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ABSTRACT

Sequential recommender systems model user behavior as item-ID sequences, while
recent generative methods cast recommendation as a language modeling task using
large language models (LLMs). While this paradigm incorporates rich textual
semantics, it creates a fundamental mismatch: LLMs operate on text tokens,
whereas recommender systems depend on discrete item indices. This misalignment
often leads to hallucinations in generative recommendations. Existing methods
attempt to bridge this gap by learning item vocabularies in Euclidean space, but
they struggle to model the inherent long-tail distribution of real-world catalogs,
where a small number of head items dominate and a vast number of tail items
reflect users’ niche preferences. To address this issue, we introduce Hyperbolic
Residual-Quantized Variational AutoEncoder (HYPRQ-VAE), the first framework
to learn item indexing in hyperbolic space. HYPRQ-VAE leverages the unique
properties of hyperbolic geometry, whose exponential volume expansion naturally
accommodates the power-law structure of user-item interactions. This allows
the model to encode rich textual semantics while preserving the representational
fidelity of sparse, long-tail items. Experiments on three benchmark datasets show
that HYPRQ-VAE significantly improves the performance of recommendation,
particularly in recommending tail items. Our analysis attributes these gains to
the superior capacity of hyperbolic space to model item hierarchies and sparsity
in generative recommendation. Our code and data are available at: https:
//anonymous.4open.science/r/HypRQ-VAE-6C5B.

1 INTRODUCTION
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Figure 1: An illustrative figure of long-tail distri-
bution in item popularity and semantic tokens.

In today’s data-saturated digital world, recom-
mender systems (RS) play a crucial role in allevi-
ating information overload by delivering person-
alized and relevant content, which streamlines
users’ decision-making and boosts service ef-
ficiency. Since user preferences dynamically
evolve over time, sequential recommendation
has attracted significant attention for its ability
to capture the temporal patterns in user behavior.
Most state-of-the-art models are built on sequen-
tially created interaction logs where each event
is encoded by an item ID (Kang & McAuley,
2018; Tang & Wang, 2018). To model these se-
quences, researchers have explored a wide range
of deep learning architectures, such as GNNs (He et al., 2020) and Transformers (Sun et al., 2019),
and enriched the basic item-ID signal with auxiliary content such as titles, descriptions, and categories.
More recently, pre-trained language models (PLMs) have been introduced to better exploit the textual
semantics in item metadata, further improving recommendation performance (Liu et al., 2023; Chen
et al., 2023; Wei et al., 2024).

The remarkable success of Large Language Models (LLMs) across diverse language tasks (Achiam
et al., 2023; Touvron et al., 2023; Radford et al., 2019) has inspired their application to RS by
framing recommendation as a generation problem (Geng et al., 2022; Bao et al., 2023). However, a
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fundamental challenge persists: the semantic misalignment between the language representations
that LLMs excel at processing and the collaborative filtering signals foundational to RS. Traditional
recommenders model user behavior as sequences of discrete item IDs, while LLMs operate on
textual tokens. This vocabulary mismatch hinders the effective use of LLM for generating accurate
recommendations. Although items often come with textual information through titles or descriptions,
these texts often comprise tens to thousands of tokens, making it exceedingly difficult for LLMs
to generate precise, real-world item recommendations without hallucination (Sriramanan et al.,
2024). Conversely, using raw item IDs (e.g., ‘0123456789’) leads to an unmanageably large,
semantically meaningless vocabulary (e.g., <01><23><45>...) Geng et al. (2022), which fails to
capture relationships among items. To bridge this gap, recent works have proposed specialized
item-indexing mechanisms that construct item vocabularies and train LLMs to generate target items
directly (Rajput et al., 2023; Zheng et al., 2024). A notable example is the Residual-Quantized
Variational AutoEncoder (RQ-VAE) Zeghidour et al. (2021), a multi-level vector quantizer that
recursively quantizes the residual vectors, from coarse to fine, to generate a set of codewords,
producing item indices that capture the hierarchical structure of items. However, these methods
typically operate in Euclidean space, which struggles with the long-tail distribution prevalent in
real-world recommendation data.

Large-scale recommendation datasets commonly exhibit a pronounced long-tailed distribution (Liu
et al., 2024): a small fraction of popular “head” items dominate user interactions, while a vast
number of “tail” items reflect niche interests and emerging trends. Both of them are essential for a
well-rounded recommender system. Meanwhile, item semantics also follow the long-tailed distri-
bution, as illustrated in Figure 1. With these two distributions sharing implicit correlations, popular
items typically exhibit more generic semantic content, while rare items display greater semantic
distinctiveness. However, traditional Euclidean methods disproportionately emphasize head items
while neglecting tail items (Yang et al., 2022). To better model this inherent imbalance, researchers
have turned to hyperbolic space, whose exponentially expanding volume naturally accommodates the
power-law structure of user-item interactions. Although hyperbolic recommendation models have
shown promising empirical results (Sun et al., 2021; Yang et al., 2022), two key questions remain
unsolved: (1) How effective are hyperbolic models at generating item IDs? and (2) Do hyperbolic
models outperform Euclidean approaches, especially for tail-items recommendation?

To answer the above questions, we introduce Hyperbolic RQ-VAE (HYPRQ-VAE), a novel frame-
work that generates semantic IDs for items in hyperbolic space. Our goal is to leverage hyperbolic
geometry’s exponentially increased capacity and its inherent ability for modeling hierarchical struc-
tures to provide greater representational flexibility, particularly for rare semantic concepts. We
conduct a comparative analysis between hyperbolic and Euclidean models, partitioning items into the
top 20% “head” (H20) and bottom 80% “tail” (T80) based on the Pareto Principle 1. Our experiments
reveal that hyperbolic models allocate substantially more representational capacity to tail items than
Euclidean models (see Section 4.3). We argue that hyperbolic geometry, with its high representational
capacity and its natural fit for hierarchical data, can yield richer and more discriminative represen-
tations for tail items than Euclidean embeddings. While prior research has incorporated various
signals for item indexing, to the best of our knowledge, this is the first work to incorporate hyperbolic
representation into the item indexing process for generative recommendation. Our main contributions
are summarized as follows:

• Novel Perspective. We are the first to explore the problem of item indexing in the hyperbolic
space for generative recommendation tasks.

• New Framework. We introduce HYPRQ-VAE, an indexing framework that integrates rich item
semantics with a hyperbolic geometry naturally suited to the long-tailed distribution characteristic
of recommender systems.

• Empirical Studies. We conduct extensive experiments on three widely adopted datasets (Instru-
ments, Arts from the Amazon, and MovieLens) with standard sequential models and competing
indexing strategies, demonstrating the effectiveness of our approach, especially on tail items. Our
in-depth analysis highlights how hyperbolic representations contribute to these improvements.

1https://en.wikipedia.org/wiki/Pareto_principle
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2 PRELIMINARIES

Riemannian Geometry. A d-dimensional Riemannian manifold M, denoted as (M, g), is a
topological space equipped with a metric tensor g (Do Carmo & Flaherty Francis, 1992). At any point
x in M, the manifold can be locally approximated by a local linear space called the tangent space
TxM, which is isometric to Rd. The geodesic represents the shortest path between two points on the
manifold (Alexander & Alexander, 1981), and its length defines the induced distance dM. Notably,
in hyperbolic space, the hyperbolic distance to the origin (HDO) serves as the induced hyperbolic
norm. The exponential map expx projects tangent vectors onto the manifold, and its reverse function,
the logarithmic map logx, returns points to the tangent space. Furthermore, parallel transport Px→y

enables the transportation of geometric data from x to y along the unique geodesics while preserving
the metric tensor g.

vx

y

To Hyperbolic Space

To Tangent Space

Figure 2: Illustration of the Poincaré ball
model and its associated exponential and
logarithmic maps.

Hyperbolic Space. Hyperbolic space refers to a Rieman-
nian manifold with a constant negative curvature, and its
coordinates can be represented using various isometric
models (Cannon et al., 1997; Ramsay & Richtmyer, 2013).
In the domain of machine learning and deep learning, the
Poincaré ball model has emerged as a particularly valuable
framework, offering unique advantages for embedding
hierarchical structures and complex relational data in a
bounded continuous space (Nickel & Kiela, 2017; Tifrea
et al., 2018; Balazevic et al., 2019; Yang et al., 2023). A d-
dimensional Poincaré ball model with a constant negative
curvature κ(κ < 0) is defined as a Riemannian mani-
fold (Pd

κ, g
κ), where Pd

κ = {x ∈ Rd|∥x∥2 < − 1
κ} and its metric tensor gκ = (λκ

x)
2Id and Id

is d-dimensional identity matrix. Here, Pd
κ is an d-dimensional open ball of radius (−κ)−

1
2 , and

λκ
x = 2(1+κ||x||2)−1 is the conformal factor. This induces the inner product ⟨p,q⟩κx = (λκ

x)
2⟨p,q⟩

and norm ||p||κx = λκ
x||p|| for p,q ∈ TxPd

κ. The exponential and logarithmic maps, denoted expκx
and logκx, are defined below.

Exponential and Logarithmic Map. This framework defines several operations, including Möbius
addition ⊕κ, distance between points on the manifold dκ(x,y), exponential and logarithmic maps.
Given their relevance to our work, we present the definitions of the exponential and logarithmic
maps below. These operations are defined within the Riemannian manifold framework, specifically
considering the Poincaré ball model Pd

κ:

p⊕κ q =
(1− 2κ⟨p,q⟩ − κ||q||2)p+ (1 + κ||p||2)q

1− 2κ⟨p,q⟩+ κ2||p||2||q||2
,

expκx(v) = x⊕κ (tanh(
√
−κ

λκ
x||v||
2

)
v√

−κ||v||
),

logκx(v) =
2√

−κλκ
x

(tanh−1(
√
−κ|| − x⊕κ v||) −x⊕κ v

|| − x⊕κ v||
),

(1)

The induced Möbius substraction ⊖κ is given by p⊖κ q = p⊕κ (−q). And the exponential and
logarithmic maps enable transitions between the tangent space and the hyperbolic space (as shown in
Figure 2).

3 METHOD

3.1 OVERVIEW OF THE APPROACH

In Section 1, we discussed a key limitation of using LLMs for recommendation: the mismatch
between the textual semantics captured by LLMs and the collaborative semantics essential for
effective recommendation. To address this fundamental limitation, we propose a two-stage strategy
that enhances semantic integration.

Generation of Semantic IDs. We use hyperbolic RQ-VAE to compress the textual embedding of
each item into several learned discrete IDs. Specifically, we project the representation of items from

3
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Figure 3: HYPRQ-VAE: The figure depicts the encoding process for an item. An item embedding
x is passed through a DNN encoder to obtain a latent vector ze. This vector is then projected into
hyperbolic space via an exponential map to procude zh, which serves as the initial residual r0 (purple
bar). This residual is then processed sequentially through multiple quantization levels. At each level i,
the quantizer identifies the nearest code vector elici from its codebook and computes the next residual
ri+1 = ri ⊖κ elici using Möbius subtraction. For instance, at the first level, the code vector el1c1 (blue
bar) is selected, and at the second level, el2c2 (green bar) is chosen. The final semantic code is the
sequence of indices of these selected vectors, exemplified by (1, 3, 2, 9).

tangent space into hyperbolic space via exponential and logarithmic maps, enabling the learned
item indices to better capture similarities between the textual semantics of items while providing
unique indexing representations for specific items. Furthermore, hyperbolic geometry’s exponential
volume growth and natural support for hierarchical structure further boost representational capacity,
especially for long-tail items, which tend to receive less attention in conventional Euclidean models.

Generative Recommender with Semantic IDs. To bridge the semantic gap, we introduce a series
of prompt instructions aligning textual semantics and collaborative semantics. By fine-tuning on
sequences of semantic IDs, we integrate collaborative knowledge into the LLM’s generative process,
enabling it to make more effective recommendations.

3.2 GENERATION OF SEMANTIC IDS

A key challenge in adapting LLMs for recommendation is encoding items into a compact set of
discrete tokens. We address this by generating a Semantic ID for each item in the hyperbolic space, a
structured sequence of learned indices derived from its textual features. Our method is built upon
RQ-VAE. We reformulate the quantization in hyperbolic space, whose geometric properties are better
suited for modeling the hierarchical and long-tail nature of item data.

Our model first uses an encoder to map an item’s embedding x into a Euclidean latent representation
ze ∈ Rd. This vector is then projected onto the poincaŕe ball Pd

κ using the exponential map expκ0 ,
yielding the projected latent representation zh ∈ Pd

κ. This vector zh serves as the initial residual,
r0, for the quantization process. At each quantization level l, we have a codebook Cl = {elk}Kk=1,
where K is the dimension of the codebook, and each code vector elk is a learnable cluster center. The
residual quantization process is performed recursively within the hyperbolic space. At each level,
we identify the index ci of the closest code vector and compute the residual for the next level, rl+1,
using Möbius subtraction:

ci = argmin
k

||ri ⊖κ eik||22, ri+1 = ri ⊖κ eici . (2)

The final quantized representation ẑh is constructed by aggregating the selected code vectors using
Möbius addition: ẑh = e1c1 ⊕κ · · · ⊕κ e

L
cL . This hyperbolic vector is then projected back to Euclidean

space with the logarithmic map logκ0 before being passed to the decoder to reconstruct the original
embedding x̂.

4
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LLM Base Model (Transformer Decoder)

a_1 a_2b_3 b_6c_6 c_8d_9 d_9

HypRQ-VAEItem Textual Information Semantic ID
Task Prompt

a_2

a_2

b_5

b_5

c_6

c_6

d_9

d_9Target Sequence

<s>

In a world where mutants... Arthur Fleck, a party clown... ...2000 2019 ...X-Men JOKER ...
Interaction


History
Title Title TitleYear Year YearDescription Description Description

#_2 Prompt Token d_9 Source Semantic ID d_9 Target Semantic ID H Semantic ID Generation

#_86 #_135 #_123 #_88 #_135#_168 #_99 #_22

<\s>

... next item:  

. . . 

Given user interaction sequence:  

Figure 4: An overview of our Transformer decoder-based architecture for generative recommendation
using semantic IDs. The figure illustrates the Supervised Fine-Tuning (SFT) stage, where a causal
attention mask ensures auto-regressive learning by forcing the model to predict the next token based
only on preceding tokens.

The model is trained by minimizing the loss function below, LRQ-VAE:

LRECON = ||x− x̂||22,

LRQ =

L∑
i=1

||sg[ri]− eici ||
2
2 + β||ri − sg[eici ]||

2
2,

LRQ-VAE = LRECON + γLRQ,

(3)

where LRECON is the reconstruction loss and LRQ is the quantization loss that optimizes the codebook
embeddings. The term sg[∗] denotes the stop-gradient operator, while β and γ are weighting
coefficients. The sequence of indices (c1, · · · , cL) generated during quantization forms the core of
the Semantic ID. As shown in Figure 3, an index sequence like (1, 3, 2, 9) is formatted into the
semantic ID of this item as <a_1><b_3><c_2><d_9>.

Unlike conventional vector quantization, RQ provides significantly larger representational capacity
with a smaller codebook. Moreover, its coarse-to-fine quantization naturally produces a hierarchical
item index, which aligns naturally with autoregressive generation. When integrating RQ into hyper-
bolic space, these benefits are amplified: the exponential expansion of hyperbolic space allows more
expressive and hierarchically structured embedding, enhancing representation and understanding of
the diverse items, including both head and long-tail items.

Handling Collisions. Compressing item content into discrete semantic IDs can cause collisions,
where different items are mapped to the same tokens. Prior works mitigated this issue by appending
auxiliary identifiers for conflicting items (Rajput et al., 2023; Hua et al., 2023), which can introduce
semantically unrelated information. Specifically, LC-Rec (Zheng et al., 2024) employs a uniform
distribution constraint in the final layer to minimize item indexing conflicts, while LETTER (Wang
et al., 2024) introduces regularizers to enhance code assignment diversity. However, these methods do
not completely resolve collisions, especially when the number of colliding items exceeds the capacity
of the last-level codebook or when semantically similar items are inherently difficult to distinguish.

To address this challenge, we utilize a systematic token reassignment methodology based on codebook
proximity metrics. Given a set of M colliding items, we construct a distance tensor D ∈ RM×L×K ,
where each element dik ∈ D represents the hyperbolic distance between the residual vector ri and
code vector eik across all codebook levels. After sorting these distances along the code dimension
to generate an index I. We implement a cascading assignment strategy starting from the last level.
Each item is initially assigned its nearest available token. In case of conflicts, the item with the
smallest distance to that token is assigned its index, while the other items consider the next closest
available token. If the last level cannot accommodate all items with unique tokens, we proceed to the
second-to-last level and repeat this process, continuing iteratively up the levels until every item is
assigned a unique identification.
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Table 1: Comparison of methods across three datasets. H and N denote Hit Rate and NDCG,
respectively. Bold numbers indicate the best results, while numbers with an underline indicate the
second-best. The final row depicts the % improvement with our method over the strongest baseline.

Method MovieLens Instruments Arts

H@5 H@10 N@5 N@10 H@5 H@10 N@5 N@10 H@5 H@10 N@5 N@10

MF 0.0343 0.0609 0.0220 0.0305 0.0444 0.0551 0.0364 0.0399 0.0202 0.0262 0.0162 0.0181
Caser 0.0422 0.0651 0.0276 0.0349 0.0525 0.0706 0.0479 0.0541 0.0267 0.0394 0.0191 0.0232

SASRec 0.0518 0.0936 0.0274 0.0435 0.0596 0.0717 0.0336 0.0405 0.0381 0.0519 0.0212 0.0269
P5-TID 0.0228 0.0281 0.0157 0.0175 0.0002 0.0002 0.0001 0.0001 0.0006 0.0006 0.0004 0.0005
P5-CID 0.0612 0.0920 0.0398 0.0503 0.0537 0.0626 0.0470 0.0498 0.0400 0.0498 0.0324 0.0355
TIGER 0.0565 0.0856 0.0386 0.0480 0.0608 0.0716 0.0529 0.0563 0.0412 0.0506 0.0337 0.0367
LC-Rec 0.0553 0.0871 0.0355 0.0456 0.0620 0.0780 0.0530 0.0570 0.0413 0.0505 0.0340 0.0369

LETTER 0.0649 0.0964 0.0410 0.0535 0.0600 0.0730 0.0520 0.0550 0.0383 0.0495 0.0317 0.0353

Ours 0.0652 0.1010 0.0423 0.0539 0.0690 0.0830 0.0600 0.0650 0.0425 0.0528 0.0348 0.0381
+ 0.5% + 4.8% + 3.2% + 0.7% + 11.3% + 6.4% + 13.2% + 14.0% + 2.9% + 4.3% + 2.4% + 3.3%

3.3 GENERATIVE RECOMMENDER WITH SEMANTIC IDS

We formulate next-item prediction as a sequence-to-sequence generation task over semantic IDs.
As illustrated in Figure 4, a HypRQ-VAE is first trained on the textual content of items in the
user’s Interaction History to encode each item into a discrete, l-length Semantic ID (ci,1, · · · , ci,l).
A user’s history is then represented as a chronologically ordered sequence of these IDs. This
sequence is flattened into a single token stream: (c1,1, · · · , c1,l, c2,1, · · · , c2,l, · · · , cn,1, · · · , cn,l),
and subsequently embedded within a prompt template to form the full input sequence (see Appendix C
for an example).

The model is trained in an autoregressive manner to generate the ID of the next item,
(cn+1,1, · · · , cn+1,l). We optimize the model by minimizing the negative log-likelihood of the
target sequence:

Lθ = −
|Y|∑
j=1

logPθ(Yj |Y<j ,X), (4)

where θ represents the model parameters, X is the input prompt containing the historical item IDs, Y
is the target item’s ID sequence, and Y<j are all tokens in the target sequence before the j-th token.

During inference, the goal is to generate the next item that best aligns with the user’s pref-
erences. The model autoregressively produces the sequence of semantic ID tokens: Ŷt =

argmaxv∈V Pθ(v|Ŷ<t,X), where V is the vocabulary including all possible semantic ID tokens.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate our model on three widely adopted real-world recommendation datasets:
MovieLens 2, and the Instruments and Arts from the Amazon 3 dataset (Ni et al., 2019). Detailed
information and the statistics are provided in Appendix A.

Baselines. We compare our model, HYPRQ-VAE against a strong set of baselines (see Appendix B
for a brief description): MF (Rendle et al., 2012), a matrix factorization model with BPR loss;
Caser (Tang & Wang, 2018), which uses CNNs to capture sequential patterns; and SASRec (Kang
& McAuley, 2018), a self-attention-based model. P5 (Hua et al., 2023), with two different item
identifier strategies: title-based (TID) and collaborative-based (CID); TIGER (Rajput et al., 2023),
which uses a Euclidean RQ-VAE for codebook-based identifiers; LC-Rec (Zheng et al., 2024) and
LETTER (Wang et al., 2024), two recent models that also generate codebook-based identifiers with
advanced alignment and semantic integration techniques.

2https://movielens.org/
3https://jmcauley.ucsd.edu/data/amazon/
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Table 2: Performance comparison of Euclidean and hyperbolic methods on the three datasets. The
relative improvements compared with Euclidean method is denoted by ∆H.

Metric Method MovieLens Instruments Arts

H20 T80 All H20 T80 All H20 T80 All

Hit@5
TIGER 0.0872 0.0103 0.0565 0.0982 0.0013 0.0608 0.0691 0.0031 0.0412
Ours 0.0914 0.0153 0.0652 0.1099 0.0018 0.0690 0.0707 0.0036 0.0425
∆H + 4.82% + 48.54% + 15.52% + 11.88% + 31.95% + 13.42% + 2.32% + 16.13% + 3.29%

Hit@10
TIGER 0.1292 0.0203 0.0856 0.1161 0.0021 0.0716 0.0834 0.0058 0.0506
Ours 0.1474 0.0310 0.1010 0.1305 0.0028 0.0830 0.0868 0.0068 0.1010
∆H + 14.09% + 52.71% + 17.97% + 12.34% + 36.23% + 15.97% + 4.08% + 17.24% + 5.28%

NDCG@5
TIGER 0.0578 0.0067 0.0386 0.0865 0.0008 0.0529 0.0570 0.0020 0.0337
Ours 0.0599 0.0092 0.0423 0.0954 0.0010 0.0600 0.0583 0.0024 0.0348
∆H + 3.63% + 37.31% + 9.62% + 10.23% + 23.99% + 13.50% + 2.28% + 20.00% + 3.31%

NDCG@10
TIGER 0.0735 0.0099 0.0480 0.0923 0.0012 0.0563 0.0616 0.0029 0.0367
Ours 0.0759 0.0142 0.0539 0.1020 0.0015 0.0650 0.0635 0.0035 0.0381
∆H + 3.27% + 43.43% + 12.18% + 10.49% + 22.56% + 15.39% + 3.08% + 20.69% + 3.84%

Implementation Details. For all baselines, we use the default hyperparameters from their official
implementations to ensure a fair comparison. For evaluation, we adopt the leave-one-out strategy
and report top-K, Hit Rate (Hit@K), and NDCG@K for K=5, 10. Following standard practice, we
perform a full ranking over all items. For all generative models, the beam size is set to 20 during
inference. Further details are available in Appendix C.

4.2 OVERALL PERFORMANCE

We first compare HYPRQ-VAE against all baselines on the three datasets, and the overall results
are shown in Table 1. Based on these results, we can find: (1) Among the LLM-based models with
ID identifiers, P5-TID directly utilizes the title of items as the identifier; its relatively strongest
performance on MovieLens suggests that longer token sequences increase the difficulty of accurate
item prediction. (2) Models like P5-CID and LETTER demonstrate the benefit of incorporating
collaborative signals, achieving strong performance on dense datasets like the MovieLens dataset. (3)
Our proposed HYPRQ-VAE consistently outperforms all baselines in three datasets, highlighting the
advantages of its underlying architecture. Its superior performance can be attributed to the exponen-
tially growing capacity of hyperbolic space, which allocates more representational power to long-tail
items than Euclidean embeddings, thus leading to significantly improved overall performance.

4.3 ANALYSIS OF LONG-TAIL PERFORMANCE

While hyperbolic models have shown promise, their specific advantages, especially for long-tail
recommendation, remain underexplored. To address this, we investigate a critical question: How does
hyperbolic geometry specifically impact recommendation performance on head versus tail items?

Performance on Head vs. Tail Items. To investigate the above question, we partition items in each
dataset into head (top 20% most popular, H20) and tail (remaining 80%, T80) sets based on their
popularity. We then compare the performance of HYPRQ-VAE against its Euclidean counterpart,
TIGER (RQ-VAE). The results in Table 2 reveal a clear pattern: while HYPRQ-VAE improves
performance on head items, the most substantial gains are consistently observed on tail items. For
example, on MovieLens, HYPRQ-VAE improves Hit@10 by over +52.71% for tail items, a much
larger margin than for head items (+14.09%).

Furthermore, as shown in Figure 5, we analyze the composition of the top-5 recommendation lists
(More detailed results, including top-10 recommendations, can be found in Appendix D). The
results show that HYPRQ-VAE recommends a significantly higher proportion of tail items than
the Euclidean model, regardless of whether the ground truth item belongs to the head or tail. This
confirms that our model does not just improve metrics but actively promotes item diversity.

Quantifying Representation Quality. We hypothesize that these performance gains stem from the
ability of hyperbolic space to better represent sparse, long-tail items during quantization. In Euclidean
space, distant and sparse tail items are often treated as outliers, leading to poor representations during
quantization. In contrast, Hyperbolic space’s exponential expansion and tree-like structure naturally
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Figure 5: Comparative performance of the RQ-VAE and HypRQ-VAE models regarding top-5
predictions across three datasets, highlighting each model’s tendency to recommend popular (head)
or niche (tail) items when evaluated against ground truth preferences.

Table 3: Comparison of AQE for H20 and T80 items. The ∆H-T column shows the percentage
difference between H20 and T80 AQE within each space.

# Items AQE (Euclidean Space) AQE (Hyperbolic Space) Gain
(%)

Dataset H20 T80 H20 T80 ∆H-T
(%) H20 T80 ∆H-T

(%)

MovieLens 551 2,200 0.025,64 0.025,68 −0.16 0.001,09 0.001,04 4.81 4.97
Instruments 1,985 7,937 0.022,91 0.023,67 −3.32 0.001,92 0.001,93 −0.52 2.80
Arts 4,192 16,764 0.021,78 0.022,76 −4.50 0.001,33 0.001,34 −0.75 3.75

accommodate this sparsity, allowing clustering centers to meaningfully represent both dense popular
items and sparse niche items by preserving their structural relationships and maintaining appropriate
distance during the quantization process. This geometry naturally organizes items into an implicit
hierarchy. Popular items liked by many (e.g., flowers and fruit) are positioned near the hyperbolic
origin—the "trunk" of the tree. Conversely, niche items appreciated by specific groups—like a
paintbrush for a painter or a guitar for a musician—are placed further out towards the boundary,
resembling the "branches" (Yang et al., 2022).

To test this hypothesis, we introduce the Quantization Error (QE) to measure the distance between
an item’s original embedding and its assigned cluster center (codebook vector). We calculate the
Average Quantization Error (AQE) for both H20 and T80 in both spaces. Detailed results are shown
in Table 3. While the absolute AQE values are not directly comparable due to their distinct geometric
properties, the relative difference within each space is highly informative. The results reveal distinct
patterns in how head and tail items are represented across different spaces. In Euclidean space, head
items consistently have a lower AQE compared to tail items, confirming they are better represented.
However, the hyperbolic space demonstrates a more balanced representation: the disparity between
head and tail items is substantially reduced in the Instruments and Arts datasets. Most notably, on
MovieLens, tail items achieve a lower AQE than head items, aligning with the massive performance
boost observed for tail items in Table 2. This provides strong quantitative evidence that hyperbolic
geometry leads to a more balanced and effective representation for both popular and niche items.

4.4 ABLATION STUDY

3 4 5 6 7 8
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0.100

0.105
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Figure 6: Performance of HYPRQ-VAE over differ-
ent hyperparameters on MovieLens.

Length of Semantic IDs. We conducted an
ablation study by varying the length L of
the semantic IDs from 3 to 8 (see Figure 6).
We can notice that performance rises steadily
as L increases from 3 to 6, indicating that
shorter identifiers may fail to encode suffi-
cient fine-grained details, thus limiting their
expressiveness. However, further increasing
L from 6 to 8 results in a performance de-
cline. This is a plausible outcome of error
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accumulation inherent in autoregressive generation, as the task of accurately generating a longer
sequence of codes is inherently more challenging than generating a shorter one, thus affecting the
overall item prediction accuracy.

Codebook Dimension. We explored the effect of codebook dimension K on the performance of
HYPRQ-VAE by testing values of 64, 128, 256, and 512, as shown in Figure 6. The results suggest
that a gradual increase in K generally leads to improved performance. The lower performance
observed with smaller codebooks may be attributed to insufficient code diversity, limiting the model’s
capacity to differentiate items effectively. However, excessively large codebooks can lead to a decline
in performance, potentially due to increased sensitivity to noise in the item’s semantic information,
which can result in overfitting on less meaningful aspects.

5 RELATED WORK

Generative Recommendation. LLMs have shown promising prospects for generative recommen-
dation, where effective item tokenization is crucial. Existing item tokenization research primarily
investigates three types of identifiers for item indexing: ID identifiers (Hua et al., 2023), textual
identifiers (Tan et al., 2024), and codebook-based identifiers (Rajput et al., 2023). While randomly
assigned IDs struggle to encode semantic information and collaborative patterns of items effectively,
ID identifiers such as SemID (Hua et al., 2023) and CID (Hua et al., 2023) utilize item semantic
information and collaborative signals to construct tree-like structures for generating identifiers. How-
ever, these fixed, unlearnable structures struggle to efficiently represent item similarity and adapt
to new items. Codebook-based identifiers leverage codebooks and attempt to integrate semantic
information and collaborative signals during the training process. However, they overlook the mis-
alignment introduced by incorporating collaborative signals into fixed code sequences, as well as
the code assignment bias. For example, TIGER (Rajput et al., 2023) employs standard RQ-VAE to
generate the identifiers of items, LC-Rec (Zheng et al., 2024) uses the Sinkhorn-Knopp Algorithm
to employ a uniform distribution constraint in the last layer to mitigate item indexing conflicts, and
LETTER (Wang et al., 2024) introduces regularizers to enhance code assignment diversity. However,
these methods typically operate in Euclidean space. In this work, we propose a hyperbolic model that
generates semantic tokenizations for items with hyperbolic representation.

Hyperbolic Learning. Growing evidence shows that many real-world datasets exhibit non-Euclidean
structure and benefit from hyperbolic representations (Ganea et al., 2018; Shimizu et al., 2020). Early
work applied Poincaré embeddings to capture hierarchical relationships in complex networks (Nickel
& Kiela, 2017; Tifrea et al., 2018; Balazevic et al., 2019). More recently, hyperbolic geometry has
been incorporated into advanced deep architectures, such as the recurrent neural network (He et al.,
2024), attention network (Gulcehre et al., 2018), and graph neural network (Chami et al., 2019) to
exploit its ability to model hierarchy and hierarchy-like structure. In recommender systems, hyper-
bolic approaches such as HGCF (Sun et al., 2021) and HICF (Yang et al., 2022) have demonstrated
superior preference modeling over Euclidean baselines. In contrast to these studies, which focus on
traditional collaborative filtering, our work is the first to integrate hyperbolic embeddings into the
generation of semantic IDs, opening new avenues for hyperbolic-driven generative recommendation.

6 CONCLUSION

In this paper, we proposed HYPRQ-VAE, the first framework to integrate hyperbolic geometry into
residual quantized variational autoencoders for item indexing in generative recommender systems.
By leveraging the exponentially expanding capacity of hyperbolic space, our model effectively
addresses the semantic misalignment between language models and recommendation tasks, while
simultaneously improving performance for long-tail items. Comprehensive experiments across
multiple benchmark datasets validate our approach HYPRQ-VAE consistently outperforms Euclidean-
based models, particularly in tail-item recommendation. Our analysis confirms this is due to a more
balanced and effective quantization of both popular and niche items in hyperbolic space. This work
highlights the potential of hyperbolic geometries to enhance generative recommendation and opens
new avenues for developing more expressive and equitable item indexing methods.
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ETHICS STATEMENT

Our study focuses on developing and evaluating new methods for recommender systems, with
experiments conducted on publicly available benchmark datasets. No human subjects, personally
identifiable information, or sensitive user data were involved. We acknowledge that recommendation
technologies can potentially amplify biases or reinforce popularity imbalances; our work explicitly
addresses this concern by investigating methods to better model long-tail items, thereby promoting
fairness and diversity in recommendations. We have taken care to ensure compliance with ethical
standards in dataset usage, legal requirements, and research integrity, and we disclose no conflicts of
interest or external sponsorship that could create undue influence.

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. The full source code and
processed data are released through an anonymous GitHub repository, enabling direct replication of
our experiments. Detailed implementation settings, including model architecture, training procedures,
are provided in Section 4, with additional implementation details and hyperparameters in Appendix C.
The datasets used are publicly available. Together, these resources allow independent researchers to
reproduce our results and validate our findings.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were employed exclusively as general-purpose writing aids, assisting with grammar correction,
and improving readability. They were not used for research ideation, methodology design, data
analysis, or interpretation of results. All conceptual contributions, technical methods, experiments,
and findings were entirely authored and verified by the research team.
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A DATASET STATISTICS

Table 4: Statistics of three real-world benchmarks.

Datasets # Users # Items # Interactions # Density
All H20(%) T80(%)

Movie Lens 6,040 2,751 59.97 40.03 1,000,000 6.018%
Instruments 24,773 9,922 61.00 39.00 206,153 0.084%

Arts 45,142 20,956 57.65 42.35 390,832 0.041%

We evaluate our model on three widely adopted real-world recommendation datasets, including
Instruments, Arts from the Amazon4 dataset (Ni et al., 2019), and MovieLens. Each item includes
both a title and a description; for MovieLens, we augment each movie with its plot overview from
TMDB5 as the description of it. Following previous work (Hou et al., 2022), we filter out users and
items with less than five interactions, then order each user’s remaining interactions chronologically to
form behavior sequences. To align with baseline settings, we truncate all sequences to a maximum
length of 20. The statistics of the dataset are in Table 4, where H20 and T80 denote the average ratio
of the head items and tail items appearing in user’s preference.

B BASELINES

We compare our method with the following baseline methods, including standard sequential recom-
menders and LLM-based models:

• MF (Rendle et al., 2012) decomposes the user-item interactions into the user embeddings and
the item embeddings in the latent space.

• Caser (Tang & Wang, 2018) employs convolutional neural networks to capture users’ spatial
and positional information.

• SASRec (Kang & McAuley, 2018) employs self-attention mechanisms to capture long-term
dependencies in user interaction history.

• P5-TID (Hua et al., 2023) uses the title of items as textual identifiers for the LLM-based
generative recommender model.

• P5-CID (Hua et al., 2023) incorporates collaborative signals into the identifier for LLM-
based generative recommender models through a spectral clustering tree derived from item
co-appearance graphs.

• TIGER (Rajput et al., 2023) introduces codebook-based identifiers via RQ-VAE, which quan-
tizes semantic information into code sequence for LLM-based generative recommendation.

• LC-Rec (Zheng et al., 2024) uses codebook-based identifiers and auxiliary alignment tasks
to better utilize knowledge in LLMs by connecting generated code sequences with natural
language.

• LETTER (Wang et al., 2024) integrates hierarchical semantics, collaborative signals, and
code assignment diversity to conduct effective item tokenization for LLM-based generative
recommendation.

C EXPERIEMENT DETAILS

Parameter Settings. We use the default hyperparameter settings in the released code of the corre-
sponding publications. This ensures that our experiments remain consistent and comparable. For
the proposed method, we have listed the hyperparameter settings in the Table 5 below for Stage 1
(Generation of Semantic IDs) and Stage 2 (Generative Recommendation with Semantic IDs).

4https://jmcauley.ucsd.edu/data/amazon/
5https://www.themoviedb.org/
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Table 5: Training setup across two stages.

Phase Component Value

Stage 1

Input Title + Description
β 0.25
γ 4
Layer of codebooks L 4
Dimension of each codebook K 256
Optimizer Adam
LR 1e−3

Epoch 5000

Stage 2

Model LLaMA2-7B + LoRA
LoRA Config r = 8, α = 32, dropout = 0.05

Optimizer AdamW
LR 1e−4 (cosine schedule)
Epochs 4

Prompt Template. Our approach is framed in an LLM-based generative manner, where sequential
item prediction serves as the primary tuning objective. Each instruction is personalized by combining
a user’s chronological interaction history, represented as a sequence of the semantic IDs we generate,
with a natural language prompt. To enhance the model’s generalizability and robustness, we designed
a diverse set of prompt templates. An example of one such template is provided below:

Prompt Template

Instruction: The user has interacted with the following items in sequence: {semantic
IDs of interaction items}. Based on this interaction history, please predict the next item
the user is most likely to engage with.

Response: {semantic ID of target item}

Table 6: Performance Comparison of RQ-VAE and HypRQ-VAE on Three Datasets (Top-5 Predic-
tions).

Dataset Method GTH -RH GTH -RT GTT -RH GTT -RT

Movie-Lens RQ-VAE 88.32% 11.67% 79.48% 20.51%
HypRQ-VAE 81.88% 18.09% 69.43% 30.57%

Instruments RQ-VAE 91.21% 8.79% 88.15% 11.85%
HypRQ-VAE 86.18% 13.82% 82.82% 17.18%

Arts RQ-VAE 89.29% 10.71% 87.41% 12.59%
HypRQ-VAE 83.03% 16.97% 79.53% 20.47%

D PERFORMANCE ANALYSIS ON HEAD VS. TAIL ITEMS

We calculated the proportion of head and tail items within the top-k predictions. The results are
presented in the tables below (Table 6 and Table 7), where GTH indicates that the ground truth (target
item) is a head item, and GTT indicates a tail item. RH and RT refer to the ratio of H20 and T80
items in the top-k predicted list.

The results consistently show that the HypRQ-VAE model predicts a higher proportion of tail items
compared to the standard RQ-VAE. This is evident across all three datasets and for both top-5 and
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Table 7: Performance Comparison of RQ-VAE and HypRQ-VAE on Three Datasets (Top-10 Predic-
tions).

Dataset Method GTH -RH GTH -RT GTT -RH GTT -RT

Movie-Lens RQ-VAE 86.26% 13.73% 77.82% 22.17%
HypRQ-VAE 79.32% 20.65% 67.23% 32.75%

Instruments RQ-VAE 88.65% 11.35% 85.24% 14.76%
HypRQ-VAE 83.88% 16.12% 80.14% 19.86%

Arts RQ-VAE 86.34% 13.66% 84.39% 15.61%
HypRQ-VAE 79.96% 20.04% 76.68% 23.32%

top-10 predictions, regardless of whether the ground truth item is a head or tail item. When the
ground truth is a head item (GTH ), RQ-VAE’s predictions are heavily skewed towards other head
items, exhibiting a high RH . In contrast, HypRQ-VAE demonstrates a lower RH and a higher
RT in its predictions compared to RQ-VAE. This indicates that HypRQ-VAE is more effective
at incorporating a mix of tail items. When the ground truth is a tail item (GTT ), the difference
is even more pronounced. HypRQ-VAE significantly increases the proportion of tail items in its
predictions, with its RT values being substantially higher than those of RQ-VAE. This demonstrates
HypRQ-VAE’s enhanced ability to recommend less popular, long-tail items, which is particularly
beneficial for long-tail recommendation scenarios.

(a) TIGER (b) LC-REC (c) LETTER (d) HYPRQ-VAE

Figure 7: Code paths across codebook layers for various methods on MovieLens. Compared with RQ-
VAE, HYPRQ-VAE achieves a remarkably even token distribution without the need for additional
regularizers or constraints.

E VISUALIZATION OF CODEBOOK UTILIZATION

Figure 8: Uniform Distribu-
tion Initialization.

We further visualize the code path across codebook layers for different
methods. The number of nodes for each layer matches the size of the
corresponding codebook, and the node size reflects the degree of the
respective token. The results are shown in Figure 7, and we can notice
that: When compared to TIGER, LC-Rec shows a more uniformly
distributed token assignment in its last layer, and LETTER achieves
a more balanced distribution across its last three layers. Notably,
HYPRQ-VAE as a hyperbolic adaptation of RQ-VAE, achieves a
remarkably even token distribution without the need for additional
regularizers or constraints.

Moreover, we investigated different initialization strategies and discov-
ered an interesting phenomenon: when employing uniform distribution
initialization, the code identifiers for each layer exhibited a distinc-
tive distribution pattern (as shown in Figure 8). Furthermore, as the
number of layers increased, additional representational space became
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necessary to differentiate increasingly granular levels of information. This observation suggests a
promising direction for future work, specifically, the adaptive adjustment of dimensional capacity
at each layer to optimize spatial utilization throughout the network architecture. Specifically, the
previous layers might focus on broad semantic categories, requiring less space, while subsequent
layers refine these into finer levels of information, demanding increased dimensionality. An adaptive
approach could dynamically allocate resources, potentially leading to more compact and efficient
representations.
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