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ABSTRACT

Clustering and prediction are two primary tasks in the fields of unsupervised and
supervised machine learning. Although much of the recent advances in machine
learning have been centered around those two tasks, the interdependent, mutually
beneficial relationship between them is rarely explored. One could reasonably
expect appropriately clustering the data would aid the downstream prediction task
and, conversely, a better prediction performance for the downstream task could
potentially inform a more appropriate clustering strategy. In this work, we focus
on the latter part of this mutually beneficial relationship. To this end, we introduce
Deep Goal-Oriented Clustering (DGC), a probabilistic framework that clusters the
data by jointly using supervision via side-information and unsupervised modeling
of the inherent data structure in an end-to-end fashion. We show the effectiveness of
our model on a range of datasets by achieving prediction accuracies comparable to
the state-of-the-art, while, more importantly in our setting, simultaneously learning
congruent clustering strategies. We also apply DGC to a real-world breast cancer
dataset, and show that the discovered clusters carry clinical significance.

1 INTRODUCTION

Much of the advances in supervised learning in the past decade are due to the development of
deep neural networks (DNN), a class of hierarchical function approximators that are capable of
learning complex input-output relationships. Prime examples of such advances include image
recognition (Krizhevsky et al., 2012), speech recognition (Nassif et al., 2019), and neural transla-
tion (Bahdanau et al., 2015). However, with the explosion of the size of modern datasets, it becomes
increasingly unrealistic to manually annotate all available data for training. Hence, understanding
inherent data structure through unsupervised clustering is of increasing importance.

Several approaches to apply DNNs to unsupervised clustering have been proposed in the past
few years (Caron et al., 2018; Law et al., 2017; Xie et al., 2016; Shaham et al., 2018), centering
around the concept that the input space in which traditional clustering algorithms operate is of
importance. Hence, learning this space from data is desirable, in particular, for complex data. Despite
the improvements these approaches have made on benchmark clustering datasets, the ill-defined,
ambiguous nature of clustering still remains a challenge. Such ambiguity is particularly problematic
in scientific discovery, sometimes requiring researchers to choose from different, but potentially
equally meaningful clustering results when little information is available a priori (Ronan et al., 2016).

When facing such ambiguity, using direct side-information to reduce clustering ambivalence proves
to be a fruitful direction (Xing et al., 2002; Khashabi et al., 2015; Jin et al., 2013). Direct side-
information is usually available in terms of constraints, such as the must-link and the cannot-link
constraints (Wang & Davidson, 2010; Wagstaff & Cardie, 2000), or via a pre-conceived notion
of similarity (Xing et al., 2002). However, defining such direct side-information requires human
expertise, which could be labor intensive and potentially vulnerable to labeling errors. On the contrary,
indirect, but informative, side-information might exist in abundance, and may not require human
expertise to obtain. Being able to learn from such indirect information to form a congruous clustering
strategy is thus immensely valuable.

Main Contributions We propose Deep Goal-Oriented Clustering (DGC), a probabilistic model
that is capable of using indirect, but informative, side-information to form a pertinent clustering
strategy. Specifically: 1) We combine supervision via side-information and unsupervised data
structure modeling in a probabilistic manner; 2) We make minimal assumptions on what form the

1



Under review as a conference paper at ICLR 2021

supervised side-information might take, and assume no explicit correspondence between the side-
information and the clusters; 3) We train DGC end-to-end so that the model simultaneously learns
from the available side-information while forming a desired clustering strategy.

2 RELATED WORK

Most related work in the literature can be classified into two categories: 1) Methods that utilize extra
side-information to form better, less ambiguous clusters; however, such side-information needs to
be provided beforehand and cannot be learned; 2) Methods that can learn from the provided labels
to lessen the ambiguity in the formed clusters, but these methods rely on the cluster assumption
(detailed below), and usually assume that the provided labels are discrete and the ground truth labels.
This excludes the possibility of learning from indirectly related, but informative side-information.
We propose a unified framework that allows using informative side-information directly or indirectly
to arrive at better formed clusters. Latent space sharing among different tasks has been studied in
a VAE setting (Le et al., 2018; Xie & Ma, 2019). In this work we utilize this latent space sharing
framework, but instead focus on clustering with the aid of general, indirect side-information.

Side-information as constraints Using side-information to form better clusters is well-studied.
Wagstaff & Cardie (2000) consider both must-link and cannot-link constraints in the context of
K-means clustering. Motivated by image segmentation, Orbanz & Buhmann (2007) proposed a
probabilistic model that can incorporate must-link constraints. Khashabi et al. (2015) proposed a
nonparametric Bayesian hierarchical model to incorporate noisy side-information as soft-constraints.
Vu et al. (2019) utilize constraints and cluster labels as side information. Mazumdar & Saha (2017)
give complexity bounds when provided with an oracle that can be queried for side information. Wasid
& Ali (2019) incorporate side information through the use of fuzzy sets. In supervised clustering,
the side-information is the a priori known complete clustering for the training set, which is being
used as a constraint to learn a mapping between the data and the given clustering (Finley & Joachims,
2005). In contrast, we do not assume that the constraints are given a priori. Instead, we let the
side-information guide the clustering procedure during the training process.

Semi-supervised methods & the cluster assumption Semi-supervised clustering approaches gen-
erally assume that they only have access to a fraction of the true cluster labels. Via constraints as the
ones discussed, the available labels are propagated to unlabeled data, which can help mitigate the
ambiguity in choosing among different clustering strategies (Bair, 2013). The generative approach to
semi-supervised learning introduced in Kingma et al. (2014) is based on a hierarchical generative
model with two variational layers. Although it was originally meant for semi-supervised classification
tasks, it can also be used for clustering. However, if used for clustering, it has to strictly rely on the
cluster assumption,which states that there exists a direct correspondence between labels/classes and
clusters (Färber et al., 2010; Chapelle et al., 2006). We show that this approach is a special case
of our framework without the probabilistic ensemble component (see Sec. 4.2) and when certain
distributional assumptions are made. Sansone et al. (2016) proposed a method for joint classification
and clustering to address the stringent cluster assumption most approaches make by modeling the
cluster indices and the class labels separately, underscoring the possibility that each cluster may
consist of multiple class labels. Deploying a mixture of factor analysers as the underlying probabilistic
framework, they also used a variational approximation to maximize the joint log-likelihood.

In this work, we generalize the notion of learning from discrete, ground truth labels to learning from
indirect, but informative side-information. We make virtually no assumptions on the form of y nor its
relations to the clusters. This makes our approach more applicable to general settings.

3 BACKGROUND & PROBLEM SETUP

3.1 BACKGROUND—VARIATIONAL DEEP EMBEDDING

The starting point for DGC is the variational auto-encoder (VAE) (Kingma & Welling, 2014) with the
prior distribution of the latent code chosen as a Gaussian mixture distribution. This is introduced
in Jiang et al. (2017) as VaDE. We briefly review the generative VaDE approach here to provide
the background for DGC. We adopt the notation that lower case letters denote samples from their

2



Under review as a conference paper at ICLR 2021

corresponding distributions; bold, lower case letters denote random variables/vectors; and bold upper
case letters denote random matrices.

Assume the prior distribution of the latent code, z, belongs to the family of Gaussian mixture
distributions, i.e. p(z) =

∑
c p(z|c)p(c) =

∑
c πcN (µc, σ

2
c I) where c is a random variable, with

prior probability πc, indexing the normal component with mean µc and variance σ2
c . VaDE allows

for the clustering of the input data in the latent space, with each component of the Gaussian mixture
prior representing an underlying cluster. A VAE-based model can be efficiently described in terms of
its generative process and inference procedure. Given an input x ∈ Rd, the following decomposition
of the joint probability p(x, z, c) details VaDE’s generative process: p(x, z, c) = p(x|z)p(z|c)p(c).
In words, we first sample the component index c from a prior categorical distribution p(c), then
sample the latent code z from the component p(z|c), and lastly reconstruct the input x through the
reconstruction network p(x|z). To perform inference and learn from the data, VaDE is constructed to
maximize the log-likelihood of the input data x by maximizing its evidence lower bound (ELBO):

log p(x) ≥ Eq(z|x) log p(x|z)− Eq(c|x) log
q(c|x)
p(c)

− Eq(z,c|x) log
q(z|x)
p(z|c) (1)

where, given the input x, q(z, c|x) denotes the variational posterior distribution over the latent
variables, and Ed denotes the expectation wrt. distribution d. With proper assumptions on the prior
and variational posterior distributions, the ELBO in Eq. 1 admits a closed-form expression in terms
of the parameters of those distributions. We refer readers to Jiang et al. (2017) for additional details.

3.2 PROBLEM SETUP

Figure 1: The Bayesian network
that underlies the generative pro-
cess of DGC. θ and π together con-
stitute the generative parameters.

Unlike the unsupervised settings, we do assume we have a
response variable y, and our goal is to leverage y to inform a
better clustering strategy. Abstractly, given the input-output
random variable pair (x, y), we seek to divide the probability
space of x into non-overlapping subspaces that are meaningful
in explaining the output y. In other words, we want to use the
prediction task of mapping data points, x, sampled from the
probability space of x to their corresponding sampled outcomes
y as a teaching agent, to guide the process of dividing the prob-
ability space of x into subspaces that optimally explain y. Since
our goal is to discover the subspace-structure without knowing
a priori whether such a structure indeed exists, a probabilistic
framework is more appropriate due to its ability to incorporate
and reason with uncertainty. To this end, we use and extend the
VaDE framework, with the following assumption imposed on
the latent code that specifically caters to our setting. Assume
the input x carries predictive information with respect to the
output y. Since the latent code z should inherit sufficient information from which the input x can
be reconstructed, it is reasonable to assume that z also inherits that predictive information. This
assumption implies that x and y are conditionally independent given z, i.e. p(x, y|z) = p(x|z)p(y|z).

4 DEEP GOAL-ORIENTED CLUSTERING

4.1 GENERATIVE PROCESS

In order to incorporate y into a probabilistic model, recall from our previous discussion that y might
manifest with respect to the input differently across different subspaces of the input space. Viewing
p(y|z) as a conditional probability distribution over y resulting from a functional transformation from
z to the space of probability distributions over y, we can assume that the ground truth transformation
function, gc, is different for each subspace indexed by c. If z ∼ p(z|c) for some index c, we assume
p(y|z, c) ∝ gc(z) for some subspace-specific gc. As a result, we learn a different mapping function
for each subspace.

The overall generative process of our model is as follows: 1. Generate c ∼ Cat(π); 2. Generate
z ∼ p(z|c); 3. Generate x ∼ p(x|z); 4. Generate y ∼ p(y|z, c). The Bayesian network that
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underlies DGC is shown in Fig. 1, and the joint distribution of x, y, z, and c can be decomposed as:
p(x, y, z, c) = p(y|z, c)p(x|z)p(z|c)p(c).

4.2 INFERENCE & VARIATIONAL LOWER BOUND

We first note that the joint variational posterior distribution q(z, c|x, y) can be factorized as
q(z, c|x, y) = q(c|x, z, y) · q(z|x, y). Since we assume we do not have access to the side-information
y at test time, we do not use y to compute q(z|x, y) (in reality, this entails that the encoder only takes
x as input to compute the latent code z). We omit the variable y in q(z|x, y) for the rest of the paper
for notation convenience. See Sec. 4.4 for how to compute q(c|x, z, y) at test time when y is not
available. With this setup, we have the following variational lower bound (see the Appendix for a
detailed derivation)

log p(x, y) ≥ Eq(z,c|x,y) log p(y|z, c)︸ ︷︷ ︸
Probabilistic Ensemble

+Eq(z,c|x,y) log
p(x, z, c)
q(z, c|x, y)︸ ︷︷ ︸

ELBO for VAE with GMM prior

= LELBO .
(2)

The first term in LELBO allows for a probabilistic ensemble of classifiers based on the subspace index.
This can be seen as follows

Eq(z,c|x,y) log p(y|z, c) = Eq(z|x)

[∑
k

λk log p(y|z, c = k)

]
≈ 1

M

M∑
l=1

[∑
k

λk log p(y|z(l), c = k)

]
where λk = q(c = k|x) and l indexes the Monte Carlo samples used to approximate the expectation
with respect to q(z|x). The probabilistic ensemble allows the model to maintain necessary uncertainty
with respect to the discovered subspace structure until an unambiguous structure is captured.

It is also worth noting that the variational lower bound described in Eq. 2 holds regardless of the prior
distribution we choose for the latent code z. Although we choose the mixture distribution as the prior
in this work, choosing z ∼ N (0, I) and disregarding the probabilistic ensemble component would
recover the exact model introduced in Kingma et al. (2014) (when all labels are missing), and hence
is a special case of our proposed framework.

4.3 MEAN-FIELD VARIATIONAL POSTERIOR DISTRIBUTIONS

Following VAE (Kingma et al., 2014), we choose q(z|x) to beN
(
z|µ̃̃µ̃µz, σ̃̃σ̃σ

2
z I
)

where
[
µ̃̃µ̃µz, σ̃̃σ̃σ

2
z
]
= h(x; θ).

h is parameterized by a feed-forward neural network with weights θ. See the Appendix for a detailed
discussion of why using a unimodal distribution (i.e. q(z|x)) to approximate a multimodal distribution
(p(z)) is appropriate in our setting.

Choosing q(c|x, z, y) appropriately requires us to analyze the proposed LELBO in greater detail based
on the following decomposition (see the Appendix for a detailed derivation):

LELBO = Eq(z,c|x,y) log p(y|z, c)︸ ︷︷ ︸
1

+Eq(z|x) log
p(x, z)
q(z|x)︸ ︷︷ ︸

2

−Eq(z|x)KL (q(c|x, z, y)||p(c|z))︸ ︷︷ ︸
3

.
(3)

We observe that since 2 does not depend on c, q(c|x, z, y) should be chosen to maximize
(

1 − 3
)
.

Moreover, the expectation over q(z|x) does not depend on c, and thus has no influence over our
choice of q(c|x, z, y). Casting finding q(c|x, z, y) as an optimization problem, we have

min
q(c|x,z,y)

f0(q) = KL (q(c|x, z, y)||p(c|z))− Eq(c|x,z,y) log p(y|z, c) ,

s.t.
∑
k

q(c|x, z, y) = 1, q(c|x, z, y) ≥ 0, ∀k .
(4)

The objective functional f0 is convex over the probability space of q, as the Kullback–Leibler
divergence is convex in q and the expectation is linear in q. Analytically solving the convex program
(4) (see the Appendix for a detailed derivation), we obtain

q(c = k|x, z, y) = p(y|z, c = k) · p(c = k|z)∑
k p(y|z, c = k) · p(c = k|z)

. (5)
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First we note that since the solution q(c|x, z, y) does not depend on x, we omit x in q(c|x, z, y) for
the remainder of the paper for notational convenience. To better facilitate understanding, we interpret
Eq. 5 in two extremes. If y is evenly distributed across the different subspaces, i.e. the ground
truth transformations gc are the same for all c, then q(c|z, y) = p(c = k|z), which is what one
would choose for unsupervised clustering (Jiang et al., 2017). However, if the supervised task is
informative while the unsupervised task is not, i.e. p(c|z) is a uniform distribution, the likelihoods
{p(y|z, c = k)}k will dominate q. Therefore, one could interpret any in-between scenario as a
balance that automatically weights the supervised and the unsupervised tasks based on how strong
their signals are with respect to grouping the latent probability space into different subspaces.

4.4 EVALUATING ON UNLABELED DATA

We first introduce some notations that we will adopt in this section. We write p(y|z, c) to denote
the likelihood value, which requires a specific value of y to compute. We write py|z,c to refer to the
entire distribution (in the context of the entropy (H) and the expectation (E) operators we refer to
distributions, otherwise we refer to specific likelihoods). When presented with the response variable y,
Eq. 5 gives the optimal choice of q(c|z, y) that allows the network to incorporate both the supervised
and the unsupervised signals when weighting the clusters. In practice, we do not have access to y on
newly collected (test) data points, which prohibits us from evaluating q(c|z, y). One easy remedy
to this would be to use p(c|z) when y is not available; however, having an ensemble of well-trained
conditional likelihood mappings, {p(y|z, c = k)}k, and not utilizing them when evaluating on new
data points seems wasteful. We thus add a regularization term to LELBO, so that DGC can naturally
generalize to unlabeled testing samples. The regularized ELBO is:

Lregu
ELBO = LELBO − Eq(z,c|x,y)Hmax(py|z,c) , (6)

where Hmax(py|z,c) = max{H(py|z,c), 0} and H(py|z,c) = −Epy|z,c log py|z,c, which is the entropy of
the task network distributions. If y is a discrete random variable, Hmax(py|z,c) = H(py|z,c), which
is the entropy of py|z,c and always non-negative; on the other hand, when y is continuous, although
the differential entropy of py|z,c can take any sign, the max operator ensures that Hmax(py|z,c) will
remain non-negative. Therefore, adding (a convex combination of) negative entropies preserves the
inequality, and thus Lregu

ELBO remains a proper lower bound. Additionally, solving a similar convex
program provides the optimal choice of q(c|z, y) in the presence of the regularizer

q(c = k|z, y) = elog p(y|z,k)−Hmax(py|z,k) · p(k|z)∑
j e

log p(y|z,j)−Hmax(py|z,j) · p(j|z)
. (7)

This form of regularization penalizes the entropies of the conditional distributions py|z,c. More
specifically, clusters with higher posterior weights are penalized more towards having low entropies.
This aligns with our intuition: the most suitable cluster to explain a given sample y should be relatively
more certain in how it is distributed. We thus use Eq. 7 to weight the clusters during training. It is
worth noting that although Eq. 7 provides the optimal choice of q(c|z, y) for maximizing Lregu

ELBO, any
choice of q(c = k|z, y), as long as it maintains a proper probability distribution, would satisfy the
fact that Lregu

ELBO is a proper lower bound. Based on the previously stated intuition, when evaluating on
an unlabeled data point, we use

qtest(c = k|z, y) = e−Hmax(py|z,k) · p(k|z)∑
j e
−Hmax(py|z,j) · p(j|z)

(8)

to weight the clusters. This aligns with our previous reasoning: the cluster that corresponds to
p(y|z, c) with the lowest entropy will be weighted most heavily. This allows the model to use the
tuned conditional likelihood mappings when the side-information y is not available.

5 EXPERIMENTS

We investigate the efficacy of DGC on a range of datasets. We refer the reader to the Appendix for the
experimental details, e.g. the train/validation/test split, the chosen network architecture, the choices
of learning rate and optimizer.
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5.1 NOISY MNIST
We introduce a synthetic data experiment using the MNIST dataset, which we name the noisy
MNIST, to illustrate that the supervised part of DGC can enhance the performance of an otherwise
well-performing unsupervised counterpart. Further, we explore the behavior of DGC without its
unsupervised part to demonstrate the importance of capturing the inherent data structure. We extract
images that correspond to the digits 2 and 7 from MNIST. For each digit, we randomly select half of
the images for that digit and superpose noisy backgrounds onto those images (see the Appendix for
image samples). The binary random variable y indicates what digit each image belongs to. Our goal
is to cluster the images into 4 clusters: digits 2 and 7, with and without background. However, we are
only using the binary responses for supervision and have no direct knowledge of the background. We
therefore parameterize the task networks, {p(y|z, c = k}4k=1, as Bernoulli distributions where we
learn the parameters (the probabilities).

As a baseline, the unsupervised approach, VaDE, already performs well on this dataset, achieving
a clustering accuracy of 95.6% when the desired number of clusters is set to 4. Fig. 2a shows that
VaDE distinguishes well based on the presence or absence of the noisy background, and incorrectly
clustered samples are mainly due to VaDE’s inability to differentiate the underlying digits. This is
reasonable behavior: if the background signal dominates, the network may focus on the background
for clustering as it has no explicit knowledge about the digits.

(a) Confusion Matrix—VaDE (b) Confusion Matrix—DGC

Figure 2: Confusion matrices abbreviated, 2B/7B, in the
row/column labels denotes digits 2/7 with background. Rows
represent the predicted clusters, and columns represent the
ground truth.

DGC performs nearly perfectly (with
a clustering accuracy of 99.6%) in
this setting with the help of the added
supervision. We see that DGC miti-
gates the difficulty of distinguishing
between digits under the presence of
strong, noisy backgrounds (as shown
in Fig. 2b, where DGC makes almost
no mistakes in distinguishing between
digits even in the presence of noisy
backgrounds). This added supervi-
sion does not overshadow the original
advantage of VaDE (i.e. distinguish-
ing whether the images contain back-
ground or not). Instead, it enhances
the overall model in cases where the
unsupervised part, i.e. VaDE, struggles. Furthermore, as detailed in Sansone et al. (2016) and ear-
lier sections, most existing approaches that take advantage of available labels rely on the cluster
assumption, which assumes a one-to-one correspondence between the clusters and the labels used for
supervision. This experiment is a concrete example that demonstrates DGC does not need to rely on
such an assumption to form a sound clustering strategy. Instead, DGC is able to work with class labels
that are only partially indicative of what the final clustering strategy should be, potentially making
DGC more applicable to more general settings.

Ablation study To further test the importance of each part of our model, we ablate the probabilistic
components (i.e. we get rid of the decoder and the loss terms associated with it, so that only the
supervision will inform how the clusters are formed in the latent space) and perform clustering
using only the supervised part of our model. We find that clustering accuracy degrades from the
nearly-perfect accuracy obtained by the full model to 50%. Coupled with the improvements over
VaDE, this indicates that each component of our model contributes to the final accuracy and that our
original intuition that supervision and clustering may reinforce each other is correct.

5.2 PACMAN

In this experiment we test DGC’s ability to learn a clustering strategy when facing a continuous
response as side-information. The Pacman-shaped data consists of two annuli and each point in
the two annuli is associated with a continuous response value (see the Appendix for a detailed
breakdown). These response values decrease linearly (from 1 to 0) in one direction for the inner
(yellow) annulus, and increase exponentially (from 0 to 1) in the opposite direction for the outer
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(purple) annulus. Figure 3a contains a 3D illustration of the dataset. We use linear/exponential rates
for the responses to not only test our model’s ability to detect different trends, but also to test its
ability to fit different rates.

(a) Truth (b) Samples

Figure 3: (a) The ground truth 3D Pacman; (b)
The generated samples from DGC.

Our goal is to separate the two annuli depicted in
Fig. 3a. This is challenging as the annuli were delib-
erately chosen to be very close to each other. We ap-
plied various traditional unsupervised learning meth-
ods including K-means and hierarchical clustering to
only the 2D Pacman-shaped data (i.e., not using the
responses, but only the 2D Cartesian coordinates).
Besides hierarchical clustering with single linkage
(and not other distance metric), none of the unsuper-
vised methods managed to separate the two annuli.
Moreover, these approaches also result in different
clustering strategies as they are based on different
distance metrics (see the Appendix for these results).
This phenomenon echos a deep-rooted obstacle for
clustering methods in general: the concept of clustering is inherently subjective, and different distance
metrics can potentially produce different, but sometimes equally meaningful, clustering results.

Table 1: Test clustering accuracies on
the Pacman dataset

Models Test Clustering Accuracy
VaDE 50.4% ± 0%

NN-DGC 81.6% ± 5.3%
AUG-SS 82.3% ± 4.6%

DGC 93.5% ±% ±% ± 3.9%%%

Applying DGC with the input x as the 2D Cartesian point
coordinates and the responses y as the response values
described previously, we are able to distinguish the two
annulli wholly based on the discriminative information car-
ried by the responses. We parameterize the task networks,
{p(y|z, c = k}2k=1, as Gaussian distributions where we
learn the means and the covariance matrices. As the gen-
erated samples from Fig. 3b shows, both the Pacman shape
and its corresponding response values are captured.

The generated samples from DGC substantiate the model’s ability to appropriately learn and use the
side-information provided by the response values to obtain a sensible clustering strategy. Unlike
most previously discussed methods, DGC can work with continuous response values. This is highly
attractive, as it lends itself to any general regression setting in which one would believe the desired
clustering strategy should be informed by the regression task.

Finally, we compare DGC to VaDE, its ablated version, and a baseline method to substantiate the
efficacy of our proposed framework. First, although the solution to the convex programming in
Eq. 4 provides an optimal choice of q(c|z, y) from a theoretical standpoint, our proposed framework,
specifically the proposed LELBO (Eq. 2), holds for any choice of q(c|z, y). We thus ablate the convex
programming component of our model and parameterize q(c|z, y) using a neural network (NN-DGC).
Second, by choosing z ∼ N (0, I), the unsupervised part of DGC recovers exactly the semi-supervised
(SS) approach introduced by Kingma et al. (2014) in the case when all labels are missing. Since
SS is not expected to perform well in a purely unsupervised setting, we include the probabilistic
ensemble component as an augmentation (AUG-SS). The results described in Tab. 1 are obtained from
running each model 100 times, and demonstrate the following: 1) without the additional responses y,
VaDE cannot distinguish between the two annuli at all, emphasizing the importance of exploiting the
additional information; 2) the convex programming (Eq.4) is crucial to the success of DGC and it is
difficult for a neural network to find the same optimal distribution; 3) the choice of the prior on the
latent code z is also of paramount importance, and the Gaussian mixture distribution is more suitable
for modeling clusters than an isotropic Gaussian.

5.3 SVHN

We apply DGC to the Street View House Number (SVHN) dataset (Netzer et al., 2011) where the
digit labels (10 digits in total) are used as the ground truth clustering labels. This dataset consists of
73,257 training images, 26,032 test images, and 531,131 additional training images. We train DGC
using all the training and extra images. We parameterize the task networks, {p(y|z, c = k)}10k=1, as
multinomial distributions over the 10 digits where we learn the parameters of those distributions.
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(a) The Kaplan-Meier curves for DGC (b) The Kaplan-Meier curves for VaDE

Figure 4: The Kaplan-Meier risk differences curves among clusters from DGC and VaDE.

Table 2: Clustering (and classification) accuracy variation
over maximum possible clusters.

Clusters DGC K-means VaDE AUG-SS
10 92.6 (94.7) 88.0 28.7 78.8 (80.2)
20 91.9 (92.2) 56.1 16.4 76.2 (71.3)
50 87.9 (91.3) 27.3 14.7 74.3 (68.2)

100 84.1 (89.3) 17.0 9.3 71.3 (64.9)

The goal of this experiment is to inves-
tigate the impact of the hyperparameter,
the number of clusters desired, on the
overall framework. Ideally one would
hope that a model would effectively ig-
nore additional clusters when the num-
ber of chosen clusters is larger than the
number of ground truth clusters. Instead,
it should automatically determine how
many clusters are appropriate during learning, which is usually unknown a priori. To test if DGC has
this property, we alter the desired number of clusters. We use the class labels as the responses to
help the clustering. It is worth noting that while in general one will not use ground-truth labels as
side-information, we use them for this experiment as they provide a good idea of what a reasonable
number of clusters in latent space should be.

Table 2 demonstrates the clustering and classification accuracies obtained from DGC and various base-
lines over a varying number of underlying clusters. The results indicate that DGC most successfully
groups the data into the proper classes and clusters regardless of the number of clusters available.
Firstly, note that DGC outperforms VaDE and AUG-SS by significant margins, demonstrating the
importance of the added side-information and the Gaussian mixture prior assumption, respectively.
Additionally, although we use the ground truth labels as the side-information, DGC outperforms the
K-means baseline, where we perform the K-means clustering on the features obtained from the last
hidden layer of a classification network that is trained on the SVHN dataset (with a 95.7% classifi-
cation accuracy). This demonstrates the advantages of the latent space sharing and the end-to-end
nature of DGC. Secondly, even when the desired number of clusters is larger than the number of
digits, a network may still achieve a clustering accuracy of 100% if it learns to group samples into
a consistent set of clusters, with the cardinality of that set matching the number of digits. This is
echoed by the clustering accuracies shown in Tab. 2. When the desired number of clusters exceeds
10, DGC is still able to achieve high clustering accuracies. By comparison, the clustering accuracy
drops dramatically when the number of desired clusters increases for all baselines, demonstrating
DGC’s ability to choose an appropriate number of clusters.

5.4 CAROLINA BREAST CANCER STUDY (CBCS)

In this experiment we apply DGC to a real-world breast cancer dataset collected as part of the Carolina
Breast Cancer Study (CBCS). The dataset consists of 1,713 patients, each of which has 2-4 associated
histopathological images and a list of biological markers. e.g., the Pam50 gene expressions (Troester
et al., 2018) and ER status.

As an exploratory investigation, we use the binary indicator for breast cancer recurrence as the
response variable y. Applying deep learning techniques, supervised or unsupervised, to analyze
histopathological images of breast cancer has gained traction in recent years (Xie et al., 2019). Distin-
guished from those methods, our goal is to inspect whether the discovered clusters, whose formation
is influenced both by the supervised recurrence information and the unsupervised reconstruction
signal, carry meaningful information in terms of survival rate or gene expression. We parameterize
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the task networks, {p(y|z, c = k)}3k=1, as Bernoulli distributions and learn the associated parameters.
See the Appendix for experimental details.

To investigate whether the three clusters that we discovered were identifying meaningful differences
in tumor biology, we examine the differences in rates of cancer recurrence and features of tumor
aggressiveness between the clusters. We also compare to the baseline clusters obtained from the
purely unsupervised VaDE to corroborate the importance of the added side-information.

Table 3: The risk of recurrence differ-
ence (RRD) between clusters for DGC.

Comparsion RRD (95% CI)
Cluster 0 VS Cluster 1 16.3% (-6, 39)
Cluster 0 VS Cluster 2 30.0% (5, 55)

Using a Kaplan-Meier estimator to estimate risk differ-
ences for time to cancer recurrence within three years, we
obtained a p-value of 0.0024 and observed that Cluster 0
had the lowest risk of recurrence and Cluster 2 had the
highest risk (see Tab. 3). Even with the small sample size,
we observed substantial differences in recurrence risk at
three years of follow-up between the clusters, particularly
Clusters 0 and 2 (see Fig. 4a). By comparison, the differences in recurrence risk between the clusters
from VaDE is much less significant, both visually (see Fig. 4b, where two clusters almost overlap)
and in terms of p-value (0.073).

Table 4: Tumor characteristics for each cluster. Features are
color-coded as low , intermediate , or high risk.

Cluster 0 Cluster 1 Cluster 2
N(%) N(%) N(%)

ER Status Positive 15 (78.9) 53 (56.4) 42 (57.5)
Negative 4 (21.1) 41 (43.6) 31 (42.5)

Grade
Low 7 (36.8) 14 (14.9) 4 (5.5)

Medium 5 (26.3) 25 (26.6) 25 (32.4)
High 7 (36.8) 55 (58.5) 44 (60.3)

Tumor Subtype

Luminal A 10 (55.6) 27 (29.0) 16 (21.9)
Luminal B 6 (33.3) 17 (18.3) 19 (26.0)

ER-/HER2+ 1 (5.5) 8 (8.6) 3 (4.1)
Basal-like 1 (5.5) 41 (44.1) 35 (47.9)

Comparing tumor characteristics, we
observed that Cluster 0 contained
more indolent tumors, characterized
by good-prognosis features such as
estrogen-receptor (ER) positivity, low
grade, and Luminal A tumor subtype
(see Tab. 4). In contrast, more aggres-
sive tumor characteristics were fea-
tured in Clusters 1 and 2, such as neg-
ative ER status, high grade, and Basal-
like tumor subtype, although Cluster 1
appeared to be intermediate between
Cluster 0 and 2 in some characteris-
tics. Coupled with the differences in
cancer outcomes, these differences in
tumor characteristics indicate that the
method successfully distinguished between tumors with low-risk features (Cluster 0) and tumors with
intermediate- and high-risk features (Clusters 1 and 2). We include the same table that characterizes
tumor characteristic for clusters obtained from VaDE in the Appendix. As one can see, cluster 0 from
VaDE, which has the highest recurrence rate, should have the most negative ER subtype, the most
high grade, and the most Basal-like tumor subtype. As for grade, it is not the cluster with the most
high grade patients. For ER status and tumor subtype, it does have the highest negative ER subtype
and the most Basal-like tumor subtype, but the differences are much less significant compared to
the clusters obtained from DGC. This indicates that using recurrence side-information, via our DGC
approach, indeed resulted in more meaningful clusters.

6 CONCLUSION

In this work, we introduced DGC, a probabilistic framework that allows for the integration of both
supervised and unsupervised information when searching for a congruous clustering in the latent
space. This is an extremely relevant, but daunting task, where previous attempts are either largely
restricted to discrete, supervised, ground-truth labels or rely heavily on the side-information being
provided as manually tuned constraints. To the best of our knowledge, this is the first attempt to
simultaneously learn from generally indirect, but informative side-information and form a sensible
clustering strategy, all the while making minimal assumptions on either the form of the supervision
or the relationship between the supervision and the clusters. This method is applicable to a variety of
fields where an instance’s input and task are defined but its membership is important and unknown,
e.g., survival analysis. Training the model in an end-to-end fashion, we demonstrate that DGC is
capable of capturing a clustering that aligns with the provided information, while obtaining reasonable
classification results on various datasets.
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