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ABSTRACT

Distilling knowledge from a large teacher model to a lightweight one is a widely suc-
cessful approach for generating compact, powerful models in the semi-supervised
learning setting where a limited amount of labeled data is available. In large-scale
applications, however, the teacher tends to provide a large number of incorrect
soft-labels that impairs student performance. The sheer size of the teacher addi-
tionally constrains the number of soft-labels that can be queried due to prohibitive
computational and/or financial costs. The difficulty in achieving simultaneous
efficiency (i.e., minimizing soft-label queries) and robustness (i.e., avoiding student
inaccuracies due to incorrect labels) hurts the widespread application of knowl-
edge distillation to many modern tasks. In this paper, we present a parameter-free
approach with provable guarantees to query the soft-labels of points that are simul-
taneously informative and correctly labeled by the teacher. At the core of our work
lies a game-theoretic formulation that explicitly considers the inherent trade-off
between the informativeness and correctness of input instances. We establish
bounds on the expected performance of our approach that hold even in worst-case
distillation instances. We present empirical evaluations on popular benchmarks that
demonstrate the improved distillation performance enabled by our work relative to
that of state-of-the-art active learning and active distillation methods.

1 INTRODUCTION

Deep neural network models have been unprecedentedly successful in many high-impact application
areas such as Natural Language Processing (Ramesh et al., 2021; Brown et al., 2020) and Computer
Vision (Ramesh et al., 2021; Niemeyer & Geiger, 2021). However, this has come at the cost of
using increasingly large labeled data sets and high-capacity network models that tend to contain
billions of parameters (Devlin et al., 2018). These models are often prohibitively costly to use for
inference and require millions of dollars in compute to train (Patterson et al., 2021). Their sheer
size also precludes their use in time-critical applications where fast decisions have to be made, e.g.,
autonomous driving, and deployment to resource-constrained platforms, e.g., mobile phones and
small embedded systems (Baykal et al., 2022). To alleviate these issues, a vast amount of recent work
in machine learning has focused on methods to generate compact, powerful network models without
the need for massive labeled data sets.

Knowledge Distillation (KD) (Buciluǎ et al., 2006; Hinton et al., 2015; Gou et al., 2021; Beyer et al.,
2021) is a general purpose approach that has shown promise in generating lightweight powerful
models even when a limited amount of labeled data is available (Chen et al., 2020). The key idea is
to use a large teacher model trained on labeled examples to train a compact student model so that its
predictions imitate those of the teacher. The premise is that even a small student is capable enough
to represent complicated solutions, even though it may lack the inductive biases to appropriately
learn representations from limited data on its own (Stanton et al., 2021; Menon et al., 2020). In
practice, KD often leads to significantly more predictive models than otherwise possible with training
in isolation (Chen et al., 2020; Xie et al., 2020; Gou et al., 2021; Cho & Hariharan, 2019).

Knowledge Distillation has recently been used to obtain state-of-the-art results in the semi-supervised
setting where a small number of labeled and a large number of unlabeled examples are available (Chen
et al., 2020; Pham et al., 2021; Xie et al., 2020). Semi-supervised KD entails training a teacher model
on the labeled set and using its soft labels on the unlabeled data to train the student. The teacher is
often a pre-trained model and may also be a generic large model such as GPT-3 (Brown et al., 2020)
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or PaLM (Chowdhery et al., 2022). The premise is that a large teacher model can more aptly extract
knowledge and learn from a labeled data set, which can subsequently be distilled into a small student.

Despite its widespread success, KD generally suffers from various degrees of confirmation bias
and inefficiency in modern applications to semi-supervised learning. Confirmation bias (Pham
et al., 2021; Liu & Tan, 2021; Arazo et al., 2020; Beyer et al., 2021) is the phenomenon where the
student exhibits poor performance due to training on noisy or inaccurate teacher soft-labels. Here,
inaccuracy refers to the inconsistency between the teacher’s predictions for the unlabeled inputs and
their groundtruth labels. Feeding the student inaccurate soft-labels leads to increased confidence
in incorrect predictions, which consequently produces a model that tends to resist new changes
and perform poorly overall (Liu & Tan, 2021; Arazo et al., 2020). At the same time, large-scale
applications often require the teacher’s predictions for billions of unlabeled points. For instance,
consider distilling knowledge from GPT-3 to train a powerful student model. As of this writing,
OpenAI charges 6c per 1k token predictions (OpenAI, 2022). Assuming just 1M examples to label
and an average of 100 tokens per example leads to a total cost of $6M. Hence, it is highly desirable
to acquire the most helpful – i.e., informative and correct – soft-labels subject to a labeling budget
(GPT-3 API calls) to obtain the most powerful student model for the target application.

Thus, it has become increasingly important to develop KD methods that are both query-efficient
and robust to labeling inaccuracies. Prior work in this realm is limited to tackling either distillation
efficiency (Liang et al., 2022; Xu et al., 2020), by combining mix-up (Zhang et al., 2017) and
uncertainty-based sampling (Roth & Small, 2006), or robustness (Pham et al., 2021; Liu & Tan, 2021;
Arazo et al., 2020; Zheng et al., 2021; Zhang et al., 2020), through clever training and weighting
strategies, but not both of these objectives at the same time. In this paper, we present a simple-to-
implement method that finds a sweet spot and improves over standard techniques. Relatedly, there
has been prior work in learning under label noise (see Song et al. (2022) for a survey), however, these
works generally assume that the noisy labels are available (i.e., no active learning component) or
impose assumptions on the type of label noise (Younesian et al., 2021). In contrast, we assume that
the label noise can be fully adversarial and that we do not have full access to even the noisy labels.

To the best of our knowledge, this work is the first to consider the problem of importance sampling
for simultaneous efficiency and robustness in knowledge distillation. To bridge this research gap, we
present an efficient algorithm with provable guarantees to identify unlabeled points with soft-labels
that tend to be simultaneously informative and accurate. Our approach is parameter-free, imposes
no assumptions on the problem setting, and can be widely applied to any network architecture and
data set. At its core lies the formulation of an optimization problem that simultaneously captures the
objectives of efficiency and robustness in an appropriate way. In particular, this paper contributes:

1. A mathematical problem formulation that captures the joint objective of training on infor-
mative soft-labels that are accurately labeled by the teacher in a query-efficient way

2. A near linear time, parameter-free algorithm to optimally solve it
3. Empirical results on benchmark data sets and architectures with varying configurations that

demonstrate the improved effectiveness of our approach relative to the state-of-the-art
4. Extensive empirical evaluations that support the widespread applicability and robustness of

our approach to varying scenarios and practitioner-imposed constraints.

2 PROBLEM STATEMENT

We consider the semi-supervised classification setting where we are given a small labeled set XL
– typically tens or hundreds of thousands of examples – together with a large unlabeled set XU ,
typically on the order of millions or billions. The goal is to leverage both the labeled and unlabeled
sets to efficiently and reliably train a compact, powerful model θstudent. To do so, we use knowledge
distillation (Xie et al., 2020; Liang et al., 2020) where the labeled points are used to train a larger,
(often pre-trained) teacher model that can then be used to educate a small model (the student). We
emphasize that the teacher may be a pre-trained model, however, it is not trained on the unlabeled
set XU . The distillation process entails using the soft-labels of the teacher for the unlabeled points.
The student is then trained on these soft-labeled points along with the original labeled data set. The
key insight is that the large, pre-trained teacher model can more aptly learn representations from the
limited data, which can then be imitated by the student.
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Somewhat more formally, we are given two input sets XL,XU independently and randomly drawn
from the input space X ⊆ Rd. We assume that we have access to the hard labels YL ∈ {0, 1}k
for the instances in XL, but not those in XU and that |XL| � |XU |. Consistent with modern ML
applications, we assume that a validation data set of labeled points is available. We will use a slight
abuse in notation and refer to the set of labeled data points as (XL,YL) to denote the set of (x, y)
labeled pairs. We assume large-scale applications of KD where the teacher is exceedingly large to
the extent that querying the teacher soft-label fθteacher(x) ∈ [0, 1]k for an unlabeled point x ∈ XU is
costly and soft-labeling all of XU is infeasible. In the following, we introduce and motivate robust
active distillation to conduct this process efficiently and reliably.

2.1 ACTIVE DISTILLATION

The objective of active distillation is to query the minimum number of teacher soft-labels for points
in XU in order to train a high-performing student model θstudent in a computationally and financially-
efficient way. This process is shown in Alg. 1. Here, we conduct T active distillation iterations after
training the student and the teacher models on the training set P , which initially only includes the
set of hard-labeled points. On Line 8 and throughout, fθ(x) ∈ [0, 1]k denotes the softmax output of
a neural network model θ with respect to input x. At each iteration (Lines 5-10, Alg. 1), we use a
given querying algorithm, SELECT, to identify the most helpful b unlabeled points to soft-label by
the teacher based on the most up-to-date student model θt−1 (Line 6). The selected points are then
soft-labeled by the teacher and added to the (expanding) training set P . Subsequently, the student is
trained using the Kullback-Leibler (KL) Divergence (Hinton et al., 2015) as the loss function on the
training set P which includes both the hard-labeled points (XL,YL) and the accumulated soft-labeled
ones. We follow the standard convention in active learning (Ren et al., 2021) and efficient distillation
(Liang et al., 2020; Xu et al., 2020) and train the student model from scratch on Line 9.

Algorithm 1 ACTIVEDISTILLATION

Input: a set of labeled points (XL,YL), a set of unlabeled points XU , the number of points to soft-label per
iteration b ∈ N+, and a selection algorithm SELECT(X̄ , θ, b) that selects a sample of size b from X̄
1: P ← (XL,YL); {Training set thus far; initially only hard-labeled points}
2: θteacher ← TRAIN(P, θrandomteacher ); {Train teacher on labeled data starting from random initialization}
3: θ0 ← TRAIN(P, θrandomstudent ); {Train student on labeled data starting from random initialization}
4: S ← ∅; {Set of inputs that have been soft-labeled}
5: for t ∈ {1, . . . , T} do
6: St ← SELECT(XU \ S, θt−1, b) {Select b points to be soft-labeled by θteacher}
7: S ← S ∪ St {Add new points so we do not sample them again}
8: P ← P ∪ {(x, fθteacher(x)) : x ∈ St} {Soft-label points and add them to the training set}
9: θt ← TRAIN(P, θrandomstudent ) {Train network with the additional soft-labeled points from scratch}

10: end for
11: return θT

The active distillation problem is deeply related to the problem of active learning, where the objective
is to query the labels of only the most informative points in order to minimize labeling costs. To
this end, prior approaches in efficient KD (Xu et al., 2020; Liang et al., 2020) have proposed
methods inspired by margin-based sampling (Balcan et al., 2007; Roth & Small, 2006), a popular and
widely used active learning algorithm (Ren et al., 2021). Margin-based sampling is one example of
uncertainty-based sampling, other examples are clustering-based selection (Sener & Savarese, 2017;
Ash et al., 2019), model uncertainty (Gal et al., 2017), and adversarial proximity (Ducoffe & Precioso,
2018) (see (Ren et al., 2021) for a survey). In the following, we consider margin-based sampling due
to its simplicity and prior application to efficient distillation by related work (Liang et al., 2020; Xu
et al., 2020). Margin-based sampling for KD is an intuitive and simple-to-implement idea where the
teacher predictions for inputs that the student is most uncertain about are queried. For an input x and
prediction i∗ = argmaxi∈[k] fθstudent

(x)i, the uncertainty is measured in terms of the margin between
the top-2 highest probability entries, i.e., margin(x) = fθstudent(x)i∗ −maxi∈[k]\i∗ fθstudent(x)i.

2.2 RESEARCH GAP

Despite the widespread success of margin-based sampling in active learning, we claim that it is
generally ill-suited for knowledge distillation due to its tendency to amplify confirmation bias, leading
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Figure 1: Left: teacher’s accuracy (overall 60.7%) relative to the student’s (overall 49.4%) margin score; points
with lower margin tend to be incorrectly classified by the teacher. Plot was generated by averaging teacher’s
accuracy over 100 closest-margin points. Right: Performance of robust distillation (red), which picks the
lowest-margin points among those correctly labeled by the teacher, compared to that of margin (blue).

to poor student performance. To observe this, note that the objective of margin-based sampling –
and more generally, other uncertainty-based query methods – is to query the soft-labels of inputs for
which the student is most uncertain about ("hard" instances). However, hard instances for the student
are often hard to predict correctly by the teacher. Hence, the soft-labels for these points are more
likely to be incorrect with respect to the groundtruth labels, leading to misleading student training.

Fig. 1 shows an instance of this phenomenon for CIFAR10 with ResNet student-teacher architectures
of varying depth. As the figure depicts, the teacher tends to predict incorrect labels for points with
low student margin (hard instances), and conversely, tends to be highly accurate on points with
high margin (easy instances). This suggests that there is an inherent trade-off between efficiency
(minimizing queries) and robustness (mitigating confirmation bias) that needs to be considered. That
is, we would like to pick informative points for the student for efficiency, but these informative
points tend to be incorrectly classified by the student which leads to misguided training and poor
performance. Is it possible to simultaneously achieve both in a principled way? We label this problem
Robust Active Distillation and propose a method to solve it in the following section.

3 ROBUST ACTIVE DISTILLATION (RAD)

3.1 BACKGROUND

The margin algorithm (Liang et al., 2020; Roth & Small, 2006) selects the b points with the lowest
margin scores margin(x), where b is our soft-label budget. Let margini be shorthand for the margin
of each unlabeled input margin(xi) and observe that its gain or informativeness can be quantified
as gi = 1 − margini. Given a budget b, note that the margin-sampling algorithm corresponds to
the optimal solution of the following optimization problem where the objective is to generate a
probability distribution that maximizes the expected sum of gains,

maxp∈∆b
E S∼p

[∑
i∈S

gi

]
, where ∆b = {p ∈ [0, 1]n :

∑
i∈[n]

pi = b}. (1)

As discussed previously, this formulation solely focuses on the informativeness of the points and does
not consider the increased likelihood of mislabeling by the teacher.

Robust Distillation To extend (1) so that it is robust to possible teacher mislabeling, consider the
masks ci = 1{teacher labels point i correctly} for each i ∈ [n] where 1{x} = 1 if x is true and 0
otherwise. Equipped with this additional variable, one way to explicitly mitigate confirmation bias
and simultaneously pick informative samples is to reward points that are correctly labeled by the
teacher by assigning gains as before, but penalize those that are incorrectly labeled via losses. This
can be done by using the modified gains in the context of (1)

g̃i = gici − (1− ci)`i =

{
gi, if teacher labels point i correctly
−`i, otherwise

∀i ∈ [n].
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In words, this means that if the point i is correctly labeled by the teacher we assign the standard
margin-based gain gi = (1−margini) as before; otherwise, we penalize the selection by assigning
−`i for some loss `i ≥ 0. This leads to the following general problem of robust distillation

maxp∈∆b
E i∼p [gici − (1− ci)`i] . (2)

The optimal solution to problem (2) corresponds to picking the b most informative (highest gain)
points among those that are predicted correctly by the teacher, i.e., those points i ∈ [n] with highest
gi subject to ci = 1. This approach is shown as Robust Distillation (Oracle) in Fig. 1 (right). Fig. 1
exemplifies the effect of inaccurate examples on student training (see also (Pham et al., 2021)). If we
had knowledge of (ci)i∈[n], then we could optimally solve (2) to obtain significant improvements
over the standard margin algorithm. Unfortunately, perfect knowledge of whether the teacher labels
each point correctly or not, i.e., (ci)i∈[n], is not possible in the semi-supervised setting.

3.2 OUR APPROACH

We consider a general and robust approach that simultaneously leverages instance-specific knowledge
without having to know the masks (ci)i∈[n] individually. Suppose that we only know that the teacher
mislabels m points out of the n unlabeled inputs XB instead. Can we generate a sampling distribution
so that no matter which of the m points are labeled incorrectly by the teacher, our expected gain is
high? Assuming b = 1 for simplicity, we arrive at the extension of the formulation in (2)

maxp∈∆1 minc∈∆n−m E i∼p [gici − (1− ci)`i] ,where ∆k = {q ∈ [0, 1]n :
∑

i∈[n]
qi = k}. (3)

Problem (3) has the following game theoretic interpretation. We go first and pick a sampling
distribution p over the points. In response, an adversary decides which points are misclassified (i.e,
ci = 0) by the teacher subject to the constraint that it can set ci = 0 for at most m ≤ n of them since
c ∈ ∆n−m. Given the linear structure of the problem, it turns out that we can invoke von Neumann’s
Minimax Theorem (Neumann, 1928) which states that the equilibrium point is the same regardless of
whether we go first and pick the probability distribution p ∈ ∆1 or the adversary goes first and picks
(ci)i∈[n]. By exploiting this connection, we obtain a closed form solution as formalized below.

Theorem 1. Suppose g1 ≥ g2 ≥ · · · ≥ gn > 0, and define Gk =
∑
i≤k gi/(gi + `i) and

Hk =
∑
i≤k 1/(gi + `i). For Gn ≥ m, an optimal solution p∗ ∈ ∆1 to (3) is given by

p∗i =
1

Hk∗(gi + `i)
if i ≤ k∗ and p∗i = 0 otherwise, where k∗ = argmaxk∈[n]

Gk −m
Hk

.

The distribution can be computed in linear time (assuming sorted g) and achieves an objective value
of OPT(k∗) := Gk∗−m

Hk∗
.

We sketch the proof here. The full proof can be found in the Appendix (Sec. C).

Proof sketch. Let
OBJ(p, c) =

∑
i∈[n]

pi(gici − (1− ci)`i).

Substituting p∗ from Thm. 1 and considering a minimizing value for c ∈ ∆n−m, it is possible to
show that p∗ ∈ ∆1 and

OPT(k∗) = min
c∈∆n−m

OBJ(p∗, c) ≤ max
p∈∆1

min
c∈∆n−m

OBJ(p, c).

On the other hand, let c∗i = min
(
1, OPT(k∗)+`i

gi+`i

)
. With a little more work, using the fact that

gk∗ ≥ OPT(k∗) ≥ gk∗+1, we can show similarly that c∗ ∈ ∆n−m and

OPT(k∗) = max
p∈∆1

OBJ(p, c∗) ≥ min
c∈∆n−m

max
p∈∆1

OBJ(p, c).

With these inequalities in hand, we apply the Minimax Theorem (Neumann, 1928), which yields

OPT(k∗) ≤ max
p∈∆1

min
c∈∆n−m

OBJ(p, c) = min
c∈∆n−m

max
p∈∆1

OBJ(p, c) ≤ OPT(k∗).

Hence, p∗ does indeed obtain the optimal value, OPT(k∗).
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RAD Loss Equipped with Theorem 1, all that remains is to specify the losses in (3). Prior work on
confirmation bias has shown that even a small number misguided soft-labels can derail the student’s
performance and significantly impact its predictive capability (Liu & Tan, 2021). Additionally, the
harm of an incorrectly labeled point may be even more pronounced when the student is uncertain
about that point. To model this, we consider instantiating our general problem formulation (3)
with losses that are relative to the gain `i = −wgi for each i ∈ [n] where w ∈ [0, 1] is a weight
parameter that controls the magnitude of the penalization. This formulation purposefully leads to
higher penalties for misclassified points that the student is already unsure about (high gain) to mitigate
confirmation bias, and leads to the following optimization problem which is the focus of this paper

maxp∈∆1
minc∈∆n−m

E i∼p [gici − (1− ci)wgi] . (4)

Invoking Thm. 1 with the relative gain losses as described above immediately leads to the following,
which, along with the choice of w below, describes the algorithm RAD that we propose in this paper.
Corollary 1. An optimal solution p∗ ∈ ∆1 to (4) has k non-zero entries Ik∗ ⊆ [n] corresponding to
the k∗ indices of the largest entries of g, with

p∗i =
1

gi
∑
j∈Ik∗ g

−1
j

∀i ∈ Ik∗ where k∗ = argmaxk∈[n]

k − (1 + w)m∑
j∈Ik g

−1
j

.

The distribution p∗ can be computed in Θ(n log n) time, with OPT(k∗) = (k∗−(1+w)m)/
∑

j∈Ik∗
g−1
j .

Choice of w Although RAD can be applied with any user-specified choice of w, we use the
theoretically-motivated weight of w = (1−m/n) as the relative penalization constant in our experi-
ments. This choice of w guarantees that the optimal value (expected gain) of (4) (see Corollary (1)) is
non-negative — if the expected gain were negative, we would be better off not sampling at all. This
default value for w makes RAD parameter-free. Extensive empirical evaluations with varying values
of w are presented in Sec. D.5 of the Appendix.

Figure 2: The optimal solution to (4) given by Corollary 1 for various values for teacher accuracy (varying m).
Even when most of the samples are labeled correctly by the teacher, our method is purposefully cautious and
does not allocate all of the probability (of sampling) mass on the highest gain points.

We observe several favorable properties of RAD’s sampling distribution in Fig. 2, which depicts the
computed distribution on a synthetic scenario with gains drawn uniformly at random from [0, 1]. For
one, the sampling distribution tends to allocate less probability mass to the highest gain items. As
prior work has shown, this is desirable because the hardest (highest gain) examples tend to be outliers
or points with noisy labels (Mindermann et al., 2022; Ren et al., 2018). In fact, robust learning
approaches typically downweight hard examples for this reason (Kumar et al., 2010), analogous
to RAD’s sampling behavior. At the same time, Paul et al. (2021) show that the easiest (lowest
gain) examples tend to be truly uninformative and the best strategy is to ignore a certain fraction
of the highest and lowest gain points. This strategy parallels RAD’s computed distribution, where
a number of low gain points are ignored and the probability peaks around a region inbetween (see
Fig. 2). A prominent benefit of RAD is that this region is computed in a fully automated way as a
function of the teacher’s accuracy (i.e., amount of label noise). If the teacher is highly accurate, the
distribution accordingly concentrates on the highest gain points (blue, Fig. 2); otherwise, it spreads
out the probabilities over a larger portion of the points and purposefully assigns lower sampling
probability to the highest gain points which are likely to be noisy (e.g., brown, Fig. 2).
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3.3 IMPLEMENTATION DETAILS

We conclude this section by outlining the practical details of RAD. We follow the setting of this
section and set gi = 1−margini to define the gains of each point (see Sec. D.6 of the Appendix for
evaluations with a differing gain definition). In practice, we use the distribution q = min{bp, 1} when
sampling a set of b points, where p is from Corollary 1. This is optimal as long as the probabilities
from Corollary 1 (or more generally, Theorem 1) are not heavily concentrated on a few points (i.e.,
maxi∈[n] pi ≤ 1/b). As exemplified in Fig. 2 and experimentally verified in Sec. 4 in all of the
evaluated scenarios, we found this to virtually always be the case. Alternatively, the acquisition size b
can be adjusted after the single-sample probability distribution is computed so that b ≤ mini∈[n] 1/pi.
Since the number of mistakes the teacher makes on XB , m, is not known to us in the semi-supervised
setting, we approximate this quantity by first taking the sample mean inaccuracy of a small uniform
random sample of buniform (see Appendix, Sec. D.1) points as a way to approximate m and bootstrap
our approach. We then use our approach with b′ = b− buniform as described above. By Bernstein’s
inequality (Bernstein, 1924), this weighted estimate tightly concentrates around the mean, which in
turn implies a high-quality approximation ofm. We theoretically analyze the effect of an approximate
m on the quality of the optimal solution in Sec. C of the Appendix (see Lemmas 4 and 5).

4 RESULTS

We apply our sample selection algorithm, RAD, to benchmark vision data sets and evaluate its
performance in generating high-performance student models on a diverse set of knowledge distillation
scenarios. We compare the performance of RAD to the following: (i) MARGIN (Balcan et al., 2007;
Roth & Small, 2006) as described in Sec. 3, (ii) UNIFORM, (iii) CLUSTER MARGIN (labeled CM), a
state-of-the-art active learning technique (Citovsky et al., 2021), (iv) CORESET, a popular clustering-
based active learning algorithm (Sener & Savarese, 2017), (v) ENTROPY, a greedy approach that
picks the points with highest student prediction entropy (Holub et al., 2008), and (vi) UNIXKD (Xu
et al., 2020), a state-of-the-art active distillation approach based on mix-up (Zhang et al., 2017). We
implemented all algorithms in Python and used the TensorFlow (Abadi et al., 2015) deep learning
library. We used the hyperparameters specified in the respective papers for all of the compared
approaches. For RAD, we use the theoretically-derived setting of w = 1−m/n as specified in Sec. 3
and emphasize that this makes RAD fully parameter-free.

In Sec. D of the Appendix, we present: the full set of hyper-parameters and experimental details
(Sec. D.1); additional evaluations that report statistics beyond test accuracy (Sec. D.3); applications
of RAD to the standard active learning setting and comparisons to SOTA approaches (Sec. D.4);
experiments with varying w and gain definition to evaluate the robustness of RAD (Sec. D.5 and D.6,
respectively); comparisons on a diverse set of knowledge distillation configurations (Sec. D.7).
Overall, our empirical evaluations show that RAD uniformly improves on state-of-the-art baselines and
demonstrate its off-the-shelf effectiveness without the need to tune or change any hyperparameters.

4.1 CIFAR10, CIFAR100, & SVHN

Setup We use ResNet (He et al., 2015), ResNetV2-{11, 20, 29} (He et al., 2016), or Mo-
bileNet (Howard et al., 2017) with a depth multiplier of 1 as the student and ResNet-50, ResNetV2-
{56, 110}, or MobileNet with a depth multiplier of 2 as the teacher model. We considered the
CIFAR10/CIFAR100 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011), and ImageNet (Deng
et al., 2009) data sets. Unless otherwise specified, we use the Adam optimizer (Kingma & Ba, 2014)
with a batch size of 128 with data set specific learning rate schedules. We follow the active distillation
setting shown in Alg. 1 with various configurations. We use 64 Cloud TPU v4s each with two cores.
The full set of hyper-parameters and experimental details can be found in Sec. D of the Appendix.

Configurations We experimented with a diverse set of configurations for the knowledge distillation
task. We reported the specific configuration for each plot as part of the plot’s title (e.g., see Fig. 3). In
context of the variables in the plot heading, we varied the number of epochs that the student is trained
for (denoted as e), the size of the initial set of labeled points (|A|), the number of soft-labels to query
per iteration (b), and the teacher model (t); resnet in the configuration refers to ResNetV2-20 as the
student and ResNet-50 as the teacher unless otherwise specified. All results were averaged over 10
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trials unless otherwise stated. For each trial, we reshuffled the entire data set and picked a random
portion (of size |A|) to be the labeled data set XL, and considered the rest to be the unlabeled set XU .

Figure 3: Evaluations of RAD, state-of-the-art active learning, and active distillation strategies on a diverse set
of distillation configurations with varying data sets and network architectures. RAD consistently outperforms
competing approaches. Shaded regions correspond to values within one standard deviation of the mean.

In the first set of experiments, we evaluate the effectiveness of each method in generating high-
accuracy student models subject to a soft-labeling budget on CIFAR10, CIFAR100, and SVHN
data sets with ResNet(v2) and MobileNet architectures of varying sizes. CIFAR10 contains 50, 000
images of size 32× 32 with 10 categories, CIFAR100 has 50, 000 32× 32 images with 1000 labels,
and SVHN consists of 73, 257 real-world images (32× 32) taken from Google Street View. Fig. 3
depicts the results of our evaluations on a diverse set of knowledge distillation scenarios with varying
configurations. We observe a consistent and marked improvement in the student model’s predictive
performance when our approach is used to actively select the points to be soft-labeled by the teacher.
This improvement is often present from the first labeling iteration and persists continuously over the
active distillation iterations.

We observe that RAD performs particularly well relative to baselines regardless of the teacher’s
accuracy. For instance, we see significant improvements with RAD when distilling from a MobileNet
teacher on CIFAR100, which has relatively low accuracy (see corresponding plots in Fig. 3). This
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observation suggests that the explicit consideration of possible teacher inaccuracy is indeed helpful
when distilling from a teacher that may be prone to making mistakes. At the same time, we observe
that RAD outperforms state-of-the-art active learning algorithms such as Cluster Margin (CM) and
others (MARGIN, ENTROPY) – which do not explicitly consider label noise in the form of incorrect
teacher soft-labels – even in instances where the teacher accuracy is as high as ≈ 92% (see SVHN
plots in Fig. 3). These observations support RAD’s ability to automatically adapt its sampling
distribution to the applied scenario based on the approximated teacher inaccuracy.

Figure 4: The classification accuracy and gain on the ImageNet data set with ResNets.

4.2 IMAGENET EXPERIMENTS

Here, we report the results of our evaluations with ResNet architectures trained on the ImageNet
data set I , which contains nearly 1.3 million images spanning 1000 categories (Deng et al., 2009).
We exclude the UNIXKD and CORESET methods due to resource constraints and the fact that CM
supersedes CORESET (Citovsky et al., 2021) and UNIXKD consistently performed poorly on the
configurations in the previous subsection. This highlights an additional advantage of our approach:
it merely requires a sort (O(n log n) total time). This is in contrast to computation- and memory-
expensive methods like CORESET and CM that require clustering (see Sec. D.2 for details). Fig. 4
depicts the results of our evaluations, where our method consistently improves upon the compared
approaches across all training epochs. Here the teacher is a ResNet50 model and the student is a
ResNet18 model. The teacher is trained on the initial labeled dataset A with |A| = 10%|I|. For each
choice of the budget b ∈ {3%|I|, 5%|I|, 7%|I|, 9%|I|, 11%|I|}, we run 3 trials. In the rightmost
plot we observe that the gain of our approach (w.r.t. gi = 1 −margini) is higher than that of the
competing approaches, and that the gain correlates well with the test accuracy of the student, which
reaffirms the practical validity of our formulation (Sec. 3).

5 CONCLUSION

In this paper, we considered the problem of efficient and robust knowledge distillation in the semi-
supervised learning setting with a limited amount of labeled data and a large amount of unlabeled data.
We formulated the problem of robust active distillation and presented a near linear-time algorithm
with provable guarantees to solve it optimally. To the best of our knowledge, our work is the first to
consider importance sampling for informative and correctly labeled soft-labels to enable efficiency
and robustness in large-scale knowledge distillation tasks. Our method is parameter-free and simple-
to-implement. Our experiments on popular benchmark data sets with a diverse set of configurations
showed a consistent and notable improvement in the test accuracy of the generated student model
relative to those generated by state-of-the-art methods.

Limitations and future work In future work, we plan to establish a deeper theoretical under-
standing on the trade-offs of the various instantiations of our general framework, (3) in Sec. 3, on
the test accuracy of the student model. For example, it is not clear whether defining the gain as
gi = 1−margini or gi = exp(−margini) is more appropriate, even though both definitions lead
to gains that are monotonically increasing with the uncertainty of the student. Besides considering
teacher accuracy in the robust formulation, we plan to also consider other relevant metrics such as
student-teacher disagreement to construct more informed distributions. Overall, we envision that our
approach can be used in high-impact applications to generate powerful student models by efficiently
distilling the knowledge of large teachers in the face of limited labeled data.
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REPRODUCIBILITY STATEMENT

Our algorithm is fully-specified (Corollary 1), simple-to-implement, and parameter-free (Sec. 3). We
provide the full details and hyperparameters required to reproduce our results in Sec. 4 and Sec. D.1
of the Appendix. We specify descriptions of how the competing algorithms were implemented,
including the hyperparameter settings. We provide precise theoretical results (Sec. 3 in the main
body and Sec. C of the Appendix) that clearly specify the assumptions and provide full proofs and
additional helper lemmas in the Appendix (Sec. C). Our evaluations use publicly available and easily
accessible data sets and models.
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A APPENDIX

In this supplementary material, we provide the details of batch sampling (in Sec. B), full proofs of
the results in Sec. 3 and additional theoretical results (in Sec. C), and details of experiments in Sec. 4
and additional evaluations (in Sec. D).

B IMPLEMENTATION DETAILS

To supplement our discussion in Sec. 3, we provide additional details regarding the batch sampling
procedure. One approach is to iterate over the points i ∈ [n] and pick each point with probability qi.
If
∑
i∈[n] qi = b, then this procedure samples b points in expectation. A more principled approach is

to use randomized dependent rounding (Chekuri et al., 2009) which samples exactly b points given a
distribution that sums to b. This procedure is shown as Alg. 2, and an efficient implementation of it
runs in O(n) time (Chekuri et al., 2009).

Algorithm 2 DEPROUND

Inputs: Probabilities p ∈ [0, 1]n such that
∑
i∈[n] pi = b

Output: set of indices I ⊂ [n] with |I| = b

1: while ∃i ∈ [n] such that 0 < pi < 1 do
2: Pick i, j ∈ [n] with i 6= j, 0 < pi < 1, and 0 < pj < 1

3: α← min(1− pi, pj)
4: β ← min(pi, 1− pj)
5: Update pi and pj

(pi, pj) =

{
(pi + α, pj − α) with probability β

α+β ,

(pi − β, pj + β) with probability 1− β
α+β .

6: end while
7: I ← {i ∈ [n] : pi = 1}

return I

C PROOFS & ADDITIONAL ANALYSIS

C.1 PROOF OF THEOREM 1

Theorem 1. Suppose g1 ≥ g2 ≥ · · · ≥ gn > 0, and define Gk =
∑
i≤k gi/(gi + `i) and

Hk =
∑
i≤k 1/(gi + `i). For Gn ≥ m, an optimal solution p∗ ∈ ∆1 to (3) is given by

p∗i =
1

Hk∗(gi + `i)
if i ≤ k∗ and p∗i = 0 otherwise, where k∗ = argmaxk∈[n]

Gk −m
Hk

.

The distribution can be computed in linear time (assuming sorted g) and achieves an objective value
of OPT(k∗) := Gk∗−m

Hk∗
.

Proof. The proof relies on the the Minimax Theorem (Neumann, 1928), which yields

min
c∈∆n−m

max
p∈∆1

f(p, c) = max
p∈∆1

min
c∈∆n−m

f(p, c).

We will further use two claims, which we’ll prove shortly.

Claim 2. Let p∗, k∗, and N(k) be defined as in the statement of the lemma. Then p∗ ∈ ∆1 and
N(k∗) = minc∈∆n−m

f(p∗, c).

Claim 3. Let k∗ and N(k) be defined as in the statement of the lemma. Further, define

c∗i =

{
N(k∗)+`i
gi+`i

if i ≤ k∗

1 otherwise
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Then c∗ ∈ ∆n−m and N(k∗) = maxp∈∆1
f(p, c∗).

Given the claims, we see

N(k∗) = min
c∈∆n−m

f(p∗, c) ≤max
p∈∆1

min
c∈∆n−m

f(p, c) by Claim 2

= min
c∈∆n−m

max
p∈∆1

f(p, c) by Minimax

≤max
p∈∆1

f(p, c∗) = N(k∗) by Claim 3

That is, p∗ attains the maximum, which is N(k∗), as we wanted.

We now prove the claims. Before beginning, we will first simplify f(p, c) somewhat, finding

f(p, c) =
∑
i

gipici −
∑
i

`ipi(1− ci)

=
∑
i

(ci(gi + `i)− `i)pi

Proof of Claim 2. We first show p∗ ∈ ∆1. We have∑
i≤n

p∗i =
∑
i≤k∗

p∗i =
∑
i≤k∗

1

Hk∗(gi + `i)
=
Hk∗

Hk∗
= 1

And since p∗i ≥ 0 for all i, it immediately follows that p∗i ≤ 1 as well.

We now show N(k∗) = minc∈∆n−m
f(p∗, c). To this end,

f(p∗, c) =
∑
i≤n

(ci(gi + `i)− `i)pi

=
∑
i≤k∗

ci(gi + `i)− `i
Hk∗(gi + `i)

=
∑
i≤k∗

ci(gi + `i)

Hk∗(gi + `i)
−
∑
i≤k∗

(gi + `i)

Hk∗(gi + `i)
+
∑
i≤k∗

gi
Hk∗(gi + `i)

=
1

Hk∗

∑
i≤k∗

ci −
k∗

Hk∗
+
Gk∗

Hk∗

Clearly, for c∗ ∈ ∆n−m, this expression is minimized when ci = 1 for i > k∗ and
∑
i≤k∗ ci =

k∗ −m. So we have

min
c∈∆n−m

f(p∗, c) =
1

Hk∗
(k∗ −m)− k∗

Hk∗
+
Gk∗

Hk∗

=
Gk∗ −m
Hk∗

= N(k∗)

as claimed.

We now prove our second claim.

Proof of Claim 3. We first show that N(k∗) ≥ gi for i > k∗.1 Observe that if ab ≥
a+c
b+d , then a

b ≥
c
d

for non-negative values (and b > 0, d > 0). Notice

Gk∗ −m
Hk∗

= N(k∗) ≥ N(k∗ + 1) =
Gk∗ + gk∗+1/(gk∗+1 + `k∗+1)−m

Hk∗ + 1/(gk∗+1 + `k∗+1)

1In the border case that k∗ = n, we can add a dummy item with gn+1 = 0 and the claim follows trivially.
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By our observation,

N(k∗) ≥ gk∗+1/(gk∗+1 + `k∗+1)

1/(gk∗+1 + `k∗+1)
= gk∗+1 ≥ gi for i > k∗.

Similarly, we show N(k∗) ≤ gi for i ≤ k∗, using the observation that if a−cb−d ≤
a
b , then a

b ≤
c
d for

non-negative values (and b− d > 0 and d > 0). Notice

N(k∗ − 1) =
Gk∗ − gk∗/(gk∗ + `k∗)−m

Hk∗ − 1/(gk∗ + `k∗)
≤ Gk∗ −m

Hk∗
= N(k∗)

And again, by our observation,

N(k∗) ≤ gk∗/(gk∗ + `k∗)

1/(gk∗ + `k∗)
= gk∗ ≤ gi for i ≤ k∗. (5)

Now we’re ready to prove the claim.

We first show c∗ ∈ ∆n−m. Since N(k∗) ≤ gi for i ≤ k∗, we see c∗i = N(k∗)+`i
gi+`i

≤ 1 for i ≤ k∗. So
c∗i ∈ [0, 1]. Further, ∑

i≤n

c∗i =
∑
i≤k∗

N(k∗) + `i
gi + `i

+
∑

k∗<i≤n

1

=
∑
i≤k∗

N(k∗)− gi
gi + `i

+
∑
i≤k∗

gi + `i
gi + `i

+
∑

k∗<i≤n

1

=N(k∗)Hk∗ −Gk∗ + n

=Gk∗ −m−Gk∗ + n = n−m

That is, c∗ ∈ ∆n−m.

Finally, we show N(k∗) = maxp∈∆1
f(p, c∗). Note that c∗i (gi + `i)− `i = N(k∗) for i ≤ k∗, while

c∗i (gi + `i)− `i = gi for i > k∗. We have

f(p, c∗) =
∑
i

(c∗i (gi + `i)− `i)pi

=
∑
i≤k∗

N(k∗)pi +
∑
i>k∗

gipi

From above, N(k∗) ≥ gi for i > k∗. So the expression is maximized for p ∈ ∆1 when pi = 0 for
i > k∗ and

∑
i≤k∗ pi = 1. Hence,

max
p∈∆1

f(p, c∗) = N(k∗)

as we wanted.

C.2 EFFECT OF APPROXIMATING M

Here, we prove that an approximately optimal solution can be obtained even if an approximate value
of m is used (e.g., via a validation data set). For sake of simplicity, the following lemma considers
the case where the losses are 0 in the context of Theorem 1, however, its generalization to general
gains and losses – including the relative error formulation that we study in this paper – follows by
rescaling the error parameter ε appropriately. 2 Our main result is that if we have an approximation
m̂ ∈ (1±ε)m, then we can use this approximatem to obtain an (1−2εm/(2εm+(1+ε))-competitive
solution.

2Note that this result generalizes to the RAD relative loss with w w as discussed in Sec. 3 by considering
m′ = (1 + w)m (see Corollary 1).
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Lemma 4. Let m ∈ [n] be the groundtruth value of the number of incorrect examples in XB and
let km be the optimal solution with respect to m. Assume g1 ≥ · · · ≥ gn and let α = gkm and
β = α

2(2−α) . Suppose that we have an approximation m̂ of m such that

m̂ ∈ (1± ε)m with ε ∈ (0, β),

then the solution km̃ with respect to m̃ = m̂/(1 + ε) is (1− 2εm/(2εm+ (1 + ε))-competitive with
the optimal solution, i.e., it satisfies

OBJ(km̃,m) ≥
(

1− 2εm

2εm+ (1 + ε)

)
OPT =

(
1− 2εm

2εm+ (1 + ε)

)
OBJ(km,m),

where OBJ(k,m) = k−m
Hk

= maxk′∈[n]
k′−m
Hk′

.

Proof. For sake of notational brevity, we let k and k∗ denote km̃ and km, respectively. First, observe
that by the assumption of the lemma, we have

m̃ =
m̂

1 + ε
≥ (1− ε)m

1 + ε
and m̃ ≤ m.

Note that since k ≥ m̃ by the optimality of k with respect to m̃, we have k ≥ (1−ε)m
(1+ε)(1−α) > m which

follows from the optimality condition from the proof of Theorem 1,

k ≥ gk+1Hk + m̃ ≥ αk + m̃⇒ k ≥ m̃

1− α
and ε ≤ α

2(2−α) . Since k and m are integral, we have k ≥ m+ 1 ≥ m̃+ 1. Finally, by the optimality
of k with respect to m̃, we have

1

Hk
≥ k∗ − m̃

(k − m̃)Hk∗
.

Putting all of the above together,

OBJ(k,m) =
k −m
Hk

=
k − m̃
Hk

− m− m̃
Hk

≥ k∗ − m̃
Hk∗

− (m− m̃)(k∗ − m̃)

(k − m̃)Hk∗

≥ k∗ −m
Hk∗

(
1− m− m̃

k − m̃

)
≥ OPT

(
1− m− m̃

m− m̃+ 1

)
≥ OPT

(
1− 2εm

2εm+ (1 + ε)

)
,

where the first inequality is by the inequality on the lower bound 1/Hk and k ≥ m+ 1, the second
by m ≥ m̃, the third by k ≥ m+ 1, and the fourth by

m− m̃ ≤ 2εm

1 + ε
,

and rearrangment.

C.3 APPROXIMATING m

Next, we show how to estimate m using a validation data set T . To do so, we define

err(T , fθ) =
1

|T |
∑

(x,y)∈T

1{fθ(x) 6= y}

where fθ(·) ∈ [k] corresponds to the label prediction of network θ. Note here that
m = err(PB , fθ)|PB |

where PB corresponds to the points in dataset B.
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Lemma 5. For any δ ∈ (0, 1), if we use a validation set T of size k to obtain an approximation
m̂ = err(T , fθ)|PB | for m = err(PB , fθ)|PB |, then with probability at least 1− δ,

|m− m̂|
|PB |

≤ log(4/δ)

(
1

|PB |
+

1

k

)
+
√

2p(1− p) log(4/δ)

(
1√
|PB |

+
1√
k

)
,

where p = P(x,y)∼D(fθ(x) 6= y) is the probability of mislabeling for network fθ(·).

Proof. Let T = {(x1, y1), . . . , (x|T |, y|T |)} be a set of |T | i.i.d. points from the data distribution D
and define Xi = 1{fθ(xi) 6= yi} for each i ∈ |T |. Letting X = 1

|T |
∑
iXi, we observe that

E [X] = E
(x,y)∼D

[1{fθ(x) 6= y}] = P
(x,y)∼D

(fθ(x) 6= y)

= p.

Since we have a sum of k = |T | independent random variables each bounded by 1 with variance
Var(Xi) = p(1− p), we invoke Bernstein’s inequality (Bernstein, 1924) to obtain

P(|X − p| ≥ εT ) ≤ 2 exp

(
−kε2

T
2(p(1− p) + εT /3

)
,

setting the above to δ/2 and solving for εT yields

|X − p| ≤ εT ≤
log(4/δ)

k
+

√
2p(1− p) log(4/δ)

k
,

with probability at least 1− δ/2. Similarly, we can define the random variables Y1, . . . , Y|PB | so that
Yi = 1{fθ(xi) 6= yi} for each (xi, yi) ∈ PB . Letting Y = 1

|PB |
∑
i Yi and observing that E [Y ] = p

as before, we invoke Bernstein’s inequality again to obtain that with probability at least 1− δ/2,

|Y − p| = εPB
≤ log(4/δ)

|PB |
+

√
2p(1− p) log(4/δ)

|PB |
.

The statement follows by the triangle inequality |Y − X| ≤ |Y − p| + |X − p| and the union
bound.

D ADDITIONAL EVALUATIONS & EXPERIMENTAL DETAILS

Here, we describe the experimental details and hyperparameters used in our evaluations and provide
additional empirical results that supplement the ones presented in the paper. Our additional evaluations
support the robustness and widespread applicability of our approach.

D.1 EXPERIMENTAL DETAILS

We conduct our evaluations on 64 TPU v4s each with two cores. We used a validation data set of
size 1, 000 for the CIFAR10, CIFAR100, and SVHN data sets, and used a validation data set of size
10, 000 for ImageNet, respectively, to estimate m. The hyper-parameters used with respect to each
architecture and corresponding data set(s) are as follows.

MobileNet (CIFAR10, CIFAR100, SVHN For the experiments involving MobileNet (Howard
et al., 2017), whenever MobileNet was used as a student architecture it was initialized with a width
paramater of 1, and whenever it was used as a teacher, it was initialized with a width parameter of 2.
We used the Adam optimizer (Kingma & Ba, 2014) with default parameters (learning rate: 1e−3)
and trained for either 100 or 200 epochs depending on the experimental configuration. We did not
use data augmentation or weight regularization.

ResNets and ResNetv2s (CIFAR10, CIFAR100, SVHN We used the Adam optimizer (Kingma
& Ba, 2014) with the default parameters except for the learning rate schedule which was as fol-
lows. For a given number of epochs nepochs ∈ {100, 200}, we used 1e−3 as the learning rate
for the first (2/5)nepochs, then used 1e−4 until (3/5)nepochs, 1e−5 until (4/5)nepochs, 1e−6 until
(9/10)nepochs, and finally 5e−7 until then end. We used rounded values for the epoch windows that
determine the learning rate schedule to integral values whenever necessary. We did not use data
augmentation or weight regularization.
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D.2 IMAGENET

Setup We used a ResNet-18 student and ResNet-50 teacher model for the ImageNet experiments.
We train the student model for 100 epochs using SGD with momentum (= 0.9) with batch size 256
and a learn rate schedule as follows. For the first 5 epochs, we linearly increase the learning rate from
0 to 0.1, the next 30 epochs we use a learning rate of 0.1, the next 30 after that, we use a learning
rate of 0.01, the next 20 we use a learning rate of 0.001, and use a learning rate of 0.0001 for the
remaining epochs. We use random horizontal flips as our data augmentation.

Methods The implementations of RAD, MARGIN, ENTROPY, and UNIFORM are the same as in our
evaluations of CIFAR10/100 and SVHN in Sec 4. However, the Cluster Margin (CM) (Citovsky et al.,
2021) and CORESET (Sener & Savarese, 2017) algorithms require expensive clustering operations
and were inapplicable to ImageNet off-the-shelf due to memory and computational constraints.
Nevertheless, we implemented an approximate version of CM for completeness. We choose CM
over CORESET because it is currently the state-of-the-art and Citovsky et al. (2021) have already
demonstrated that it outperforms CORESET on large-scale settings. For our approximate version of
CM, we partition the ≈ 1.1M images into buckets of size 10, 000 and run HAC clustering in each
bucket. We stop when the number of generated clusters reaches 500. This leads to 56, 000 clusters
total, after which we apply the CM algorithm in its usual way.

D.3 BEYOND TEST ACCURACY & COMPARISON TO GREEDY

We investigate the performance of the student model beyond the final reported test accuracy and
verify the validity our problem formulation. In particular, we question (i) whether our method also
leads to improved student accuracy across all epochs during training and (ii) whether it actually
achieves a higher gain with respect to the robust distillation formulation ((4), Sec. 3) compared to
using the (greedy) STANDARD MARGIN algorithm that simply picks the highest gain points and
UNIFORM sampling. To this end, we conduct evaluations on CIFAR10, CIFAR100, and SVHN data
sets similar to those in Sec. 4, and additionally report the test accuracy over each epoch for the last
knowledge distillation iteration and the realized gain over the active distillation iterations.

Fig. 5 summarizes the results of our experiments for various knowledge distillation configurations.
From the figures, we observe that our approach simultaneously achieves a higher final test accuracy
(first column) and generally higher test accuracy over the entire training trajectory (second column).
This suggests that the improvements we obtain from our approach are consistent and present regardless
of when the student training is terminated. In the third column of Fig. 5, we also observe that our
approach achieves the highest realized gain among the evaluated methods and that this gain tends
to be a good predictor of the method’s performance. This sheds light into why the greedy variant
(STANDARD MARGIN) that simply picks the points with the lowest margin (highest gain) is not
consistently successful in practice: the high gain points are often mislabeled by the teacher, further
confusing the student. This further motivates our robust formulation in Sec. 3 and supports its
practicality.

D.4 APPLYING RAD TO STANDARD ACTIVE LEARNING

Here, we demonstrate the applicability of RAD to standard active learning settings and compare
its performance to SOTA strategies. This is motivated by recent work that has demonstrated that
selecting the most difficult or informative – with respect to a proxy metric – samples may in fact
hinder training of the model (Paul et al., 2022; 2021). For example, on CIFAR10, choosing the most
difficult instances was observed to hurt training, and the best strategy was found to be one where
moderately difficult points were picked (Paul et al., 2022; 2021). This is method of sampling is
reminiscent of the sampling probabilities generated by RAD as depicted in Fig. 2. The results of the
experiments are shown in Fig. 6. RAD matches or improves on the performance of state-of-the-art
techniques.

The results of the active learning experiments are shown in Fig. 6. Since there is no teacher model
involved, we instantiate RAD with m = 0.05n for the number of teacher mistakes. This is based
on the empirical studies showing that around 5% of the data points are inherently too difficult (Paul
et al., 2022; 2021) or outliers which may impair training. Setting the appropriate value for m when
applying RAD to the standard active learning setting remains an open question, and is an interesting
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Figure 5: The student’s final accuracy (first column), student’s test accuracy over the training trajectory (second
column), and the realized gains (third column). Our approach generates student models that generally achieve
higher test accuracy and gain with respect to the formulation in Sec. 3 across the evaluated scenarios.

direction for future work. The results in Fig. 6 show that RAD is competitive with state-of-the-art
active learning algorithms in the evaluated scenarios and matches or improves the performance of the
best-performing active learning technique. We emphasize that, in contrast to existing clustering-based
approaches such as CM or Coreset, RAD achieves this performance in a computationally-efficient
and fully parameter-free way for a given m.

Figure 6: Evaluations in the standard active learning setting.
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D.5 ROBUSTNESS TO THE CHOICE OF w

In this subsection, we evaluate the robustness of RAD by evaluating the performance of the algorithm
with various instantiations for the w parameter on a wide range of distillation scenarios spanning
CIFAR10, CIFAR100, and SVHN datasets and various resnet student-teacher architectures. The
results of experiments comparing RAD with the default setting of w = 1 −m/n as described in
Sec. 3 (Ours) to RAD variants with w ∈ {0.0, 0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8, 1.0} are shown in Fig. 7.
The results were averaged over 5 trials. As we can see from the figure, the performance of RAD
remains relatively consistent (generally within one standard deviation) over varying choices of w.
Moreover, the theoretically-derived choice of w = 1−m/n consistently performs well across the
evaluated scenarios – it is always within one standard deviation of the best-performing w for each
scenario.

Figure 7: Comparisons of the performance of RAD with various settings of the hyper-parameter w compared to
OURS, which uses the default value of w = 1−m/n (i.e., teacher accuracy). The overlapping performance of
the various instantiations (within shaded region of one standard deviation) supports the robustness of RAD to
the various settings of w ∈ [0, 1].
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D.6 ROBUSTNESS TO THE CHOICE OF GAIN

In our empirical evaluations, we had so far only considered a specific definition of gains with respect
to the student’s margin as described in Sec. 3, i.e., gi = 1−margini. Since RAD can generally be
used with any user-specified notion of gain, in this section we investigate the performance of RAD
when the entropy of the student’s softmax prediction fstudent(xi) ∈ [0, 1]k is used to define the gains,
i.e.,

gi = Entropy(fstudent(xi)) = −
k∑
j=1

fstudent(xi)j log fstudent(xi)j .

We label this algorithm RAD ENTROPY and compare its performance to our variant that uses the
student margins.

Fig. 8 shows the results of our comparisons with varying distillation configurations, architectures,
and data sets averaged over 5 trials. Overall, we observe that the change in the definition of gain does
not lead to a significant change (> one standard deviation) in performance.

D.7 ROBUSTNESS TO VARYING CONFIGURATIONS

In this section, we consider the robustness of our algorithm to varying configurations on a fixed data
set. In particular, we consider the SVHN (Netzer et al., 2011) data set and consider the performance
with varying size of the student model (ResNetv2-{11, 20, 29}), the size of the teacher (ResNetv2-{56,
110}), |A| ∈ {5000, 10000, 20000}, b ∈ {1000, 2000, 5000}, and number of epochs e = {100, 200}.
Due to resource constraints, we conduct the extensive comparisons against the top-2 best performing
algorithms from the main body of the paper (Sec. 4): (STANDARD) MARGIN and UNIFORM. The
results of the evaluations show that our method uniformly performs better or at least as well as well
as the competing approaches.
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Figure 8: Comparisons of RAD with the gains defined with respect to the student margins as in Sec. 3.1, OURS,
to RAD with gains defined with respect to the entropy of the student predictions, RAD ENTROPY. RAD’s
performance is robust to the alternative notion of uncertainty to define the gains.
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Figure 9: ResNetv2-11 architecture with 100 epochs and |A| = 5000. First row: ResNetv2-56 teacher; second
row: ResNetv2-101 teacher. Columns correspond to batch size of b = 1000, b = 2000, and b = 5000,
respectively.

Figure 10: ResNetv2-11 architecture with 200 epochs and |A| = 5000. First row: ResNetv2-56 teacher;
second row: ResNetv2-101 teacher. Columns correspond to batch size of b = 1000, b = 2000, and b = 5000,
respectively.
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Figure 11: ResNetv2-11 architecture with 200 epochs and |A| = 10000. First row: ResNetv2-56 teacher;
second row: ResNetv2-101 teacher. Columns correspond to batch size of b = 1000, b = 2000, and b = 5000,
respectively.

Figure 12: ResNetv2-11 architecture with 200 epochs and |A| = 20000. First row: ResNetv2-56 teacher;
second row: ResNetv2-101 teacher. Columns correspond to batch size of b = 1000, b = 2000, and b = 5000,
respectively.
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Figure 13: ResNetv2-20 architecture with 100 epochs and |A| = 5000. First row: ResNetv2-56 teacher;
second row: ResNetv2-101 teacher. Columns correspond to batch size of b = 1000, b = 2000, and b = 5000,
respectively.

Figure 14: ResNetv2-20 architecture with 200 epochs and |A| = 5000. First row: ResNetv2-56 teacher;
second row: ResNetv2-101 teacher. Columns correspond to batch size of b = 1000, b = 2000, and b = 5000,
respectively.
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Figure 15: ResNetv2-20 architecture with 200 epochs and |A| = 10000. First row: ResNetv2-56 teacher;
second row: ResNetv2-101 teacher. Columns correspond to batch size of b = 1000, b = 2000, and b = 5000,
respectively.

Figure 16: ResNetv2-29 architecture with 200 epochs and |A| = 5000. First row: ResNetv2-56 teacher;
second row: ResNetv2-101 teacher. Columns correspond to batch size of b = 1000, b = 2000, and b = 5000,
respectively.
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D.8 EXPERIMENTS WITH PRE-TRAINED TEACHER MODELS

Figure 17: Evaluations on with a ResNet teacher model pre-trained on ImageNet and fine-tuned on the respective
data sets. RAD uniformly performs at least as well as the best comparison method, and often better especially in
the low sample regime.

In this section, we present evaluations with ResNet50 and ResNet101 teacher models that are pre-
trained on ImageNet and fine-tuned on the labeled data that is available for the academic data sets we
consider. Fig. 17 depicts the results of our evaluations on CIFAR100 and SVHN datasets. Consistent
with the trend of our results in Sec. 4, RAD uniformly outperforms or matches the performance of
the best performing comparison method across all scenarios.

D.9 NLP EVALUATIONS

Figure 18: Evaluations on the IMDB dataset with a tiny BERT student model and a pre-trained BERT teacher.

We conclude the supplementary results by presenting evaluations on a Natural Language Processing
(NLP) task on the IMDB Reviews (Maas et al., 2011) dataset with a pretrained BERT teacher model.
The IMDB dataset has 25,000 training and 25,000 testing data points, where each data point is a
movie review. The task is to classify each review as either positive or negative. We used a pre-trained,
12-layer SmallBERT (Turc et al., 2019) with hidden dimension 768 as the teacher model and a
randomly initialized 2-layer SmallBERT with hidden dimension 128 as the student. From Fig. 18
we that the improved effectiveness of RAD relative to the compared approaches persists on the NLP
task, consistent with our evaluations on the vision datasets. RAD is particularly effective in the small
sample regime, where the number of soft-labeled points is small relative to the size of the unlabeled
dataset.
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