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Abstract

Adversarial examples have attracted significant attention in machine learning. The
reproduced paper proposed that adversarial examples can be directly attributed to
the presence of non-robust features: highly predictive, yet brittle features. This
challenge aims to reproduce the tasks reported in the paper and modify model
components to understand the proposed model’s robustness. Hence, we first
generated a new robust dataset including adversarial examples, and then reproduced
a Residual Neural Network (ResNet) classifier baseline on CIFAR-10 dataset. In
addition, some model hyperparameters, such as learning rate, value of adversarial
perturbation and normalization approaches, have been changed to explore how these
components impact the classification accuracy. We also designed, implemented and
evaluated the Visual Geometry Group Network (VGG), DenseNet and InceptionV3
classifiers as the extensions of reproduced paper. It is found that the DenseNet
classifier reported the best accuracy of 90.49% in our works, so DenseNet can be
recommended in the future CIFAR-10 dataset classification.

1 Introduction

Deep Neural Network (DNN) has been widely used in many areas in this era with data explosion.
From relatively simple tasks (face recognition, image classification, object detection, etc.) to more
complex tasks(nature language processing, self-driving vehicles, playing chess and goes, etc.), it has
achieved an amazing success, to some degree, even outperformed humans. Since a large number of
data are involved, a complete feature engineering is less feasible and realistic in practice; this is also
why DNN is useful: it does not require too much feature extracting process from humans any more,
while an automatic feature extracting can be obtained during its learning procedure. Interestingly,
humans can actually merely comprehend a low level of features; conversely, lots of features obtained
by deep learning approaches are likely to be imperceptible to humans, which are at a much higher
level. For instance, in a simple image classification problem, some quite obvious features like “ears”
and “tails” are probably only visible for humans for distinguishing a cat. However, these features
may not be that useful for classification; a DNN can decide what features really matter itself.

As deep learning technologies gradually reach state-of-the-art performance, discussion and concerns
on security have raised during the past decade, since many applications of DNN are highly connected
with data privacy. Recent studies point out that DNN is vulnerable against well-designed input
samples. These samples can easily fool a well-performed deep learning model with little perturbations
imperceptible to humans [21], which are also well known as adversarial examples.
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Basically, an adversarial example is an instance with small, intentional feature perturbations that cause
a machine learning model to make a false prediction[2], additionally, it is frequently imperceptible
for humans comparing to natural inputs.

The reason why people are interested in adversarial examples is because of their wide existence in
real world. Previous studies has shown that self-driving cars seem to ignore some important traffic
signs if adversarial attacks are implemented; face recognition systems will probably fail to recognize
a person because of the adversarial examples; even weapons can be developed by criminals to cheat
the scanner scans suitcases in the airport if the machine is vulnerable to adversarial examples. These
are not only issues in machine learning technology, but also security problems in society.

Therefore, a comprehensive understanding on adversarial examples are truly necessary and significant
for understanding the DNNs more deeply, thus ameliorating the robustness and safety for deep
learning approaches. The paper we are going to reproduce is creative to propose a new perspective
on the phenomenon of adversarial examples: Adversarial vulnerability is a direct result of our
models’ sensitivity to well-generalizing features in the data [7]. Andrew Ilyas et al. prompts to view
adversarial examples as a natural consequence of the presence of highly predictive but non-robust
features, moreover, a fundamentally human phenomenon [7].

The rest of this paper is organized as follows: Related studies about adversarial examples will be
discussed in Section 2. In Section 3, we will explain the works in the reproduced paper, such as the
robust features model and the algorithms of finding robust and non-robust features. Section 4 will
give the description about CIFAR-10 dataset and our reproduced tasks. The experiment setup and the
simulation results are further described in Section 5. Section 6 discusses the conclusion and further
improvements of our works.

2 Related Work

The application of adversarial examples has been widely used in prior work, especially the field
of adversarial examples generation. Researchers attack their models by using generated selected
adversarial samples and analyze the properties of robustness, thus hoping to obtain state-of-the-art
DNN models which can successfully defend such attack. However, adversarial examples seem to be
bugs in machine learning; such attack is quite irresistible.

Generally, methods of adversarial examples generation can be divided into two types: gradient-based
ones and optimization-based ones [20]. For the first type, Szegedy et. al [15] first used a gradient-
based optimization approach in their work to recognize some DNNs, including state-of-the-art models,
are vulnerable to adversarial examples. Thereafter, Goodfellow et. al [5] proposed a family of fast
methods for generating adversarial examples, also known as Fast Gradient Sign Method, which
applies a first-order approximation of the loss function to construct adversarial samples [19]. Then,
they explained adversarial examples as an existence in a high dimensionality and a result of models
being too linear, rather than too nonlinear [5]. In other words, many pixels are required to be changed
in the Fast Gradient Sign Method [5], which is a kind of limitation. In order to solve this, Su et.
al [13] proposed a novel method for generating adversarial perturbations, which only requires a single
pixel change . Their work proved that DNNs are not only vulnerable to high-dimensional attacks but
also to low-dimensional attacks. As for the second type, optimization-based approaches, Nicolas et
al. [12] introduced the first practical demonstration of an attacker without internal model information
and without access to the training data; such attacker is also known as the black box attack. They
trained a local model to replace the target DNN model, thus keeping the model internals confidential,
which is highly suitable for application scenarios in real life.

Additionally, some interesting properties of adversarial examples have also been discovered in previ-
ous work. For instance, Gilmer et al. [4] researched on the relationship between high-dimensional
geometry and adversarial examples, then pointed out that this caused some counter-intuitive phenom-
ena in machine learning: even models with very low test error tend to be vulnerable to slightly chosen
perturbations. Afterwards, the empirical and theoretical evidences for adversarial transferability and
robustness are reported. Nicolas et al. [11] first introduced the transferability of adversarial samples
in machine learning, across models both trained by same and different techniques. Alhussein et al. [3]
first derived fundamental upper bounds on the robustness to perturbations and further led to insights
onto the key properties of generative models.
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All of the work aforementioned has lead to a further research in the field of adversarial examples;
thereby different perspectives on the existence and properties of adversarial examples keep emerging,
including the paper [7] we are going to reproduce. Details will be discussed in the following sections.

3 Proposed Approach

3.1 Robust Features Model

The robust features model is loosely based on the work of Tsipras et al. [16], which can refer to
“robust” and “non-robust” features. In the paper [7] that we reproduce, the authors aim to study the
binary classification, where classifier C : X → {±1} predicts label y given features x.

3.1.1 Feature Definition

Feature space is defined by mapping from the input space X to the real numbers, thus being
F = {f : X → R}. In addition, all features are assumed to be zero-mean and unit-variance in order
to allow the following definitions scale-invariant.

ρ-useful Features The feature f is ρ-useful (ρ > 0) when the feature is correlated with the label in
expectation as follows:

E(x,y)∼D[y · f(x)] ≥ ρ. (1)

ρD(f) is then defined as the largest ρ for which feature f is ρ-useful under distributionD. It is notable
that a linear classifier trained on ρ-useful features can attain non-trivial generalization performance.

γ-robustly Useful Features The feature f is defined as a robust feature when f still remains
γ-useful under certain valid adversarial perturbations ∆. Formally, if we have that

E(x,y)∼D[ inf
δ∈∆(x)

y · f(x+ δ)] ≥ γ. (2)

Useful, Non-robust Features The useful, non-robust feature is a feature which is ρ-useful for
some ρ bounded away from zero, but is not a γ-robust feature for any γ ≥ 0. While these features
may hinder classification accuracy in the adversarial configuration, they can help the accuracy in the
standard configuration when the correlation with the label is flipped.

3.1.2 Classification

A classifier C is represented as C = (F,w, b), which consists of features F , a weight vector w and a
bias b; a classifier is trained by minimizing a loss function Lθ(x, y) on the training set. In their work,
the feature set learned by a classifier C is denoted as FC .

Standard Training Empirical risk minimization (ERM) is applied to minimize the loss function in
the standard learning, which aims to decreases the correlation between the weighted combination
of the features and the label. It is notable that robust features are same as non-robust features,
when minimizing classification loss. Besides, all ρ-useful features can be adopted to decrease the
classification loss.

Robust Training Considering that any useful but non-robust features may lead to adversarial
vulnerability, such as degrading classification accuracy, it is hard to obtain a robust classifier through
ERM in the presence of an adversary. Hence, the authors introduce an adversarial loss function that
can discern between robust and non-robust features [9]:

E(x,y)∼D[ max
δ∈∆(x)

Lθ(x+ δ, y)], (3)
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where ∆ are certain adversarial perturbations. As a result, the minimization of this adversarial loss
can prevent a classifier from from learning a useful, but non-robust features.

3.2 Finding Robust and Non-Robust Features

In the reproduced paper, the authors prove that both both robust and non-robust features can improve
the standard classification, by disentangling these two feature sets. First, they generate a robust
dataset that mainly contains robust features, and the robust classifiers are trained based on such
robust dataset. The result shows that robustness can be improved after removing certain features, and
adversarial vulnerability is caused by non-robust features and is not inherently tied to the standard
training framework. In addition, the second dataset is built based on all non-robust features, and
can also suffice to train a classifier with good accuracy on the standard testing set. Hence, these
non-robust features alone are also sufficient for non-trivial generalizations performance on natural
images, which indicates that they are indeed valuable features, rather than artifacts of finite-sample
overfitting.

3.2.1 Disentangling Robust and Non-robust Features

Due to the challenges of directly manipulating complex and high-dimensional datasets, the authors
determine to develop a robust model and only consider the features that are relevant to such robust
model. Given a robust classifier C, a distribution D̂R is constructed for which features used by C are
equally important as they are on the original distribution D while ensuring the remaining features are
less important. The proposed framework is represented as follows:

E(x,y)∼D̂R
[f(x) · y] =

{
E(x,y)∼D[f(x) · y] if f ∈ FC ,
0 otherwise,

(4)

where FC is the feature set learned by classifier C.

The training set on the distribution D̂R is generated through a one-to-one mapping x→ xr from the
original training set on the distribution D. For example, FC is the set of activations in the penultimate
layer when the classifier is a deep neural network. In order to allow features learned by the classifier
are equally important, the feature values of x and xr should remain similar through the following
optimization:

min
xr

‖g(xr)− g(x)‖2 (5)

where x is the original input and g is the mapping from x to the representation layer. The objective is
optimized using gradient descent.

Figure 1 shows random samples from the original training set D, the robust training set D̂R that
contains features learned by a robust classifier, and the non-robust training set D̂NR that contains
features relevant to a standard classifier, respectively. After disentangling features as shown in
Figure 2, the authors train the classifiers based on robust and non-robust dataset, respectively. The
results indicate that the classifier trained using the robust dataset can report good accuracy in both
standard and adversarial settings. In addition, while good standard accuracy can be achieved in the
non-robust dataset classification, there are posing challenges to the good robust accuracy.

3.2.2 Non-robust Features for Standard Classification

The previous sections suggest that non-robust features can take an important role in the classification
accuracy, when training on the standard dataset. The authors demonstrate that this is not incidental
and non-robust features can suffice for standard classification.

They first construct a new training set where the only features that are useful for classification are
non-robust features. Each input-label pair (x, y) is modified, and the target class t can be randomly
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Figure 1: Random samples from the variants of CIFAR-10 training set [8].

Figure 2: Conceptual diagram of disentangling robust and non-robust features.

or deterministically selected. After that, an adversarial perturbation is introduced to x, which leads to
classify x as the target class t by a standard model:

xadv = arg min
‖x′−x‖≤ε

LC(x
′
, t), (6)

where LC is the loss function and ε is a small constant. The pairs (xadv, t) are the new training set.
It is notable that the robust features of xadv are still correlated with original class y rather than t and
human still recognize the original class, since ‖x′ − x‖ is small.

In the case where target class t is randomly selected, the robust features are originally uncorrelated
with t, and will be slightly correlated with the class after introducing the adversarial perturbation. A
new dataset D̂rand is generated as follows:

E(x,y)∼D̂rand
[y · f(x)]

{
> 0 if f non-robustly useful under D,
' 0 otherwise.

(7)

In the second case where target class t is deterministically selected based on original class y, the
robust features in the original training set can take an important role on the new dataset and also pose
challenges to the generalization on the standard testing set. A new dataset D̂det is constructed such
that

E(x,y)∼D̂det
[y · f(x)]


> 0 if f non-robustly useful under D,
< 0 if f robustly useful under D,
∈ R otherwise (f not useful under D).

(8)
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3.2.3 Transferability From Non-robust Features

An interesting finding of adversarial examples is that they can transfer across models with different
architectures and independently sampled training sets [14, 10, 1]. Considering that adversarial
examples can arise through perturbing well-generalizing, yet brittle features, various classifiers
trained on independent samples from data distribution are likely to utilize similar non-robust features.
As a result, adversarial examples constructed by exploiting the non-robust features learned by one
classifier will transfer to other classifiers utilizing similar features. This finding also suggests that
architectures which has better classification accuracy on the standard testing set are more likely to
learn similar non-robust features to the original classifier.

4 Dataset Description and Reproduced Tasks

4.1 Dataset Description

In our experiments, all models are evaluated on the whole CIFAR-10 dataset (Canadian Institute For
Advanced Research) [8]. The CIFAR-10 dataset is a collection of images that are most widely used
to train machine learning and computer vision models [17]. The dataset consists of 60, 000 RGB
images of shape 32× 32 in 10 different classes, which are airplane, automobile, bird, cat, deer, dog,
frog, horse, ship and truck, respectively; each class includes 6, 000 images. Several recent papers
achieved a start-of-the-art performance on CIFAR-10 dataset; for instance, Martin et al. [18] achieved
the classification accuracy of 98.67%, while Yanping et al. [6] reported around 99.00% accuracy in
their classification on CIFAR-10 dataset.

4.2 Reproduced Tasks

In the reproduced tasks, we first constructed a new robust dataset for a ResNet-50 through generating
untargeted adversarial examples on the original CIFAR-10 dataset. The generation approach has been
detailedly discussed in Section 3.2.2, and adversarial examples could be generated by introducing an
adversarial perturbation ε into the original dataset x. After randomly generating adversarial examples,
the original robust features would be slightly correlated with the target class.

Thereafter, based on the new robust dataset we generated in the first step, we designed, implemented
and evaluated the ResNet-50 classifier baseline of the reproduced paper [7]. Specifically, several
robust datasets could be generated based on the different values of adversarial perturbation ε, and
each dataset is performed to train a ResNet-50 classifier. Besides, we also designed, implemented
and evaluated the VGG-16, InceptionV3 and DenseNet-121 classifiers as the extension of reproduced
model, in order to find more robust classifier. The accuracy of these classifiers will be shown in
Section 5.

5 Experiments Setup and Simulation Results

The illustration for the untargeted adversarial examples is shown in Figure 3. The first row displays
part of the raw images in CIFAR-10 dataset, while the second row shows images after adversarial
perturbation implementation. It is obvious to see that, some labels are changed in the second row
even though the entities in the images can still be recognized by humans. This is the first step in our
experiments, which constructs a robust dataset for our successive studies.

In addition to the untargeted adversarial examples generation, we finished our experiments on
four different aspects to study the influences of hyperparameters; thus obtaining a comprehensive
understanding of the approaches and ideas in the paper [7]. The settings of the rest hyperparameters
are same as the configurations of the reproduced model [7].

Experiments on normalization During the robust dataset construction procedure, the paper [7]
normalized the gradient at each step of PGD (projected gradient decent) in an L2-norm. We first
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Figure 3: Illustration for untargeted adversarial examples.

Figure 4: Convergence lines for different learning rate settings.

reproduced their work, and then removed their normalization, instead, implementing an Linf -norm
for each step, for a comparison. As the results displayed in Table 4, generally speaking, models with
Linf -norm reach a higher accuracy than models with L2-norm in the same hyperparameters setting.

Experiments on ε Thereafter, we changed the ε value (a threshold in robust dataset construction)
of the model and compared it with the original one mentioned in the paper [7]. Both training set and
testing set are related to an adversarial perturbation; thereby, there are two ε we need to consider in
our experiments: εtrain and εtest. For CIFAR-10 with L2 normalization, we set both εtrain and εtest
in 0, 0.25, 0.5, and 1.0 respectively. While for that with Linf normalization, we set εtrain in 0

255

and 8
255 , with εtest in 0

255 , 8
255 , and 16

255 . It is notable that the robust dataset becomes a non-robust
dataset when εtrain = 0, since no adversarial perturbation is added. The results are shown in Table 1
and 2. It is obvious to notice that robust models (εtrain 6= 0) show a much better performance than
standard models (εtrain = 0), no matter what kind of normalization being implemented.

Experiments on learning rate Moreover, we modified the learning rate on the original model and
compared the classification accuracy on four different settings: 0.01, 0.05, 0.1, and 0.5. As the results
shown in Table 3, models achieve a great performance when setting learning rate as 0.5, which can
reach 99.13%. Additionally, we also studied and analyzed the influence of different learning rates on
the convergence of the model. Based on the convergence lines shown in Figure 4, we find models
can converge more quickly when learning rate equals to 0.1. Therefore, to sum up the two findings
aforementioned, we recommend to set learning rate as 0.1 or 0.5.

Experiments on classifier Finally, as an attempt to extend the reproduced model [7] and to further
find potential robust classifier, we designed, implemented and evaluated different classifiers, i.e.
VGG-16, InceptionV3, and DenseNet-121 classifier. As shown in Table 4, the results indicate that the
DenseNet-121 classifier performs the best overall, reaching a surprising accuracy of 90.49%.

Table 1: CIFAR-10 L2-norm Accuracy (%)

εtest \ εtrain 0 0.25 0.5 1.0
0 75.84 99.11 96.70 98.73

0.25 74.68 98.89 97.90 97.83
0.5 71.50 96.77 96.50 96.27
1.0 49.76 92.53 92.52 92.57

Table 2: CIFAR-10 Linf-norm Accuracy (%)

εtest \ εtrain 0/255 8/255
0/255 80.76 93.75
8/255 53.39 98.35

16/255 48.45 98.63
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Table 3: CIFAR-10 Robust Accuracy (%) Comparison For Different Learning Rates

CIFAR-10 L2-norm Accuracy
Model \ Learning rate 0.01 0.05 0.1 0.5

Standard training
(εtrain = 0 and εtest = 0) 71.41 75.42 71.36 81.73

Robust training
(εtrain = 0.5 and εtest = 0) 97.96 97.51 98.26 99.13

Robust training
(εtrain = 0.5 and εtest = 0.5) 96.60 97.66 97.54 98.54

CIFAR-10 Linf-norm Accuracy
Standard training

(εtrain = 0 and εtest = 0) 75.16 78.97 80.50 83.87

Robust training
(εtrain = 8/255 and εtest = 0) 97.85 97.28 98.37 98.73

Robust training
(εtrain = 8/255 and εtest = 8/255) 97.26 98.61 98.62 96.42

Table 4: CIFAR-10 Robust Accuracy (%) Comparison For Different Models

Model Accuracy
ResNet-50 75.84
VGG-16 74.58

InceptionV3 81.49
DenseNet-121 90.49

6 Discussion and Conclusion

In this project, we first summarized the paper [7] which proposed that adversarial examples can be
directly attributed to the presence of non-robust features. Specifically, the proposed robust features
model categorized features in the ρ-useful,γ-robustly useful and useful, Non-robust Features. After
that, the proposed model disentangled robust and non-robust features, and generated the new dataset
where the only features that are useful for classification are non-robust features, through introducing
adversarial perturbation to the original features. The accuracy of classifier trained on such new dataset
can support that non-robust features alone are sufficient for good classification and generalization.

After summarizing their works, we constructed a new dataset for a ResNet-50 through generating
untargeted adversarial examples on the whole CIFAR-10 dataset. This new dataset was applied to
design, implement and evaluat the ResNet-50 classifier baseline of the reproduced paper [7]. Due to
the challenges of computational resources, our ResNet-50 classifier could only be trained within the
limited iterations and reported 75.84% accuracy in the standard classification. In addition, we also
modified the classifier hyperparameters to explore how these hyperparameters impact the accuracy,
such as normalization approach, value of adversarial perturbation and learning rate. We found out
that Linf is a better setting than L2 for normalization approach, and models trained on robust dataset
perform much better than those trained on non-robust dataset. Moreover, a learning rate of 0.5 tends
to lead a better accuracy, while a learning rate of 0.1 helps a more fast convergence. Furthermore, all
VGG-16, InceptionV3 and DenseNet-121 classifiers were designed, implemented and evaluated on
the whole CIFAR-10 dataset, as the extension of reproduced ResNet-50 classifier [7] , in order to
find potential better classifier. The results indicated that DenseNet-121 classifier reported the best
accuracy of 90.49% in the standard classification. Hence, DenseNet-121 can be suggested as one
future direction to improve the classification accuracy.
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