problematic in 3D generation tasks. When renderings originate from different viewpoints and are
independently corrupted by noise, their resulting latent representations diverge significantly. As a
consequence, the final outputs often fail to maintain consistency across views, violating the object
consistency constraint in Equation 7. This ultimately results in inconsistencies in the underlying 3D
object representations inferred from different viewpoints:

∇θLSDS =

m∑
k=1

Et,ϵ[
ω(t)

γ(t)

∑
x0∈M0

∑
x̂0∈Mtar

(x0 − x̂0)]
∂g(θ, c)

∂θ
,Mtar =

m⋃
k=1

Mk (8)

Here, Mtar denotes the composite target object formed by the m real objects to which the n pseudo-
labels. As a result, the initial object is implicitly encouraged to update toward all m target objects
simultaneously. In other words, the optimization process effectively treats the average of these m
objects as an object-level pseudo-GT, as illustrated in Figure 2. However, due to structural, color, and
background variations among these target objects, this averaging process can introduce artifacts into
the generated geometry, including unnatural structures or elements unrelated to the intended subject.

5 OBJECT-CONSISTENT SCORE DISTILLATION

To address the inconsistency of pseudo-GTs from different viewpoints with respect to the underlying
3D object, we investigate the generation process of viewpoint-specific pseudo-GTs, aiming to identify
the contributing factors to such inconsistency. Specifically, for an image x0(ci) rendered from an
arbitrary viewpoint ci , the pseudo-GT is obtained through a process of diffusion and denoising:

x̂0(ci|y) = x0(ci) + γ(ti)(ϵ− ϵθ(xti(ci), ti, y)), i ∈ {1, 2, . . . , n} (9)

Since the combination of random noise ϵ and the predicted noise ϵθ(xti(ci), ti, y) are used to
transform the original image into a realistic one, effectively estimating the discrepancy between
the original and target distributions, we denote their combined noise as δD(ci|y) = γ(ti)(ϵ −
ϵθ(xti(ci), ti, y)). Subsequently, we replace the pseudo ground truth in the object consistency
constraint in Equation 7:

||x0(ci)− x0(cj) + δD(ci|y)− δD(cj |y)||2 ≤ δ(ci, cj), ∀i ̸= j, i, j ∈ {1, 2, . . . , n} (10)

It is observed that the failure of the object consistency constraint arises from two main sources:
cross-view image discrepancy variation, x0(ci)− x0(cj), and cross-view distributional estimation
error, δD(ci|y)− δD(cj |y). Most existing works [50; 23] attribute multi-view inconsistency solely to
the latter, while overlooking the former. They argue that the randomness and independence of noise
across different viewpoints prevent diffusion models from generating consistent pseudo ground truths.
In contrast, we place greater emphasis on the former, which refers to the fact that discrepancies in the
renderings themselves across different viewpoints can lead to variations in their positions in the latent
space, thereby amplifying the diversity in the outputs of the diffusion model. For example, as shown
in Figure 2, the inconsistencies between the 3D chairs corresponding to the pseudo-GTs of views
1 and 3 can be attributed approximately half to the diffusion and denoising process, and half to the
intrinsic differences between the two renderings themselves.
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Figure 3: Overview of Object-Consistent Distil-
lation. For each viewpoint, an object proxy is
estimated based on the pseudo-GTs from preced-
ing views. The current view’s rendering is then
moved toward this proxy, enforcing consistency
such that the pseudo ground truths from different
viewpoints correspond to the same target object.

Since our focus is on the differences between ren-
derings from different viewpoints, we first decou-
ple the distributional discrepancy from the cross-
view image difference:

∥x0(ci)− x0(cj)∥2 ≤ δ̃(ci, cj) (11)

δ̃(ci, cj) = δ(ci, cj)− ∥δD(ci)− δD(cj)∥2
(12)

In Equation 11, enforcing object consistency for a
given viewpoint ci requires computing the dis-
tances between ci and all other sampled view-
points, resulting in n− 1 pairwise constraints. To
reduce the computational overhead, we propose
to approximate this by using the distance between
each viewpoint and an estimated object proxy of
the target object, denoted as Oi:

∥x0(ci)−Oi∥2 < δ̃(ci, Oi) (13)

Oi =

j=i−1∑
j=i−l

x̂0(cj) (14)

Since the sampled viewpoints in SDS are optimized sequentially, we estimate the object proxy for
each viewpoint using a sliding window. As shown in Equation 14 and Fig 3, the sliding window
spans the preceding l viewpoints relative to the current one, and the mean of the pseudo ground truths
within the windowed views is taken as the object proxy. Note that the window size l is small relative
to the total number of views (e.g., about 1%), allowing the pseudo-ground-truths within the window
to be approximated as renderings of the same target object.

Another issue lies in how to modify the input image of the diffusion model based on the object
consistency constraint. Our intuition is that this constraint enforces the input image to be sufficiently
close to the object proxy O, or equivalently, encourages the image to move towards the proxy. To this
end, we adopt a moving average strategy to move the image towards the object proxy:

x̃0(ci) = τx0(ci) + (1− τ)Oi, (15)

where we relax the distance δ̃ to a momentum hyperparameter τ . A smaller value of τ implies that
the moved image is closer to the object proxy, which in turn corresponds to a tighter δ̃ constraint.

By replacing the view image in Equatio 9 with the moved version, our method yields the update
gradient for the 3D object representation as follows:

∇θLSDS = Et,ϵ,c[
ω(t)

γ(t)
(x0(c)− x̃0(c)− δD(c|y))]∂g(θ, c)

∂θ
(16)

It is important to emphasize that our method only modifies the images fed into the diffusion model to
enforce consistency of target object, without altering the original per-view images themselves.

6 EXPERIMENTS

Following prior work [28; 50], we employ the same Stable Diffusion v2.1 [34] model and the Three-
studio codebase [11]. We compare our proposed OCD method against three baselines: SDS [33],
SDI [28], and CFD [50]. Specifically, these baselines differ in their approaches to estimating the distri-
butional discrepancy δD: SDS uses view-independent random noise, SDI leverages DDIM inversion
to predict noise, and CFD employs cross-view consistent noise. Our final results combine OCD with
these three baselines. Note that since the SDS code is not publicly available, we approximate SDS by
replacing the cross-view consistent noise in CFD with view-independent random noise. Moreover,
we adopt only the single-stage pipeline from CFD, i.e., directly distilling Stable Diffusion without
any initialization. The momentum hyperparameter is set to τ = 0.9 and , and the window length l is
defined as 1% of the total training steps (i.e., the total number of sampled views).Experiments are
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SDS SDS+Ours CFD CFD+OursSDI SDI+Ours

Figure 4: Comparison with other baselines on 3D generation. The first row uses the prompt “A plate
piled high with chocolate chip cookies”, while the second row uses “A delicious croissant”.

Table 1: Quantitative comparisons to baselines for text-to-3D generation, evaluated by Eval3D [10]
and CLIP IQA [46]. We report mean and standard deviation across 10 prompts and 50 views for each.

Method Eval3D (%) (↑) CLIP IQA (%) IR (↑) Time VRAM
Geometric Structural “natural”↑ “real”↑ “complexity”↓

SDS [33] 56.66± 25.34 85.92± 5.24 39± 9.6 40± 6.1 74± 7.7 −0.47± 0.18 150min 14.4GB
SDS+ours 60.51± 24.55 87.23± 1.68 47± 8.4 67± 10.1 69± 8.1 0.23± 0.10 151min 14.4GB

SDI [28] 76.39± 19.9 85.15± 4.11 18± 6.6 7± 3.8 63± 8.3 −2.10± 0.19 83min 7.9GB
SDI+Ours 89.36± 2.51 87.11± 1.55 55± 5.2 21± 6.8 53± 6.7 −2.03± 0.17 88min 7.9GB

CFD [50] 66.77± 19.69 86.45± 1.41 42± 5.9 60± 7.0 73± 4.3 −0.14± 0.15 152min 14.4GB
CFD+ours 70.10± 23.21 88.46± 1.61 52± 4.4 71± 5.6 70± 6.3 0.26± 0.15 155min 14.4GB

conducted on RTX 3090 GPUs, and images are generated at a resolution of 128× 128. More detailed
experimental settings and higher-resolution results can be found in Appendix B, C, and D.

Qualitative Comparision Figure 4 presents a comparison between our method and other approaches
that adopt different noise configurations. In the generation results of SDS [33] with random noise and
CFD [50] with multi-view consistent noise, the main objects often appear cluttered, and unrelated
content may emerge in the background. This is because the pseudo-GTs derived from independent
views correspond to different underlying objects. Under the same prompt, such as ”cookies”,
the placement, shape, and background context of the cookies vary significantly across different
viewpoints. As a result, the inconsistent pseudo-GTs lead to outputs that blend multiple possible
objects. Moreover, both SDI [28] and CFD sometimes produce objects with distorted or unrealistic
structures. This issue also stems from the inconsistency among the 3D objects implied by the
pseudo-GTs across views. For example, in the croissant generated by SDI, since the pseudo-GTs
corresponding to the front and side views conflict, the resulting geometry becomes a malformed
artificial shape. In contrast, our method incorporates an object-level consistency constraint, which
significantly improves the coherence of the generated results. By moving the images away from
regions that are likely to cause conflicts in object shape or position across different viewpoints, our
approach reduces inconsistency and aligns the generation toward a more unified 3D representation.

Quantitive Comparision Following prior works [28; 33; 52], we adopt CLIP [46] and ImageReward
(IR) [49], and additionally incorporate Eval3D [13] to quantitatively assess the quality of the generated
results, aiming to approximate human perception of the synthesized objects. We first adopt the
“Geometric Consistency” and “Structural Consistency” metrics from Eval3D [13] to evaluate the
multi-view consistency of the generated objects. As shown in Table 1, by introducing object proxies
to impose consistency constraints, geometric consistency and structural consistency are improved by
6.72% and 1.76% on average, respectively. Next, we include the CLIP Image Quality Assessment
(IQA) [46] to evaluate the naturalness, realism, and complexity of the rendered views, achieving an
average improvement of 13.89%. It is worth noting that the first two metrics measure the realism of
the renderings, while the last reflects the presence of irrelevant artifacts. On the IR metric, which
is designed to mimic human preferences, OCD significantly boosts the performance of both SDS
and CFD methods, and yields a slight improvement for the SDI method, with an average gain
of 0.39. This demonstrates the advantage of OCD in enhancing the realism of the generated 3D
objects. It is indicated that perturbing the input images effectively encourages the output images to
converge toward a consistent set of target objects, thereby producing 3D reconstructions that are more
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SDS 𝜏 = 0.9 𝜏 = 0.8

𝑙 = 600𝑙 = 400𝑙 = 200SDS 𝑙 = 800

𝜏 = 0.6𝜏 = 0.7

Figure 5: Effect of momentum hyperparameter τ and window size l on generation. Prompt: ”A
DSLR photo of an ice cream sundae”.

faithful to real-world objects. Finally, the last two columns of Table 1 present the training time and
memory usage of different methods. As shown, our method incurs less than 1% additional overhead,
highlighting its computational efficiency and demonstrating its advantage as a resource-efficient
solution for enforcing object-level consistency.

6.1 ABLATION STUDIES

Ablation on momentum hyperparameter τ . The first row of Figure 5 shows the effect of varying the
momentum hyperparameter τ on the generation quality. As τ decreases, the generated results become
increasingly focused on the target object described by the prompt, while substantially reducing
irrelevant elements introduced by the prompt’s ambiguous semantics. This is because a smaller τ
places greater emphasis on the estimated object proxy, which encapsulates semantics shared across
multiple views, thereby substantially reducing the semantic ambiguity within each individual view.

Ablation on window size l. The second row of Figure 5 illustrates the effect of varying the window
size on the performance of our method. As the window size increases, the generated results exhibit
undesired and irrelevant artifacts, and the overall appearance becomes increasingly similar to that of
SDS. This suggests that when the window size is large, the composite target object in Equation 8
encompasses a larger set of real objects. As a result, the estimated object proxy tends to approximate
an average over multiple objects, which severely compromises the object consistency among pseudo-
GTs. In contrast, when a smaller window size is used, the variability of the underlying 3D objects is
substantially reduced, making the generations more faithful to the prompt.

6.2 GENERATION DIVERSITY

Figure 6: 3D generated objects under different random seeds. The prompts from left to right are: A
baby bunny sitting on top of a stack of pancakes; A small saguaro cactus planted in a clay pot; A 3D
model of an adorable cottage with a thatched roof ; A hamburger; A highly detailed DSLR photo of a
3D model of a historical stone castle.

A potential concern is that aligning the pseudo-GTs from all viewpoints toward a object proxy might
compromise the generation diversity. Figure 6 shows results under different seeds, demonstrating that
our method preserves diversity while improving consistency. This benefit stems from the momentum-
based moving average used to estimate the proxy, which balances current view information with a
stable reference, avoiding over-constraining the diffusion process.
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(a) Renderings of SDS (b) Renderings of ours (c) Pseudo-GTs of SDS (d) Pseudo-GTs of ours

Figure 7: T-SNE visualization of renderings and pseudo-GTs in the image space. (a)/(c): Distributions
of viewpoint renderings and pseudo-GTs obtained with SDS. (b)/(d): Corresponding distributions
obtained with OCD. Darker colors indicate samples from later training steps.

6.3 IMAGE SPACE VISUALIZATION

To more directly and clearly demonstrate the effect of introducing the object proxy on 3D object
generation, we visualize the renderings and pseudo-GTs during the optimization process using
t-SNE [43]. As shown in Figure 7 (a) and (c), before applying the object consistency constraint,
the distributions of renderings and pseudo-ground-truths remain dispersed and show little change
throughout optimization. In contrast, after introducing the constraint, as shown in (b) and (d),
both renderings and pseudo-GTs progressively concentrate and converge toward a consistent single
target object. This difference arises from the object proxy, which conditions each pseudo-GT on
previous views during optimization, resulting in a more concentrated distribution. Consequently, the
supervisory signals enforce tighter consistency in 3D renderings from different views.

6.4 JANUS PROBLEM

SDS SDS+ours SDI SDI+ours CFD CFD+ours

Figure 8: Effect of OCD on the Janus Problem. Prompt: a ceramic lion.

The Janus problem refers to the phenomenon where a generated 3D object inaccurately presents the
canonical view from multiple viewpoints. This typically arises when the pseudo-GTs generated by
the diffusion model for a given view does not match that view, for instance, producing a front-facing
image when conditioned on a back view rendering. Since OCD is designed to enhance multi-view
consistency, it proves effective in alleviating this problem. n Figure 8 and Table 1, we qualitatively
and quantitatively demonstrate the effectiveness of OCD in alleviating the Janus problem. these
baselines either do not impose any multi-view consistency constraints or only enforce consistency
from the perspective of noise, yet all exhibit severe manifestations of the Janus problem. In contrast,
applying OCD significantly alleviates this issue. This highlights the critical role of the renderings’
positions in the latent space in influencing the diffusion model’s output. Through the utilization of
cross-view information, our method provides more consistent multi-view supervisory signals, thereby
enhancing the realism and coherence of the generated 3D objects.

7 CONCLUSION

By modeling the rendering of a 3D object under continuous viewpoints as a connected subset of the
image space, we provide a more intuitive and effective formulation for the Score Distillation Sampling
(SDS) paradigm. To analyze the variability of 3D objects corresponding to the pseudo-GTs produced
by diffusion models, we introduce an object consistency constraint. Integrating this constraint into the
pseudo-GT generation process allows us to attribute multi-view inconsistency to cross-view image
discrepancy variation and cross-view distributional estimation error. Focusing on the inconsistencies
caused by the former, we propose Object-Consistent Distillation (OCD), which incorporates object-
consistency constraints during the generation of multi-view pseudo ground truths. Specifically,
a view-dependent sliding window is used to estimate an object proxy, and renderings from each
viewpoint are moveed toward this proxy before being fed into the diffusion model. Experimental
results show that OCD enhances generation fidelity and object coherence, while also contributes to
alleviate the Janus problem with minimal overhead.
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A PROOF

A.1 PROOF THE THEOREM 1

In this subsection, we present the proof of Theorem 1: Connectedness of the Viewpoint–Image Set.
We begin by discussing the rationale behind the assumptions of the theorem.

Assumption 1: C ⊂ Rd be a connected set representing the continuous viewpoint parameter space.
We define the viewpoint parameter c ∈ C ⊂ Rd as a vector that encodes both the camera configuration
and the position of a point light source. Specifically,

c = [µcam, ζcam, discam, lacam, upcam, xlig, ylig, zlig]

where:

• µcam, ζcam, discam denote the elevation angle, azimuth angle, and distance from the origin,
respectively. Together, they determine the camera position in spherical coordinates.

• lacam and upcam represent the camera’s look-at direction and up vector, which define its
orientation.

• [xlig, ylig, zlig] specifies the location of a point light source.

All of these components are continuous variables. For instance, we define

µcam ∈ [−90◦, 90◦], ζcam ∈ [0◦, 360◦], discam ∈ [0, 2],

lacam ∈ S2 = {x ∈ R3 | ∥x∥ = 1},
upcam ∈ S2 = {x ∈ R3 | ∥x∥ = 1},

xlig, ylig, zlig ∈ R.
Since each component varies continuously in R, the resulting parameter space C is a connected
subset of Rd.

Assumption 2: I = RN be the image space, where N = 3HW (flattening an H ×W RGB image).
The image space I is often taken as RN with N = 3HW by flattening an H × W RGB image.
Since each pixel channel value is normalized and constrained within the continuous interval [0, 1],
the realistic image space is actually a bounded, continuous subset: I ⊆ [0, 1]N ⊂ RN . This subset
forms a compact and connected space under the standard Euclidean topology, ensuring that the image
representations vary continuously with respect to pixel intensity changes.

Assumption 3: g : C → I be a continuous rendering function, i.e., g ∈ C0(C, I). In the SDS
rendering pipeline [33], the viewing parameter uniquely determines the camera’s projection center.
From this center, rays are cast through each pixel into the scene using only continuous operations
such as matrix multiplication and vector addition. Thus, the mapping from viewing parameters to
ray directions is continuous. Subsequently, SDS samples points densely along each ray in 3D space.
Although this sampling is discrete, the high sampling density allows us to approximate the process
as a continuous integral along the ray. Specifically, the sampled points {p(si)} represent discrete
locations along the ray, where each point is defined as

p(si) = o+ sid,

with o being the camera origin and d the ray direction. Here, si denotes the distance from the camera
origin along the ray.

At each sampled point p(si), the multi-layer perceptron (MLP) is queried to produce the volumetric
density ρ(p(si)) and the view-dependent RGB color cl(p(si)). Although the sampling is discrete, the
dense sampling allows the discrete summation of these values to closely approximate the continuous
volume rendering integral:

C(r) =

∫ smax

smin

S(s) ρ(p(s)) cl(p(s)) ds,

S(s) = exp

(
−
∫ s

smin

ρ(p(u)) du

)
,
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where C(r) is the final pixel color along ray r, S(s) is the accumulated transmittance. The process
of mapping a view parameter c to the RGB color of a pixel can be viewed as a composition of several
continuous functions. First, the view parameter c determines the camera origin o and direction d in a
continuous manner. Then, for each depth value s ∈ [smin, smax], the point along the ray is given by
p(s) = o+ sd, which is also continuous in o and d, hence continuous in cl. The volumetric density
ρ(·) and color cl(·) are computed by a multi-layer perceptron (MLP), which is a composition of
continuous functions and thus itself continuous. Finally, the volume rendering integral is continuous
with respect to o and d, and hence with respect to c. Therefore, the overall rendering function
g : C 7→ I can be regarded as a continuous function.

Given the assumptions of Theorem 1, M := g(C) is connected in I by the basic topological fact
that continuous maps preserve connectedness [42].

A.2 DEFORMATION OF THE GRADIENT FORMULATION IN SDS

In the main paper, we transform the noise-alignment gradient formulation of SDS (Equation 4 in the
main text), into the image-alignment gradient formulation (Equation 6 in the main text). Below, we
provide the detailed derivation of this transformation.

∇θLSDS = Et,ϵ,c[ω(t)(ϵϕ(xt, t, y)− ϵ)]
∂g(θ, c)

∂θ
(17)

= Et,ϵ,c[ω(t)(ϵϕ(xt, t, y)− ϵ) + ω(t)
(xt(c)− xt(c))√

1− ᾱt
]
∂g(θ, c)

∂θ
(18)

= Et,ϵ,c[ω(t)
xt(c)−

√
1− ᾱtϵ√

1− ᾱt
− ω(t)

xt(c)−
√
1− ᾱtϵϕ(xt, t, y)√
1− ᾱt

]
∂g(θ, c)

∂θ
(19)

= Et,ϵ,c[
ω(t)

γ(t)

xt(c)−
√
1− ᾱtϵ√

ᾱt
− ω(t)

γ(t)

xt(c)−
√
1− ᾱtϵϕ(xt, t, y)√

ᾱt
]
∂g(θ, c)

∂θ
(20)

= Et,ϵ,c[
ω(t)

γ(t)
(x0(c)− x̂0(c|y))]

∂g(θ, c)

∂θ
(21)

(22)

B IMPLEMENTATION DETAILS

B.1 EXPERIMENT CONFIGURATION

Our experiments are conducted on 8 NVIDIA RTX 3090 GPUs, each equipped with 24GB of VRAM.
Since the implementation of the SDI [28] baseline requires larger GPU memory, we adopt a resolution
of 128×128 in the experiments involving SDI, specifically in parts of Figures 4 and 8 in the main
text and Figure 11 in the Appendix, to avoid memory overflow. Nevertheless, these results still
demonstrate the effectiveness of our method. We also present the results of applying OCD on top
of the CFD [50] and SDS [33] baselines at a resolution of 512×512 in Figures 10, 12, 13 and 14,
which showcase finer details and high-fidelity generation quality. For the teacher diffusion model,
we follow most prior works[23; 28; 50] and adopt Stable Diffusion v2.1 [34]. It is worth noting that
Stable Diffusion v2.1, as a Latent Diffusion Model, performs the noising and denoising processes
in the latent space rather than in the pixel space. Accordingly, the object proxy computations are
also carried out in the latent space of the diffusion model. Additionally, several studies have shown
that timestep annealing [28; 18; 54] and the use of extra negative prompts [20; 29; 50] are beneficial
for 3D generation; thus, we incorporate both strategies in our framework. By default, we use the
same classifier-free guidance (CFG) scale of 7.5. Except for applying our method to SDI, where 10k
training steps and a learning rate of 10−2 are used, we adopt 25k steps and a learning rate of 10−3 in
all other cases.

B.2 ALGORITHM

Algorithm 1 and 2 illustrate the difference between the original SDS pipeline and our proposed OCD
method. The key distinction lies in that OCD incorporates cross-view information before feeding the
image into the diffusion model. The differences between OCD and SDS are highlighted in red.
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Algorithm 1 Dreamfusion (SDS)
Require: θ - 3D object representation

c - camera view parameter
y - text prompt
g : C → I - differentiable renderer
ϵ
(t)
ϕ - trained diffusion model

Ensure: 3D shape θ of y
procedure DREAMFUSION(y)

for i in range(n iters) do
t← Uniform(0, 1)
c← Uniform(C)
ϵ← Normal(0, I)
xt ←

√
ᾱ(t)g(θ, c) +

√
1− ᾱ(t)ϵ

∇θLSDS = σ(t)
[
ϵ
(t)
ϕ (xt, y)− ϵ

]
∂g
∂θ

Backpropagate∇θLSDS

SGD update on θ

Algorithm 2 Ours (OCD)
Require: θ - 3D object representation

c - camera view parameter
y - text prompt
g : C → I - differentiable renderer
ϵ
(t)
ϕ - trained diffusion model
τ - strength of the object consistency constraint

Ensure: 3D shape θ of y
procedure OURS(y)

for i in range(n iters) do
t← T ime annealing(i)
c← Uniform(C)
Oi ←

∑j=i−1
j−l x̂0(cj)

x̃← τg(θ, c) + (1− τ)Oi

ϵ← Normal(0, I)
xt ←

√
ᾱ(t)x̃+

√
1− ᾱ(t)ϵ

∇θLSDS = σ(t)
[
ϵ
(t)
ϕ (xt, y)− ϵ

]
∂g
∂θ

x̂0(ci)← g(θ, c) + γ(t)(ϵ− ϵθ(xt(c), t, y))
Backpropagate∇θLSDS

SGD update on θ

In Section 5, we identify two primary sources of object inconsistency: cross-view image discrepancy
variation and cross-view distributional estimation error. Since prior work has largely overlooked
the former, we proposed OCD to explicitly address cross-view image discrepancies. In Section 6,
we compare the performance of OCD combined with various cross-view distributional estimation
methods. In this section, we provide additional results using various distributional estimation
techniques in conjunction with OCD, and further analyze how the combination of these two factors
influences the quality of the generated 3D content. In Figure 9, we demonstrate the combination
of OCD with the original SDS [33]; in Figure 10, we show the results of combining OCD with
CFD [50]; and in Figure 11, we present the results of combining OCD with SDI [28]. All results
consistently demonstrate that the introduction of OCD significantly improves the original generation
quality, effectively eliminating implausible structures or components, and even leading to a noticeable
reduction of the Janus problem.

C ADDITIONAL GENERATION

In Figure 12, we present additional high-fidelity 3D object generation results obtained using the
OCD algorithm illustrated in Algorithm 2, including examples with multiple objects and complex
prompts. OCD consistently achieves high-fidelity and realistic results across diverse generation
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Table 2: Quantitative comparisons to baselines for text-to-3D generation, evaluated by Eval3D [10]
and CLIP IQA [46]. We report mean and standard deviation across 10 prompts and 50 views for each.

Method Eval3D (%) (↑) CLIP IQA (%) IR (↑) CLIP Score
Geometric Structural “natural”↑ “real”↑ “complexity”↓

SDS [33] 56.66± 25.34 85.92± 5.24 39± 9.6 40± 6.1 74± 7.7 −0.47± 0.18 22.87± 0.05
SDS+ours 60.51± 24.55 87.23± 1.68 47± 8.4 67± 10.1 69± 8.1 0.23± 0.10 23.15± 0.03

SDI [28] 76.39± 19.9 85.15± 4.11 18± 6.6 7± 3.8 63± 8.3 −2.10± 0.19 21.16± 0.03
SDI+Ours 89.36± 2.51 87.11± 1.55 55± 5.2 21± 6.8 53± 6.7 −2.03± 0.17 21.26± 0.03

CFD [50] 66.77± 19.69 86.45± 1.41 42± 5.9 60± 7.0 73± 4.3 −0.14± 0.15 22.89± 0.02
CFD+ours 70.10± 23.21 88.46± 1.61 52± 4.4 71± 5.6 70± 6.3 0.26± 0.15 22.90± 0.08

scenarios, covering single and multiple objects, simple and complex structures, and scenes with
complex backgrounds. More importantly, the renderings from different viewpoints consistently
correspond to the same underlying real-world object.

D ADDITIONAL COMPARISION

Following prior works [28; 33; 52], we additionally report CLIP Score in Table 2 for quantitative
comparison. This metric provides an overall evaluation of the generation quality across different
methods. Since our approach primarily focuses on producing natural and realistic object geometry
with strong multi-view consistency, the improvement on the CLIP Score metric is limited, though it
still remains at a competitive level.

In Section 2, we point out that numerous strong approaches for text-to-3D generation have been
proposed. To highlight the advantages of our method, we compare it against several representative
baselines in the main text and below. In Figures 13 and 14, we present 3D objects generated at a
resolution of 512× 512 using the algorithm described in the Algorithm 2, and compare them against
several baselines, including DreamFusion [33], Magic3D [24], NFSD [20], SDI [28], ISM [23],
HiFA [54], Fantasia3D [6] and CFD [50]. It is worth noting that some comparisons are limited
due to the unreproducibility of certain methods [17; 23], while others rely on additional external
information [31; 39; 37; 5; 53], which would lead to an unfair comparison. The results demonstrate
that OCD significantly improves the realism of generated 3D objects while preserving fine-grained
details at high resolutions. This enhancement is evident in multiple aspects. First, the generated
objects exhibit a notable reduction in unnatural artifacts or ambiguous structures that are often present
in baseline methods. Second, the geometric configuration of the objects becomes more coherent
and semantically meaningful, with clearer contours and physically plausible shapes. These findings
suggest that the integration of OCD contributes not only to higher visual fidelity but also to better
alignment with the real-world physical characteristics of the target objects.

E LIMITATIONS

While our proposed OCD method demonstrates strong performance in enhancing cross-view consis-
tency and alleviating the Janus problem, it is not without limitations. First, the introduction of an
object-level proxy into the generation process may potentially introduce bias into the generations.
This proxy acts as an intermediate representation across views, which could influence the generated
content in unintended ways. We have not yet conducted a systematic study on how such bias may
manifest or how it might impact different object categories, viewpoints, or styles. Second, although
OCD shows promising results in mitigating the Janus problem, suggesting a strong connection
between object-level consistency and view-dependent artifacts, we have not thoroughly explored
the theoretical or empirical relationship between the two. In particular, it remains unclear whether
enforcing cross-view consistency alone is sufficient to fully eliminate the problem, or whether ad-
ditional geometric or semantic constraints are necessary. Finally, In our current implementation,
the object-consistency constraint strength, denoted as τ , is uniformly applied across all camera
viewpoints. While this simplification enables stable optimization and reduces hyperparameter tuning
complexity, it may limit the expressiveness and adaptability of the method. A uniform consistency
strength may under-constrain some views while over-constraining others, potentially impeding the
generation of more view-consistent or multi-object genreation.
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SDS Ours

“A ripe strawberry”

“A car made of sushi”

Figure 9: Comparison between SDS and SDS combined with OCD (Ours).

CFD

Ours

Figure 10: Comparison between CFD and CFD combined with OCD (Ours). From left to right, the
prompts used are: “a ripe strawberry,” “a car made of sushi,” “a baby bunny sitting on top of a stack
of pancakes,” and “a delicious croissant.”
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“A highly detailed DSLR photo of a 3d model of historical stone castle”

SDI Ours

“a ceramic lion”

“A portrait photograph of an orc”

“a DSLR photo of a shiny red apple with droplets of water on its surface”

Figure 11: Comparison between SDI and SDI combined with OCD (Ours).

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

“A highly detailed DSLR photo of a 3d 

model of historical stone castle”
“A plush dragon toy”

“A tulip” “a DSLR photo of a dew-covered peach 

sitting in soft morning light”

“A shell” “a zoomed out DSLR photo of a colorful 

camping tent in a patch of grass”

“A DSLR photo of an adorable kitten lying 
next to a flower”

“a delicious hamburger”

Figure 12: Additional generation results produced by OCD.
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“A ripe strawberry”

Dreamfusion ISM HiFA SDI CFD Ours

“A stack of pancakes covered in maple syrup”

Dreamfusion Magic3D Fantasia3D SDI NFSD Ours

“An ice cream sundae”

Dreamfusion Magic3D Fantasia3D SDI CFD Ours

“A delicious croissant”

Dreamfusion Fantasia3D NFSD SDI CFD Ours

“Baby dragon hatching out of a stone egg”

Dreamfusion Magic3D NFSD SDI CFD Ours

“A car made out of sushi”

Dreamfusion Magic3D NFSD SDI CFD Ours

Figure 13: Comparison between OCD and other baselines. Our method employs Algorithm 2 to
generate 3D objects at a resolution of 512×512.
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“A baby bunny sitting on top of a stack of pancakes”

Dreamfusion Magic3D NFSD SDI CFD Ours

“A rabbit, animated movie character, high detail 3d mode”

Dreamfusion Magic3D NFSD SDI VSD Ours

Figure 14: Comparison between OCD and other baselines. Our method employs Algorithm 2 to
generate 3D objects at a resolution of 512×512.
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