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Abstract

We study the integration of Electronic Medical
Records (EMRs) from clinical study into a
joint predictive model. Compared to the
totally black-box models, a competitive model
with explainable structure is much more de-
sirable. To tackle this challenge, this paper
introduces a novel Gaussian Matrix Graphical
Encoder(GMGE) based on matrix normal
graphical model to encode unstructured medi-
cal text and simultaneously learn the underlying
conditional dependency graph of concepts. We
further present DIMES, a Diagnostic Model
with Explainable Structure, which integrates
the concept graph generated by GMGE with
structured data such as patient’s physical
examination measures. Utilizing Graph Con-
volutional Networks (GCNs), DiMES encodes
patient features based on the concept graph for
downstream tasks, providing clinicians with
accurate predictive information to assist in
diagnostic decisions and treatment plan design.
The effectiveness of the proposed DiMES
is validated through its application on four
downstream diagnostic predictive tasks(ACL,
PCL, MMI and PS).

1 Introduction

The incorporation of Electronic Medical Record
(EMR) data (including the outpatient records, MRI
report and Physical Examination ) into predictive
analytics plays a pivotal role in the functionality of
clinical decision-making systems. In recent years,
the availability of large EMR data has enriched
researchers with an abundant source of information
and enabled deep learning methods for diverse
tasks such as predictive diagnoses (Kopitar et al.,
2020) and disease progression prediction(Zhang
et al., 2019). Such predictions are vital for tailoring
treatment plans, optimizing resource allocation,
and improving patient outcomes.

Complex cases demand a profound comprehen-
sion of a patient’s medical history as documented
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in electronic medical records, complemented
by reasoning that incorporates medical images
and various laboratory results. Consequently,
numerous deep learning methods like (Wang et al.,
2023) have emerged in an attempt to learn the
internal structural relationships within medical
record data. Recent advancements in the field of
natural language processing and machine learning
have brought to the forefront the Transformer
architecture, originally introduced by (Vaswani
et al., 2017). The potential of transformer has been
noticed in the medical sector, where pioneering
studies such as BEHRT by (Li et al., 2020b)
and Transformehr by (Yang et al., 2023) have
begun to explore its applications. These models
provide a sophisticated methodology for managing
the complex characteristics of EMR data. They
show their considerable potential to significantly
augment medical predictive analytics. However,
clinical professionals demand models that are both
predictive and explainable. Transformer models



often lack the necessary explainability, making
it difficult for clinicians to understand and trust
the results, which is critical for their practical
application.

An effective method to enhance model inter-
pretability is through the use of graph structures.
Leveraging graph structures allows experts to gain
a clearer understanding of the model’s reasoning
logic and to verify its clinical interpretability. (Choi
et al., 2020) proposed the Graph Convolutional
Transformer (GCT) for learning EHRs’ hidden
encounter structures. The model disregards the
relationships between nodes within the same
category, which is essential for symptom-based
predictive diagnostics, as treatment information is
frequently not available in predictive diagnostics
tasks. MedPath(Ye et al., 2021) extracts personal-
ized knowledge graphs (PKGs) from large-scale
online medical knowledge bases. It utilizes a graph
neural network encoder to learn embeddings of
the PKGs, thereby achieving enhanced predictive
capabilities. (Wu et al., 2023) constructs an EHR
hypergraph and employs a multi-view learning
framework, the method is capable of capturing
higher-order relationships between patient visits
and medical codes.Other similar methods (Liu
et al., 2020), (Meng et al., 2021) have shown
that graph structure are a good tool for improving
performance and interpretability. Utilizing graph
structures for modeling also allows for a more
effective integration of prior medical external
knowledge into the model (Ma et al.,, 2018),
(Ye et al.,, 2021) , endowing the model with
medical reasoning abilities based on established
medical theories. Explainable mechanisms such
as knowledge graph modeling can significantly
increase model complexity and often require
extensive annotated prior datasets. We need a
simpler method capable of unsupervised learning
the graph structure of concepts from medical record
data, especially from unstructured text data. (Lai
and Yin, 2024) attempted to learn conditional
dependence graph using GloVe embeddings, but
this approach assumes that the word embeddings
must follow a matrix normal distribution. In
contrast, we directly encode or transform concepts
representations into a matrix normal distribution.

We propose a straightforward and intuitive
method for integrating medical knowledge, a model
that simultaneously encodes unstructured text and
generates graph structures in an unsupervised
manner, displaying the relationships between key

concepts in patient medical records, as shown in
the figurel.

We have designed a novel encoder to encode
unstructured text, generating a corresponding
conditional dependency graph of concepts during
the encoding process based on Matrix Normal
Graphical Model (MNGM). This allows us to
conveniently incorporate prior information into the
constraints of the concept graph. Our approach
does not require extensive training or complex
priori knowledge bases, nor does it significantly
increase model complexity. It is capable of
effectively capturing and clearly presenting the
structural relationships within patients’ electronic
medical record data.

Contributions:

* We design an Gaussian Matrix Graphical
Encoder (GMGE) to encode unstructured text
and learn the underlying graph structure of
concepts simultaneously. It utilizes the penal-
ized likelihood function of the matrix normal
graphical model, learning the precision matrix
between medical concept representations,
thereby constructing a graph of conditional
dependencies between concepts.

* Guided by medical experts, we have estab-
lished a series of regular expression rules
to extract key concepts from unstructured
Chinese medical texts such as patient com-
plaints and MRI reports. Each concept is
integral to the diagnostic process, providing
key information that aids in identifying and
understanding a patient’s condition.

* We propose a Diagnostic Model with Ex-
plainable Structure (DiMES) for multiple
diagnostic prediction tasks. The model encode
structured and unstructured data separately,
using GMGE to encode medical texts and out-
put key concept graphs. The graph structure
enhances model explainability, fostering trust
among clinicians and patients.

The model proposed in this study is designed to
provide clinicians with more accurate predictive
information to assist them in making diagnostic
decisions and designing treatment plans.



2 Models
2.1 MNGM

Assume the data Y as a matrix-valued random
variable, we say Y follows a matrix normal
distribution, if Y has a density function

p(Y|M,U, V)= k(U,V)exp(—tr{(Y — M)T(1)
U=HY — M)V™1/2}),

where k(U, V) = (2m)P4/2|U|~9/2|V|~P/? is the
normalizing constant, M is the mean matrix, U is
the row-covariance matrix and V' is column covari-
ance matrix. This definition is equivalent to the
definition via the Kronecker product, specifically,

Y ~ MN, ,M;U,V)
vec(Y) ~ Npg(vec(M),V @ U).

We denote the corresponding precision matrices as
A =U1' B =V~!forU and V, respectively.
This model assumes a particular decomposable
covariance matrix for vec(Y') that is separable in
the geostatistics context (Cressie, 1993).

The following proposition shows that there is a
graphical model interpretation for the two precision
matrices A and B in the matrix normal model (1).
See reference in (Yin and Li, 2012).

Proposition 1 Assume that Y ~
MN, (M;U,V). If we partition the columns
of Y as Y = (Y1,---,Y,), then it holds for

vop €' ={1, -+, q} with~y # p that
VollYy [ Yoo gy ) if and only if by = 0,

if and only if

where B = {baygtapger = V! is the column
precision matrix of the distribution; similarly, if

we partition the rows of Y as Y = (Y1, ... YP)T,
then it holds for 6,m € A = {1,...,p} withd # n
that

YOy | YA\ if and only ifasy =0

L is the row

where A = {asptsnen = U~
precision matrix of the distribution.

We estimate the precision matrices A =
U1,B = V~! in model (1) by a penalized
likelihood estimation. To estimate the A and B,
one can minimize the following penalized negative

log-likelihood function
¢(A,B) = —qlog(|A]) —plog(|B)

1 n
+= Y tr{AY,BY}
=
+ Zp&'j (aij) + prij (bi)

i#] i#]

2

where ), (+) is the penalty function for the element
a;; of A with tuning parameter \;;, while p,,. (-)
is the correksponding penalty function for b;; with
tuning parameter p;;.Here we use lasso penalty
function | - |1 as py,;(+) and pp,;(-). We tune the
penalty parameters \;; and p;; by controlling the
output amount of edges on the graph at certain
level.

2.2 GMGE

Gaussian Matrix Graphical Encoder (GMGE) is
designed to encode unstructured medical text
and learn the underlying conditional dependence
relationships among concepts embedded in a
semantic space. By encoding concepts into
Matrix Normal distributions, leveraging principles
from graphical models and Gaussian distributions,
GMGE provides a robust framework for the
hierarchical encoding process.

Assume Y as the representation of concepts.
From , we derive a negative penalized likelihood
function whenn = 1land B = I:

P(AY) = —qlog(|A]) +tr{AYYT}

+Y pa, (ai)
oy

3)

Based on this likelihood function3, represen-
tations of concepts can be transformed into a
matrix normal distribution characterized by a
sparse precision matrix. The loss function of the
GMGE is designed as:

L= LMLM(Y) + wP(A, Y)

L psra means the loss function of the Masked
Language Model task from BERT.(Devlin et al.,
2018) w is a weighting parameter. Pre-trained
embeddings of concepts, noted as My, are
just one implementation in the semantic space.
So we assume the underlying concepts embed-
dings variables in the semantic space follows
a Matrix Normal distribution denoted as Y ~
MN(M,U,I). U represents the covariance matrix
of concepts. A = U~ stands for the row-precision
matrix. Additionally, we make the assumption
that the dimensions of word embeddings are
independent, thus leading to an identity covariance
matrix denoted by I. The M (¥) matrix in k¢h batch
will be Y~ This means in every batch we
learn the representation Y *) based on the mean of
last batch version of embeddings, thus update the
Y and A step by step. We use L1 to update
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Figure 2: Framework of GMGE: Pre-trained representa-
tion will be iteratively transferred into a structured space
while simultaneously updating emceddings matrix Y
and the graph structure (represented in the form of an
accuracy matrix).

Y, and then update precision matrix A based on
likelihood P, thus update the Y and A step by step.
This process is similar to EM algorithm.

If we consider the MLM (Masked Language
Model) loss task as seeking word embeddings that
approximate the true distribution of the masked
word, then maximizing the negative MLM loss is
equivalent to performing likelihood estimation on
Y with the true distribution function, in order to
maximize the likelihood function.

E-step (Expectation step): In the EM algorithm,
the E-step is tasked with calculating the expected
values of the latent variables based on the current
model parameters. In the context of the GMGE
algorithm, using the precision matrix A and
the mean matrix M from the previous step as

parameters, we calculate the expected value of Y
under the likelihood distribution function — L.

M-step (Maximization step): The M-step of
the EM algorithm focuses on maximizing the
expected function to update the model parameters.
For the GMGE algorithm, After updating Y, we
substitute it back into the function and update A by
maximizing the likelihood function.

The EM algorithm iteratively updates the model
parameters by alternating between the E-step and
M-step. Similarly, the GMGE algorithm iteratively
optimizes model parameters, while incorporating
the pre-training tasks of BERT and the properties
of matrix normal distributions, thereby facilitating
effective learning of conceptual representations.

Upon completion of learning, we obtain the
the conditional dependence graph corresponding
to precision matrix A and the updated concepts
representations. We further encode concepts using
GCNs based on downstream tasks. This fine-
tuning step allows us to integrate the relationships
and attributes of the medical concepts into a
comprehensive representation.

2.3 Diagnostic Model

The EMRs are divided into two main components:
unstructured data like outpatient record texts
and MRI reports; structured data like physical
examination results.  The unstructured texts
primarily consist of patients’ chief complaints,
present illness histories, and MRI reports recorded
by outpatient physicians and radiologists. The
structured data are mainly discrete data reflecting
the assessments made by physicians during the
physical examination of specific items.

We acquire a key concepts list based on the fre-
quency of concepts occurrence, regular expression
rules, and professional guidance from physicians.
The types of concepts include categories such
as body parts, structures, pathologies, symptoms,
severities, etiologies, and treatments. Utilizing
these concepts as nodes, we employ the GMGE
method to derive a concepts graph and node
embeddings. By utilizing the concepts present
in each patient’s medical record text, we obtain
node embeddings for each patient involved and
pool them to form the patient’s features. These
features are then concatenated with structured data
information to derive the patient’s final feature. For
each patient, we can generate a relationship graph
of the key concepts contained, thereby obtaining
an intuitive explanatory graph for diagnostic
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Figure 3: Framework of Diagnostic Model: The model separately extracts structured and unstructured data from
EMRs. The unstructured text is processed by GMGE, which encodes the text and produces a graph structure. The
graph is then utilized by a GCN to generate the final patient features. The structured data is encoded into one-hot
vectors and concatenated with the features extracted from the text to perform predictive analytics tasks.

predictions. We further encode patients features
using Graph Convolutional Networks (GCNs)
based on the concepts graph and downstream tasks.
We note this Diagnostic Model with Explainable
Structure as DiMES.

The complete framework is shown in Figure 3.

3 Experiment

3.1 Dataset

We possess electronic medical records in Chinese
from 3,399 patients diagnosed with knee joint
conditions at the Sports Medicine Department of
the Peking University Third Hospital.Each patient’s
medical record in this consists of three distinct
parts:

* Outpatient Records: The outpatient physi-
cian’s records of the patient’s chief complaints
and the history of the present illness, which
are text data that every patient have.

* MRI Reports: The report written by the
radiologist based on the patient’s MRI images,
which are text data that do not include the
specific MRI diagnoses. For patients who
have not undergone MRI scans, this section
would be absent in the medical record. (1,568
patients have MRI reports in our dataset.)

* Physical examination results: records of phys-
ical examinations performed by outpatient
doctors on patients, including the results

of 35 items such as patellar grinding and
patellar compression tests, which are discrete
structured data that every patient have.

Moreover, we have identified 240 diagnostic
keyword concepts derived based on professional
guidance, regular expression rules, and the fre-
quency of occurrence of terms within the medical
records. They are all concepts that play a key role
in knee joint diagnosis and appear frequently in
medical records. The keyword concepts include:
Boat wedge joint, joint cleaning, medial knee,
quadriceps femoris, sprains, cycling, free combat,
etc.

3.2 Experiment Settings

We used a fine-tuned BERT model from (Li et al.,
2020a), which was pre-trained on Chinese clinical
corpora, as our initial model. Then we continue
train the model on the outpatient record text
and MRI imagine descriptions in medical records
using GMGE. This process was performed on one
NVIDIA GeForce RTX 3090 for 16 hours. After
this process, we obtain embeddings for each key
concept and the precision matrix A that illustrates
how these concepts are interconnected. We select
the strongest relationships to form a concept
relationship graph by examining the absolute
values of the elements in A. We then apply a
Graph Convolutional Network to fine-tune the
model for downstream tasks. The concepts present
in a patient’s medical record form a subgraph of



Model ACL PCL MMI PS Average
Bert 88.93% 96.73% 85.37% 66.61% 84.41%
GMGE with random graph(50) 89.64% 97.50% 87.61% 72.20% 86.73%
DIiMES w/o guidance (50) 92.03% 97.49% 88.710% 7237% 87.64%
DiMES w/o guidance (100) 91.76% 97.50% 87.85% 72.05% 87.29%
DIMES (50) 9217% 97.50% 88.11% 72.23%  87.50%
DiMES (100) 91.56% 97.50% 87.710% 72.50% 87.32%

Table 1: Results of different models, using the average accuracy as criterion. The number after the model name
indicates the number of edges in the concepts graph associated with that model.

the concepts graph. We perform pooling on the
nodes contained within this subgraph and then
concatenate the resulting features with physical
examination features to predict the patient’s diag-
nosis. The specific predictive tasks include:

* Predicting abnormalities in the anterior cruci-
ate ligament (ACL);

* Predicting abnormalities in the posterior
cruciate ligament (PCL);

* Predicting medial meniscus injuries(MMI);
* Predicting patellar softening(PS).

The fine-tuning process was performed on NVIDIA
GeForce RTX 3090 for about 20 minutes per task.

3.3 Results

We compare the results among Bert, Bert with
random graph, GMGE without professional guid-
ance, and GMGE with professional guidance.
Professional guidance would mark 10 pairs of
concepts as connected by edges and 10 pairs of
concepts as not connected by edges, leaving the
remaining pairs unaltered without any intervention.
We employ a five-fold cross-validation to obtain
our average accuracy results. The results are shown
in Table 1

We also compared the performance of our model
under different conditions to ensure comprehensive
data mining from each segment of information:
using only outpatient record texts, using a com-
bination of outpatient records and MRI report
texts, and using outpatient records, MRI report
texts, along with physical examination information,
ensuring that the model is effectively leveraging
information from all parts. The results of predicting
abnormalities in the anterior cruciate ligament are
shown in Table 2. The node edges output by
our model, such as "Cold stimulation - Patella,"
suggest a potential etiology for issues in the patellar

repeatedly
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Figure 4: An example of a patient’s EMR structure
output from DiMES

region; "Cruciate ligament - Continuity" indicates
the MRI imaging characteristics of the cruciate
ligament; "Knee - Crepitus" represents a possible
clinical manifestation in the knee area, and so on.
These outputs illustrate how the model can capture
and represent the relationships between different
medical concepts, providing a structured way to
understand the complex interactions within patient
data. In Figure 4, we present an example of our
output concepts relationship in a certain patient.
This visualization demonstrates the reasoning
logic our model takes into account when making
predictions.

4 Conclusion

In this paper, we propose GMGE, an encoder
based on the matrix normal graphical model,
and further build a graph-interpretable diagnostic
model DIMES for multiple diagnostic prediction
tasks. GMGE’s loss function is derived from two
components: the loss from the Masked Language
Modeling (MLM) task and the penalized likelihood



DIMES(50) Accuracy Precision Recall
Outpatient records 91.14% 82.42% 7143
Outpatient records + MRI reports 92.00% 83.23% 72.30
Outpatient records + MRI reports + Physical examination results ~ 92.17% 85.40%  71.69%

Table 2: Results of DIMES using different parts of data

function of the matrix normal distribution. We
iteratively update the concept embeddings and
the graph structure corresponding to the precision
matrix using an EM-type algorithm, obtaining the
conditional dependency graph between concepts.
We then combine the concept relationship graph
with a GCN to predict the different diagnostic
outcomes of patient medical records, resulting in a
multi-task diagnostic model.

5 Limitation

The encoder in this paper can be improved to
use the LLM with world model pre-trained in
it. Also, we consider only text corpus data and
not including the medical imaging data maybe
a significant drawback of our method. While
the prediction results alleviate this concern by
noting that the accuracy is quite acceptable in
medical practice. The image data analysis should
be carefully modeled in a multi-modal framework,
which is beyond this paper’s scope.
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