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ABSTRACT

While backpropagation (BP) is the mainstream approach for gradient computation
in neural network training, its heavy reliance on the chain rule of differentiation
constrains the designing flexibility of network architecture and training pipelines.
We avoid the recursive computation in BP and develop a unified likelihood ratio
(ULR) method for gradient estimation with only one forward propagation. Not
only can ULR be extended to train a wide variety of neural network architectures,
but the computation flow in BP can also be rearranged by ULR for better device
adaptation. Moreover, we propose several variance reduction techniques to further
accelerate the training process. Our experiments offer numerical results across di-
verse aspects, including various neural network training scenarios, computation
flow rearrangement, and fine-tuning of pre-trained models. All findings demon-
strate that ULR effectively enhances the flexibility of neural network training by
permitting localized module training without compromising the global objective
and significantly boosts the network robustness.

1 INTRODUCTION

Since backpropagation (BP) (Rumelhart et al., 1986) has greatly facilitated the success of artificial
intelligence (AI) in various real-world scenarios (Song et al., 2021a;b; Sung et al., 2021), researchers
are motivated to connect this gradient computation method in neural network training with human
learning behavior (Scellier & Bengio, 2017; Lillicrap et al., 2020). However, there is no evidence
that the learning mechanism in biological neurons relies on BP (Hinton, 2022). Pursuing alternatives
to BP holds promise for not only advancing our understanding of learning mechanisms but also
developing more robust and interpretable AI systems. Moreover, the significant computational cost
associated with BP (Gomez et al., 2017; Zhu et al., 2022) also calls for innovations that simplify and
expedite the training process without heavy consumption.
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Figure 1: Classification accura-
cies (curves) and training dura-
tions (bars) of three methods till
convergence.

There have been continuous efforts to substitute BP in neural
network training. For example, the HSIC bottleneck (Ma et al.,
2020), feedback alignment (FA) (Nøkland, 2016), and neural
tangent kernel (NTK) (Jacot et al., 2018) employ additional mod-
ules with constraints to compute the gradients without relying on
the chain rule of differentiation, thus avoiding BP. While model-
based methods remain biologically implausible and suffer from
instability and efficiency, perturbation-based methods, including
forward-forward (FF) (Hinton, 2022), evolution strategy (ES)
(Salimans et al., 2017), and likelihood ratio (LR) (Peng et al.,
2022) method, which only involve the forward computation and
have little assumption on the model architecture, offer a promis-
ing path for exploring biologically plausible BP alternatives.

* These authors contributed equally to this work. Listing order is random.
† Corresponding author.
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In the perturbation-based category, the preliminary experiment with multilayer perceptrons (MLPs)
(Rumelhart et al., 1986) on the MNIST dataset (LeCun, 1998) indicates that LR might surpass oth-
ers in terms of efficiency or accuracy, as shown in Fig. 1. FF abandons the classical optimization
paradigm to adjust each layer separately, and its incompatibility with other existing techniques ham-
pers efficiency. The weight randomization in ES is more likely to produce infeasible exploration,
resulting in instability, and becomes costly when the parameter dimensionality grows. By contrast,
training by LR optimizes the model following unbiased gradient estimates without imposing back-
ward recursions and only requires single forward propagation, which can be accelerated by data
replication with low consumption and integrated with other training techniques.

We argue that LR is a better alternative to BP for four reasons. First, breaking the reliance on the
chain rule, LR requires only one forward evaluation for efficient learning. Second, LR has almost
no constraints on the model, including differentiability or traceability, enabling explorations of net-
work architectures. Third, gradient computation among different modules can be independent in LR,
which allows for a more flexible training paradigm design. Last, LR can enhance the model robust-
ness by smoothing the loss landscape. However, the application of LR still faces various challenges.
Gradient estimation in different networks calls for unified derivation methodology, implementation-
friendly conversion, and practical stabilization tricks. Furthermore, the generalization of LR should
not be confined just to the level of neural layers. LR has the potential to be employed as a technique
at various scales, such as in neuron-wise parallelism or computation graph reorganization.

In our paper, we develop a unified LR (ULR) method on the most general network possible to un-
cover its essence and application potential. We then generalize pure LR from a special case on MLPs
to four network architectures representing different gradient computation challenges. Several vari-
ance reduction approaches are first proposed by us in the LR context to significantly stabilize and
make model training via only one forward propagation much more practical. Meanwhile, LR is also
employed to transform the existing training computation flow of BP, adapting to features for modern
devices. We conduct experiments of our ULR with the aforementioned network structures on cor-
responding tasks and provide two applications, including domain adaption and computation graph
rearrangement. Numerical results indicate that ULR effectively enhances the flexibility of neural
network training in model and pipeline designing, and significantly improves the model robustness.

2 RELATED WORK

Optimization methods for neural network training can be roughly categorized into two types, with
and without BP. BP-based optimization methods have been studied for a long time and have been
effective in training various neural networks on different tasks. Among these methods, the vanilla
BP method is utilized for computing the gradients of the neural network parameters with respect
to the global loss function. BP requires the perfect knowledge of computation details between
the parameters and loss evaluation to launch a recursive computation, which limits the flexibility of
developing neural network architectures and training pipelines. Due to the reliance on the chain rule,
this can also be the case for some methods (Baydin et al., 2018) claiming a forward-only training.

Some studies have explored alternative methods without BP for training neural networks by adding
extra functional modules to guide model updates. The HSIC bottleneck (Ma et al., 2020) maxi-
mizes the Hilbert-Schmidt independence criterion (Wang et al., 2021) to enhance layer indepen-
dence. NTK (Jacot et al., 2018) introduces intermediary variables to circumvent the limitations
of BP. FA (Nøkland, 2016) introduces intermediary variables to overcome BP limitations but faces
instability issues. Since these methods change the classical training paradigm or even give up the
gradient information, many algorithmic or hardware technologies developed based on BP by prede-
cessors cannot be fully leveraged, making such approaches computationally unfriendly.

Other works still adhere to the original mathematical problem but propose perturbation-based solu-
tions from a stochastic optimization perspective. Spall (1992) proposes a simultaneous perturbation
stochastic approximation (SPSA) method, which approximates the gradient by evaluating the ob-
jective function twice with perturbations of opposite signs on the parameters. SPSA is typically
sensitive to the choice of hyperparameters. Another approach is ES (Salimans et al., 2017), which
injects a population of random noises into the model and optimizes the parameters along the opti-
mal direction of noises. Both SPSA and ES suffer from heavy performance drops as the number
of parameters increases, which hinders the application to sophisticated models in deep learning.
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FF (Hinton, 2022) modifies the input data and works by distinguishing the positive and negative
samples for each module but fails to address the weight-sharing and compatibility issue. Unlike a
pathwise gradient computed by the BP, Peng et al. (2022) perturb the logit outputs of each neural
layer in MLPs and employ the push-out LR technique to estimate the gradient of randomized loss
evaluation. However, previous research on LR has primarily focused on MLP training as a whole,
which can be recognized as a specific instance of the architecture extension in this paper.

3 UNIFIED LIKELIHOOD RATIO METHOD FOR FLEXIBLE TRAINING

3.1 GRADIENT ESTIMATION USING PUSH-OUT LR TECHNIQUE

Mainstream neural network training can be roughly divided into a loop with three phases: forward
evaluation, gradient computation, and parameter update. LR addresses the second issue as BP does,
and it can be integrated with any existing method for the other two phases. We generalize the LR
method to the training of generic neural networks and only assume the network to have a modular
structure, where each module might consist of single or multiple neural layers. Given a hierarchical
neural network, which is sliced into L modules, the input to the l-th module is denoted as xl ∈ Rdl ,
l = 0, · · · , L− 1, and the output is given by

xl+1 = φl(xl; θl) + zl, zl ∼ f l(·),

where xl+1 is the output of the l-th module, φl and θl ∈ Θl respectively denote the non-parametric
structure and parameter, and zl ∈ Rdl+1 is a newly added zero-mean noise vector with the den-
sity f l. Training the neural network can be regarded as solving such an optimization problem:
minθ∈Θ

∑
x0∈X E

[
L(xL)

]
, where X denotes the dataset and L is the loss function. A basic ap-

proach is to perform gradient descent following the stochastic gradient estimation of E
[
L(xL)

]
with respect to the parameters. Denote the Jacobian matrix of y ∈ Rdy with respect to x ∈ Rdx as
Dxy ∈ Rdy×dx . Under mild integrability conditions, we can derive the following ULR estimator
for the generic network structure:
Theorem 1. Given an input data x0, assume that gl(ξ) := f l(ξ − φl(xl; θl)) is differentiable, and

E
[∫

Rdl+1

∣∣E [
L(xL)|ξ, xl

] ∣∣ sup
θl∈Θl

∣∣∇θlgl(ξ)
∣∣dξ] < ∞. (1)

Then, we have

∇θlE
[
L(xL)

]
= E

[
−L(xL)D⊤

θlφ
l(xl; θl)∇z ln f

l(zl)
]
. (2)

Proof. Notice that conditional on xl, xl+1 follows a distribution characterized by the density gl(ξ).
With the property of conditional expectation, we can push the parameter θl out of the loss function
L(xL) and into the conditional density as below:

∇θlEz0,··· ,zL−1

[
L(xL)

]
= ∇θlExl

[∫
Rdl+1

Ezl+1,··· ,zL−1

[
L(xL)|ξ, xl

]
gl(ξ)dξ

]
,

which is the so-called push-out LR technique. Then, we can obtain

∇θlE
[
L(xL)

]
= E

[∫
Rdl+1

E
[
L(xL)|ξ, xl

]
∇θl ln gl(ξ)gl(ξ)dξ

]
= E

[
−
∫
Rdl+1

E
[
L(xL)|ξ, xl

]
D⊤

θlφ
l(xl; θl)∇z ln f

l(z)|z=ξ−φl(xl;θl)g
l(ξ)dξ

]
= E

[
−
∫
Rdl+1

E
[
L(xL)|ζ + φl(xl; θl), xl

]
D⊤

θlφ
l(xl; θl)∇z ln f

l(ζ)f l(ζ)dζ

]
= E

[
−L(xL)D⊤

θlφ
l(xl; θl)∇z ln f

l(zl)
]
.

The first equality is justified by the LR technique and the dominated convergence theorem under
the given integrability condition (1), the third equality holds by the change of variable, and the rest
comes from definitions and the iterative property of the conditional expectation. □

By selecting appropriate noise distributions and excluding the discontinuous or black-box portions
in the network from the modules with parameters, we can ensure the differentiability requirements in
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Figure 2: Computation
flow with our ULR in
generic networks.

Theorem 1. Eq. (2) implies that the gradient estimation for the whole
model does not require the recursive backward computation and can be
further paralleled with only the final evaluation of L(xL) and the local
information xl and zl. As shown in Fig. 2, the application of auto-
differentiation is confined within modules, where Dθlφl(xl; θl) is com-
puted independently from each other with different l. ULR also supports
an adaptive perturbation by optimizing the parameterized noise distribu-
tion f l(·;ϑl) following the gradient:

∇ϑlE
[
L(xL)

]
= E

[
L(xL)∇ϑl ln f l(zl;ϑl)

]
,

which could benefit the representation capacity and robustness of the
model (Xiao et al., 2022). In the next section, we specify f l as a multi-
variate Gaussian distribution with trainable covariance and zero mean for
readability, while other distributions, e.g., the exponential family, are also
acceptable.

3.2 EXTENSION TO VARIOUS NETWORK ARCHITECTURES

ULR does not impose specific requirements on the modules in the neural network, and gradient
computation is localized. Therefore, we can analyze and extend ULR to almost all computational
structures from different networks by treating them as single modules. Since these modules can
be rewritten as the combination of linear transformations and non-linear processes, we can directly
perturb the logit output of the former and estimate the gradients with only one forward propagation,
completely avoiding the auto-differentiation technique.

Convolutional neural networks (CNNs): Convolution operation is the representative of the spacial
parameter sharing, where the outputs are related to the same kernel. Denote the input as x =
(xi

j,k) ∈ Rcin×hin×win , where the superscript represents the channel index. The output is given by

voj,k = (x ∗ θ)oj,k + bo + zoj,k,

where ∗ denotes the convolution operation, θ ∈ Rcout×cin×hθ×wθ and b = (bo) ∈ Rcout are the weight
and bias terms, zoj,k = σoεoj,k is the noise injected to perform ULR, σo denotes the noise magnitude,
and εoj,k is a standard Gaussian random variable. The minimum unit θo,ij,k is involved in the compu-
tation of the o-th output channel. Thus, we push θo,i into the conditional density of vo given xi and
obtain the gradient estimation for each convolutional kernel channel by Theorem 1 as below:

∇θo,iE [L(v)] = E
[
(σo)−1L(v)xi ∗ εo

]
, (3)

where the rest of the network and loss function are abbreviated as L. Eq. (3) is quite computationally
friendly and can be implemented by the convolution operator in any standard toolkit.

When the kernel tensor is small, the logit perturbation may be costly concerning the parameter size.
An alternative way to perturb the neuron is to inject noises into the parameters: v = x ∗ θ̂ + b,
θ̂o,i = θo,i + σoεo,i, where the elements in εo,i are independently and normally distributed. Then,
we treat θ as the input and output of an identity mapping module and apply Theorem 1, resulting in

∇θo,iE [L(v)] = E
[
(σo)−1L(v)εo,i

]
. (4)

Since the variances of Eq. (3) and (4) both depend on the noise dimension, the selection between
the two can be determined by the total dimensions of the output and convolutional kernels.

Recurrent neural networks (RNNs): Gradient estimating in RNNs faces the temporal weight-
sharing issue. Denote the t-th input and hidden states as xt ∈ Rdx and ht ∈ Rdh , t = 1, · · · , T .
RNN variants can be summarized as a generic structure and the next hidden state is given by

ht = φ(ut, vt, ht−1), ut = θhhht−1 + bhh + zhht , vt = θxhxt + bxh + zxht ,

where θhh and θxh are weight matrices, bhh and bxh denote bias vectors, zhht = (Σhh)
1
2 εhht , zxht =

(Σxh)
1
2 εxht , εhht and εxht are standard Gaussian random vectors. Taking θhh as an example, we first
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treat it as different in each time step to apply Theorem 1, and then sum up the step estimates. Denote
the rest of the forward process as L and let h = (h1, · · · , hT ). The gradient can be unrolled as

∇θhhE [L(h)] = E
[
L(h)(Σhh)−

1
2

T∑
t=1

εhht h⊤
t−1

]
. (5)

Eq. (5) enables the gradients of the RNN variants to be computed in parallel over input sequences
without relying on BP Through Time (BPTT), which is one of the main advantage of Transform-
ers (Vaswani et al., 2017) over RNNs. Eq. (5) is derived under a generic structure, and their specific
forms could be simplified for different cells. Please refer to Appendix A.3 for details.

Graph neural networks (GNNs): By leveraging the matrix representation of graph structures,
gradient estimation towards unstructured inputs can also be derived by ULR. Consider a graph con-
volutional network (GCN) (Kipf & Welling, 2016) layer with the input h ∈ R|V|×din which is the
node feature in graph G = (V, E). We can perturb the feature extraction to derive an LR estimator,
i.e., h′ = φ(Ghθ+ z), where θ ∈ Rdin×dout is the weight matrix, G is a fixed graph-based matrix for
feature aggregation, φ is the activation function, and z is the noise matrix. The attention mechanism
introduced by graph attention networks (GATs) (Velickovic et al., 2017) is also supported by ULR
inside the module. Given a GAT layer with single-head attention, the extracted features of the i-th
node and the attention coefficient of the (i, j)-th edge with injected noises are given by

vi = hiω + ξi, ui,j = (vi, vj) θ + ζi,j ,

where ω ∈ Rdin×dout and θ ∈ R2din are trainable weights, ξi and ζi,j are injected noises, and the
output features of each node are weighted by normalized attention coefficients among its neighbor-
hood. Since we can isolate the parametric linear transformation as a module, the derivation of ULR
gradient estimations in GNNs is analogous to those in previous networks with Theroem 1.

Spiking neural networks (SNNs): Training SNNs suffers from discontinuity in data and activation.
Consider an L-layer SNN with leaky integrate-and-fire neurons. The time series input of l-th layer
at time step t is denoted as xt,l ∈ Rdl . The next membrane potential and spike are given by

ut+1,l+1 = kut,l+1(1− xt,l+1) + θlxt+1,l + zt+1,l, xt+1,l+1 = I(ut+1,l+1, Vth),

where θl is the synaptic weight, k is the delay factor decided by the membrane time constant, I is the
Heaviside neuron activation function with threshold Vth, zt,l = (Σl)

1
2 εt,l with εt,l being standard

Gaussian random variable. Potentials are integrated into each neuron and will be released as a spike
once exceeding the threshold Vth, which is a discontinuous process and has to be smoothed when
applying BP. However, ULR allows us to exclude this process from the module and apply Theorem
1 to the remaining portion. The spike signal of the last layer at the last time step, namely xT,L, is
the output of SNN and passed to the loss function L. By handling the sequential weight-sharing in a
similar manner as in RNNs, we can obtain ∇θlE[L(xT,L)] = E[L(xT,L)

∑T
t=1(Σ

l)−
1
2 εt,l(xt,l)⊤].

3.3 VARIANCE REDUCTION

ULR is a simulation-driven algorithm that relies on the correlation between noise and loss evaluation
to estimate the gradient. When the noise dimensionality is huge, this correlation would be too weak
to be identified. Hence, we propose several techniques based on the hierarchical structure and Monte
Carlo (MC) sampling in neural networks to reduce the estimation variance for efficient training.

Layer-wise noise injection: Since ULR does not require recursive gradient computation, it is al-
lowed to independently perturb each layer or even each neuron and estimate the corresponding
gradient, which ensures that the correlation is sufficient to produce meaningful estimates. Gradi-
ent estimates for modules can be combined to form the gradient for the entire network for a single
update, or they can be immediately used for module updates. With the layer-wise perturbation tech-
nique, the optimization problem in Section 3.1 is transformed into a series of sub-problems:

min
θl∈Θl

E[L(xL)|zl
′
= 0, ∀ l′ ̸= l], for l = 0, · · · , L− 1,

which can be interpreted as performing stochastic block coordinate descent.
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Antithetic variable: We employ antithetic sampling to generate the stochastic components in for-
ward propagation, which can effectively reduce the correlation between different evaluations, re-
sulting in the decline of gradient estimation variance. Assume the integrand in Eq. (2) is repeatedly
evaluated for 2N times. We can generate noises for the first N evaluations, and then flip their signs
for the rest. The estimator of Eq. (2) with antithetic variables can be written as

∇̂θlE
[
L(xL)

]
= − 1

2N

N∑
n=1

D⊤
θlφ

l(xl; θl)
(
gl(zl(n)) + gl(−zl(n))

)
, (6)

where gl(z) = L(xL(z))∇z ln f
l(z), and zl(n) is the noise applied in the n-th pair of evaluations.

Quasi-Monte Carlo (QMC): QMC (Soboĺ, 1990) generates noise and evaluates the integrand us-
ing low-discrepancy sequences, which can fill the integration region more evenly than the pseudo-
random sequence used in standard scientific computing toolkits and produce a better convergence
rate. Morokoff & Caflisch (1995) point out that QMC outperforms MC when the integrand is smooth
and the dimensionality is relatively small. Given the smoothness of neural networks and the layer-
wise perturbation mentioned earlier, it is desirable to try QMC in ULR estimation.

With these variance reduction approaches, the application of ULR becomes practical, and we present
the standard version of neural network training through our ULR method as shown in Appendix B.

3.4 COMPUTATION GRAPH REARRANGEMENT VIA ULR

BP on high-performance devices usually suffers from deep recursions and huge computation graph
scales. Consider a L-module deterministic neural network, where the notations are the same as in
Section 3.1. The output is given by xl+1 = φl(xl; θl), and the BP gradient is calculated as below:

∇xlL(xL) = D⊤
xlx

l+1∇xl+1L(xL), ∇θlL(xL) = D⊤
θlx

l+1∇xl+1L(xL), (7)

for l = 0, · · · , L − 1. Eq. (7) reflects that BP has to be implemented by the auto-differentiation in
a recursive manner, as shown in Fig. 3. If we add extra noise to the L′-th module, L′ ∈ [0, L), i.e.,
xL′+1 = φL′

(xL′
+z; θL

′
), where z ∼ f(·), then we can treat the network as two clusters connected

in series and apply Theorem 1 to obtain

D⊤
xlx

L′
= D⊤

xlx
l+1D⊤

xl+1x
L′
, ∇θlE

[
L(xL)

]
= D⊤

θlx
l+1D⊤

xl+1x
L′
E
[
−L(xL)∇z ln f(z)

]
,
(8)

for l = 0, · · · , L′ − 1. Path-wise derivatives of the rest are the same as Eq. (7). As shown in the
middle of Fig. 3, Eq. (8) breaks down the single recursion into two parallelizable ones. Analo-
gously, we can introduce noise anywhere in networks to adaptively partition the recursive gradient
computation into subsets suitable for parallelization on various devices. More generally, we can
split the computation graph by ULR, such as rearranging BPTT computations in RNNs into several
parallel mini-BPTT computations to enhance efficiency as shown in the last subfigure of Fig. 3.
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Figure 3: The left subfigure presents the BP computation flow; the middle demonstrates the ULR
rearranged computation flow with injected noise; the right showcases the application of ULR for
parallelizing gradient computation in RNNs.

3.5 RELATIONSHIP BETWEEN ULR AND OTHER METHODS

ULR and other perturbation-based methods: Consider a neural module with noise injected into
its parameter, i.e., v = φ(x; θ + z), where x and v are the input and output, respectively, φ is a
non-linear operator, and the noise z follows a density f defined on Ω. Other modules in the forward
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computation are abbreviated as a loss function L. Let Ω′ := {y : y − θ ∈ Ω}. We can obtain the
ULR estimator by pushing θ into the density as below:

∇θE [L(v)] = ∇θ

∫
Ω′

E [L(v)|ξ] f(ξ − θ)dξ = E
[
−L(v)∇zf(z)

f(z)

]
,

which unifies several previous works (Wierstra et al., 2014; Sehnke et al., 2010; Nesterov &
Spokoiny, 2017; Salimans et al., 2017) under the framework of push-out LR method.

ULR and reinforcement learning: We first show that the general framework of reinforcement
learning (RL) is coherent with the push-out LR method. The RL agent is modeled as a parameterized
probability distribution πθ, and p represents the transition kernel of the environment. Denote the
action and state at the t-th time step as at and st, where at ∼ πθ(·|st), st+1 ∼ p(·|st, at). The
reward is given by R(s, a), which is a function of the state and action sequence. Policy-based RL
aims at solving the optimization: maxθ E [R(s, a)]. We can treat θ as different at each step and push
it into the conditional density of at given st to perform the LR technique, i.e.,

∇θE [R(s, a)] =

T−1∑
t=0

∇θE
[ ∫

A
E [R(s, a)|ξ, st]πθ(ξ|st)dξ

]
= E

[
R(s, a)

T−1∑
t=0

∇θ lnπθ(at|st)
]
,

which results in the well-known policy gradient theorem (Williams, 1992). We can derive the RL
gradient using the push-out LR and vice versa. Consider the LR-based RNN training discussed
earlier, where the input xt and hidden state ht−1 can be viewed as the RL state, and the results of the
linear transformation ut and vt can be viewed as the actions. The parameterized part and the rest in
the RNN cell correspond to the RL agent and the simulation environment, respectively. And Eq. (5)
can be obtained directly from the policy gradient theorem. Therefore, RL and deep learning can be
unified from the perspective of the push-out LR framework. RL essentially leverages the advantages
of LR to overcome the issue of a black-box simulation environment that affects gradient backward
propagation. The detailed derivation in this section is presented in Appendix A.

4 EVALUATIONS

4.1 VERIFICATIONS ON THE SCALABILITY ACROSS VARIOUS ARCHITECTURES

Experimental settings: Our study focuses on classification tasks with different modalities using
various neural network architectures. For image classification, we experiment with CNNs (Le-
Cun et al., 1998) (ResNet-5 and VGG-8) on the CIFAR-10 dataset (Krizhevsky et al., 2009) and
SNNs (Ghosh-Dastidar & Adeli, 2009) on the MNIST (LeCun, 1998) and Fashion-MNIST (Xiao
et al., 2017) datasets. We use RNN family (RNN (Medsker & Jain, 2001), GRU (Dey & Salem,
2017), and LSTM (Hochreiter & Schmidhuber, 1997)) to classify the articles on the Ag-News
dataset (Zhang & Wallace, 2015) and use GNNs (GCN and GAT) to classify the graph nodes on
the Cora dataset (Sen et al., 2008). While other non-BP methods, including HSIC, FA, and FF, lack
the scalability to all architectures above, we compare our method with two baselines (BP and ES)
by using ULR with noise injection only on logits (ULR-L) and weight/logits (ULR-WL) in a hy-
brid manner. Additionally, results on larger datasets, as well as a comparison in CNN training with
omitted non-BP methods, including HSIC, FA, and FF, are presented in Appendices C.6 and C.7.

Evaluation metrics: We evaluate training methods by the task performance and robustness in differ-
ent training contexts. The task performance is characterized as classification accuracies on original
datasets. The robustness can be assessed through accuracies on corrupted noisy data generated by
multiple kinds of adversarial attacks or natural noise injection.

Results: As depicted in Fig. 4, while ES fails to optimize several models (ResNet-5 and GAT), ULR
substantially achieves a comparable performance to BP on clean samples, with only a minor gap of
0.22% on average, which presents an efficient gradient estimation performance and optimization
stability. Besides, ULR training surprisingly brings a robustness improvement of 9.53% on average
compared with BP. Detailed experiment settings and results are in Appendix C.

4.2 EVALUATIONS ON THE FLEXIBILITY OF ULR TRAINING

Benefiting from the independence of the gradient estimation inside each module, we can use ULR
to rearrange the computation graph, thus achieving lower training consumption. We present two
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Figure 4: Classification accuracies of trained models in different contexts on benign and corrupted
noisy data, represented by blank bars (□) and filled bars (⊠), respectively.

Table 1: Classification accuracy (%) for the domain adaptation task for AlexNet on the Office-31
dataset. We denote s → t as adapting the model from the source dataset s to the target dataset t, A
as the Amazon domain, D as the DSLR domain, and W as the Webcam domain. We take the average
training time of different models for efficiency evaluations.

Method A→D A→W D→A D→W W→A W→D Average time
BP 51.8 58.4 65.6 94.8 68.8 88.8 202 s

ULR 53.1 60.2 66.9 95.2 70.3 89.4 187 s

applications, including the training for domain adaption and rearrangement of BPTT in RNNs, to
show the training flexibility introduced by our ULR method.
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Figure 5: Computation flows in do-
main adaption with BP and ULR.

Demo 1: Domain adaptation. Multiple domain adapta-
tion methods are proposed to mitigate the domain shifts
between the source and target datasets, among which par-
tial domain adaption works on the scene that transfers
the partial relevant knowledge from a large-scale source
dataset to a small-scale unlabeled dataset. Li et al. (2020)
propose the Deep Residual Correction Network (DRCN),
which plugs the residual correction block into the source
network to mitigate the domain discrepancy between dif-
ferent domains. As shown in Fig. 5, training with BP has
to traverse the pre-trained model till the inserted part, while ULR can skip the calculation in late
layers and directly compute the gradients of inserted blocks for optimization. As shown in Tab. 1,
we use DRCN with both methods to adapt a pre-trained AlexNet on three domains of the Office-31
dataset (Saenko et al., 2010). We compare the accuracies on different domains and time consump-
tion to demonstrate the advances of our method. ULR achieves better performance in terms of both
the classification accuracy (1.2% ↑) and training efficiency (1.1× speedups) compared to BP.

Demo 2: BPTT rearrangement. RNN training is constrained by the recursive gradient computation
of BPTT. Deep recursive computation implies that the parallelism advantages of advanced hardware
cannot be utilized, and it can also lead to numerical issues like gradient vanishing. As mentioned
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Figure 6: Classification accura-
cies (curves) and training dura-
tions (bars) of BP and ULR.

in Section 3.4, we perturb the forward propagation of RNNs
and decouple the computation graph into several subgraphs us-
ing ULR. Although the introduced randomness in training might
require extra evaluations to mitigate uncertainty, we achieve con-
siderable efficiency gains at a reasonable level of decoupling due
to the parallelism of BPTT on all subgraphs. We test decou-
pling via ULR on the Ag-News dataset. While vanilla BPTT ex-
pends 45 steps on average to compute gradients, ULR partitions
the original graph into subgraphs with 5-25 steps. As shown in
Fig. 6, ULR boosts BPTT in terms of both the accuracy (up to
4.9% ↑) and efficiency (up to 3.7× speedups), especially when
cutting the graph into 15-step subgraphs.

4.3 ABLATION STUDY

We study the effect of perturbing different parts of neurons and variance reduction techniques. In
our experiments, we use MC sampling to generate the noise for experiments except when we claim
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(f) with QMC.

Figure 7: Ablation study on the effect of the perturbation on different parts of neuron networks and
the variance reduction techniques. Ablation study on more aspects can be found in Appendix C.10.

otherwise. We conduct experiments using ResNet-5 on the CIFAR-10 dataset for the ablation study.
We use our ULR method to estimate the gradient and compare it with that calculated by BP. We
compute the cosine similarity to evaluate the performance. The average cosine similarity can serve
as a measure of estimation variance. A similarity closer to 1 indicates a lower variance.

Impact of the perturbation on weights and logits: We present the gradient estimation performance
when perturbing the logits only in Fig. 7(a), the weights only in Fig. 7(b), weights and logits
in a hybrid manner in Fig. 7(c). In comparison between Fig. 7(a) and Fig. 7(b), it is observed
that perturbing the logits results in a higher cosine similarity between the gradients calculated by
ULR and BP for the last three layers, while perturbing the weights yields better gradient estimation
with the same number of copies for the first two layers. Being motivated by this phenomenon, we
integrate these two perturbing strategies, where we inject the noise on weights for the first two layers
and logits for others. As shown in Fig. 7(c), the performance of gradient estimation for all five layers
has a significant improvement compared to purely adding perturbation on weights or logits.

Impact of the variance-reduction techniques: In Fig. 7(d)-(f), we study the effect of three pro-
posed variance-reduction techniques. Without the layer-wise noise injection, it is difficult to identify
the correlation between the noise in each layer and the loss evaluation. As shown in Fig. 7(d), it
requires a much larger number of copies to achieve comparable performance on the first two and
last layers, and fails to efficiently estimate the gradients of the rest layers. From Fig. 7(e), it can be
seen that without the antithetic variable, there are low similarities between the estimated gradients
by ULR and that by BP for all convolutional layers even with a large number of copies. In Fig. 7(f),
we apply QMC to generate the noise for gradient estimation. Although the results are close to MC,
the neuron-level parallelism is allowed by ULR, resulting in a lower dimension of MC integration,
which implies that QMC may lead to a more significant improvement.

5 CONCLUSION

In our work, we generalize LR to the most universal training paradigm, enabling the extension to a
broader range of neural network architectures and exploration of various training pipeline designs.
ULR breaks the necessity of the chain rule and only requires forward evaluation during training, thus
eliminating the dependency on recursive gradient computations. With variance reduction techniques,
our method achieves comparable performance to BP on clean data and exhibits improved robustness.
Moreover, we also discuss the relationship between ULR and other perturbation-based methods and
unify RL and deep learning from a bidirectional perspective of the general LR framework.
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A THEORETICAL DETAILS

A.1 GRADIENT ESTIMATION FOR PARAMETERIZED NOISE DISTRIBUTIONS

Notice that zl follows a parameterized noise distribution f l(·;ϑl), where ϑl ∈ Θ̃l. With the property
of conditional expectation, we have

∇ϑlE
[
L(xL)

]
= ∇ϑl

∫
Rdl+1

E
[
L(xL)|ζ

]
f l(ζ;ϑl)dζ,

Under mild integrability conditions, e.g.,∫
Rdl+1

∣∣E [
L(xL)|ζ

] ∣∣ sup
ϑl∈Θ̃l

∣∣∇ϑlf l(ζ;ϑl)
∣∣dζ < ∞,

we can obtain

∇ϑlE
[
L(xL)

]
=

∫
Rdl+1

E
[
L(xL)|ζ

]
∇ϑl ln f l(ζ;ϑl)f l(ζ;ϑl)dζ

= E
[
L(xL)∇ϑl ln f l(zl;ϑl)

]
.

(9)

The first equality is justified by the LR technique and the dominated convergence theorem, the
second equality comes from definitions and the iterative property of the conditional expectation.

A.2 GRADIENT ESTIMATION FOR CNNS

The conditional density of vo given xi is fo(ξ) =
∏hout−1

j=0

∏wout−1
k=0

1
σoϕ

(
ξj,k−ṽo

j,k

σo

)
. With a spe-

cialized formulation of integrability condition (1), i.e.,

E

∫
Rhout×wout

∣∣E [
L(v)|ξ, xi

]∣∣ sup
θo,i
j,k∈R

∣∣ ∂

∂θo,ij,k

fo(ξ)
∣∣dξ

 < ∞,

we can obtain

∂E [L(v)]
∂θo,ij,k

=
∂

∂θo,ij,k

E
[∫

Rhout×wout

E
[
L(v)|ξ, xi

]
fo(ξ)dξ

]

= E

[∫
Rhout×wout

E
[
L(v)|ξ, xi

] hout−1∑
s=0

wout−1∑
t=0

∂

∂θo,ij,k

ln

(
1

σo
ϕ

(
ξj,k − ṽoj,k

σo

))
fo(ξ)dξ

]

= E

[∫
Rhout×wout

E
[
L(v)|ξ, xi

] hout−1∑
s=0

wout−1∑
t=0

xi
j+s,k+t

σo

ξs,t − ṽos,t
σo

fo(ξ)dξ

]

= E

[∫
Rhout×wout

E
[
L(v)|ζ, xi

] hout−1∑
s=0

wout−1∑
t=0

xi
j+s,k+t

σo
ζs,tϕ(ζ)dζ

]

= E

[
L(v)

hout−1∑
s=0

wout−1∑
t=0

xi
j+s,k+t

σo
εos,t

]
. (10)

The second equality is justified using the LR technique and the dominated convergence theorem. The
fourth equality comes from the change of variables, and the last one holds because of the iterative
property of the conditional expectation. Eq. (10) provides neuron-wise gradient estimation for the
convolutional layer. After rearranging, we can obtain a channel-wise representation as below:

∇θo,iE [L(v)] = E
[
1

σo
L(v)xi ∗ εo

]
. (11)

Using Eq. (11), we can estimate the gradient of the convolutional layer at once by utilizing the group
convolution functionality available in any machine learning toolkit. The gradient estimation for bo is
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a corollary of Eq. (10), and we can derive the gradient estimation for noise magnitudes in a similar
manner as Eq. (9), i.e.,

∂E [L(v)]
∂bo

= E

[
1

σo
L(v)

hout−1∑
s=0

wout−1∑
t=0

εos,t

]
,

∂E [L(v)]
∂σo

= E

[
1

σo
L(v)

hout−1∑
s=0

wout−1∑
t=0

(
(εos,t)

2 − 1
)]

.

The forward propagation and gradient estimation by ULR in CNNs are shown in Fig. 8.

A.3 GRADIENT ESTIMATION FOR RNNS

Since some RNN variants, e.g., LSTMs, have an extra data flow going through φ without any pa-
rameter, we modify the computation formulation of generic RNNs in Section 3.2 as below:

(ht, ct) = φ(ut, vt, ht−1, ct−1), ut = θhhht−1 + bhh + zhht , vt = θxhxt + bxh + zxht ,

where ct denotes another hidden variable. The training objective becomes 1
|X |

∑
x∈X E [L(h, c)],

where h = (h1, · · · , hT ) and c = (c1, · · · , cT ).
Although θhh participates in the computation of each ut, the elements in u = (u1, · · · , uT ) are
autocorrelated so that it is hard to utilize their joint conditional density. Thus, we treat θhh in
each calculation step as distinct variables, and then sum up the corresponding gradient estimates.
Notice that the conditional distribution of ut given ht−1 is N (ũt,Σ

hh) with the density ft(ξ), where
ũt = θhhht−1 + bhh. We can unroll the forward pass to perform the push-out LR method as below:

∇θhhE [L(h, c)] =
T∑

t=1

∇θhhE
[∫

Rdh

E [L(h, c)|ξ, ht−1] ft(ξ)dξ

]

=

T∑
t=1

E
[∫

Rdh

E [L(h, c)|ξ, ht−1]∇θhh ln ft(ξ)ft(ξ)dξ

]

=

T∑
t=1

E
[∫

Rdh

E [L(h, c)|ξ, ht−1] (Σ
hh)−1(ξ − ũt)h

⊤
t−1ft(ξ)dξ

]

=

T∑
t=1

E
[∫

Rdh

E [L(h, c)|ζ, ht−1] (Σ
hh)−

1
2 ζh⊤

t−1ϕ(ζ)dζ

]

= E

[
L(h, c)(Σhh)−

1
2

T∑
t=1

εhht h⊤
t−1

]
. (12)

The second equality can be justified by the dominated convergence theorem under a similar integra-
bility condition as Eq. (1), i.e., for t = 1, · · · , T ,

E

[∫
Rdh

|E [L(h, c)|ξ, ht−1]| sup
θhh∈Rdh×dh

|∇θhhft(ξ)| dξ

]
< ∞.
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Figure 9: Different RNN modules and their common structure.

By applying the change of variables and the iterative property of the conditional expectation, we can
obtain the last equality. The gradient estimates of other parameters in the generic RNN structure can
be derived in a similar manner to Eq. (12), i.e.,

∇θxhE [L(h, c)] = E

[
L(h, c)(Σxh)−

1
2

T∑
t=1

εxht x⊤
t

]
,

∇bhhE [L(h, c)] = E

[
L(h, c)(Σhh)−

1
2

T∑
t=1

εhht

]
,

∇bxhE [L(h, c)] = E

[
L(h, c)(Σxh)−

1
2

T∑
t=1

εxht

]
,

∇ΣhhE [L(h, c)] = 1

2
E

[
L(h, c)

T∑
t=1

(
(Σhh)−

1
2 εhht (εhht )⊤(Σhh)−

1
2 − (Σhh)−1

)]
,

∇ΣxhE [L(h, c)] = 1

2
E

[
L(h, c)

T∑
t=1

(
(Σxh)−

1
2 εxht (εxht )⊤(Σxh)−

1
2 − (Σxh)−1

)]
.

As shown in Fig. 9, the three most widely used RNN cells can be unified as the aforementioned
common structure, where hidden states and inputs are delivered to non-linear activation function
φ after a parametric linear transformation. The modules in the shadows of the first three subfig-
ures of Fig. 9 are specific forms of φ in different RNN structures. Since sometimes we can push
both the weights of hidden states and inputs into a shared conditional density, we can simplify the
perturbation and gradient estimation in different RNN cells.

In vanilla RNN cells, the forward process with perturbation is given by

ht = tanh
(
θhhht−1 + θxhxt + bhh + bxh + zt

)
,

where zt = (Σ)
1
2 εt is shared among the linear transformations of the hidden states and inputs, and

εxht is independent standard Gaussian random vector. The gradient estimates of parameters can be
reduced as follows:

∇θhhE [L(h)] = E

[
L(h)Σ− 1

2

T∑
t=1

εth
⊤
t−1

]
,

∇θxhE [L(h)] = E

[
L(h)Σ− 1

2

T∑
t=1

εtx
⊤
t

]
,

∇bhhE [L(h)] = ∇bxhE [L(h)] = E

[
L(h)Σ− 1

2

T∑
t=1

εt

]
,

∇ΣhhE [L(h)] = 1

2
E

[
L(h)

T∑
t=1

(
Σ− 1

2 εtε
⊤
t Σ

− 1
2 − Σ−1

)]
.
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In LSTM cells, the forward propagation with noises is written as

ft = sigmoid
(
θxfxt + θhfht−1 + bhf + bxf + zft

)
,

it = sigmoid
(
θxixt + θhiht−1 + bhi + bxi + zit

)
,

gt = tanh
(
θxgxt + θhght−1 + bhg + bxg + zgt

)
,

ot = sigmoid
(
θxoxt + θhoht−1 + bho + bxo + zot

)
,

ct = ft ⊙ ct−1 + it ⊙ gt, ht = ot ⊙ tanh (ct) ,

where θhf , θhi, θhg, θho ∈ Rdh×dh and θxf , θxi, θxg, θxo ∈ Rdh×dx are weight matrices in different
data flows, bhf , bhi, bhg, bho, bxf , bxi, bxg, bxo ∈ Rdh are bias terms, zft = (Σf )

1
2 εft , zit = (Σi)

1
2 εit,

zgt = (Σg)
1
2 εgt , zot = (Σo)

1
2 εot , εft , εgt , εit and εot are independent standard Gaussian random vectors.

The gradient estimates of the parameters in the first equality are given by

∇θhfE [L(h, c)] = E

[
L(h, c)(Σf )−

1
2

T∑
t=1

εft h
⊤
t−1

]
,

∇θxfE [L(h, c)] = E

[
L(h, c)(Σf )−

1
2

T∑
t=1

εft x
⊤
t

]
,

∇bhfE [L(h, c)] = ∇bxfE [L(h, c)] = E

[
L(h, c)(Σf )−

1
2

T∑
t=1

εft

]
,

∇ΣfE [L(h, c)] = 1

2
E

[
L(h, c)

T∑
t=1

(
(Σf )−

1
2 εft (ε

f
t )

⊤(Σf )−
1
2 − (Σf )−1

)]
.

The gradient estimation for the remaining parameters can be derived analogously.

The forward computation with perturbation in GRU cells is given by
rt = sigmoid

(
θxrxt + θhrht−1 + bhr + bxr + zrt

)
,

yt = sigmoid
(
θxyxt + θhyht−1 + bhy + bxy + zyt

)
,

nt = tanh
(
θxnxt + bxn + zxnt + rt ⊙

(
θhnht−1 + bhn + zhnt

))
,

ht = (1− yt)⊙ nt + yt ⊙ ht−1,

where θhr, θhy, θhn ∈ Rdh×dh and θxr, θxy, θxn ∈ Rdh×dx are weight matrices in different linear
transformations, bhr, bhy, bhn, bxr, bxy, bxn ∈ Rdh are bias terms, zrt = (Σr)

1
2 εrt , zyt = (Σy)

1
2 εyt ,

zhnt = (Σhn)
1
2 εhnt , zxnt = (Σxn)

1
2 εxnt , εrt , εyt , εhnt and εxnt are independent standard Gaussian

random vectors. The gradient estimates in the first two equalities are the same as in LSTM cells.
And the results in the third equality are written as

∇θhnE [L(h)] = E

[
L(h)(Σhn)−

1
2

T∑
t=1

εhnt h⊤
t−1

]
,

∇θxnE [L(h)] = E

[
L(h)(Σxn)−

1
2

T∑
t=1

εxnt x⊤
t

]
,

∇bhnE [L(h)] = E

[
L(h)(Σhn)−

1
2

T∑
t=1

εhnt

]
,

∇bxnE [L(h)] = E

[
L(h)(Σxn)−

1
2

T∑
t=1

εxnt

]
,

∇ΣhnE [L(h)] = 1

2
E

[
L(h)

T∑
t=1

(
(Σhn)−

1
2 εhnt (εhnt )⊤(Σhn)−

1
2 − (Σhn)−1

)]
,

∇ΣxnE [L(h)] = 1

2
E

[
L(h)

T∑
t=1

(
(Σxn)−

1
2 εxnt (εxnt )⊤(Σxn)−

1
2 − (Σxn)−1

)]
.
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In simplified schemes, the dimensions of the noise injected into RNN, LSTM and GRU cells are dh,
4dh and 4dh, respectively, rather than the original 2dh, 8dh and 6dh in generic form.

A.4 GRADIENT ESTIMATION FOR GNNS

Denote the loss evaluation of GNNs as L(h′), where the parameters in other modules are abbrevi-
ated. For GCNs, assume zi,j follows a distribution with the density fi,j(ξ) and let v = ṽ+ z, where
ṽ = uθ and u = Gh. Notice that given h, the j-th column of v follows a conditional distribution
with the density gj(ξ) =

∏|V|−1
i=0 fi,j(ξi − ṽi,j). Then, we can derive the gradient estimation by

pushing θk,j into the conditional density, i.e.,

∂

∂θk,j
E [L(h′)] =

∂

∂θk,j
E
[∫

R|V|
E [L(h′)|ξ, h] gj(ξ)dξ

]

= E

∫
R|V|

E [L(h′)|ξ, h]
|V|−1∑
i=0

∂

∂θk,j
ln fi,j(ξi − ṽi,j)gj(ξ)dξ


= E

− ∫
R|V|

E [L(h′)|ξ, h]
|V|−1∑
i=0

ui,k

f ′
i,j(ξi − ṽi,j)

fi,j(ξi − ṽi,j)
gj(ξ)dξ


= E

− ∫
R|V|

E [L(h′)|ζ, h]
|V|−1∑
i=0

ui,k

f ′
i,j(ζi)

fi,j(ζi)

|V|−1∏
i=0

fi,j(ζi)dζ


= E

−L(h′)

|V|−1∑
i=0

ui,k

f ′
i,j(zi,j)

fi,j(zi,j)

 .

The second equality is justified using the LR technique and the dominated convergence theorem
under a similar integrability condition as Eq. (1), i.e.,

E

[∫
R|V|

|E [L(h′)|ξ, h]| sup
θk,j∈R

∣∣ ∂

∂θk,j
gj(ξ)

∣∣dξ] < ∞.

The fourth equality comes from the change of variables, and the last one holds because of the
iterative property of the conditional expectation. For GATs, assume ξi,j and ζi,j follow distributions
with the densities fξ

i,j(x) and fζ
i,j(x), respectively, and let v̄m = (vi, vj), where m = i × |V| + j.

The gradient estimates can be derived analogously to that in GCNs, i.e.,

∂

∂ωk,j
E [L(h′)] = E

−L(h′)

|V|−1∑
i=0

hi,k

fξ
i,j

′
(ξi,j)

fξ
i,j(ξi,j)

 ,

∂

∂θk
E [L(h′)] = E

−L(h′)

|V|−1∑
i=0

|V|−1∑
j=0

v̄i×|V|+j,k

fζ
i,j

′
(ζi,j)

fζ
i,j(ζi,j)

 .

A.5 GRADIENT ESTIMATION FOR SNNS

Similar to the derivation for RNNs, we can treat θl in each computation step as different variables,
and then sum up the gradient estimates. Let ṽt,l = θlxt,l. Note that conditional on xt,l, vt,l =
ṽt,l + zt,l follows a distribution N (ṽt,l,Σl) with the density f t,l(ξ). Then, with a specialization of
the integrability condition (1), i.e., for t = 1, · · · , T ,

E

[∫
Rdl+1

∣∣E [
L(xT,L)|ξ, xt,l

]∣∣ sup
θl∈Rdl+1×dl

∣∣∇θlf t,l(ξ)
∣∣ dξ] < ∞.
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we unroll the forward computation and obtain

∇θlE
[
L(xT,L)

]
=

T∑
t=1

∇θlE
[∫

Rdl+1

E
[
L(xT,L)|ξ, xt,l

]
f t,l(ξ)dξ

]

=

T∑
t=1

E
[∫

Rdl+1

E
[
L(xT,L)|ξ, xt,l

]
∇θl ln f t,l(ξ)f t,l(ξ)dξ

]

=

T∑
t=1

E
[∫

Rdl+1

E
[
L(xT,L)|ξ, xt,l

]
(Σl)−1(ξ − ṽt,l)(xt,l)⊤f t,l(ξ)dξ

]

=

T∑
t=1

E
[∫

Rdl+1

E
[
L(xT,L)|ζ, xt,l

]
(Σl)−

1
2 ζ(xt,l)⊤ϕ(ζ)dζ

]

= E

[
L(xT,L)

T∑
t=1

(Σl)−
1
2 εt,l(xt,l)⊤

]
.

And the gradient estimation for Σl can be given by

∇ΣlE
[
L(xT,L)

]
=

1

2
E

[
L(xT,L)

T∑
t=1

(
(Σl)−

1
2 εt,l(εt,l)⊤(Σl)−

1
2 − (Σl)−1

)]
.

A.6 GRADIENT ESTIMATION UNDER WEIGHT PERTURBATION

By pushing θ into the density, we can obtain

∇θE [L(v)] = ∇θ

∫
Ω′

E [L(v)|ξ] f(ξ − θ)dξ

=

∫
Ω′

E [L(v)|ξ]∇θ ln f(ξ − θ)f(ξ − θ)dξ

= −
∫
Ω′

E [L(v)|ξ] ∇zf(z)

f(z)

∣∣∣∣
z=ξ−θ

f(ξ − θ)dξ

= −
∫
Ω

E [L(v)|ζ] ∇zf(z)

f(z)

∣∣∣∣
z=ζ

f(ζ)dζ

= E
[
−L(v)∇zf(z)

f(z)

]
,

where Ω′ := {y : y − θ ∈ Ω}, the second equality holds by applying the LR technique and the
dominated convergence theorem under the assumption that∫

Ω′
|E [L(v)|ξ]| sup

θ
|∇θf(ξ − θ)| dξ < ∞,

and the rest comes from the change of variables and the iterative property of the conditional expec-
tation.

A.7 RELATIONSHIP BETWEEN ULR AND RL

We have discussed how to derive the key result in policy-based RL by the push-out LR method
in our paper. We next provide an inverse perspective on the relationship between LR and RL. Let
ũt = θhhht−1 + bhh and ṽt = θxhxt + bxh. The generic form of RNNs can be rewritten as

at = θot +Σ− 1
2 εt, st+1 = φ (at, st) , (13)

where at = (ũ⊤
t , ṽ

⊤
t )

⊤, st = (c⊤t−1, h
⊤
t−1, x

⊤
t )

⊤ and ot = (h⊤
t−1, x

⊤
t )

⊤ serve as the action, state
and observation in RL context, respectively. The generic RNN cell can be regarded as a partially
observable RL scenario. The RL agent is modeled as a single neural layer parameterized by θ and
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Σ, which is a parametric Gaussian distribution widely used in classical RL with a continuous action
space, while the transition kernel of the RL environment is determined by φ. The cost/reward signal
is given by the loss function, which could be episodic feedback like the classification loss, or per-
step feedback, such as the mean squared error (MSE) loss for a generation problem. If the reward is
not decomposable, e.g., the classification loss, we can obtain the intermediate result in Section A.3
by the vanilla policy gradient theorem, i.e.,

∇θE [L(h, c)] = E

[
L(h, c)

T∑
t=1

∇θ ln ft(at)

]

=

T∑
t=1

E
[∫

R2dh

E [L(h, c)|ξ, ot]∇θ ln ft(ξ)ft(ξ)dξ

]
,

where ft(ξ) = f(ξ; ot) is the density of conditional Gaussian distribution N
(
θo⊤t ,Σ

)
. Otherwise,

we have L(h, c) =
∑T

t=1 l(ht, ct) and can utilize the ”reward-to-go” technique in the policy gradient
theorem to obtain a more refined result, i.e.,

∇θE [L(h, c)] = E

[
T∑

t=1

T∑
t′=t

l(ht′ , ct′)∇θ ln ft(at)

]

= E

[
T∑

t=1

t∑
t′=1

l(ht, ct)∇θ ln ft′(at′)

]

=

T∑
t=1

t∑
t′=1

E
[∫

R2dh

E [l(ht, ct)|ξ, ot]∇θ ln ft′(ξ)ft′(ξ)dξ

]
,

where the last equality is a direct intermediate result by repeatedly using the push-out LR method.

B PSEUDOCODE

Algorithm 1 Neural Network Training via Unified Likelihood Ratio Method

Input: Network structure {φl(·; θl)}L−1
l=0 , loss function L(·), input x0, noise density {f l(·)}L−1

l=0 .
1: Initialize network parameter {θl}L−1

l=0 .
2: repeat
3: for l = 0 to L− 1 parallelly do
4: Generate noise zl ∼ f l(·) with QMC optional.
5: Compute xL,l

+ and xL,l
− only with zl and −zl injected to the l-th layer, respectively.

6: Update θl by estimated gradient following Eq. (6) with loss values L(xL,l
+ ) and L(xL,l

− ).
7: end for
8: until network parameter converges.

Output: Network parameter {θl}L−1
l=0 .

C EXPERIMENTAL DETAILS

C.1 GENERIC EXPERIMENT SETTINGS

Platform: We conduct experiments in a computational platform with PyTorch 1.14.0 and eight
NVIDIA RTX A6000 GPUs. Each A6000 GPU has 48 GB of memory.

Datasets: In our paper, we focus on the classification task. We conduct experiments of ResNet-
5 and VGG-8 on the CIFAR-10 dataset, which consists of 60, 000 32 × 32 color images in 10
classes, with 5, 000 images for training and 1, 000 for testing per class. For experiments on the RNN
family, we evaluate the proposed method on the Ag-News dataset with 4 classes, which consists of
30, 000 in news articles for training and 1, 900 for testing in each class. For the GNN family, we
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Table 2: Results of ResNet-5 and VGG-8.

Models Alg. Ori. Natural Noise Adversarial Noise Distribution shift

Gaussian Uniform Poisson FGSM I-FGSM MI-FGSM Grey RanMask

ResNet-5

BP 64.4 59.4 60.7 44.2 12.1 1.1 1.7 53.5 54.1
ES 35.1 35.1 35.0 29.5 20.8 4.1 4.9 25.3 34.3

ULR-L 62.3 61.4 61.9 50.9 26.0 6.4 9.4 55.9 55.5
ULR-WL 64.8 64.2 64.6 55.3 26.2 6.7 9.4 58.2 59.1

VGG-8

BP 79.8 69.4 76.4 37.8 32.4 1.2 0.9 67.8 61.9
ES 65.8 63.7 65.4 35.6 25.7 2.7 2.7 61.9 60.5

ULR-L 58.7 50.6 56.2 30.7 27.9 11.5 10.5 48.9 47.6
ULR-WL 77.3 72.7 76.7 42.9 34.6 2.8 3.5 71.4 64.9

consider the Cora dataset with 7 classes, which consists of 140 nodes for training and 1, 000 nodes
for testing. For SNN, we conduct experiments on the MNIST and Fasion-MNIST datasets, which
consist of 60, 000 28 × 28 grey images for training and 10, 000 images for testing. We conduct the
domain adaption experiments on the Office-31 dataset, which consists of 3 domains with image size
224× 224, including the Amazon, DSLR, and Webcam.

C.2 EXPERIMENTS FOR CNNS

ResNet-5: The ResNet-5 has 5 layers, including 4 convolutional layers and 1 fully connected layer.
The residual connection is between the third and fourth convolutional layers. For the convolutional
layers, we set the number of kernels as 8, 16, 32, and 32, respectively, all the kernel sizes as 3 × 3
with the stride as 1, and the activation function as ReLU. We use the batch size as 100. For the
fully connected layers, we set the number of neurons as 10 for classification with 10 classes. For
all the compared training methods, we use the Adam optimizer with the initialized learning rate as
1 × 10−3, and train the models with 200 epochs. For the ES and ULR training, we set the σ for
each layer initialized as 1 × 10−3, 1 × 10−3, 1 × 10−1, 1 × 10−1, 1 × 10−1, respectively. Due to
the high gradient estimation variance, we set the number of copies as 1, 000 for all layers in the ES
training method for sufficient optimization. We set the number of copies for each layer as 100, 100,
200, 200, and 50 in ULR training methods.

VGG-8: The VGG-8 has 8 layers, including 6 convolutional layers and 2 fully connected layers.
For the convolutional layers, we set the number of kernels as 16, 16, 32, 32, 64, and 64, respectively,
all the kernel sizes as 3 × 3 with the stride as 1, and the activation function as ReLU. We use the
batch size as 100. For the fully connected layers, we set the numbers of neurons as 256 and 10,
respectively. For all the compared training methods, we use the Adam optimizer with the initialized
learning rate as 1 × 10−3 and train the models with 200 epochs. For the ES and ULR training, we
set the σ for each layer initialized as 1× 10−3, 1× 10−3, 1× 10−3, 1× 10−3, 1× 10−2, 1× 10−2,
1 × 10−2, and 1 × 10−2, respectively. Due to the high gradient estimation variance, we set the
number of copies as 1, 500 for all layers in the ES training method for sufficient optimization. We
set the number of copies for each layer as 100, 200, 400, 800, 400, 200, 100, and 50 in ULR training
methods.

Evaluation criteria: We evaluate all the methods for CNNs on the following performance criteria:
1) Task performance: the classification accuracy on the benign samples (Ori.); 2) Natural noise
robustness: the classification accuracy on the natural noise corrupted dataset, where we adopt the
Gaussian, uniform, and Poisson noises; 3) Adversarial robustness: the classification accuracy on
the adversarial examples, which are crafted by the fast gradient sign method (FGSM), iterative fast
gradient sign method (I-FGSM), and momentum-based iterative fast gradient sign method (MI-
FGSM); 4) distribution shift robustness: the classification accuracy on the corrupted dataset with
different distribution corresponding to the original dataset, where we transform the colored dataset
into the grey images and apply the random mask to images respectively for the construction of out-
of-distribution (OOD) datasets. For the adversarial attacks, we set the maximum perturbation for
each pixel as 8/255, and the maximum number of iterations as 5 for I-FGSM and MI-FGSM. For
all the evaluations, we consider the corruption on the whole testset .
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Table 3: Results of the RNN family.

Attack RNN GRU LSTM

BP ES ULR BP ES ULR BP ES ULR

Ori. 64.4 65.9 70.9 88.2 84.6 88.9 89.4 85.7 89.4
RanMask 53.4 53.4 56.7 63.9 59.2 65.5 60.1 56.2 62.1
Shuffle 62.7 63.2 69.0 87.1 80.2 88.3 88.9 82.6 89.3
PWWS 50.0 36.5 54.0 58.5 32.0 63.0 59.0 31.5 62.5

GA 37.0 23.5 40.5 56.5 20.0 60.5 59.5 21.0 62.0

Results: As shown in Tab. 2, ULR-WL can achieve comparable performance to BP with an im-
provement of 0.4% for ResNet-5 and a minor drop of 2.6% for VGG-8. Meanwhile, ULR-WL has
a significant improvement in the adversarial robustness of 8.1% on average. In ResNet-5, the clas-
sification accuracy relies more on the training of the later layers, where adding noise to logits incurs
less cost, thus ULR-L outperforms ES and achieves similar performance as ULR-WL. In VGG-8,
the situation is exactly the opposite. And the success of ULR-WL in CNNs comes from combining
the strengths of both noise injection modes. Moreover, our proposed variance reduction methods
are also compatible with ES. The accuracies of ResNet-5 and VGG-8 trained by ES can be boosted
to 46.9% and 67.2%, respectively, indicating the effectiveness of our tricks in variance reduction.
However, even with these tricks, ES struggles to optimize neural networks effectively, demonstrating
a lower capacity in gradient estimation compared to ULR.

C.3 EXPERIMENTS FOR RNNS

For all the studied models, including the RNN cell, GRU cell, and LSTM cell, we use the Glove
vector as the pre-trained embedding with the dimension of 100. We set the number of hidden units
as 64 and the number of units for classification as 4. We use the Adadm optimizer with the initialized

learning rate as 1 × 10−3, and train the models with 100 epochs. We set the batch size as 10. For
both the ES and ULR training methods, we set the number of copies as 200.

Evaluation criteria: We evaluate all the methods for RNNs on task performance and robustness.
For the robustness evaluation, we adopt two corruptions, 1) RanMask, in which we randomly mask
a fixed ratio of 90% of the words in the whole article; 2) Shuffle, which random shuffles words in
sentences; 3) adversarial attacks, including the probability-weighted word saliency (PWWS) and
genetic algorithm (GA). We set the maximum ratio of word substitutions as 25%. Due to the low
efficiency of adversarial text attacks, we consider 200 examples for evaluation on adversarial attacks
and 1, 000 for other perturbations.

Results: The evaluation results of the RNN family can be shown in Tab. 3. Due to the gradient
vanishing problem in RNN for long sentences, the conventional BP method can not train the neural
network well and it only achieves an accuracy of 64.7%. Without relying on the chain-rule computa-
tion, the ULR method can mitigate the gradient vanishing problem and improve the performance of
RNN significantly by 5.5%. For training GRU and LSTM, the ULR method can achieve comparable
performance on the clean dataset. On the other hand, neural network training using the ULR method
can achieve better robustness compared with the BP, namely 2.3% under the RanMask corruption,
2.63% under the Shuffle corruption, and 4.0% under the PWWS attack.

C.4 EXPERIMENTS FOR GNNS

For all the studied GNN models, we use the Adam optimizer with the learning rate 1 × 10−2. Due
to the limited size of dataset, we set the batch size as the data size, i.e., the whole 140 nodes. We
train the models for 50 epochs.

GCN: The GCN network has three layers, with the number of neurons as 1433 (input layer), 32, and
7 (output layer), respectively. For the ULR and ES training methods, we set the σ as 1 × 10−1 for
all layers and the number of copies as 100.
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Table 4: Results of the GNN family.

Attack GCN GAT

BP ES ULR BP ES ULR

Ori. 80.4 57.3 75.6 82.2 34.4 81.8
R.A. 62.5 48.2 68.9 70.4 30.1 77.3
Dice 63.2 45.7 65.4 71.3 28.9 74.6

Table 5: Results of SNN.

Attack MNIST Fashion-MNIST

BP ES ULR BP ES ULR

Ori. 91.8 74.6 92.3 72.3 58.6 74.6
FGSM 42.6 59.5 81.4 38.0 46.2 73.0

I-FGSM 31.5 55.2 82.7 23.1 44.6 71.8
MI-FGSM 40.8 53.4 83.0 21.9 42.3 72.0

GAT: The GAT network has 2 layers. The first layer consists of 4 attention heads computing 32
features each (for a total 128 features), followed by an exponential linear unit activation. The second
layer has a single attention head that computes 4 features for classification. For both ES and ULR
training methods, we set σ as 1× 10−1. For the ES training method, we set the number of copies to
100. For the ULR training method, we set the number of copies as 1.

Evaluation criteria: We evaluate all the methods for GNNs on task performance and robustness.
For the robustness evaluation, we adopt two adversarial attacks, including randomly injecting fake
edges into the graph (R.A.) and disconnecting internally or connecting externally (DICE). For both
the R.A. and DICE attacks, we perturb the edge ratio from 10% to 100% in 10% increments com-
pared to the original number of edges and report the average results. For all the evaluations, we
consider the corruption on the whole test set .

Results: As shown in Tab. 4, compared with ES, ULR achieves a comparable performance relative
to BP, with a performance gap of 4.8% for GCN and 0.4% for GAT on the clean dataset. ULR
further brings an average of 4.3% improvement for GCN and an average of 5.1% improvement for
GAT on the model robustness. Moreover, the GAT training by ULR does not require any additional
copy of data, which has a similar computational cost compared to BP.

C.5 EXPERIMENTS FOR SNNS

The SNN has three layers with the number of neurons as 784, 50, and 10. For the spiking compu-
tation, we set the size of the time window as 5, the decay factor as 0.5, the threshold as 0.3, and
the length as 0.5. We use the Adadm optimizer with the initialized learning rate as 1 × 10−3, and
train the models with 200 epochs. We use the batch size as 100. For both the ES and ULR training
methods, we set the number of copies as 200.

Evaluation criteria: We evaluate the performance of different optimization methods by task perfor-
mance and adversarial robustness. We use FGSM, I-FGSM, and MI-FGSM to craft the adversarial
examples on MNIST and Fashion-MNSIT datasets, where the maximum perturbation for each pixel
is 0.1 for all of the attack methods, the max number of iterations is 15, and the step size is 0.01 for
I-FGSM and MI-FGSM. For all the evaluations, we consider the corruption on the whole test set.

Results: As shown in Tab. 5, ES fails in training SNN, and the ULR method can achieve a higher
classification accuracy on clean and adversarial datasets. Specifically, ULR has an average improve-
ment of 1.55% on two clean datasets and 44.3% on adversarial examples. The activation function
in SNN is discontinuous, which hinders the application of the chain rule-based BP method, and the
BP adopted here is based on an approximated computation. The unbiasedness of the ULR gradient
estimation leads to superior results.

C.6 VERIFICATION ON LARGER DATASET

To give a further scalability evaluation of the ULR method, we train the ResNet-9 to classify images
in the CIFAR-100 dataset. We select BP, ES, ULR-L, and ULR-WL as the baselines. We take the
supported maximum number of data copies for gradient estimation in ES, ULR-L, and ULR-WL.
We present the results in Tab. 6. From the numerical results, it can be observed that while ES fails
to optimize network parameters on the large-scale CIFAR-100 dataset, ULR achieves a comparable
performance to BP, with only a minor gap of 0.3%.
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Table 6: Classification accuracies of ResNet-9 on the CIFAR-100 dataset.

Methods BP ES ULR-L ULR-WL

Acc. 65.2 27.3 59.2 64.9

C.7 COMPARISON WITH OTHER METHODS

BP FF FA HSIC ES ULR-L ULR-WL
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Figure 10: Classification accuracies of
ResNet-5 on the CIFAR-10 dataset us-
ing different optimization methods.

To comprehensively compare different optimizations, we
further train the ResNet-5 on the CIFAR-10 dataset using
BP, FF, FA, HSIC, ES, ULR-L, and ULR-WL. As shown
in Fig. 10, approaches based on stochastic gradient es-
timation, especially the two ULR methods, can achieve
comparable performance with BP. ULR-WL surpasses
the runner-up method, HSIC, which belongs to another
training strategy category, with a significant improvement
of 9.0%. It should be noticed that FF fails to optimize the
model due to the weight-sharing issue, which neither ES
nor ULR will suffer from during the training process.

C.8 EXPERIMENTS FOR DOMAIN ADAPTION

We use the pre-trained AlexNet in Pytorch for domain adaption experiments and add a residual
correction block, consisting of two linear layers with ReLU activation function, after the pooling
layer. We use the Adam optimizer with the initialized learning rate 1× 10−4. For all models, we set
the training epochs as 50 and the batch size as 64.

C.9 EXPERIMENTS FOR BPTT REARRANGEMENT

We train the RNN and GRU on the Ag-News dataset to verify the performance of BPTT rearrange-
ment via ULR. For all the models, we set the learning rate as 1 × 10−3 with Adam optimizer and
train the models for 100 epochs for sufficient convergence. While the average length of texts in the
Ag-News dataset is around 45 words, which corresponds to the average length of the gradient com-
putation graph as 45 steps, we split the original gradient computation graphs into subgraphs by ULR
with depths of 5, 10, 15, 20, and 25, respectively, to give a comprehensive study and comparison on
the rearrangement performance.

C.10 EXTENDED ABLATION STUDY

Following the same setting in our main text, we provide a more extensive ablation study on the
VGG-8. The details of the network structure have been introduced in Section C.2. Without specific
nomination, we perturb the network without QMC in a hybrid manner for gradient estimation, where
we inject the noise on weights for the first four layers and on logits for other layers.

Fig. 11(a)-(c) demonstrate the impact of the perturbation on logits, weights, and the hybrid of
weights and logits. It can be noted that compared with adding perturbation on logits and weights,
the hybrid manner can achieve a much better gradient estimation accuracy both in the first and last
several layers.

Fig. 11(d)-(f) present the impact of the initialization for noise magnitude σ. Following the design of
the aforementioned hybrid noise injection mode, we perform ULR with σ set to 1×10−1, 1×10−2,
and 1× 10−3, respectively. The optimal choice of σ varies for different noise injection modes. We
can see that 1 × 10−2 is more suitable for initializing σ for the first several convolutional layers to
achieve an acceptable gradient estimation accuracy. In contrast, the last several layers, especially the
fully connected layers, are robust to the initialization of σ, which maintains high gradient estimation
accuracy for all selected values.
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(a) Perturbing the logits.
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(b) Perturbing the weights.
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(c) Hybrid.
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(d) Initializing σ as 1× 10−1.
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(e) Initializing σ as 1× 10−2.
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(f) Initializing σ as 1× 10−3.
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(g) w/o layer-wise noise injection.
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(h) w/o the antithetic variable.

101 102 103 104

# of copies

0.00

0.25

0.50

0.75

1.00

C
os

in
e

si
m

il
ar

it
y

(i) with QMC.

Figure 11: Ablation study on the effect of the perturbation on different parts of neurons, the initial-
ization for noise magnitude σ, and the variance reduction techniques.

Fig. 11(g)-(i) show the impact of the variance-reduction techniques. From the results in the figures,
all the proposed methods, including layer-wise perturbation, antithetic variable, and the use of QMC,
play an important role on improving the gradient estimation accuracy.

In a word, the conclusion from the ablation study on VGG-8 is consistent with that on ResNet-5.

Furthermore, we conduct another ablation study on perturbation adapting, where the magnitudes
of injected noise are optimized following the gradient estimators derived in Appendices A.2 and
A.3. Under the same setting in Section 4.1, we respectively use ULR with and without perturbation
adapting to train ResNet-5 and VGG-8 on the CIFAR-10 dataset, as well as RNN, GRU, and LSTM
on the Ag-News dataset. As reported in Tab. 7, perturbation adapting boosts the performance of
neural networks trained by our ULR method.

Table 7: Classification accuracies with different perturbing strategies in ULR training.

Dataset Model Perturbation
Adaptive Fixed

CIFAR-10 ResNet-5 64.8 61.3
VGG-8 77.3 75.9

Ag-News
RNN 70.9 69.2
GRU 88.9 86.6

LSTM 89.4 87.8
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