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ABSTRACT

Developers often dedicate significant time to maintaining and refactoring existing
code. However, most prior work on generative models for code focuses solely on
creating new code, overlooking the distinctive needs of editing existing code. In
this work, we explore a multi-round code auto-editing setting, aiming to predict
edits to a code region based on recent changes within the same codebase. Our
model, Coeditor, is a fine-tuned language model specifically designed for code
editing tasks. We represent code changes using a line diff format and employ
static analysis to form large customized model contexts, ensuring the availability of
appropriate information for prediction. We collect a code editing dataset from the
commit histories of 1650 open-source Python projects for training and evaluation.
In a simplified single-round, single-edit task, Coeditor significantly outperforms
GPT-3.5 and SOTA open-source code completion models (bringing exact-match
accuracy from 34.7 up to 60.4), demonstrating the benefits of incorporating editing
history for code completion. In a multi-round, multi-edit setting, we observe
substantial gains by iteratively conditioning on additional user edits. We have
open-sourced our code, data, and model weights to encourage future research and
have released a VSCode extension powered by our model for interactive IDE usage.

1 INTRODUCTION

In recent years, there has been enormous interest in applying transformer models for code genera-
tion (Feng et al., 2020; Ahmad et al., 2021; Wang et al., 2021; Chen et al., 2021; Fried et al., 2022;
Allal et al., 2023), which has led to impressive performance on tasks such as program synthesis (Li
et al., 2022; Nijkamp et al., 2022), program translation (Lachaux et al., 2020; Szafraniec et al., 2022),
type inference (Jesse et al., 2022; Wei et al., 2023), and code auto-completion (Guo et al., 2021;
Svyatkovskiy et al., 2021; Nguyen & Nadi, 2022; Zhang et al., 2023).

While these approaches effectively help programmers creating new code, they are not as adept
at assisting with revising existing code. Code completion tools like GitHub Copilot do not track
programmers’ changes and cannot predict where and how to make additional modifications. However,
during a software project’s development cycle, developers often spend significant time editing code—
changes made to one part of the codebase typically affect many others, and manually propagating
these changes can be tedious and time-consuming.

In this paper, we introduce a task that we call (multi-round) auto-editing where the goal is to predict
edits to code conditioned on the user’s previous edits. In particular, given an original codebase U and
a set of code changes ∆1, . . . ,∆k that are semantically related (like those forming part of a commit),
the auto-editing problem is to predict how to modify a specified region of code u ∈ U by learning the
following distribution:

P (∆u | ∆k . . .∆1, U) . (1)

Importantly, we allow the target region u to overlap with any previous modifications ∆1, . . . ,∆k to
support repeated editing of the same region. This formulation enables the workflow illustrated in
Figure 1, where a user can work alongside the model in multiple editing rounds, accepting suggestions
matching the user’s intent and making additional edits manually if necessary.

∗Work performed while at UT Austin.
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Figure 1: The multi-round auto-editing task. The user inspects the model output in each editing
round and can optionally perform manual editing.

To solve this problem, we propose a new model called Coeditor that builds on top of the established
CodeT5 model architecture and pre-trained checkpoint (Wang et al., 2021). Coeditor is based on two
key ideas. First, it encodes all prior code edits ∆1, . . . ,∆k using a line-based diffing scheme and
decodes ∆u using masked span infilling; and, second, it uses lightweight static analysis to pull in
relevant parts of the codebase U . To effectively handle large contexts with numerous code changes,
we also replace CodeT5’s dense attention with a block-sparse attention pattern, allowing us to reduce
the computational cost while maintaining the ability to attend to all relevant code changes.

Another challenge in developing Coeditor is the lack of suitable training data for multi-round auto-
editing. We address this issue by collecting a new dataset, PYCOMMITS, from the commit histories
of 1650 open-source Python projects on GitHub. We compute tree-differences between adjacent
codebase versions to identify modifications to the same Python function and randomly split some
changes into the model input for training in repeated editing scenarios. During testing, we use ground
truth code changes to simulate user decisions regarding when to accept partial changes suggested by
the model and when to manually perform edits missed by the model.

We compare our approach against existing code infilling models and show that, even in a simplified
setting that requires predicting a single edited line in isolation, they severely lag behind our change-
aware model: our method achieves 60.4% exact match accuracy using a 220M parameter model,
whereas text-davinci-003—the best performing code infilling model we have compared,
which has 175 billion parameters—achieves only 30.5%. In the full multi-round setting, we found
that Coeditor automates editing 46.7% of the changed lines, saving the user 28.6% of keystrokes
measured by an edit distance metric that accounts for cursor movement.

In summary, this paper presents the following main contributions:

• We introduce the repo-level multi-round code editing task, along with the corresponding
PYCOMMITS dataset and evaluation framework.

• We introduce a new code editing model derived from CodeT5, using a line diff-based
encoding scheme and enhancements that enable the model to condition on long contexts and
appropriate other parts of the codebase, addressing key challenges in this setting.

• We release our source code, dataset, model checkpoint, as well as a VSCode extension that
supports interactive usage to foster future research.1

2 MOTIVATING EXAMPLE

In this section, we illustrate our technique using the example in Figure 2, showcasing a two-round
interaction between the user and our Coeditor model. Subfigures (a) and (b) display two initial user
changes, while subfigures (c) and (d) illustrate two sequential Coeditor invocations with inlined
model suggestions. We further analyze this example in detail below.

First, the user modifies the pack_batch function in subfigure (a) to read a new dictionary key,
“cost”, from each row in the input. The extracted values are used to compute the total cost

1Available at https://github.com/mrvplusone/Coeditor.
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Figure 2: An example usage of Coeditor. (a) The user first edits the pack_batch function to read
an additional dictionary key, “cost”, from each row in the input. (b) The user then removes 3 lines
at the top of the group_to_batches function. (c) The user now invokes Coeditor at the bottom half
of the same function. Coeditor correctly suggests adding a “cost” key to the dictionary variable
row, but it fails to address the now undefined variables underlined in red. (d) However, if the user
accepts the suggested change and manually introduces two new variables at line 209, Coeditor can
then suggest the correct changes accordingly.

of the batch and added to the output. Next, the user removes three lines at the top of the
group_to_batches function in subfigure (b). By removing these three lines, the user wants
to avoid creating these lists beforehand and instead plans to call the process_edit function inside
the for loop below.

The user then scrolls down and invokes Coeditor at the bottom half of the same function (subfigure
c). Here, the modified pack_batch function is called at lines 225 and 228 in subfigure (c), and
its argument current_batch is iteratively constructed from row, which is a dictionary defined at
line 215. Hence, the model correctly infers that row should be updated to include a “cost” key.
Examining the surrounding context, the model also identifies that the ex_cost variable (defined at
line 209) should be used as the inserted dictionary value.2

While Coeditor makes some useful editing suggestions so far, it does not address the now-undefined
variables underlined in red by the IDE in subfigure (c). In particular, as there are no obvious
alternatives nearby to replace these variables, Coeditor is unable to automatically fix these errors.
Such a situation is common when the surrounding changes alone do not provide sufficient information
to derive a complete solution. Therefore, the user can accept the partial changes suggested by the
model and then manually introduce two new variables at line 209, as shown in subfigure (d). Coeditor
can then leverage these new variables to suggest the correct changes needed to fix the errors.

This iterative approach allows Coeditor to adapt and refine its suggestions based on additional user
edits, providing a more effective code editing experience than existing code completion techniques.
By incorporating the editing history into the prediction context, Coeditor can better assist developers
in a wide range of code editing tasks, from simple modifications and refactoring to more complex

2Coeditor produces the same result even when pack_batch is defined far away or in a different file, as
Coeditor tracks all changes the user has made since the last commit and incorporates them into its context.
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codebase-wide updates. For a more comprehensive understanding, we have included a screen
recording of the Coeditor VSCode Extension, which can be found in the supplementary material.

3 METHODS

Recall from the introduction that we wish to model the distribution P (∆u | ∆k . . .∆1, U). To
this end, we first describe how to encode the target change ∆u and contextual changes ∆1 . . .∆k

(subsection 3.1). We then describe how to form the context from the codebase U using function
signatures (subsection 3.2). These choices naturally lead to a model compatible with fine-tuning
CodeT5, which was pre-trained on the masked span infilling task (subsection 3.3). Finally, we
describe our new dataset that is used to fine-tune this model (subsection 3.4).

3.1 ENCODING CODE CHANGES

A suitable format is required to map code changes into token sequences that can be processed by a
seq2seq transformer language model. In our setting, we want to select a format that encodes and
decodes code changes in a uniform manner while minimizing the number of tokens the model needs
to produce. Hence, we adopt a line-diff-based format, enabling us to convert auto-editing into a
masked span infilling problem (Wang et al., 2021).3

Consider a block of code u to be made up of lines l1, . . . , lm and a user-specified edit region that
spans between line a and a + n, where 1 ≤ a ≤ a + n ≤ m. Moreover, each line is associated
with a status variable si indicating what type of change (if any) has already been made; si ∈
{(empty), <add>, <del>}.4 We encode the input code by a function EncInput that (optionally)
prepends status tokens s1 . . . sm and placeholder tokens <1> . . . <n> at the start of each line:

EncInput(u) = s1l1s2l2 . . . <1>sala<2>sa+1la+1 . . . <n>sa+nla+n . . . smlm .

For contextual changes ∆1 . . .∆k, we can encode them using the same format but with an empty
edit region. When the target change ∆u contains line additions, denoting the jth line to be inserted
before line i as l′ij , we can encode ∆u using the following expression,

EncOutput(∆u) = <1>IaDa<2>Ia+1Da+1 . . . <n>Ia+nDa+n ,

where Ii = <add> l′i1<add> l′i2 . . . <add> l′i|Ii| ,

Di = if li is to be deleted then <del> else (empty) .

Note that we add a further restriction that forbids Di from being <del> if si is <add> in order to
prevent the model from modifying a line that has just been added; we discuss this in more detail in
section 6. Figure 3 illustrates this line-diff-based encoding scheme using the example from Figure 2.
This format ensures that if we replace the placeholder tokens in the input with the corresponding
changes specified in the output sequence, we obtain the total change that combines u and ∆u.

3.2 ANALYZING RELEVANT SIGNATURES

Having described how we encode code changes, we must also establish a method for feeding U ,
the remaining codebase, to the model. Simply inputting the entire codebase as is would result in an
excessive number of tokens, overwhelming the context. Instead, inspired by the ideas proposed in
previous type inference work (Pradel et al., 2020; Wei et al., 2020; 2023), we employ lightweight
static analysis to extract the most relevant information into the context, as outlined below.

For each target code region u, we analyze its pre-edit code and generate a list of its usages.5 In the
case of a function usage, we retrieve its function signature; for a variable or class member usage, we
retrieve the first statement in which it was assigned. We then concatenate all these usages into a single

3Prior work has proposed various methods to produce code changes. e.g., Zhang et al. (2022) learns the
distribution P (u′ | u) and Reid & Neubig (2022) tags each input token with a label indicating deletion, insertion,
or replacement. However, these methods require more copying or tagging, resulting in longer output sequences
compared to our approach.

4We represent edits as line diffs output by Differ.compare using the standard difflib library.
5We use the Jedi package for this purpose: https://github.com/davidhalter/jedi.
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Figure 3: Coeditor encoding format. (Left) the input sequence adds placeholder tokens to indicate
code region to edit. (Top right) the output sequence specifies further changes at each placeholder
token. (Bottom right) relevant signatures are retrieved from the codebase and added to the context.
(In this example, the Python module is called motivating).

Figure 4: Coeditor encoder sparse attention pattern. All attention between the reference blocks are
skipped to avoid the quadratic cost of dense attention.

“document”, as shown at the bottom right of Figure 3, which serves as additional input context. This
approach allows the model to access the most pertinent information about the current code region
and significantly improves model performance (Table 5), while generating only a small number of
extra tokens in the context (Table 2).

3.3 ADAPTING CODET5

Our model is based on the architecture and pre-trained weights of CodeT5 (Wang et al., 2021).
CodeT5 was pre-trained on a large corpus of code data using the masked span infilling objective,
making it a suitable choice for our problem. We employ the CodeT5-base model, containing 220M
parameters, and fine-tune it for our code auto-editing setting. Although the original CodeT5 model
was pre-trained with a small sequence length of 512, its relative positional encoding scheme allows
us to fine-tune it on much longer sequences for our problem.

Considering that a single commit may encompass numerous code changes, concatenating all changes
into a single input can lead to long token sequences that are difficult for the CodeT5 model to
process with dense attention. To mitigate this issue, we replace the full attention in its encoder with a
block-sparse attention pattern, illustrated in Figure 4. This pattern divides the input sequences into
multiple reference blocks and a query block. The query block contains the code to be edited, whereas
each reference block encodes a contextual unit change ∆uj or a chunk of the signature document. We
limit the sequence length of each block to 512 tokens for references and 1024 for the query, dividing
longer blocks into multiple ones if necessary. The self-attention within each block is performed as
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Table 1: General statistics of the PYCOMMITS dataset.
train valid test

projects 1550 50 50
used commits 217K 5006 5854
modified files 501K 10.1K 11.1K
modified functions 958K 20.1K 22.5K
modified lines 7.10M 143K 169K

Table 2: Additional statistics specific to our technique, computed over the test set.
definition median mean max ≥ max

query tokens EncInput(u) 258 361.9 1024 7.8%
output tokens EncOutput(∆u) 60 89.7 512 1.3%
prev change tokens EncInput(∆1 . . .∆k) 1625 4.14K 16.4K 11.2%
signature tokens {signature(v)}v∈usages(u) 313 515.5 15.9K 0.0%

usual, but the attention between different reference blocks is skipped to save computation, similar
to other retrieval-augmented models (Izacard & Grave, 2021). However, we still allow the query
block to attend to and be attended by all reference blocks (a global attention block (Beltagy et al.,
2020; Zaheer et al., 2020)). We also set the relative distance between each reference and the query to
be infinite when computing the relative positional encoding, making the model is insensitive to the
ordering of the references. We are able to use a total of 16.4K reference tokens at test time, which is
sufficient to cover 88.8% of problem instances in our test set without truncating the context (Table 2).
See subsection A.2 for more discussion of long-document attention mechanisms.

3.4 THE PYCOMMITS DATASET

To train our model, we gather real-world code changes from the commit histories of open-source
Python projects, a dataset we call PYCOMMITS. For each commit, we first identify which changes
are made to the same code unit (a unit can be either a function, a region of a class, or a region of a
module) and subsequently separate the commit into a list of unit additions, unit deletions, or unit
modifications. As our work primarily focuses on code editing, only unit modifications are used as
training labels, while the other two types of changes remain visible to the model as context.

For each unit modification, we create a training problem instance that instructs the model to predict
the code change based on all prior (but not future) changes from the same commit. Git does not
record the editing order of changes within the same commit, so we employ a simple heuristic that
sorts unit changes according to their source code locations and the import order between modules.
Specifically, we assume that units within the same file are modified from top to bottom, and if a
module imports another module, changes in the imported module occur before those in the importing
module.6 To train our model for the proposed multi-round editing setting, we generate synthetic data
demonstrating repeated editing to the same code unit as follows: for those code change involving
least two changed lines, we randomly sample a subset of the changes as the prediction target and line
the remaining changes into the input. For example, the problem instance shown in Figure 3 can be
generated by inlining 2 of the 6 changed lines in the input.

We construct a new code editing dataset using the commit history of 1,650 Python projects with
permissive licenses (MIT, Apache, and BSD) sourced from GitHub. We use 50 of the projects for
testing and 50 for validation and use the remaining 1,550 projects for training. We use at most 1000
commits per project per project to ensure that the model is trained on a diverse set of code changes.
We show the general statistics in Table 1 and the statictics that are specific to our technique in Table 2.
Tokenization is performed using the CodeT5 tokenizer.

6Note that this ordering mainly affects how we generate the training and testing data. At test time, our model
can condition on changes both above and below the edit region.

6



Published as a conference paper at ICLR 2024

Table 3: Performance on 5000 code completion instances extracted from edits (PYCOMMITS-
ONELINE). Add EM and Replace EM are the (enhanced) exact-match accuracies on addition and
replacement change, respectively.

Model Parameters Context Exact Match Rate (%)
Add Replace Overall

InCoder1B 1.3B 2K 29.0 25.2 26.2
InCoder6B 6.7B 2K 34.0 30.4 31.3
SantaCoder 1.1B 2K 31.0 28.1 28.8
StarCoder7B 7B 8K 37.9 33.7 34.8
text-davinci-003 175B 4K 40.2 39.3 39.5
Coeditor 220M 16K 47.1 64.9 60.4

4 EVALUATION

In this section, we first compare Coeditor with prior code completion approaches on a simplified
version of the editing task. We then report Coeditor’s performance on the proposed multi-round
editing task and conduct ablation studies. Example model outputs are included in the appendix.

Training Setup We initialize Coeditor with the CodeT5-base checkpoint (220M parameters) and
train the model on our training set for 1.75 epoch, gradually increasing the model reference context
size from 2048 tokens to 4096 tokens (at epoch 1) and then to 8192 tokens (at epoch 1.5). We use
Huggingface’s Trainer implementation and the AdamW optimizer, with a linear learning rate schedule
with a starting learning rate of 2e-5 and 0.01 weight decay. We train the model with a fixed batch
size of 1 and a total of 1.34 million training steps. Training took about 5 days on a single NVIDIA
Quadro RTX 8000 GPU with 48 GB memory.

4.1 COMPARISON WITH CODE COMPLETION APPROACHES

Baselines We compare Coeditor with four open-source code generation models: InCoder-1B,
InCoder-6B (Fried et al., 2022), SantaCoder (Allal et al., 2023), and StarCoder7B (Li et al., 2023).
All four code generation models have been trained with the Fill-in-the-middle pre-training objec-
tive (Aghajanyan et al., 2022). We also compare Coeditor with OpenAI’s text-davinci-003
model, which is the most recent GPT model supporting an infilling interface.7

Creating test instances We generate code completion problem instances from real commits as
follows. For each code change in PYCOMMITS, we take the last changed line as the completion
target. If the last change is a modification, we delete the modified line and let the model fill in the new
version of the line. If the last change is a deletion, we simply discard the change. We then inline all
changes before the target into the prediction context. This inlining process is implemented differently
for each model: for our Coeditor model, the inlined changes are visible to our model following the
encoding scheme described in subsection 3.1; for the code completion models, we simply apply
the inlined changes to the original code and use the resulting state as the model input. Also note
that while our model constructs its prediction context using relevant changes and static analysis (as
described in subsection 3.2), the code completion models (which are unaware of code changes) only
use the code surrounding the completion target as the prediction context. We call this test dataset,
derived from our PYCOMMITS test set, PYCOMMITS-ONELINE.

Results We report the performance (without fine-tuning on this task) of all approaches in Table 3.
We use an enhanced exact-match (EM) accuracy metric that performs semantic-preserving code
normalization before checking for string equivalence.8 All results, except for text-davinci-003,
were obtained by measuring 5000 randomly sampled code completion problems from our test set.
text-davinci-003 was evaluated using only 1000 problems to reduce cost. We see that Coeditor

7We also experimented with prompting gpt3.5-turbo for this task using either a suffix-then-prefix format
or some natural language instructions followed by code with a special <MISSING LINE> marker, but these
variants worked less well than text-davinci-003’s native infilling API.

8We normalize Python code by (1) parsing the code into a syntax tree using the ast library, (2) removing any
comments and docstrings, (3) sorting all keyword arguments in function calls, and (4) un-parsing the syntax tree.
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Table 4: Multi-round evaluation results measured on 5000 problems from the PYCOMMITS test set.
Lines, Levenshtein, and Keystrokes are the average total gains in the corresponding metrics. Rounds
is the average number of rounds needed to complete all desired changes.

Setting Lines (%) Levenshtein (%) Keystrokes (%) Rounds

SingleRound 28.5 23.1 19.2 1
MultiRound 46.7 25.9 28.6 2.43

significantly outperforms the other code generation models for both addition and replacement
changes. Despite only using a 220M parameter model, Coeditor achieves an overall EM of 60.4%,
which is approximately 1.5 times higher than the best performing code completion model (39.5%),
demonstrating the significant benefits of incorporating editing history for code completion. We also
include 3 example model outputs on this task in the appendix (subsection A.3).

4.2 MULTI-ROUND EDITING

This evaluation focuses on the editing assistant use case where we assume the user has some desired
code changes in mind, and we aim to evaluate how much the model can save the user’s effort by
automating as much changes as possible, potentially under the guidance of the user. The user can
accept partial changes suggested by the model and make additional changes manually if needed.

Evaluation workflow To evaluate the above use case automatically, we use the ground-truth code
changes to simulate the user’s actions. In particular, when the model predicts a list of changes, we
compare the predicted changes against the ground truth changes line-by-line and accept any line
change that exactly matches the ground truth. If none of the suggested changes match the ground
truth, we assume the user will manually perform the first remaining change. In both cases, after the
additional changes, we rerun the model to obtain new suggestions and repeat until all desired changes
have been performed or the round limit = 6 has been reached. In the end, we compute the total gain
using the difference between the editing cost of the ground truth and the accumulative editing cost of
all manually performed edits.

Measuring editing cost There are multiple ways to measure the cost of performing a code change.
Since there is no consensus on the best metric, we report 3 metrics in our results. Prior work (Lavazza
et al., 2023) suggests that for code understanding tasks, simple line counts-based metrics are almost
as good as more complex metrics, hence our first metric, Lines, simply measures the number of
changed lines before and after the edit. We also report Levenshtein, the classic Levenshtein editing
distance metric that measures the minimal number of character addition, deletion, and substitution
needed to transform one string into another. Although simple, the Levenshtein distance doesn’t model
many important aspects of code editing, such as the cost associated with cursor movement, and it also
under-count the cost of substitution and over-count the cost of large deletions. Hence, we propose an
additional metric, Keystrokes, that aims to better approximate the number of needed user keystrokes
than Levenshtein by allowing for batch deletion and accounting for the cost of cursor movements.
We describe this metric in detail in the subsection A.1.

Results We report the evaluation results on 5000 problems sampled from our test set in Table 4, and
we also report the single-round performance for reference. We see that Coeditor achieves much larger
total gains under the multi-round setting, especially when measured with the Lines and Keystrokes
metric (which we believe more accurately captures the user editing effort than Levenshtein). We also
show 3 examples of the model’s suggestions in the appendix (subsection A.4).

4.3 ABLATION STUDIES

We retrain the model with various components disabled to study their impact on the overall model
performance. We report the (single-round) exact match performance of each variation on the entire
PYCOMMITS validation set in Table 5. The results show that removing any of the components leads
to a decrease in performance, highlighting the importance of each component in the overall model.
Specifically, when we remove the explicit feeding of code changes (No Diffs), the EM drops the
most, from 42.1% to 26.1%. When we disable the static analysis component (No Signatures), the EM
decreases to 33.3%. Using a smaller limit of reference tokens impacts the model performance the
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Table 5: Ablation results on the entire validation set (PYCOMMITS). All pairwise differences are
statistically significant with p < 0.05 using a paired bootstrap test.

Ablation Description EM (%)

No Diffs Feeding the same input to the model except that all changes are
replaced with their post-edit results alone.

26.1

No Signatures Disabling the static analysis component and removing function
and class signatures from the prediction context.

33.3

Small Context Reducing the max number of reference tokens from 16K to 2048. 39.8
No Ablation Model trained with our default settings. 42.1

least, reducing EM to 39.8%. All results reported in Table 5 were obtained by training the model for
half amount of training steps to save compute.

5 RELATED WORK

The past work most similar to our setting is that of Brody et al. (2020), which also targets a contextual
code editing setting. However, it can only predict a restrictive set of code changes expressable as
moving, deleting, or copying existing AST nodes and cannot generate novel expressions that are
not present in the input. It also doesn’t make use of modern transformer architecture or pre-training
techniques. In contrast, Ni et al. (2021) takes a rule-based approach, using program synthesis methods
to distill similar change patterns in the context and make editing suggestions accordingly.

There is also prior work on non-contextual code change prediction settings. In Chakraborty et al.
(2020), the authors use past code patches to train the model to perform similar edits and evaluate it on
future edits in the same codebase. However, since the model does not condition on relevant changes,
their technique requires retraining the model for new types of edit patterns. Panthaplackel et al.
(2020a) proposes augmenting the decoder with a direct copying mechanism to help a encoder-decoder
model perform editing tasks. Zhang et al. (2022) proposes a de-noising pre-training scheme, in which
they randomly corrupt actual code snippets and train the model to predict the uncorrupted version
from the corrupted version. Tufano et al. (2021) focuses on predicting code review changes using
developer discussions. Reid & Neubig (2022) focuses on modeling the iterative editing process of
texts and code and proposes a different change encoding scheme that represents edits at the word-level
based on the Levenshtein algorithm.

Lastly, there is prior work that focuses on on learning to update code comments (Panthaplackel et al.,
2020b) or generating natural language descriptions (Panthaplackel et al., 2022) from code changes.
This work, we focus on measuring our model’s ability to make correct code changes and remove
comments and doc-strings before measuring the exact accuracy.

6 CONCLUSION AND LIMITATIONS

In this paper, we presented Coeditor, a novel approach for repository-level code auto-editing. Building
on the CodeT5 architecture, our model incorporates line diff format and static analysis to create large
customized model contexts. We demonstrated that Coeditor significantly outperforms existing code
completion methods in a simplified single-round, single-edit task. Furthermore, our model shows
substantial performance improvements in a more complex multi-round, multi-edit setting.

One limitation of our current work is assuming that the user would manually identify the region of
code requiring changes and then invoke the model to predict where and how to make these changes
within that region. A promising direction for future work would be to extend the model to help
users identify the regions of code that need to be changed within the entire codebase, enabling new
types of usage such as auto-refactoring. Furthermore, as mentioned in subsection 3.1, our model is
designed to not modify any lines in the input that have already been modified. While this simplifies
the evaluation and prevents undesirable model behaviors such as disregarding changes already made
by the user or getting stuck in an infinite editing loop, it can also limit the practical usage of our tool.
Therefore, it would be valuable to explore methods that allow the model to collaborate with users in
finer-grained editing units in future research.
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A APPENDIX

A.1 KEYSTROKE DISTANCE

We developed a string distance metric incorporating the cost of cursor movement, approximating the
number of keystrokes needed to transform an input string into an output string.

Given the initial state with i = len(input), j = len(output), cursor_dis =
init_cursor_dis, and deleting = False, the cost is calculated using dynamic programming
with the optimal combination of the following operations:

• M: Match character (cost=0), requires input[-i] == output[-j] and not deleting,
results in i -= 1, j -= 1, and cursor_dis += 1.

• D: Delete input character (cost=1), requires cursor_dis == 0 and not deleting, re-
sults in i -= 1.

• A: Add output character (cost=1), requires cursor_dis == 0 and not deleting, results
in j -= 1.

• C: Move cursor to current position (cost=min(cursor_dis, cursor_jump_cost)), re-
quires no conditions, results in cursor_dis = 0.

• S: Begin deletion (cost=1), requires cursor_dis == 0 and not deleting, results in
deleting = True.

• K: Continue deletion (cost=0), requires deleting, results in i -= 1.

• E: End deletion (cost=1), requires cursor_dis == 0 and deleting, results in deleting
= False.

Where cursor_jump_cost is a constant that we set to 4 when reporting our results. The worst-case
complexity of this algorithm is O(len(input) × len(output) × cursor_jump_cost). This
model does not consider copying or pasting operations.

Note that in some cases, the total gain can be negative when measured with Levenshtein or Keystroke
distance. For example, the Levenshtein distance of modifying a sentence is lower than the total of
first deleting the sentence and then adding a new one.

A.2 DISCUSSION OF SPARSE ATTENTION MECHANISMS

The block-sparse attention pattern we described in subsection 3.3 follows past work on retrieve-and-
read models for natural language question answering. Specifically, it resembles Fusion-in-Decoder
(Izacard & Grave, 2021) with three changes. First, we have no notion of a question that is jointly
encoded with each retrieved snippet. Second, our target code block u is given special status in the
encoder and can globally attend to each retrieved snippet. Third, we modify the relative positional
encoding to make each query “infinitely” far from the reference.

Our approach also resembles Longformer (Beltagy et al., 2020) or BigBird (Zaheer et al., 2020), most
notably in how our query block’s cross-attention with the references can be viewed as an instance of
global attention. However, our segments do not come from a coherent context, so our local attention
component is a block-diagonal sparse matrix rather than a sliding window as in those methods.
Our modification to relative position encoding also makes our model invariant to the ordering of
references, helping it generalize to different editing orders at inference time.

A.3 CODE COMPLETION EXAMPLES

To help the reader see why including contextual changes can be beneficial for (editing-related) code
completion problems, we compare Coeditor and InCoder6B’s outputs on 3 example problems from
our test set in the next few pages (Figure 5–Figure 10). These examples are sampled from a subset
that are small enough to be presentable within one or two pages and in which Coeditor outperforms
InCoder6B.
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A.4 MULTI-ROUND EDITING EXAMPLES

We show 3 multi-round editing examples from our test set in Figure 11–Figure 15. These examples
are sampled from a subset that are small enough to be presentable within two pages and in which
Coeditor achieved 50–100 total keystrokes edit gain.
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Figure 5: Code completion example 1. Coeditor sees from the relevant contextual changes (shown in
Figure 6) that some get_asynclib() calls should be replaced with get_async_backend(), so it
correctly suggested the change based on the deletion before the infilling point. InCoder was not able
to see the deletion and infilled the original code given only the surrounding code.

Figure 6: Code completion example 1: relevant contexts. The changes highlighted in orange tell
Coeditor that some get_asynclib() calls should be replaced with get_async_backend().
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Figure 7: Code completion example 2. Coeditor was able to suggest the correct code based on a
similar change from another file (Figure 8, highlighted in orange), whereas InCoder was not able to
see the change and suggested a wrong statement.

Figure 8: Code completion example 2: relevant contexts.
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Figure 9: Code completion example 3. Coeditor was able to suggest adding the correct attribute
initialization based on the new usage highlighted in Figure 10, whereas InCoder was not able to see
the new usages and hallucinated a new attribute.
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Figure 10: Code completion example 3: relevant contexts.

18



Published as a conference paper at ICLR 2024

Figure 11: Multi-round editing example 1. Coeditor correctly suggested a subset of the ground-truth
changes. Contextual changes omitted for this example.
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Figure 12: Multi-round editing example 2 (round 3). Coeditor misunderstood the user’s intention and
suggested adding two more arguments to the EncodedVideo.from_path function call. Under our
multi-round evaluation strategy, we assume the user would then manually add the next line from the
ground truth changes (see the next figure).
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Figure 13: Multi-round editing example 2 (round 4). With the next line change from the ground truth
added, Coeditor understood that the user intended to only change the calling style and was thus able
to suggest the correct change.
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Figure 14: Multi-round editing example 3. Coeditor was able to predict the correct change in the first
editing round by identifying a similar change inside a different function (see Figure 15, highlighted
in orange).
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Figure 15: Multi-round editing example 3 (reference blocks). The bottom changes highlighted in
orange are similar to the changes needed in Figure 14.
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