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ABSTRACT

Instance-reweighted adversarial training (IRAT) is a type of adversarial training
that assigns large weights to high-importance examples and then minimizes the
weighted loss. The importance often uses the margins between decision bound-
aries and each example. In particular, IRAT can alleviate robust overfitting and
obtain excellent robustness by computing margins with an estimated probability.
However, previous works implicitly dealt with binary classification even in the
multi-class cases, because they computed margins with only the true class and the
most confusing class. The computed margins can become equal even with dif-
ferent true probability examples, because of the complex decision boundaries in
multi-class classification. In this paper, first, we clarify the above problem with a
specific example. Then, we propose margin reweighting, which can transform the
previous margins into appropriate representations for multi-class classification by
leveraging the relations between the most confusing class and other classes. Ex-
perimental results on the CIFAR-10/100 datasets demonstrate that the proposed
method is effective in boosting the robustness against several attacks as compared
to the previous methods.

1 INTRODUCTION

While convolutional neural networks (CNNs) achieve excellent performance on various tasks, they
are vulnerable to adversarial examples (Szegedy et al., 2014; Goodfellow et al., 2015) with mali-
cious, perturbed samples. Such perturbation is a threat against CNN-based AI systems (e.g., those
for autonomous driving or medical diagnosis) because it is imperceptible to humans. Thus, there are
various effective approaches to mitigate the negative impact of perturbation (Papernot et al., 2016;
Samangouei et al., 2018; Xu et al., 2018; Madry et al., 2018). Among them, adversarial training
(AT) (Madry et al., 2018) is well known as an attractive defense strategy because of its clarity and
efficacy.

Instead of using benign examples, AT trains adversarial examples generated by projected gradient
descent (PGD) (Madry et al., 2018). Although AT can achieve excellent robustness, it can also
exhibit performance degradation for benign examples or robust overfitting (Zhang et al., 2019; Rice
et al., 2020). Instance-reweighted adversarial training (IRAT) (Zeng et al., 2021; Kim et al., 2021;
Zhang et al., 2021; Wang et al., 2021; Gao et al., 2021) is an effective method among the many
approaches developed to overcome these issues.

IRAT computes the margins between the decision boundaries and each example as the importance,
which is transformed into weights with a nonlinear increasing function. Then, it minimizes the
weighted classification loss by assigning these weights to each example. Geometry-aware instance-
reweighted adversarial training (GAIRAT), proposed by (Zhang et al., 2021), decides the importance
for each example by the least PGD steps (LPS). GAIRAT represents the margin in an input space,
because the LPS is the number of steps to cause an adversarial example to cross decision boundaries,
starting from a benign example. Smaller-margin examples are closer to the decision boundaries and
are assigned larger weights. Although GAIRAT achieves better robustness than standard AT, it is
vulnerable against attacks other than PGD because it defines the importance in terms of the LPS.

Meanwhile, margin-aware instance reweighting learning (MAIL) (Wang et al., 2021) successfully
overcomes the weakness of GAIRAT by defining the importance with estimated probabilities.
Specifically, it transforms the difference between two probabilities, i.e., between the true class and
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the most confusing class, to a weight with a nonlinear increasing function. Weighted minimax risk
(WMMR) (Zeng et al., 2021) uses the same approach. The difference between these methods is the
use of different weighting functions, and MAIL achieves better performance than WMMR. Unlike
GAIRAT with its discrete representation for weights, MAIL alleviates robust overfitting by using
continuous weights. However, MAIL and WMMR have a problem in that the importance cannot
be adequately represented in multi-class classification, because only the most confusing class and
the true class are considered. As shown in Fig. 1(b), we assume that this issue occurs in previous
approaches for instances that have the same margin. Intuitively, among examples that have the same
margin, such as x1 and x2, the importance should be large closer to the intersection of the decision
boundaries of multiple classes, but previous methods neglect this representation.

In this paper, to resolve this issue, we reveal the problem with the previous margin computation
through a specific example. Then, as illustrated in Fig. 1(c), we propose margin reweighting, which
enables us to transform the previous margins to an appropriate representation by considering classes
other than the most confusing class and the true class. Although there is a straightforward approach
for this, which arises from computing the margins between the true class and other classes (i.e., by
using a multi-class margin), it is hard to design a weighting function to aggregate the multi-class
margin to a single weight. Thus, we propose a novel metric: the ratio of the top2 in the incorrect
rate (i.e., the sum of all probabilities except the true class). Assuming that each class probability
well represents relationship to the center of a class, this metric can identify whether examples are
close to the intersections of multi-class boundaries. Therefore, we do not have to design a special
weighting function, and we can get appropriate representations just by multiplying this measure by
the previous margins. We performed experiments and demonstrated that the proposed method can
boost the performance of the previous methods for certain attacks. In summary, our work makes the
following contributions:

• We clarify that the previous approach of computing the margin by using predicted probabil-
ities is insufficient. Specifically, we show a case in which the same margins are computed
for certain examples even though both the true and most confusing class probabilities are
different.

• We propose margin reweighting, which enables transformation of the previous margins into
appropriate ones by leveraging a relation between the most confusing class probability and
the incorrect rate.

• We experimentally show that our approach is effective for boosting the robustness against
adversarial attacks.

2 PRELIMINARIES AND RELATED WORKS

In this section, we give an overview of standard training and adversarial training (AT), and then we
describe related works on instance-reweighted adversarial training (IRAT).

2.1 STANDARD TRAINING VS. ADVERSARIAL TRAINING

Standard training: Let D = {xi, yi}ni=1 be a training dataset where xi ∈ Rc×h×w is an input
example and yi is a ground truth label. In standard training, a deep neural net f : Rc×h×w → RK

parameterized by θ minimizes the loss ℓ(fθ(xi), yi):

min
θ

E(xi,yi)∼D[ℓ(fθ(xi), yi)], (1)

where K is the number of classes, and the loss function ℓ(·) uses the cross-entropy loss.

Adversarial training: AT (Madry et al., 2018) aims to obtain a model with robustness against
adversarial attacks by training on computed adversarial examples. Actually, in the field except for
image classification, this framework uses before deep learning became popular (Dalvi et al., 2004;
Lowd & Meek, 2005). Unlike standard training, AT consists of two processes, inner maximization
and outer minimization. First, the inner maximization computes a perturbation δi so as to maximize
the loss within a radius ϵ centered on xi. Then, the outer minimization updates the weight parameters
θ to minimize the loss with adversarial examples x̂i = xi + δi obtained by the inner maximization.
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Figure 1: Differences between both previous methods (i.e., MAIL and WMMR) and our method.
The size of each shape in (b) and (c) indicates the amount of weight, and the solid and dashed lines
represent the decision boundaries before and after updates, respectively. Each shape represents a
different class. (b) The previous methods assign equal weights to equal margins because they only
use the difference between probabilities of the true class and the most confusing class. However, we
should define a larger weight for x1 than for x2, because x1 is close to the intersection of multiple
class boundaries. Thus, (c) our method can transform the margins for x1 and x2 to appropriate
forms in multi-class classification.

The following equation represents these processes:

min
θ

E(xi,yi)∼D

[
max

∥δi∥p≤ϵ
ℓ(fθ(xi + δi), yi)

]
, (2)

where p = {0, 1, 2,∞}; we use p =∞ in this paper.

The inner maximization often computes adversarial examples via a multi-step attack (e.g.,
PGD (Madry et al., 2018) with a step size α ≤ ϵ):

x̂
(t+1)
i := ΠB[x

(0)
i ]

(
x̂
(t)
i + α · sign

(
∇

x̂
(t)
i
ℓ(fθ(x̂

(t)
i ), yi)

))
, (3)

where B[x(0)
i ] := {x̂i ∈ X | ∥x(0)

i − x̂i∥∞ ≤ ϵ} in the input space X , and Π is a projection
function that brings outliers into B[x(0)

i ].

Although it is not hard to obtain robustness with AT, it has drawbacks of degrading the classification
performance on benign examples and causing robust overfitting. Among various approaches to
overcome these issues (Cai et al., 2018; Zhang et al., 2019; Uesato et al., 2019; Zhang & Wang,
2019; Wu et al., 2020; Wang et al., 2020; Zhang et al., 2020; Cheng et al., 2022; Ding et al., 2020;
Song et al., 2021; Cui et al., 2021; Yu et al., 2022), we deal with IRAT (Zeng et al., 2021; Kim et al.,
2021; Zhang et al., 2021; Wang et al., 2021; Gao et al., 2021).

2.2 INSTANCE-REWEIGHTED ADVERSARIAL TRAINING

IRAT is a form of adversarial training that defines weights based on the importance computed for
each example and then minimizes the weighted loss. There are various IRAT approaches with
different computations of importance.

Geometry-aware instance-reweighted adversarial training (GAIRAT) (Zhang et al., 2021) deter-
mines the importance of each example by using the least PGD steps (LPS). The LPS indicates
the number of steps to cause an adversarial example to cross decision boundaries, starting from
a benign instance. While GAIRAT can achieve excellent performance against a PGD attack, it is
vulnerable to other strong attacks because the importance depends on the PGD attack of the inner
maximization. To overcome this weakness, Gao et al. (2021) proposed to consider other attacks,
such as Carlini-Wagner (CW) (Carlini & Wagner, 2017) or AutoAttack (AA) (Croce & Hein, 2020),
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in the inner maximization; however, this approach is costly. Meanwhile, entropy-weighted adver-
sarial training (EWAT) (Kim et al., 2021) improves the robustness against CW (Carlini & Wagner,
2017) and AutoAttack (AA) (Croce & Hein, 2020) by assigning an entropy to the input as a weight
for each example.

In contrast to EWAT, weighted minimax risk (WMMR) (Zeng et al., 2021) and margin-aware in-
stance reweighting learning (MAIL) (Wang et al., 2021) define margins for each example using the
true class and the most confusing class probabilities, via the following equation:

m(xi, yi) = argmaxj ̸=yi pj(xi)− pyi(xi), (4)

where pyi
(xi) indicates the true class probability, as p(xi) is the predicted distribution. Note that

these approaches use different weighting functions: sigmoid for MAIL, exponential for WMMR.
MAIL resolves the weakness of GAIRAT and achieves better performance.

In this paper, we aim to define the margin with Eq. (4) as in the MAIL and WMMR. However, those
methods do not give appropriate margins in multi-class classification, because they ignore relations
other than those between the true class and the most confusing class. Hence, in the next section, we
seek to address this problem.

3 PROPOSED METHOD: MARGIN REWEIGHTING

In this section, first, we reveal the weakness of the previous IRAT methods in multi-class classifi-
cation. Specifically, we show that Eq. (4) may obtain the same margins with certain examples even
though the probabilities of the true class and the most confusing class are different. Next, we propose
a novel metric to represent relations between the most confusing class and other classes. Finally, we
introduce weighting functions to incorporate our proposed method into the previous methods.
Definition 1 (top2 probability). Let (xi, yi) ∼ D be the input data and let p(xi) ∈ [0, 1]K be the
posterior distribution for xi. Then, the top2 probability is defined as p2(xi) = argmaxk ̸=yi

pk(xi).

Remark: Strictly speaking, the top2 probability is the the highest when pyi
(xi) < p2(xi). In this

paper, however, we call the top2 probability even in this situation.

3.1 WEAKNESS OF PREVIOUS IRAT METHODS

Figure 2: Correlation between the true class
probabilities pyi

(xi) and the margins com-
puted by Eq. 4, for ResNet-18 with standard
adversarial training on the CIFAR-10 dataset.
The orange and blue dots represent incorrect
and correct samples, respectively.

Although the previous IRAT methods with class
probabilities achieve excellent performance, they do
not account for classes other than the most confus-
ing class. Except in easy cases, some samples typ-
ically lie near the intersections of multi-class de-
cision boundaries. Thus, we can easily expect in-
sufficient representations for WMMR and MAIL in
multi-class classification.
Lemma 1. For the margin calculated by Eq.(4) and
a training dataset D := {(xi, yi)}ni=1, there exist
samples that satisfy

m(xi, yi) = m(xj , yj). (5)

By applying Lemma 1, we examine the margins
computed by Eq.(4). First, examples that have
high confidence in terms of either the true class or
the top2 probability are represented far from other
classes. In other words, these examples are located
around the center of either the true class or the top2
class. In this case, Eq.(5) does not hold true between
high- and low-confidence examples, as illustrated in Fig. 2. Therefore, it is not a problem to de-
fine the margins with Eq.(4). On the other hand, low-confidence examples in both the true class
and the top2 probability may be around the multi-class decision boundaries. Thus, these examples
satisfy Eq.(5) not only for examples with both probabilities nearly equal but also for examples with
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different probabilities (e.g., pyi
(xi) ≪ pyj

(xj)). For instance, as shown in Fig. 2, we can obtain
approximately equal margins for examples within [0.2, 0.6]. This represents the situation where xi

is closer to the intersection of multiple class boundaries and has a higher attack risk than xj . Hence,
we argue that it is inappropriate to make the margins equal for these examples. Although we would
expect improved robustness if we could carefully distinguish these margins, neither WMMR nor
MAIL accounts for them.

3.2 QUANTIFICATION OF IMPORTANCE FOR MARGINS

The margin determination described above is insufficient when we recall that Lemma 1 holds for
different probabilities among certain examples. A straightforward, intuitive approach to resolve this
issue is to compute the margins between the true class and other classes with Eq. (4). However,
that approach is hard to implement because it requires careful design of the weighting function to
transform the multi-class margins to the appropriate weights.
Definition 2 (Incorrect rate). Let (xi, yi) ∼ D be the input data and let pyi

(xi) ∈ [0, 1] be the
correct class probability. Then, the incorrect rate is defined as

p̄yi
(xi) = 1− pyi

(xi)

=
∑

k ̸=yi

pk(xi). (6)

Hence, we propose a metric that quantifies the relations between the most confusing class and other
classes by using the top2 probability and the incorrect rate. Assuming that Lemma 1 holds for
examples with different confidence, we can derive the following inequality for the ratio of the top2
probability to the incorrect rate.
Proposition 1. For input data (xi, yi) and (xj , yj), let m(xi, yi) = m(xj , yj), pyi

(xi) > pyj
(xj),

and pyj (xj) >
1
K . Then, the following inequality for the ratio if the top2 probability to the incorrect

rate holds for each sample:

o(xi, yi) > o(xj , yj), where o(x, y) =
p2(x)

p̄y(x)
. (7)

The margins computed with Eq.(4) represent only the relation to decision boundaries or whether
examples successfully classify. Meanwhile, for the examples with the same margin, Proposition 1
shows that they can further distinguish by using the ratio of the top2 probability included in the
incorrect rate. According to MAIL and WMMR (i.e., that Eq.(4) implies the margin between the ex-
amples and the decision boundaries), we can determine that examples with a low ratio are distributed
around the intersection of multiple classes. Thus, we expect that we can resolve our problem by ap-
plying the ratio of the top2 probability to the margin computed by Eq.(4).

Next, we discuss the range of the ratio o(xi, yi). Let Ptop2 :=
(

p̄yi
(xi)

K−1 , p̄yi
(xi)

)
be the range of

p2(xi); then, the upper and lower bounds obtained directly by using o(xi, yi) are defined as follows:
sup

p2(xi)∈Ptop2

o(xi, yi) = 1 p2(xi) = p̄yi(xi),

inf
p2(xi)∈Ptop2

o(xi, yi) =
1

K−1 p2(xi) =
p̄yi

(xi)

K−1 .
(8)

According to Eq.(8), direct use of the top2 ratio is contrary to our motivation, because we confirm
that o(xi, yi) approaches the upper/lower bound when p2(xi) is large/small. Hence, we can obtain
the appropriate range by inverting the top2 ratio with an arbitrary coefficient τ ∈ N. However, we
cannot say that the representation is appropriate, because τ = 1 gives the following upper and lower
bounds: 

sup
p2(xi)∈Ptop2

(τ − o(xi, yi)) = 1− 1
K−1 p2(xi) =

p̄yi
(xi)

K−1 ,

inf
p2(xi)∈Ptop2

(τ − o(xi, yi)) = 0 p2(xi) = p̄yi(xi).
(9)

Equation(9) implies that examples with p2(x) ≈ p̄y(x) (i.e., significantly misclassified adversarial
examples) are no longer involved in the updating the parameters.

Hence, we define weights for the margins computed by Eq.(4) with the following equation:
s(xi, yi) = τ − o(xi, yi), s.t. τ ∈ N≥2, (10)

where N≥2 denotes the set of natural numbers greater than or equal to 2.
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Figure 3: Cosine similarity computed with Eq.(11) for the predicted distributions of two examples
with (a) low and (b) high confidence. The red bar represents the true class in each example.

3.3 REPRESENTATION THE IMPORTANCE FOR THE INCORRECT RATE

As described above, we can represent whether examples are close to the intersection of multiple
classes, but Eq.(10) is insufficient yet. Specifically, for both examples around the boundaries and
successfully classified examples with high confidence, the top2 ratio may be equal if the incorrect
class probabilities are uniformly equal. Because these examples require the definition of different
weights, this implies that the importance of the incorrect rate is also different. Therefore, we repre-
sent the importance of the incorrect rate by leveraging the predicted probability distributions via the
following equation for the cosine similarity:

c(xi, yi) =
< p(xi), p

′(xi) >

∥p(xi)∥2 · ∥p′(xi)∥2
. (11)

Here, p(xi) ∈ [0, 1]K denotes the predicted probability distribution of xi. p′(xi) denotes the distri-
bution with elimination of the true class and computation using a binary mask, which has values of
1 except for the true class:

p′(xi) := p(xi) · (1−M), s.t.
∑K

k=1
p′k(xi) < 1. (12)

As shown in Fig. 3(a), the similarity tends to be large for an example with low confidence. Mean-
while, as shown in Fig. 3(b), it tends to be small for an example with high confidence. We found that
this trend obtained almost the same results on all validation examples, and we thus confirmed that
the similarity is correlated to the incorrect rate (see Fig. 4 in the appendixes). Hence, we can assign
appropriate weights to the margins computed with Eq.(4) by applying Eq.(12) to Eq.(10). For these
reasons, we transform Eq.(10) to an appropriate representation with

s′(xi, yi) = s(xi, yi) · c(xi, yi). (13)

3.4 INCORPORATION OF OUR APPROACH IN PREVIOUS IRAT METHODS

Above, we showed that the previous methods are insufficient, and we proposed margin reweighting
to transform the margins computed by Eq.(4) to adequate representations with the top2 ratio. Here,
we describe how to incorporate the proposed method into MAIL and WMMR.

First, we multiply the top2 ratio computed by Eq.(13) and the margins given by Eq.(4):

m̃(xi, yi) = m(xi, yi) · s′(xi, yi). (14)

Then, we apply Eq.(14) to transform the margins to boost the importance of examples around the
intersections of multi-class decision boundaries of multiple classes from weights functions of the
previous methods:

ωWMMR = exp(−m̃(xi, yi)), (15)
ωMAIL = sigmoid(−γ · (m̃(xi, yi) + β)). (16)

Here, β and γ are hyperparameters, and in the experiment described below, we used the constants
of the previous methods. Therefore, we only need to determine τ in the proposed method.

In addition, we omit the WMMR constant by replacing it with the proposed method, because it
simply multiplies the margins computed by Eq.(4). We also warm up the model with ω = 1 for
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all examples during the initial training. In other words, the training within a set number of epochs
is standard AT. This technique uses GAIRAT or MAIL, which aims to avoid inappropriate weight
representations during the initial training. The training procedure incorporating the proposed method
is detailed in Algorithm 1 in the appendixes.

4 EXPERIMENTS

This section demonstrates the performance obtained by incorporating the proposed method into
WMMR and MAIL. In our experiment, we used the CIFAR-10/100 (Krizhevsky & Hinton, 2009)
dataset to evaluate the standard accuracy for benign data and the adversarial robustness against sev-
eral attacks. First, we describe the training settings and the details of how we evaluate the adversarial
robustness in Section 4.1. Then, we report the quantitative evaluation results in Section 4.2 and dis-
cuss the hyperparameters and the necessity of the similarity computation in Section 4.3.

4.1 EXPERIMENTAL DETAILS

We used standard AT (“Standard”) (Madry et al., 2018), WMMR, and MAIL as comparison meth-
ods. The evaluation results here consist of the average and standard deviation for five models trained
with different random seeds. We also show the highest-performance model during training (“Best
model”) and at the end of training (“Last model”). The results for other methods and best models are
shown in the appendixes to conserve space. For fair evaluation, the training settings with WRN34-10
on the CIFAR-10 dataset were integrated according to (Pang et al., 2021).

Training Settings: We used ResNet-18 (He et al., 2016) and WideResNet34-10 (WRN34-
10) (Zagoruyko & Komodakis, 2016) as base networks. We trained models during 120 epochs
by using a batch size of 128 and SGD with a momentum of 0.9. The initial learning rates for each
network were 0.01 (ResNet-18) and 0.1 (WRN34-10), and they were multiplied by 1/10 at {75, 90,
100} epochs. The weight decays were set to 3.5× 10−3 (ResNet-18) and 0.5× 10−4 (WRN34-10).
Finally, for all methods, we used PGD with a perturbation tolerance ϵ = 8/255, a step size α = ϵ/4,
and N = 10 steps for PGD.

Hyperparameters: MAIL used β = 0.5 and γ = 10 for all models and datasets, while WMMR
used α = 2. These constants were the same both with and without the proposed method. The
proposed method used τ = 2 on both the CIFAR-10 and 100 datasets for WRN34-10, and τ = 2 on
CIFAR-10 and τ = 3 on CIFAR-100 for ResNet-18. The amount of warmup was 75 epochs, after
which we activated the weighted loss minimization.

Adversarial Robustness: We evaluated not only the standard accuracy for benign examples
(“Clean”) but also the adversarial robustness against PGD-K with K = 100 (PGD-100), PGD-
100 with the loss function of CW, AutoPGD with the cross-entropy (APGD-CE) (Croce & Hein,
2020), and AutoAttack (AA) (Croce & Hein, 2020). As described in (Wang et al., 2021), we eval-
uated the performance for white-box attacks because black-box attacks are assumed to be easy to
defend.

4.2 RESULTS

Tables 1 and 2 list the results on CIFAR-10 and on CIFAR-100, respectively.

CIFAR-10: The results for ResNet-18, in the upper block of Table 1, showed improved adversar-
ial robustness against PGD-100 and APGD-CE by incorporating the proposed method into MAIL
(i.e., “Ours+MAIL”). Moreover, the “Clean” result showed somewhat improved performance. The
results for incorporation into WMMR exhibited the same trend. Next, the results for WRN34-10, in
the bottom block, showed better adversarial robustness against all attacks with the proposed method
incorporated into WMMR (i.e., “Ours+WMMR”). In particular, the average robust accuracy against
AA improved by 0.13, and the standard deviation for five models was significantly small. Mean-
while, “Ours+MAIL” showed comparable classification accuracy for benign examples, and it sig-
nificantly improved the adversarial robustness against attacks in the PGD family, such as PGD-100
and APGD-CE.
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Table 1: Performance of each method’s “Last model” on CIFAR-10 (%). The upper block is for
ResNet-18, and the bottom block is for WRN34-10. The best-performing method in each case in
shown in bold, and ↑ indicates improved performance by incorporating the proposed method.

Clean PGD-100 CW-PGD APGD-CE AA
Standard 85.69±0.15 48.86±0.22 49.26±0.20 48.34±0.23 46.38±0.26
WMMR 85.71±0.17 49.60±0.41 48.31±0.36 48.99±0.38 45.23±0.37
MAIL 82.53±0.30 56.66±0.17 47.71±0.26 55.75±0.13 45.22±0.31
Ours + WMMR 85.65±0.13 50.31±0.25↑ 47.94±0.13 49.59±0.29↑ 44.79±0.18
Ours + MAIL 82.66±0.10↑ 57.96±0.13↑ 47.24±0.16 56.95±0.19↑ 44.78±0.29
Standard 87.89±0.17 48.11±0.50 49.33±0.45 47.66±0.47 46.82±0.38
WMMR 88.03±0.12 49.33±0.41 49.95±0.33 48.88±0.43 47.37±0.38
MAIL 86.40±0.13 59.30±0.21 51.82±0.22 58.57±0.26 49.29±0.14
Ours+WMMR 87.99±0.14 49.39±0.19↑ 49.97±0.22↑ 48.96±0.18↑ 47.50±0.17↑
Ours+MAIL 86.48±0.24↑ 60.56±0.42↑ 51.55±0.30 59.64±0.45↑ 48.92±0.30

Table 2: Performance of each model’s “Last model” on CIFAR-100 (%). The upper block is for
ResNet-18, and the bottom block is for WRN34-10. The best-performing method in each case is
shown in bold, and ↑ indicates improved performance by incorporating the proposed method.

Clean PGD-100 CW-PGD APGD-CE AA
Standard 60.10±0.22 28.65±0.21 27.89±0.17 28.12±0.18 25.01±0.13
WMMR 60.42±0.28 28.14±0.16 26.66±0.18 27.47±0.15 23.59±0.14
MAIL 56.77±0.19 31.23±0.08 25.68±0.26 30.45±0.09 22.99±0.09
Ours + WMMR 60.50±0.18↑ 28.24±0.12↑ 26.96±0.20↑ 27.58±0.14↑ 23.86±0.15↑
Ours + MAIL 57.50±0.23↑ 31.23±0.16 25.30±0.09 30.46±0.17↑ 22.61±0.10
Standard 62.63±0.33 24.82±0.12 25.80±0.17 24.53±0.13 23.70±0.13
WMMR 63.32±0.12 25.87±0.22 26.29±0.20 25.45±0.19 23.81±0.19
MAIL 62.56±0.21 34.29±0.08 29.31±0.19 33.58±0.09 26.50±0.16
Ours+WMMR 63.76±0.09↑ 25.45±0.24 26.51±0.15↑ 25.14±0.21 23.94±0.18↑
Ours+MAIL 63.19±0.21↑ 34.32±0.13↑ 28.94±0.18 33.47±0.18 26.18±0.14

CIFAR-100: Next, as seen the upper of Table 2 for ResNet-18, “Ours+MAIL” improved the
accuracy for benign examples by 0.73, and the robustness against PGD-100 and APGD-CE was
comparable. Meanwhile, “Ours+WMMR” achieved excellent performance not only in the “Clean”
case but also for all attacks over 0.10. For WRN34-10, as seen in the bottom block of the table,
“Ours+WMMR” improved the accuracy for benign examples by 0.44. In addition, it improved the
adversarial robustness against both CW-PGD and AA, although the robustness against the PGD
family slightly degenerated. In addition, “Ours+MAIL” improved the “Clean” case by 0.63, and
the robustness against PGD-100 was comparable. Overall, these results showed that the proposed
method was effective in improving the accuracy for benign examples, and that it obtained compara-
ble or better adversarial robustness on the CIFAR-100 dataset.

To conserve space, the results for the “Best model” with each dataset and base network are given in
Appendix E. In a nutshell, those results exhibited the same trend as the results given above for the
“Last model”.

4.3 ABLATION STUDY

Here, we consider the effect on performance when we eliminated the similarity of Eq.(11) or used
different values of the hyperparameter τ . We obtained the average and standard deviation for
WRN34-10 with five models having different random seeds and the settings described in Section 4.1.

First, Table 3 lists the results of a performance comparison with τ = {2, 3, 4}. The results on
CIFAR-10, in the left block, showed that a large τ significantly increased the robustness against
APGD-CE. Meanwhile, increased τ degraded the performance in the “Clean” and CW-PGD cases.
In addition, a large τ increased the classical PGD robustness but degraded the AA robustness (see
Appendix E).

8
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Table 3: Ablation study for τ . The left and right blocks are for CIFAR-10/100, respectively.
CIFAR-10 CIFAR-100

Clean CW-PGD APGD-CE Clean CW-PGD APGD-CE
τ = 2 86.48±0.24 51.55±0.30 59.64±0.45 63.19±0.21 28.94±0.18 33.47±0.18
τ = 3 86.39±0.14 50.65±0.35 60.77±0.48 63.44±0.22 27.79±0.25 32.65±0.17
τ = 4 86.37±0.25 50.49±0.50 62.09±0.47 63.62±0.29 26.87±0.23 31.38±0.19

As seen in the right block of Table 3, the results on CIFAR-100 showed that a large τ increased the
accuracy for benign examples but degraded the robustness against adversarial attacks. In particular,
the robustness deteriorated by over 1.0 on CIFAR-10 and 2.0 on CIFAR-100. Thus, τ = 2 was an
appropriate choice for WRN34-10 on both datasets. The results for ResNet-18 are listed in Table 8
in Appendix E.

Table 4: Ablation study for the “Last model”
on CIFAR-10 for the similarity of Eq.(11).
sim.: similarity.

w/ sim. w/o sim.
Clean 86.48±0.24 86.40±0.09

CW-PGD 51.55±0.30 51.07±0.23
APGD-CE 59.64±0.45 59.91±0.42

Next, Table 4 lists the results (“Clean”, CW-PGD,
and APGD-CE) when the similarity of Eq.(11) was
eliminated from the proposed method. While the
“Clean” and CW-PGD results deteriorated, the ro-
bustness against APGD-CE slightly improved. As
seen in Table 7 in Appendix E, the robustness against
PGD was comparable with the similarity eliminated,
but the robustness against AA did not decrease. Al-
though classical PGD is a strong attack, evaluation
of the model performance for only PGD links overestimation of robustness. Therefore, for the pro-
posed method, it is appropriate to use the similarity because of the comparable robustness against
PGD despite improved the performance for CW-PGD or AA.

5 DISCUSSION AND LIMITATIONS

Surprisingly, standard AT achieved the best robustness against AA and CW-PGD in a small-capacity
network such as ResNet-18. This result implies that MAIL is vulnerable to strong attacks when the
network does not have enough capacity. Therefore, our approach may increase MAIL’s innate vul-
nerability in exchange for dramatically improving its robustness against the PGD attack. Meanwhile,
WMMR with the proposed method showed improved performance for almost all the attacks, includ-
ing AA or CW-PGD, as compared with the original method, despite simply multiplying Eq.(13 by
the margins. Instead of using a constant coefficient, our approach can apply different coefficients to
the margins of each instance during training. These results show the necessity of transforming the
margins to appropriate representations, because the margins transformed by our approach directly
contribute to training without the constant coefficient.

Regarding the results on each dataset, the performance improvement on CIFAR-100 was limited in
comparison to the improvement on CIFAR-10. Intuitively, our method should be an important role
in far more classes with complex decision boundaries. Our method still just indirectly deals with
the relations among multiple classes. Hence, inherent consideration of the multi-class margins may
make networks robust on CIFAR-100 or larger-scale datasets, and we leave this as future work.

6 CONCLUSION

In this paper, we have revealed a weakness of previous IRAT methods, and we have proposed a novel
metric to resolve this weakness. Unlike the previous methods, which define weights by considering
only two probabilities, our approach successfully boosts the performance by incorporating the ratio
of the top2 probability to the incorrect rate into the previous methods. However, the robustness im-
provement was limited on the CIFAR-100 dataset as compared with CIFAR-10. Image classification
in the real world assumes more complex data and far more classes than in CIFAR-10/100. Hence,
we will aim to improve the performance on large-scale datasets by carefully designing the weighting
function.
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A PROOF OF LEMMA 1

Lemma 1. For the margin calculated by Eq.(4) and a training set D := {(xi, yi)}ni=1, there exist
samples that satisfy

m(xi, yi) = m(xj , yj). (17)

Proof:

We divide the training datasetD = {xi, yi}ni=1 into the set of successfully classified samples, S+ :=
{(xi, yi) ∈ D | argmax p(xi) = yi}, and the set of misclassified samples, S− := {(xi, yi) ∈ D |
argmax p(xi) ̸= yi}. First, S+ and S−, Lemma 1 obviously holds when pyi

(xi) = pyj
(xj). Next,

we prove that Lemma 1 also holds for different probabilities, i.e., for pyi
(xi) ̸= pyj

(xj). Because all
samples, including those in S+ and S+, absolutely satisfy pyi

(xi) > p2(xi) and pyi
(xi) < p2(xi),

Lemma 1 must hold to satisfy the following equation:

|pyi
(xi)− pyj

(xj)| = |p2(xi)− p2(xj)|. (18)

Thus, equal or approximately equal margins exist despite different true class and top2 probabilities.

B PROOF OF PROPOSITION 1

Proposition 1. For input data (xi, yi) and (xj , yj), let m(xi, yi) = m(xj , yj), pyi
(xi) > pyj

(xj),
and pyj

(xj) >
1
K . Then, the following inequality for the ratio of the top2 probability to the incorrect

rate holds for each sample:

o(xi, yi) > o(xj , yj), where o(x, y) =
p2(x)

p̄y(x)
. (19)

Proof: Supposing that Lemma 1 holds under pyi
(xi) > pyj

(xj) for each true class probability in
the input data (xi, yi) and (xj , yj), the following inequality obviously holds for the top2 probabili-
ties:

p2(xi) > p2(xj). (20)

Hence, the incorrect rate for all data satisfies

p̄yi(xi) < p̄yj (xj). (21)

Because we can guarantee that the top2 probability does not overshoot the incorrect rate in any case,
the following inequality holds:

p2(xi)

p̄yi
(xi)

>
p2(xj)

p̄yj
(xj)

, (22)

Thus, we obtain o(xi, yi) > o(xj , yj) by using o(x, y) = p2(x)
p̄y(x)

.

C TRAINING PROCESS FOR PROPOSED ADVERSARIAL TRAINING

Algorithm 1 gives the training procedure for AT incorporating the proposed method. We activate the
assigned weights for the loss after Ω epochs because the initial model is inappropriate for weighting.
Hence, we use ω = 1 (i.e., line 15) with less than Ω epochs. Moreover, the computed weights are
multiplied by the coefficient M instead of being directly applied to the loss. Despite the multiplica-
tion of M by the weights in (Wang et al., 2021), Wang et al. (2021) do not discuss the necessity of
this process. The experiments in this paper used M = 3.

12
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Algorithm 1 Adversarial training incorporating our approach
Require: Training dataset D, batch size n, training epochs T , learning rate η, model parameter θ,

amount of warm-up Ω
Require: Function deriving adversarial perturbation A
Require: Hyperparameters β, γ, τ

1: for t = 1, . . . , T do
2: for {xi, yi|i = 1, . . . , n} ∼ D do
3: x̂i ← A(xi, yi;θ)
4: s(x̂i, yi) = τ − o(x̂i, yi)

5: c(x̂i, yi) =
<p(x̂i),p

′(x̂i)>
∥p(x̂i)∥2·∥p′(x̂i)∥2

6: s′(xi, yi) = s(xi, yi) · c(xi, yi)
7: m̃(x̂i, yi) = m(x̂i, yi) · s′(x̂i, yi)
8: if T > Ω then
9: if MAIL then

10: ωi = sigmoid(γ · (m̃(x̂i, yi) + β))×M
11: else if WMMR then
12: ωi = exp(−m̃(x̂i, yi))×M
13: end if
14: else
15: ωi = 1
16: end if
17: model update:
18: θt+1 ← θt − η · 1n

∑n
i=1∇θωi · ℓ(fθt

(x̃i), yi)
19: end for
20: end for
21: return model parameter θ

In
co
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ec

t r
at

e

Cosine similarity

Figure 4: Similarity computed by Eq.(12) vs. the incorrect rate for WRN34-10 trained with stan-
dard AT on CIFAR-10. The two measures have an extremely large correlation, with a correlation
coefficient of 0.98 computed by Eq.(23).

D CORRELATION BETWEEN INCORRECT RATE AND SIMILARITY

In our experiment, we computed the correlation between two measures for WRN34-10 trained by
standard AT with the following equation:

r =
1
n

∑n
i=1(p̄yi(xi)− p̄′)(c(xi, yi)− c′)√

1
n

∑n
i=1(p̄yi(xi)− p̄′)2

√
1
n

∑n
i=1(c(xi, yi)− c′)2

, (23)
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Table 5: Performance comparison results for the best models on CIFAR-10. The upper and
lower blocks are for ResNet-18 and WRN34-10, respectively. The bold results indicate the best-
performing method in each case, and the underlined results indicate successful robustness improve-
ment by introducing the proposed method.

Clean FGSM PGD-100 CW-PGD APGD-CE AA

R
es

N
et

-1
8

Standard 83.84±0.171 57.71±0.17 50.98±0.21 50.50±0.31 50.55±0.22 47.86±0.13
GAIRAT 83.63±0.06 61.13±0.35 56.62±0.46 37.72±0.66 53.37±0.47 34.76±0.66
EWAT 83.97±0.52 57.41±0.51 50.56±0.31 50.51±0.50 50.14±0.34 48.03±0.48
WMMR 83.74±0.23 58.05±0.16 52.33±0.21 49.12±0.12 51.70±0.25 46.57±0.12
MAIL 82.37±0.23 60.41±0.08 56.99±0.20 47.90±0.19 56.07±0.23 45.44±0.18
Ours + WMMR 83.87±0.27 58.37±0.17 52.91±0.16 48.52±0.24 52.17±0.16 46.04±0.24
Ours + MAIL 82.66±0.09 61.74±0.25 58.36±0.30 47.43±0.23 57.24±0.30 44.82±0.36

W
R

N
34

-1
0

Standard 86.67±0.21 61.33±0.15 54.17±0.23 54.05±0.15 53.79±0.22 51.73±0.32
GAIRAT 85.74±0.90 63.50±0.38 60.45±0.18 45.85±2.48 57.29±0.85 43.12±2.42
EWAT 85.93±0.46 60.98±0.62 54.17±0.24 54.27±0.19 53.79±0.25 51.91±0.16
WMMR 86.57±0.18 61.30±0.23 55.16±0.37 52.76±0.39 54.64±0.35 50.36±0.33
MAIL 86.28±0.12 63.60±0.02 59.77±0.21 51.91±0.29 58.93±0.26 49.47±0.33
Ours + WMMR 86.91±0.31 61.36±0.32 55.00±0.25 53.27±0.08 54.49±0.30 50.73±0.12
Ours + MAIL 86.45±0.19 64.66±0.14 61.05±0.25 51.87±0.17 60.08±0.21 49.26±0.22

Table 6: Performance comparison results for the best models on CIFAR-100. The upper and
lower blocks are for ResNet-18 and WRN34-10, respectively. The bold results indicate the best-
performing method in each case, and the underlined results indicate successful robustness improve-
ment by introducing the proposed method.

Clean FGSM PGD-100 CW-PGD APGD-CE AA

R
es

N
et

-1
8

Standard 57.48±0.50 33.09±0.16 29.51±0.06 27.76±0.13 28.71±0.55 25.16±0.14
GAIRAT 56.91±0.29 32.66±0.06 29.16±0.10 27.30±0.09 28.61±0.13 24.69±0.10
EWAT 57.75±0.32 32.87±0.40 29.35±0.19 27.20±0.17 28.88±0.18 25.03±0.16
WMMR 57.82±0.45 32.51±0.25 29.03±0.16 26.84±0.20 28.34±0.21 24.02±0.27
MAIL 56.65±0.18 33.49±0.15 31.36±0.07 25.72±0.18 30.62±0.09 23.02±0.17
Ours + WMMR 58.07±1.35 32.82±0.49 28.94±0.09 27.03±0.28 28.30±0.13 24.19±0.04
Ours + MAIL 57.59±0.12 33.47±0.11 31.25±0.16 24.80±0.24 30.44±0.17 22.06±0.24

W
R

N
34

-1
0

Standard 62.21±0.19 35.58±0.31 31.43±0.31 30.51±0.27 31.00±0.27 27.96±0.10
GAIRAT 61.83±0.63 35.49±0.20 31.48±0.15 30.44±0.19 31.00±0.14 27.85±0.14
EWAT 62.18±0.28 34.60±0.27 29.79±0.22 29.07±0.38 29.39±0.28 26.75±0.30
WMMR 62.08±0.16 34.64±0.23 30.99±0.12 29.09±0.17 30.50±0.17 26.61±0.24
MAIL 62.36±0.21 37.26±0.12 34.64±0.12 29.42±0.13 33.94±0.14 26.67±0.08
Ours + WMMR 62.51±0.64 35.30±0.20 31.15±0.29 29.91±0.22 30.73±0.31 27.22±0.35
Ours + MAIL 63.00±0.11 37.12±0.24 34.56±0.18 29.07±0.16 33.78±0.19 26.38±0.21

where n is the number of samples, p̄′ = 1
n

∑n
i=1 p̄yi

(xi), and c′ = 1
n

∑n
i=1 c(xi, yi).

As shown in Fig. 4, there is a visual correlation between the two measures visually. Quantitatively,
we observed a strong correlation with r = 0.98. Therefore, we can mitigate inappropriate behavior
of the top2 ratio for correct samples with high confidence by relying on the similarity.

E ADDITIONAL RESULTS

This section describes experimental results that are omitted from the main paper to conserve space.
The experimental settings were the same as those described in Section 4.1. Additionally, we added
GAIRAT and EWAT as comparison methods and FGSM as an attack.

Tables 5 and 6 list the adversarial robustness and classification accuracy for the best model results of
each method on CIFAR-10/100, respectively. The best model in the experiment was the checkpoint
that achieved the best robustness against PGD-20 with the validation data. In terms of adversarial
robustness, we improved the performance for the standard accuracy and certain attacks by 0.32-0.58
(for ResNet-18) and 0.06-0.51 (for WRN34-10) with “Ours+WMMR”. “Ours+MAIL” improved the
performance for the standard accuracy and certain attacks by 1.17-1.37 (for ResNet-18) and 1.06-
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Table 7: Ablation study for the similarity of Eq.(11) on CIFAR-10. The upper and lower blocks are
for the last and best models, respectively. sim.: similarity.

Clean FGSM PGD-100 CW-PGD APGD-CE AA

Last w/ sim. 86.48±0.24 64.52±0.20 60.56±0.42 51.55±0.30 59.64±0.45 48.92±0.30
w/o sim. 86.40±0.09 64.52±0.28 60.88±0.36 51.07±0.23 59.91±0.42 48.73±0.23

Best w/ sim. 86.45±0.19 64.66±0.14 61.05±0.25 51.87±0.17 60.08±0.21 49.26±0.22
w/o sim. 86.27±0.17 64.88±0.22 61.35±0.17 51.45±0.21 60.39±0.17 48.77±0.26

Table 8: Ablation study for the hyper-parameter τ with ResNet-18, for the last model. The upper
and lower blocks are for CIFAR-10 and CIFAR-100, respectively.

Clean FGSM PGD-100 CW-PGD APGD-CE AA

CIFAR-10 τ = 2 82.66±0.10 61.46±0.20 57.96±0.13 47.24±0.16 56.95±0.19 44.78±0.29
τ = 3 82.78±0.16 61.52±0.47 57.81±0.49 47.07±0.18 56.71±0.48 44.54±0.30
τ = 4 82.35±0.32 63.66±0.19 60.64±0.21 45.54±0.39 59.30±0.20 42.64±0.39

CIFAR-100 τ = 2 56.80±0.26 33.43±0.14 31.14±0.18 25.81±0.13 30.36±0.14 23.09±0.16
τ = 3 57.50±0.23 33.47±0.11 31.23±0.16 25.30±0.09 30.46±0.17 22.61±0.10
τ = 4 57.78±0.16 33.38±0.08 30.93±0.05 24.68±0.11 30.15±0.06 21.83±0.05

1.28 (for WRN34-10). Surprisingly, while the WRN34-10 results for GAIRAT were comparable or
better than those for MAIL, “Ours+MAIL” outperformed GAIRAT.

Focusing on the results for CIFAR-100 in Table 6, we see that “Ours+MAIL” had comparable or
degraded performance relative to MAIL against certain attacks. Meanwhile, “Ours+MAIL” im-
proved the “Clean” case by 0.94 (ResNet-18) and 0.64 (WRN34-10). “Ours+WMMR” improved
the performance against many attacks and outperformed the “Clean” accuracy. The WRN34-10 re-
sults showed improved robustness against all attacks; in particular, “Ours+WMMR” improved the
robustness by 0.82 at best against CW-PGD and AA.

Table 7 lists the performance results for the best and last models with and without the similarity
on CIFAR-10. As described in Section 4.3, use of the similarity not only improved the robustness
against CW-PGD and AA but also improved the “Clean” accuracy. The same results were obtained
for the best model.

Table 8 lists the results for ResNet-18 trained with different τ values, i.e., τ = {2, 3, 4}. With in-
creasing τ , while the robustness against CW-PGD and AA significantly deteriorated, the robustness
against PGD and FGSM was dramatically improved on CIFAR-10. On CIFAR-100, a large τ im-
proved the “Clean” accuracy, while the PGD and FGSM results were comparable. Meanwhile, the
robustness against CW-PGD and AA deteriorated on both datasets. From these results, we deter-
mined the best values as τ = 2 for CIFAR-10 and τ = 3 for CIFAR-100.
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