
A Gaussian matrix graphical encoder in sports medicine diagnosis
combining structured and unstructured data

Anonymous ACL submission

Abstract

We study the integration of Electronic Medical001
Records (EMRs) from clinical study into a002
joint predictive model. Compared to the003
totally black-box models, a competitive model004
with explainable structure is much more de-005
sirable. To tackle this challenge, this paper006
introduces a novel Gaussian Matrix Graphical007
Encoder(GMGE) based on matrix normal008
graphical model to encode unstructured medi-009
cal text and simultaneously learn the underlying010
conditional dependency graph of concepts. We011
further present DiMES, a Diagnostic Model012
with Explainable Structure, which integrates013
the concept graph generated by GMGE with014
structured data such as patient’s physical015
examination measures. Utilizing Graph Con-016
volutional Networks (GCNs), DiMES encodes017
patient features based on the concept graph for018
downstream tasks, providing clinicians with019
accurate predictive information to assist in020
diagnostic decisions and treatment plan design.021
The effectiveness of the proposed DiMES022
is validated through its application on four023
downstream diagnostic predictive tasks(ACL,024
PCL, MMI and PS).025

1 Introduction026

The incorporation of Electronic Medical Record027

(EMR) data (including the outpatient records, MRI028

report and Physical Examination ) into predictive029

analytics plays a pivotal role in the functionality of030

clinical decision-making systems. In recent years,031

the availability of large EMR data has enriched032

researchers with an abundant source of information033

and enabled deep learning methods for diverse034

tasks such as predictive diagnoses (Kopitar et al.,035

2020) and disease progression prediction(Zhang036

et al., 2019). Such predictions are vital for tailoring037

treatment plans, optimizing resource allocation,038

and improving patient outcomes.039

Complex cases demand a profound comprehen-040

sion of a patient’s medical history as documented041

Figure 1: Medical Records with Explainable Graph
Structure

in electronic medical records, complemented 042

by reasoning that incorporates medical images 043

and various laboratory results. Consequently, 044

numerous deep learning methods like (Wang et al., 045

2023) have emerged in an attempt to learn the 046

internal structural relationships within medical 047

record data. Recent advancements in the field of 048

natural language processing and machine learning 049

have brought to the forefront the Transformer 050

architecture, originally introduced by (Vaswani 051

et al., 2017). The potential of transformer has been 052

noticed in the medical sector, where pioneering 053

studies such as BEHRT by (Li et al., 2020b) 054

and Transformehr by (Yang et al., 2023) have 055

begun to explore its applications. These models 056

provide a sophisticated methodology for managing 057

the complex characteristics of EMR data. They 058

show their considerable potential to significantly 059

augment medical predictive analytics. However, 060

clinical professionals demand models that are both 061

predictive and explainable. Transformer models 062

1



often lack the necessary explainability, making063

it difficult for clinicians to understand and trust064

the results, which is critical for their practical065

application.066

An effective method to enhance model inter-067

pretability is through the use of graph structures.068

Leveraging graph structures allows experts to gain069

a clearer understanding of the model’s reasoning070

logic and to verify its clinical interpretability. (Choi071

et al., 2020) proposed the Graph Convolutional072

Transformer (GCT) for learning EHRs’ hidden073

encounter structures. The model disregards the074

relationships between nodes within the same075

category, which is essential for symptom-based076

predictive diagnostics, as treatment information is077

frequently not available in predictive diagnostics078

tasks. MedPath(Ye et al., 2021) extracts personal-079

ized knowledge graphs (PKGs) from large-scale080

online medical knowledge bases. It utilizes a graph081

neural network encoder to learn embeddings of082

the PKGs, thereby achieving enhanced predictive083

capabilities. (Wu et al., 2023) constructs an EHR084

hypergraph and employs a multi-view learning085

framework, the method is capable of capturing086

higher-order relationships between patient visits087

and medical codes.Other similar methods (Liu088

et al., 2020), (Meng et al., 2021) have shown089

that graph structure are a good tool for improving090

performance and interpretability. Utilizing graph091

structures for modeling also allows for a more092

effective integration of prior medical external093

knowledge into the model (Ma et al., 2018),094

(Ye et al., 2021) , endowing the model with095

medical reasoning abilities based on established096

medical theories. Explainable mechanisms such097

as knowledge graph modeling can significantly098

increase model complexity and often require099

extensive annotated prior datasets. We need a100

simpler method capable of unsupervised learning101

the graph structure of concepts from medical record102

data, especially from unstructured text data. (Lai103

and Yin, 2024) attempted to learn conditional104

dependence graph using GloVe embeddings, but105

this approach assumes that the word embeddings106

must follow a matrix normal distribution. In107

contrast, we directly encode or transform concepts108

representations into a matrix normal distribution.109

We propose a straightforward and intuitive110

method for integrating medical knowledge, a model111

that simultaneously encodes unstructured text and112

generates graph structures in an unsupervised113

manner, displaying the relationships between key114

concepts in patient medical records, as shown in 115

the figure1. 116

We have designed a novel encoder to encode 117

unstructured text, generating a corresponding 118

conditional dependency graph of concepts during 119

the encoding process based on Matrix Normal 120

Graphical Model (MNGM). This allows us to 121

conveniently incorporate prior information into the 122

constraints of the concept graph. Our approach 123

does not require extensive training or complex 124

priori knowledge bases, nor does it significantly 125

increase model complexity. It is capable of 126

effectively capturing and clearly presenting the 127

structural relationships within patients’ electronic 128

medical record data. 129

Contributions: 130

• We design an Gaussian Matrix Graphical 131

Encoder (GMGE) to encode unstructured text 132

and learn the underlying graph structure of 133

concepts simultaneously. It utilizes the penal- 134

ized likelihood function of the matrix normal 135

graphical model, learning the precision matrix 136

between medical concept representations, 137

thereby constructing a graph of conditional 138

dependencies between concepts. 139

• Guided by medical experts, we have estab- 140

lished a series of regular expression rules 141

to extract key concepts from unstructured 142

Chinese medical texts such as patient com- 143

plaints and MRI reports. Each concept is 144

integral to the diagnostic process, providing 145

key information that aids in identifying and 146

understanding a patient’s condition. 147

• We propose a Diagnostic Model with Ex- 148

plainable Structure (DiMES) for multiple 149

diagnostic prediction tasks. The model encode 150

structured and unstructured data separately, 151

using GMGE to encode medical texts and out- 152

put key concept graphs. The graph structure 153

enhances model explainability, fostering trust 154

among clinicians and patients. 155

The model proposed in this study is designed to 156

provide clinicians with more accurate predictive 157

information to assist them in making diagnostic 158

decisions and designing treatment plans. 159
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2 Models160

2.1 MNGM161

Assume the data Y as a matrix-valued random162

variable, we say Y follows a matrix normal163

distribution, if Y has a density function164

p(Y |M,U, V ) = k(U, V ) exp(−tr{(Y −M)⊤(1)165

U−1(Y −M)V −1/2}),166

where k(U, V ) = (2π)−pq/2|U |−q/2|V |−p/2 is the167

normalizing constant, M is the mean matrix, U is168

the row-covariance matrix and V is column covari-169

ance matrix. This definition is equivalent to the170

definition via the Kronecker product, specifically,171

Y ∼ MNp,q(M ;U, V ) if and only if172
173

vec(Y ) ∼ Npq(vec(M), V ⊗ U).174

We denote the corresponding precision matrices as175

A = U−1, B = V −1 for U and V , respectively.176

This model assumes a particular decomposable177

covariance matrix for vec(Y ) that is separable in178

the geostatistics context (Cressie, 1993).179

The following proposition shows that there is a180

graphical model interpretation for the two precision181

matrices A and B in the matrix normal model (1).182

See reference in (Yin and Li, 2012).183

Proposition 1 Assume that Y ∼184

MNp,q(M ;U, V ). If we partition the columns185

of Y as Y = (Y1, · · · , Yq), then it holds for186

γ, µ ∈ Γ = {1, · · · , q} with γ ̸= µ that187

Yγ Yµ | YΓ\{γ,µ} if and only if bγµ = 0,188

where B = {bαβ}α,β∈Γ = V −1 is the column189

precision matrix of the distribution; similarly, if190

we partition the rows of Y as Y = (Y 1, · · · , Y p)T ,191

then it holds for δ, η ∈ ∆ = {1, . . . , p} with δ ̸= η192

that193

Y δ Y η | Y ∆\{δ,η} if and only if aδη = 0194

where A = {aδη}δ,η∈∆ = U−1 is the row195

precision matrix of the distribution.196

We estimate the precision matrices A =197

U−1, B = V −1 in model (1) by a penalized198

likelihood estimation. To estimate the A and B,199

one can minimize the following penalized negative200

log-likelihood function201

ϕ(A,B) = −q log(|A|)− p log(|B|) (2)202

+
1

n

n∑
k=1

tr{AYkBY T
k }203

+
∑
i ̸=j

pλij
(aij) +

∑
i ̸=j

pρij (bij)204

where pλij
(·) is the penalty function for the element 205

aij of A with tuning parameter λij , while pρij (·) 206

is the correksponding penalty function for bij with 207

tuning parameter ρij .Here we use lasso penalty 208

function | · |1 as pλij
(·) and pρij (·). We tune the 209

penalty parameters λij and ρij by controlling the 210

output amount of edges on the graph at certain 211

level. 212

2.2 GMGE 213

Gaussian Matrix Graphical Encoder (GMGE) is 214

designed to encode unstructured medical text 215

and learn the underlying conditional dependence 216

relationships among concepts embedded in a 217

semantic space. By encoding concepts into 218

Matrix Normal distributions, leveraging principles 219

from graphical models and Gaussian distributions, 220

GMGE provides a robust framework for the 221

hierarchical encoding process. 222

Assume Y as the representation of concepts. 223

From , we derive a negative penalized likelihood 224

function when n = 1 and B = I: 225

P (A, Y ) = −q log(|A|) + tr{AY Y T } 226

+
∑
i ̸=j

pλij
(aij) (3) 227

Based on this likelihood function3, represen- 228

tations of concepts can be transformed into a 229

matrix normal distribution characterized by a 230

sparse precision matrix. The loss function of the 231

GMGE is designed as: 232

L = LMLM (Y ) + ωP (A, Y ) 233

LMLM means the loss function of the Masked 234

Language Model task from BERT.(Devlin et al., 235

2018) ω is a weighting parameter. Pre-trained 236

embeddings of concepts, noted as Mp×q are 237

just one implementation in the semantic space. 238

So we assume the underlying concepts embed- 239

dings variables in the semantic space follows 240

a Matrix Normal distribution denoted as Y ∼ 241

MN(M,U, I). U represents the covariance matrix 242

of concepts. A = U−1 stands for the row-precision 243

matrix. Additionally, we make the assumption 244

that the dimensions of word embeddings are 245

independent, thus leading to an identity covariance 246

matrix denoted by I . The M (k) matrix in kth batch 247

will be Y (k−1). This means in every batch we 248

learn the representation Y (k) based on the mean of 249

last batch version of embeddings, thus update the 250

Y and A step by step. We use LMLM to update 251
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Figure 2: Framework of GMGE: Pre-trained representa-
tion will be iteratively transferred into a structured space
while simultaneously updating emceddings matrix Y
and the graph structure (represented in the form of an
accuracy matrix).

Y , and then update precision matrix A based on252

likelihood P , thus update the Y and A step by step.253

This process is similar to EM algorithm.254

If we consider the MLM (Masked Language255

Model) loss task as seeking word embeddings that256

approximate the true distribution of the masked257

word, then maximizing the negative MLM loss is258

equivalent to performing likelihood estimation on259

Y with the true distribution function, in order to260

maximize the likelihood function.261

E-step (Expectation step): In the EM algorithm,262

the E-step is tasked with calculating the expected263

values of the latent variables based on the current264

model parameters. In the context of the GMGE265

algorithm, using the precision matrix A and266

the mean matrix M from the previous step as267

parameters, we calculate the expected value of Y 268

under the likelihood distribution function −L. 269

M-step (Maximization step): The M-step of 270

the EM algorithm focuses on maximizing the 271

expected function to update the model parameters. 272

For the GMGE algorithm, After updating Y , we 273

substitute it back into the function and update A by 274

maximizing the likelihood function. 275

The EM algorithm iteratively updates the model 276

parameters by alternating between the E-step and 277

M-step. Similarly, the GMGE algorithm iteratively 278

optimizes model parameters, while incorporating 279

the pre-training tasks of BERT and the properties 280

of matrix normal distributions, thereby facilitating 281

effective learning of conceptual representations. 282

Upon completion of learning, we obtain the 283

the conditional dependence graph corresponding 284

to precision matrix A and the updated concepts 285

representations. We further encode concepts using 286

GCNs based on downstream tasks. This fine- 287

tuning step allows us to integrate the relationships 288

and attributes of the medical concepts into a 289

comprehensive representation. 290

2.3 Diagnostic Model 291

The EMRs are divided into two main components: 292

unstructured data like outpatient record texts 293

and MRI reports; structured data like physical 294

examination results. The unstructured texts 295

primarily consist of patients’ chief complaints, 296

present illness histories, and MRI reports recorded 297

by outpatient physicians and radiologists. The 298

structured data are mainly discrete data reflecting 299

the assessments made by physicians during the 300

physical examination of specific items. 301

We acquire a key concepts list based on the fre- 302

quency of concepts occurrence, regular expression 303

rules, and professional guidance from physicians. 304

The types of concepts include categories such 305

as body parts, structures, pathologies, symptoms, 306

severities, etiologies, and treatments. Utilizing 307

these concepts as nodes, we employ the GMGE 308

method to derive a concepts graph and node 309

embeddings. By utilizing the concepts present 310

in each patient’s medical record text, we obtain 311

node embeddings for each patient involved and 312

pool them to form the patient’s features. These 313

features are then concatenated with structured data 314

information to derive the patient’s final feature. For 315

each patient, we can generate a relationship graph 316

of the key concepts contained, thereby obtaining 317

an intuitive explanatory graph for diagnostic 318
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Figure 3: Framework of Diagnostic Model: The model separately extracts structured and unstructured data from
EMRs. The unstructured text is processed by GMGE, which encodes the text and produces a graph structure. The
graph is then utilized by a GCN to generate the final patient features. The structured data is encoded into one-hot
vectors and concatenated with the features extracted from the text to perform predictive analytics tasks.

predictions. We further encode patients features319

using Graph Convolutional Networks (GCNs)320

based on the concepts graph and downstream tasks.321

We note this Diagnostic Model with Explainable322

Structure as DiMES.323

The complete framework is shown in Figure 3.324

3 Experiment325

3.1 Dataset326

We possess electronic medical records in Chinese327

from 3,399 patients diagnosed with knee joint328

conditions at the Sports Medicine Department of329

the Peking University Third Hospital.Each patient’s330

medical record in this consists of three distinct331

parts:332

• Outpatient Records: The outpatient physi-333

cian’s records of the patient’s chief complaints334

and the history of the present illness, which335

are text data that every patient have.336

• MRI Reports: The report written by the337

radiologist based on the patient’s MRI images,338

which are text data that do not include the339

specific MRI diagnoses. For patients who340

have not undergone MRI scans, this section341

would be absent in the medical record. (1,568342

patients have MRI reports in our dataset.)343

• Physical examination results: records of phys-344

ical examinations performed by outpatient345

doctors on patients, including the results346

of 35 items such as patellar grinding and 347

patellar compression tests, which are discrete 348

structured data that every patient have. 349

Moreover, we have identified 240 diagnostic 350

keyword concepts derived based on professional 351

guidance, regular expression rules, and the fre- 352

quency of occurrence of terms within the medical 353

records. They are all concepts that play a key role 354

in knee joint diagnosis and appear frequently in 355

medical records. The keyword concepts include: 356

Boat wedge joint, joint cleaning, medial knee, 357

quadriceps femoris, sprains, cycling, free combat, 358

etc. 359

3.2 Experiment Settings 360

We used a fine-tuned BERT model from (Li et al., 361

2020a), which was pre-trained on Chinese clinical 362

corpora, as our initial model. Then we continue 363

train the model on the outpatient record text 364

and MRI imagine descriptions in medical records 365

using GMGE. This process was performed on one 366

NVIDIA GeForce RTX 3090 for 16 hours. After 367

this process, we obtain embeddings for each key 368

concept and the precision matrix A that illustrates 369

how these concepts are interconnected.We select 370

the strongest relationships to form a concept 371

relationship graph by examining the absolute 372

values of the elements in A. We then apply a 373

Graph Convolutional Network to fine-tune the 374

model for downstream tasks. The concepts present 375

in a patient’s medical record form a subgraph of 376
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Model ACL PCL MMI PS Average
Bert 88.93% 96.73% 85.37% 66.61% 84.41%
GMGE with random graph(50) 89.64% 97.50% 87.61% 72.20% 86.73%
DiMES w/o guidance (50) 92.03% 97.49% 88.70% 72.37% 87.64%
DiMES w/o guidance (100) 91.76% 97.50% 87.85% 72.05% 87.29%
DiMES (50) 92.17% 97.50% 88.11% 72.23% 87.50%
DiMES (100) 91.56% 97.50% 87.70% 72.50% 87.32%

Table 1: Results of different models, using the average accuracy as criterion. The number after the model name
indicates the number of edges in the concepts graph associated with that model.

the concepts graph. We perform pooling on the377

nodes contained within this subgraph and then378

concatenate the resulting features with physical379

examination features to predict the patient’s diag-380

nosis. The specific predictive tasks include:381

• Predicting abnormalities in the anterior cruci-382

ate ligament (ACL);383

• Predicting abnormalities in the posterior384

cruciate ligament (PCL);385

• Predicting medial meniscus injuries(MMI);386

• Predicting patellar softening(PS).387

The fine-tuning process was performed on NVIDIA388

GeForce RTX 3090 for about 20 minutes per task.389

3.3 Results390

We compare the results among Bert, Bert with391

random graph, GMGE without professional guid-392

ance, and GMGE with professional guidance.393

Professional guidance would mark 10 pairs of394

concepts as connected by edges and 10 pairs of395

concepts as not connected by edges, leaving the396

remaining pairs unaltered without any intervention.397

We employ a five-fold cross-validation to obtain398

our average accuracy results. The results are shown399

in Table 1400

We also compared the performance of our model401

under different conditions to ensure comprehensive402

data mining from each segment of information:403

using only outpatient record texts, using a com-404

bination of outpatient records and MRI report405

texts, and using outpatient records, MRI report406

texts, along with physical examination information,407

ensuring that the model is effectively leveraging408

information from all parts. The results of predicting409

abnormalities in the anterior cruciate ligament are410

shown in Table 2. The node edges output by411

our model, such as "Cold stimulation - Patella,"412

suggest a potential etiology for issues in the patellar413

Figure 4: An example of a patient’s EMR structure
output from DiMES

region; "Cruciate ligament - Continuity" indicates 414

the MRI imaging characteristics of the cruciate 415

ligament; "Knee - Crepitus" represents a possible 416

clinical manifestation in the knee area, and so on. 417

These outputs illustrate how the model can capture 418

and represent the relationships between different 419

medical concepts, providing a structured way to 420

understand the complex interactions within patient 421

data. In Figure 4, we present an example of our 422

output concepts relationship in a certain patient. 423

This visualization demonstrates the reasoning 424

logic our model takes into account when making 425

predictions. 426

4 Conclusion 427

In this paper, we propose GMGE, an encoder 428

based on the matrix normal graphical model, 429

and further build a graph-interpretable diagnostic 430

model DiMES for multiple diagnostic prediction 431

tasks. GMGE’s loss function is derived from two 432

components: the loss from the Masked Language 433

Modeling (MLM) task and the penalized likelihood 434
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DiMES(50) Accuracy Precision Recall
Outpatient records 91.14% 82.42% 71.43
Outpatient records + MRI reports 92.00% 83.23% 72.30
Outpatient records + MRI reports + Physical examination results 92.17% 85.40% 71.69%

Table 2: Results of DiMES using different parts of data

function of the matrix normal distribution. We435

iteratively update the concept embeddings and436

the graph structure corresponding to the precision437

matrix using an EM-type algorithm, obtaining the438

conditional dependency graph between concepts.439

We then combine the concept relationship graph440

with a GCN to predict the different diagnostic441

outcomes of patient medical records, resulting in a442

multi-task diagnostic model.443

5 Limitation444

The encoder in this paper can be improved to445

use the LLM with world model pre-trained in446

it. Also, we consider only text corpus data and447

not including the medical imaging data maybe448

a significant drawback of our method. While449

the prediction results alleviate this concern by450

noting that the accuracy is quite acceptable in451

medical practice. The image data analysis should452

be carefully modeled in a multi-modal framework,453

which is beyond this paper’s scope.454
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