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ABSTRACT

In self-supervised learning, multi-granular features are heavily desired though
rarely investigated, as different downstream tasks (e.g., general and fine-grained
classification) often require different or multi-granular features, e.g. fine- or
coarse-grained one or their mixture. In this work, for the first time, we propose an
effective MUlti-Granular Self-supervised learning (Mugs) framework to explicitly
learn multi-granular visual features. Mugs has three complementary granular su-
pervisions: 1)an instance discrimination supervision (IDS), 2)a novel local-group
discrimination supervision (LGDS), and 3) a group discrimination supervision
(GDS). IDS distinguishes different instances to learn instance-level fine-grained
features. LGDS aggregates features of an image and its neighbors into a local-
group feature, and pulls local-group features from different crops of the same im-
age together and push them away from others. It provides complementary instance
supervision to IDS via an extra alignment on local neighbors, and scatters differ-
ent local-groups separately to increase discriminability. Accordingly, it helps learn
high-level fine-grained features at a local-group level. Finally, to prevent similar
local-groups from being scattered randomly or far away, GDS brings similar sam-
ples close and thus pulls similar local-groups together, capturing coarse-grained
features at a (semantic) group level. Consequently, Mugs captures three granu-
lar features that often enjoy higher generality on diverse downstream tasks over
single-granular features, e.g. instance-level fine-grained features in contrastive
learning. By only pretraining on ImageNet-1K, Mugs sets new SoTA linear prob-
ing accuracy 82.1% on ImageNet-1K and improves previous SoTA by 1.1%. It
also surpasses SoTAs on other tasks, e.g. detection and segmentation.

1 INTRODUCTION

The family of self-supervised learning (SSL) approaches (He et al., 2020; Chen et al., 2020c) aims to
learn highly transferable unsupervised representation for various downstream tasks by training deep
models on a large-scale unlabeled dataset. To this end, a pretext task, e.g. jigsaw puzzle (Noroozi
& Favaro, 2016) or orientation (Komodakis & Gidaris, 2018), is elaborately designed to generate
pseudo labels of unlabeled visual data which are then utilized to train a model without using man-
ual annotations. Since unlabeled visual data are of huger amount and also much cheaper than the
manually annotated data, SSL has been very popularly adopted for visual representation learning
recently (Caron et al., 2020a; Grill et al., 2020a), and is showing greater potential than supervised
learning approaches for learning highly-qualified and well-transferable representation.

Motivation. In practice, various downstream tasks in SSL field often require different granular
features, such as coarse- or fine-grained features. For instance, general classification downstream
tasks distinguish a category from other categories and typically desire coarse-grained features, while
fine-grained classification often discriminates subordinate categories and needs more fine-grained
features. Actually, many downstream tasks highly desire multi-granular features. Take the classifi-
cation task on ImageNet-1K (Deng et al., 2009) as an example. One needs coarse-grained features
to distinguish a big category, e.g. dog, from other categories, e.g. bird and car, and also requires
fine-grained features to discriminate different subordinate categories, such as Labrador and poodle
in the dog category. However, this important multi-granularity requirement is ignored in the current
state-of-the-art SSL approaches, including the representative contrastive learning family (He et al.,
2020; Hjelm et al., 2018) and clustering learning family (Caron et al., 2018a; 2021). For contrastive
learning, its instance discrimination task only aims to distinguish individual instances for learning
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Figure 2: Comparison of linear probing accuracy on ImageNet-1K.

more instance-level fine-grained features, and does not consider the coarse-grained cluster structure
in the data. As a result, it cannot well push semantically similar instances to be close either empiri-
cally (Zhou et al., 2021b) or theoretically (Wang & Isola, 2020), impairing performance. Clustering
learning cluster similar instances into the same cluster and thus learns cluster-level coarse-grained
features. But it cannot well handle the downstream tasks that require some fine-grained features. So
in absence of prior feature preference of down stream tasks, one should build an SSL framework to
learn multi-granular representation to well handle as many downstream tasks as possible.

Figure 1: Attention visualiza-
tion on “mugs” of ViT-B/16
trained by our Mugs.

Contributions. In this work, we propose an effective MUlti-
Granular Self-supervised learning (Mugs) framework to explicitly
learn multi-granular visual features. It adopts three complementary
granular supervisions: 1) instance discrimination supervision (IDS),
2) local-group discrimination supervision (LGDS), and 3) group
discrimination supervision (GDS). Inspired by contrastive learning,
IDS distinguishes instances via scattering different instance features
separately, and thus supervises instance-level fine-grained feature
learning. To capture the higher-level fine-grained feature which is
also called the “local-group feature” in this work, Mugs proposes
a novel and effective LGDS. LGDS aggregates the features of an
instance and its few highly similar neighbors into a local-group fea-
ture through a small transformer. Then it brings local-group features
of different crops from the same image together and pushes them far away for others. This super-
vision enhances Mugs from two aspects: 1) it provides complementary instance supervision to the
above IDS, since it enforces different crops of the same image to have highly similar neighbors,
which is an extra challenging alignment, and boosts local-group semantic alignment; 2) it encour-
ages highly similar instances to constitute small local-groups and scatters these groups separately,
boosting more discriminative semantic learning. Finally, GDS is designed to avoid the cases that
similar local-groups are scattered randomly or far away. GDS brings similar samples together and
thus pulls similar local-groups close, capturing coarse-grained features at a (semantic) group level.
With these complementary supervisions, Mugs can well learn multi-granular features which can
well capture the data semantics, e.g. the shapes of “mugs” of ImageNet-1K in Fig. 1, and also often
enjoy better generality and transferability on diverse downstream tasks than single-granular features.

As shown in Fig. 2 (a), by only pretraining on ImageNet-1K, our Mugs sets a new state-of-the-
art (SoTA) 82.1% linear probing accuracy on ImageNet-1K and surpasses the previous SoTA,
i.e. iBOT (Zhou et al., 2021a), by a large margin 1.1%. Moreover, under different model sizes
(see Fig. 2 (a)) and pretraining epochs (see Fig. 2 (b)), Mugs consistently improves previous SoTA
pretrained on ImageNet 1K by a non-trivial 0.8% linear probing accuracy. Besides, on several down-
stream tasks, e.g. detection and segmentation, Mugs also beats previous SoTA with the same setting.

2 RELATED WORKS

As an effective family of SSL, contrastive learning, e.g., MoCo (He et al., 2020), aims to train a
network so that the positive pair, i.e. crops of the same image, are close but far from the negatives,
i.e. other image crops. Though successful, they only distinguish individual instances to learn fine-
grained feature, and often cannot well push similar instances close, impairing their performance.

Another line of SSL is clustering learning, e.g. (Caron et al., 2018a; Lin et al., 2021), which assigns
pseudo cluster labels for each sample and then trains a network to learn unsupervised representation.
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Figure 3: Overall framework of Mugs. (a) shows the overall framework. For each image, Mugs
respectively feeds its two crops into backbones of student and teacher. Next, it uses three granular
supervisions from instance, local-group and group levels. “sg” denotes stop-gradient. (b) shows the
pipeline of local-group modules in both student and teacher. It averages all patch tokens, and then
finds top-k neighbors from memory buffer. Next, it uses a transformer to aggregate the average and
its k neighbors to obtain a local-group feature (class token) and feeds it into a local-group head.

For instance, deepcluster (Caron et al., 2018b) uses k-means to cluster all data features and generates
pseudo clustering labels which are then used to train a network. DINO (Caron et al., 2021) and
MST (Li et al., 2021) propose a much simple online labeling framework that generates pseudo-labels
via a momentum teacher. Unfortunately, they often learns cluster-level coarse-grained (semantic)
features, and cannot well handle the downstream tasks which desire fine-grained features.

Finally, the recently proposed masked auto-encoder (MAE), e.g. (He et al., 2021b; Xie et al., 2021b)
is a new SSL family. It randomly masks image patches and then reconstructs the missing pixels or
semantic features. But it emphasizes local region reconstruction, and lacks semantic discrimination
ability. As a result, for adapting to downstream tasks via only fine-tuning a task head at the top of
the pretrained backbone, it performs much worse than contrastive and clustering learning (He et al.,
2021a). Indeed, to achieve good performance, these methods need to fine-tune the whole pretrained
network to learn global semantics which are necessary for downstream tasks, e.g. classification. But
this requires much higher extra training cost, and also results in very different models for different
downstream tasks, which destroys model compatibility and increases deployment cost.

3 MULTI-GRANULAR SELF-SUPERVISED LEARNING

Here we first introduce the overall framework of our MUlti-Granular Self-supervised learning
(Mugs), and then elaborate on its three granular supervisions. We evaluate the effectiveness of
Mugs through ViT (Dosovitskiy et al., 2020) and thus will take ViT as an example to introduce
Mugs, since ViT shows better performance than CNN (Touvron et al., 2021; He et al., 2021a) and
great potential for unifying the vision and language models (He et al., 2021a; Baevski et al., 2022).

3.1 OVERALL FRAMEWORK

As discussed in Sec. 1, different downstream tasks, e.g. general classification and its fine-grained
variant, often require different granular features, e.g. coarse- or fine-grained one. More importantly,
many real downstream tasks actually highly desire multi-granular feature. Unfortunately, this im-
portant multi-granular requirement is seldom brought to front and ignored in existing SSL methods.

To alleviate this issue, we propose a simple but effective Mugs framework to learn multi-granular
features which can better satisfy different granular feature requirements of various downstream tasks
and thus enjoy higher transferability and generality than single-granular features. As shown in Fig. 3
(a), given an image x̃, Mugs uses augmentations T t and T s to obtain its two crops x1 and x2. Next,
it respectively feeds x1 and x2 into the teacher and student backbones, and obtains their corre-
sponding features y1 and y2 which contain class and patch tokens. Finally, Mugs builds three gran-
ular supervisions: 1) instance discrimination supervision for instance-level fine-grained features, 2)
local-group discrimination supervision for high-level fine-grained features at a local-group level, 3)
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group discrimination supervision for coarse-grained semantic features at a (semantic) group level.
Accordingly, Mugs can learn multi-granular features and better handles as many downstream tasks
as possible, in contrast with SSL methods that only consider single-granular features, e.g. MoCo
for instance discriminative fine-grained features and deepclustering/DINO for group-discriminative
coarse-grained features. Next, we will introduce our three complementary granular supervisions.

3.2 MULTI-GRANULAR SUPERVISIONS

Instance discrimination supervision (IDS). With this supervision, Mugs regards each instance as
a unique class which is our finest level of granularity. Accordingly, it pulls the random crops of the
same instance close and pushes other crops away. In this way, as shown in first and second spheres
in Fig. 3 (a), it approximately scatters the instance features separately from the chaos distribution on
the spherical surface, according with the empirical and theoretical observations in (Tian et al., 2020)
and our results in Fig. 4 of Sec. 4. To implement IDS on the instance x̃, Mugs respectively feeds
two class tokens yc

1 and yc
2 in the two features y1 and y2 into their corresponding instance heads ht

in
and hs

in in Fig. 3 (a). Next, Mugs additionally passes hs
in(y

c
2) into an extra prediction head pin which

alleviates the side effects of feature alignment upon the generality of the feature learnt by student or
teacher backbone. Finally, following MoCo, Mugs employs InfoNCE loss (Oord et al., 2018)

Linstance(x1,x2)=− log
exp(cos(z1, z2)/τin)

exp(cos(z1, z2)/τin) +
∑

z∈Bin
exp(cos(z2, z)/τin)

, (1)

where z1 = ht
in(y

c
1), z2 = pin(h

s
in(y

c
2)), and τin is a temperature. Buffer Bin stores the negative

instances of z2, and is updated by the minibatch features {z1} of teacher in a first-in and first-out
(FIFO) order. Accordingly, Mugs pushes the crop x2 away from other instances and pulls its positive
x1 close. So it helps learn fine-grained features and boosts instance-level feature diversity.

Local-group discrimination supervision (LGDS). As explained in Sec. 3.1, fine-grained features
are often insufficient for diverse downstream tasks, e.g. classification, due to lack of sufficient high-
level data semantics. To learn higher-level fine-grained features, also called “local-group features”
here, Mugs proposes a novel and effective local-group supervision. Intuitively, as shown in the third
sphere of Fig. 3 (a), LGDS encourages instance features to have small but separately scattered local-
group structures, i.e. small/large distance among highly similar/dissimilar samples. Accordingly, it
helps capture higher-level data semantics compared with instance discrimination supervision.

As shown in Fig. 3 (a), given the crop x1 of image x̃, the teacher backbone outputs y1 which
contains class token yc

1 and patch tokens yp
1. Similarly, Mugs feeds another crop x2 of x̃ into student

backbone to obtain y2 consisting of class token yc
2 and patch tokens yp

2. Next, Mugs respectively
averages the patch tokens yp

1 and yp
2 to obtain two average tokens y′1 and y′2 shown in Fig. 3 (b).

Here we use average tokens instead of class token, as we find that average token often contains more
information and finds more accurate neighbors in the next step. Note, for a CNN backbone, we can
average the last feature map to obtain y′1 and y′2. Then Mugs uses a buffer Blg to store the historical
minibatch average tokens {y′1} and {y′2} in a FIFO order. Next, as shown by Fig. 3 (b), for both y′1
and y′2, Mugs respectively finds their own top-k neighbors {y′1,i}ki=1 and {y′2,i}ki=1 from the buffer
Blg. Finally, it respectively uses a transformer to aggregate the average token and its k neighbors as

y∗1 = gt
transformer(y

′
1; {y′1,i}ki=1) and y∗2 = gs

transformer(y
′
2; {y′2,i}ki=1). (2)

Here gt
transformer(y

′
1; {y′1,i}ki=1) denotes a 2-layered vanilla ViT without any patch embedding layers,

and has input class token y′1, input patch tokens {y′1,i}ki=1 and output class token y∗1 . Since the new
feature y∗1 comes from y′1 and its top-k neighbors {y′1,i}ki=1 which together constitute a local group
of y′1, y∗1 is also called a “local group feature”. gs

transformer(y
′
2; {y′2,i}ki=1) has the same function.

Finally, Mugs pulls these local-group features y∗1 and y∗2 from the same instance x̃ close and pushes
away the local-group features of other instances by using following InfoNCE loss

Llocal-group(x1,x2)=− log
exp(cos(z1, z2)/τlg)

exp(cos(z1, z2)/τlg)+
∑

z∈B′
lg
exp(cos(z2, z)/τlg)

, (3)

where z1=ht
lg(y

∗
1) and z2=plg(h

s
lg(y

∗
2)). h

t
lg and hs

lg are two projection heads and plg is a prediction
head. Buffer B′lg stores the historical local-group features {y∗1} produced by teacher in a FIFO order.

This LGDS supervision benefits Mugs from two aspects. 1) It provides complementary instance su-
pervision to the above instance discrimination supervision (IDS). It brings two local-group features
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y∗1 and y∗2 from the same image x̃ close, where y∗1 /y∗2 are the aggregation of the crop x1/x2 and its
top-k neighbors. So to achieve small loss Llocal-group(x1,x2), the two crops x1 and x2 of x̃ should
have very similar top-k neighbors. This means besides the crops themselves, their corresponding
neighbors should also be well aligned, which is an extra challenging alignment problem compared
with IDS and enhances local-group semantic alignment. 2) It encourages highly-similar instances to
form local-groups and scatters these local-groups separately, increasing the semantic discrimination
ability of the learnt feature. This is because a) LGDS uses a small k (around 10) for neighbors such
that samples in the same local-group are highly similar and have small distance, helping form local-
groups; 2) LGDS further pushes away local-group features of different instances, and thus scatters
different local-groups separately. With these two aspects, LGDS boosts higher-level fine-grained
feature learning by considering the local-group structures in data.

Group discrimination supervision (GDS). This supervision is the most coarse level supervision
in Mugs. Intuitively, as shown in the last sphere in Fig. 3 (a), it targets at clustering semantically
similar instances and local-groups into the same big group/cluster which could reveal more global
semantics in data compared with the instance and local-group supervisions.

For the instance x̃, Mugs respectively feeds the class token yc
1 in the feature y1 from teacher back-

bone and the class token yc
2 in y2 from student backbone into two group heads ht

g and hs
g. Then, it

builds a set of learnable cluster prototypes {ci}mi=1 and computes soft pseudo clustering labels:

pt
i =

exp(σ(ht
g(y

c
1)) · ci/τg)∑m

i=1 exp(σ(h
t
g(y

c
1)) · ci/τg)

and ps
i =

exp(hs
g(y

c
2) · ci/τ ′g)∑m

i=1 exp(h
s
g(y

c
2) · ci/τ ′g)

. (4)

Here the function σ(ht
g(y

c
1)) = ht

g(y
c
1) − pema is to increase the diversity of the feature ht

g(y
c
1)

and thus sharpens the soft pseudo label pt in Eqn. (4), where pema denotes the estimated average
statistics of all past ht

g(y
c
1) via an exponential moving average of the mini-batch B, namely, pema ←

ρ · pema + (1 − ρ) · 1
|B|

∑
pt∈B pt with a constant ρ ∈ [0, 1]. Such a technique is shown to be

useful in (Caron et al., 2021). Next, similar to a supervised classification task, Mugs employs the
cross-entropy loss but with soft labels as its training loss:

Lgroup(x1,x2) = −
∑m

i=1
pt
i log (p

s
i) . (5)

Overall training objective. Now we introduce the overall training loss:

L(x1,x2)=λinLinstance(x1,x2) + λlgLlocal-group(x1,x2) + λgLgroup(x1,x2), (6)

where λin, λlg and λg are three constants. For simplicity, we set λin=λlg=λg=
1
3 in all experiments.

We then can minimize the objective L(x1,x2) to optimize student network. Teacher network is
updated via the exponential moving average of corresponding parameters in student.

Now we put our three granular supervisions (IDS, LGDS and GDS) together and discuss their co-
effects on representation learning which also distinguishes it from existing methods, e.g. MoCo and
DINO. As aforementioned, IDS is to pull the crops of the same image together and to approximately
scatter the instance features separately on the spherical surface as shown in first and second spheres
in Fig. 3 (a). It helps Mugs learn instance-level fine-grained features. Next, LGDS first provides
complementary supervision for instance discrimination supervision by encouraging crops of the
same instance to have highly similar neighbors. Then, as shown in the third sphere in Fig. 3 (a),
LGDS scatters different local-groups formed by crops and its neighbors separately to boost the
semantic discrimination ability of these local-groups. This supervision mainly learns higher-level
fine-grained features at a local-group level. Finally, to avoid similar local-groups to be scattered
randomly or far away, GDS brings similar samples together and thus pulls similar local-groups close,
as intuitively illustrated by the last sphere in Fig. 3 (a). It is responsible to capture the coarse-grained
features at a (semantic) group level. With these three granular supervisions, Mugs can well learn
three different but complementary granular features, which are characterized by better generality
and transferability on the various kinds of downstream tasks compared with single-granular features.
Compared with existing methods, e.g. MoCo and DINO, the main novelties of Mugs lie in two folds:
1) Mugs learns multi-granular representation via three complementary supervisions and can often
better handle diverse downstream tasks than the existing methods that often learn single-granular
feature; 2) Mugs proposes a novel and effective local-group supervision which complements both
instance and group supervisions and benefits Mugs from two aspects as discussed above.
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Discussion. A few works also design (locally) clustering-involved SSL approaches. Given a positive
pair (x1,x2) of an image x̃, NNCLR (Dwibedi et al., 2021) pushes x2 and the nearest neighbors
{x′1}ki=1 of x1 closer via InfoNCE loss by regarding {x′1}ki=1 as the positives of x2. SwAV (Caron
et al., 2020a) learns clustering prototypes via optimal transport while enforcing consistency between
the similarity of x1 and x2 on the prototypes. CLD (Wang et al., 2021) clusters current minibatch
samples into local-groups via kmeans, and pulls samples in the same group closer but away from
samples in other groups. But Mugs differs from them in several key aspects as shown in Table 1.

Table 1: Comparison of clustering-involved SSL.

global scattered hierarchical end-to-end
clustering clusters clusters training

NNCLR % % % "
SwAV " % % %
CLD % " % %
Mugs " " " "

architecture ViT-S ViT-B
method Mugs SwAV Mugs CLD Mugs NNCLR

pre. epoch 800 800 100 100 800 1000
top-1 acc. (%) 78.9 73.5 76.4 71.6 80.6 76.5

Specifically, 1) on global clustering whether
using whole dataset, NNCLR and CLD do not,
while Mugs and SwAV do. In NNCLR, its lo-
cal group considers only two samples, and it
has severe degeneration if using more neigh-
bors (e.g. 4, see its Tab. 7), indicating infe-
rior clustering effect. CLD clusters minibatch
via kmeans which however is sensitive and of-
ten cannot handle small-sized minibatch data.
In contrast, Mugs and SwAV use whole data
to iteratively improve their aggregation trans-
former or prototypes. 2) On scattered clusters which avoid collapse and also increase discriminabil-
ity, NNCLR and SwAV do not scatter their clusters separately, while LGDS in Mugs scatters differ-
ent local groups. Optimal transport in SwAV only ensures uniform distribution of samples in each
cluster. 3) On hierarchical cluster structure (a group having several local groups), all three meth-
ods have no due to their single-granular cluster loss, while Mugs has because of its multi-granular
loss. This structure can better depict real data and helps many downstream tasks. 4) On end-to-end
training, SwAV and CLD do not due to their optimal transport or kmeans, while Mugs and NNCLR
do. 5) On technique, our LGDS aggregates an image and its neighbors into a local-group feature
via a transformer, and pulls positive local-groups closer while pushing negatives far away. This ag-
gregation clustering differs from NNCLR, SwAV via optimal transport and CLD via local kmeans.
Indeed, our aggregation transformer enjoys several advantages: a)as aforementioned, clustering
given by aggregation transformer is global, b) it gives an end-to-end trainable framework; c) push-
ing or pulling local-group features explicitly affects each samples in the group and is much more
efficient than NNCLR, SwAV and CLD which performs pushing and pulling actions on a single in-
stance. 6) On performance, Table 1 (also Table 2) shows large linear probing accuracy improvement
of Mugs on ImageNet-1K over SwAV, CLD and NNCLR whose results are officially reported.

4 EXPERIMENTS

Here we present the performance evaluation of our Mugs on benchmark tasks, e.g. classification and
delectation and segmentation, with comparison against several representative SoTA SSL approaches.

Architectures. We test Mugs on ViT (Dosovitskiy et al., 2020). For IDS and LGDS, their projection
heads are all 3-layered MLPs with hidden/output dimension 2,048/256, and their prediction heads pin
and plg are all 2-layered MLPs with hidden/output dimension 4,096/256. For group discrimination,
its projection heads are all 3-layered MLP with hidden/output dimension of 2,048/256. Transformers
gt

transformer and gs
transformer have 2 layers and have a total input token number of 9 as we set k = 8 for

the neighbors. For three buffers (Bin, Blg and B′lg) and prototypes {ci}mi=1, their sizes are all 65,536.

Pretraining setup. We pretrain Mugs on ImageNet-1K (Deng et al., 2009). Following DINO
and iBOT, we use symmetric training loss, i.e. 1

2 (L(x1,x2)+L(x2,x1)). For augmentation, we
adopt weak augmentation in DINO to implement T t in teacher, and use strong augmentation (mainly
including AutoAugment (Cubuk et al., 2018)) in DeiT (Touvron et al., 2021) as the augmentation T s

in student. Following the multi-crop setting in SwAV and DINO, we crop each image into 2 large
crops of size 224 and 10 extra small crops of size 96. For both large crops, we feed each of them into
teacher, and use its output to supervise the student’s output from the other 11 crops. For two-crop
setting, Table 9 in Appendix A reports the results and shows superiority of Mugs over SoTAs.

For pretraining, Mugs has almost the same training cost with DINO, e.g. about 27 hours with 8 A100
GPUs for 100 pretraining epochs on ViT-S/16, as our projection/prediction heads and transformers
gtransformer are much smaller than the backbone. See more details of hyper-parameters (e.g. τin), the
augmentation, multi-crop loss, pretraining cost, and optimizer settings in Appendix B.
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Table 2: Linear probing and k-NN accu-
racy (%) on ImageNet-1K. “D” denotes which
dataset is used to pretrain. “Epo.” is the effec-
tive pretraining epochs in (Zhou et al., 2021a).

Method D Epo. Lin. k-NN

MoCo-v3 (Chen et al., 2021) 1K 1600 74.6 —

R
es

N
et

-5
0

SimCLR (Chen et al., 2020a) 1K 1600 69.3 —
InfoMin Aug (Tian et al., 2020) 1K 1600 73.0 —
SimSiam (Chen & He, 2021) 1K 1600 71.3 —
BYOL (Grill et al., 2020b) 1K 2000 74.3 —
SwAV (Caron et al., 2020b) 1K 2400 75.3 65.7
DeepCluster (Caron et al., 2018b) 1K 2400 75.2 —
DINO (Caron et al., 2021) 1K 3200 75.3 67.5

V
iT

-S

MoCo-v3 (Chen et al., 2021) 1K 3200 73.4 —
SwAV (Caron et al., 2020b) 1K 3200 73.5 66.3
DINO (Caron et al., 2021) 1K 3200 77.0 74.5
iBOT (Zhou et al., 2021a) 1K 3200 77.9 75.2
Mugs (ours) 1K 3200 78.9 75.6

V
iT

-B

MoCo-v3 (Chen et al., 2021) 1K 1200 76.7 —
DINO (Caron et al., 2021) 1K 1600 78.2 76.1
iBOT (Zhou et al., 2021a) 1K 1600 79.5 77.1
Mugs (ours) 1K 1600 80.6 78.0

V
iT

-L

MoCo-v3 (Chen et al., 2021) 1K 1200 77.6 —
iBOT (Zhou et al., 2021a) 1K 1000 81.0 78.0
Mugs (ours) 1K 1000 82.1 80.3
iBOT (Zhou et al., 2021a) 22K 200 82.3 72.9

Table 3: Fine-tuning accuracy (%) on ImageNet-
1K. All are pretrained on ImageNet-1K. “Recons.”,
“con.”, “clus.” are respectively short for “Recon-
struction”, “contrastive”, “clustering”.

Method ViT-S/16 ViT-B/16
Epo. Acc. (%) Epo. Acc. (%)

Supervised (Touvron et al., 2021) — 79.9 — 81.8

R
ec

on
s.

BEiT (Bao et al., 2021) 800 81.4 800 83.4
MAE (He et al., 2021a) — — 1600 83.6
SimMIM (Xie et al., 2021b) — — 1600 83.8
MaskFeat (Wei et al., 2021) — — 1600 84.0
data2vec (Baevski et al., 2022) — — 1600 84.2

co
n.

/c
lu

s. MoCo-v3 (Chen et al., 2021) 600 81.4 600 83.2
DINO (Caron et al., 2021) 3200 82.0 1600 83.6
iBOT (Zhou et al., 2021a) 3200 82.3 1600 83.8
Mugs (ours) 3200 82.6 1600 84.3

Table 4: Semi-supervised classification accuracy
(%) on ImageNet-1K.
Method Arch. logistic reg. fine-tuning

1% 10% 1% 10%

SimCLRv2 (Chen et al., 2020b) RN50 — — 57.9 68.1
BYOL (Grill et al., 2020b) RN50 — — 53.2 68.8
SwAV (Caron et al., 2020b) RN50 — — 53.9 70.2
DINO (Caron et al., 2021) ViT-S/16 64.5 72.2 60.3 74.3
iBOT (Zhou et al., 2021a) ViT-S/16 65.9 73.4 61.9 75.1
Mugs (ours) ViT-S/16 66.9 74.0 66.8 76.8

4.1 RESULTS ON IMAGENET-1K

Linear Probing. It trains a linear classifier on top of frozen features generated by the backbone,
e.g. ViT, for 100 epochs on ImageNet-1K. We follow iBOT, and use SGD with different learning
rates for different models. Table 2 shows that by pretraining on ImageNet-1K, Mugs consistently
outperforms other methods on different backbones of various sizes. Specifically, Mugs respectively
achieves 78.9% and 80.6% top-1 accuracy on ViT-S and ViT-B, and improves corresponding SoTAs
by at least 1.0%. Notably, on ViT-L, by only pretraining on ImageNet-1K, Mugs sets a new SoTA
accuracy of 82.1%, even comparable to the accuracy 82.3% of iBOT pretrained on ImageNet-22K.

KNN. Table 2 shows that for all backbones, Mugs achieves the highest top-1 accuracy on ImageNet-
1K. It respectively makes 0.4%, 0.9%, and 2.3% improvement on ViT-S, ViT-B and ViT-L over the
runner-up, showing the advantages of multi-granular representation in Mugs.

Fine-tuning. It fine tunes the pretrained backbone with a linear classifier. Following iBOT, we use
AdamW with layer-wise learning rate decay to train ViT-S/ViT-B/ViT-L for 200/100/50 epochs on
ImageNet-1K. Table 3 reports the classification results, in which “Supervised” means randomly ini-
tializing model parameters and training scratch. On ViT-S and ViT-B, Mugs respectively achieves
new SoTA of 82.5% and 84.3%, improving the runner-up, i.e., iBOT and data2vec, by 0.2% and
0.1% respectively. Note, the reconstruction frameworks, e.g. MAE, have unsatisfactory linear prob-
ing performance and thus are included in Table 2. Moreover, as explained in Sec. 2, this fine-tuning
setting needs much higher extra training cost, and also destroys model compatibility for deployment.

Semi-supervised learning. We use 1% or 10% training data of ImageNet-1K to fine tune the pre-
trained backbones. Following iBOT, we consider two settings: 1) training a logistic regression
classifier on frozen features; and 2) fine-tuning the whole pretrained backbone. Table 4 shows that
for both 1% and 10% training data, Mugs surpasses previous SoTAs. Notably, under fine-tuning
setting with 1% labeled data, Mugs improves iBOT by a significant 4.9% accuracy.

Result Analysis. Fig. 4 uses T-SNE (Van der Maaten & Hinton, 2008) to reveal the feature differ-
ences among MoCo-v3, DINO, iBOT, and Mugs, in which each color denotes a unique class. The
last subfigure in Fig. 4 (a) shows that for one class, Mugs often divides it into several clusters in the
feature space, e.g. 4 clusters for brown, 4 for purple, 6 for red, and 2 for orange, and scatters these
small clusters in a big class. We further visualize two clusters of Mugs in Fig. 4 (b) and (c): the four
clusters in (b) of electric ray (i.e. “brown” in (a)) respectively cluster the same small species together;
hammerhead (“orange”) has two clusters in (c) corresponding to its two poses. This partially reveals
multi-granular structures in the feature: classes are separately scattered, which corresponds to a
group-level coarse granularity; several small scattered clusters in a class show a local-group-level
fine granularity; and some separate instances in a cluster reveal an instance-level fine granularity. In
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MoCo-v3 DINO iBOT MILERMoCo-v3 DINO MILER iBOTMoCo-v3 DINO iBOT MILERMoCo-v3 DINO iBOT MILERMugs

(a) T-SNE visualization of the learned feature by ViT-B/16

(b) 4 clusters (2 images per cluster) in electric ray (“brown” in (a)) (c) 2 clusters in hammerhead (“orange”)

Figure 4: T-SNE visualization of the learned feature by ViT-B/16. We show the fish classes in
ImageNet-1K, i.e., the first six classes , e.g. hammerhead (“brown”) and electric ray (“orange”). (b)
and (c) respectively visualizes brown and orange clusters in Mugs. See more examples in Appendix.

Table 5: Classification accuracy (%) for transfer learning on six datasets.

Method ViT-S/16 ViT-B/16
Cif10 Cif100 INat18 INat19 Flwrs Car Cif10 Cif100 INat18 INat19 Flwrs Car

Sup. (Caron et al., 2021) 99.0 89.5 70.7 76.6 98.2 92.1 99.0 90.8 73.2 77.7 98.4 92.1
BEiT (Bao et al., 2021) 98.6 87.4 68.5 76.5 96.4 92.1 99.0 90.1 72.3 79.2 98.0 94.2
MAE (He et al., 2021a) — — — — — — — — 75.4 80.5 — —
MoCo-v3 (Chen et al., 2021) — — — — — — 98.9 90.5 — — 97.7 —
DINO (Caron et al., 2021) 99.0 90.5 72.0 78.2 98.5 93.0 99.1 91.7 72.6 78.6 98.8 93.0
iBOT (Zhou et al., 2021a) 99.1 90.7 73.7 78.5 98.6 94.0 99.2 92.2 74.6 79.6 98.9 94.3
Mugs (ours) 99.2 91.8 74.4 79.8 98.8 93.9 99.3 92.8 76.4 80.8 98.9 94.0

contrast, MoCo-v3, DINO and iBOT often do not show this multi-granular feature structure in Fig. 4
(a). Hence, for some challenging classes, e.g. electric ray, Mugs can well distinguish them, while
MoCo-v3, DINO and iBOT cannot. This is because instead of regarding the class as a whole, Mugs
utilizes its multi-granular supervisions to consider the multi-granular (hierarchical) data semantic
structures and divide the whole class into several easily-distinguishable clusters in the pretraining
phase. Differently, MoCo-v3, DINO and iBOT ignore the multi-granular semantic structures and
only uses one granular supervision which often could not well handle the challenging classes. Fig. 5
(a) further visualizes the self-attention of ViT-B/16. One can observe Mugs can well capture object
shapes and thus their semantics. See more details and examples in Appendix A.4.

4.2 RESULTS ON DOWNSTREAM TASKS

Transfer learning. We fine-tune the pretrained backbone on various kinds of other datasets with
same protocols and optimization settings in iBOT. Table 5 summarizes the classification accuracy, in
which “Sup.” denotes the setting where we pretrain the backbone on ImageNet-1K in a supervised
manner and then fine tune backbone on the corresponding dataset. Table 5 shows our Mugs surpasses
SoTAs on the first five datasets and achieves comparable accuracy on the Car dataset.

Object detection & Instance segmentation. Now we evaluate Mugs on object detection and in-
stance segmentation on COCO (Lin et al., 2014). For fairness, we use the same protocol in iBOT. See
optimization settings in Appendix B. Besides SSL approaches, e.g. MoBY (Xie et al., 2021a), we
also compare supervised baselines, Swin-T/7 (Liu et al., 2021) with similar model size as ViT-S/16.
Table 6 shows that on detection, Mugs makes 0.4 APb improvement over the runner-up, i.e. iBOT.
Fig. 5 (b) shows that Mugs can accurately locate and classify objects in COCO. For instance seg-
mentation, Mugs also improves 0.4 APm over the best baseline.

Semantic segmentation. We transfer the pretrained model to semantic segmentation task on the
ADE20K dataset (Zhou et al., 2017). Following iBOT, we stack the task layer in UPerNet (Xiao

Table 6: Object detection (Det.) & instance segmentation
(ISeg.) onCOCO&semanticseg. (SSeg.) onADE20K.

Arch. Param. Det. ISeg. SSeg.

APb APm mIoU
Sup. (Zhou et al., 2021a) Swin-T 29 48.1 41.7 44.5
MoBY (Xie et al., 2021a) Swin-T 29 48.1 41.5 44.1
Sup. (Zhou et al., 2021a) ViT-S/16 21 46.2 40.1 44.5
iBOT (Zhou et al., 2021a) ViT-S/16 21 49.4 42.6 45.4
Mugs (ours) ViT-S/16 21 49.8 43.0 47.4

Table 7: Video object segmenta-
tion with ViT-B/16 on the DAVIS-
2017 video dataset.

(J&F)m Jm Fm

DINO (Caron et al., 2021) 62.3 60.7 63.9
iBOT (Zhou et al., 2021a) 62.4 60.8 64.0
Mugs 63.1 61.4 64.9
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(a) attention visualization (b) object detection (c) semantic segmentation
Figure 5: Visualization of pretrained ViT-B/16 (a) and ViT-S/16 (b) & (c) by Mugs.

et al., 2018) and fine-tune the whole backbone. Table 6 reports the mean intersection over union
(mIoU) on all semantic categories. Mugs consistently outperforms the compared SoTAs by signifi-
cant 2.0 mIoU. Fig. 5 (c) shows that Mugs can capture the object shape accurately.

Video object segmentation. We follow DINO and find nearest neighbors to segment objects in
the video, since one can propagate segmentation masks via retrieving nearest neighbor between
consecutive video frames. Table 7 reports the mean region similarity Jm and mean contour-based
accuracy Fm on the DAVIS-2017 video segmentation dataset (Pont-Tuset et al., 2017) by using ViT-
B/16. Mugs enjoys better feature transferability than DINO and iBOT even for video segmentation.

4.3 ABLATION STUDY

Table 8: Effects of the three granular supervisions in
Mugs to the linear probing accuracy (%).
Mugs Mugs w/o Linstance Mugs w/o Llocal-group Mugs w/o Lgroup
76.4 75.8 75.3 75.7

Here we investigate the effects of each
granular supervision in Mugs. Specifi-
cally, we train Mugs for 1,00 epochs on
ImageNet-1K and report the linear prob-
ing accuracy in Table 8. One can observe that by independently removing each granular supervi-
sion, namely, the instance, local-group and group supervision, the performance of Mugs degenerates,
which shows the benefit of each granular supervision, especially for the local-group supervision.

Table 9: Augmentation effects to linear probing ac-
curacy (%) on ImageNet. † denotes that we replace
vanilla augmentation in method and run the new one.

weak aug. strong aug. weak aug.+rand. mask
DINO iBOT† Mugs DINO† iBOT† Mugs iBOT
74.2 74.9 75.7 74.7 75.4 76.4 75.3

Next, we compare Mugs with DINO and
iBOT under different augmentations and
also show the effects of augmentations.
For augmentation T s in student network
of Mugs/DINO/iBOT, we implement it by
strong or weak augmentation mentioned at
the beginning of Sec. 4; for augmentation T t in teacher, we always use weak augmentation. See im-
plementations details in Appendix B, especially for iBOT. We pretrain all methods for 1,00 epochs
on ImageNet-1K. Table 9 shows four observations. 1) Under weak or strong augmentation, Mugs al-
ways outperforms DINO and iBOT. 2) For all three methods, strong augmentation slightly improves
their performance under weak augmentation, showing the effectiveness of our strong augmentation
technique on ViTs. 3) Mugs using weak augmentation surpasses iBOT with both weak augmentation
and random mask augmentation. 4) Under weak augmentation, Mugs improves 1.5% over DINO
which means it is the multi-granular supervisions of Mugs that contributes this 1.5% improvement.
Then by using strong augmentation, Mugs surpasses DINO using weak augmentation by 2.2%,
showing strong augmentation only contributes 0.7% improvement over DINO. So compared with
the strong augmentation, the multi-granular supervision framework of Mugs largely contributes to
Mugs and is the key factor to the significant improvement of Mugs over DINO and iBOT.

Finally, we evaluate Mugs without multi-crop augmentation, i.e. using two crops of size 224×224
for pretraining. Table 9 in Appendix A shows that Mugs also surpasses the SoTAs, including DINO
and iBOT, on ViTs under the same setting, which also demonstrates the superiority of Mugs.

5 CONCLUSION

In this work, we propose Mugs to learn multi-granular features via three complementary granular
supervisions. Instance discrimination supervision distinguishes different instances to learn fine-
grained features. Local-group discrimination supervision considers the local-group around an in-
stance and then discriminates different local-groups to extract higher-level fine-grained features.
Group discrimination supervision clusters similar samples and local-groups into one cluster to cap-
ture coarse-grained global group semantics. Experimental results testify the advantages of Mugs.
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APPENDIX

This supplementary document provides more additional experimental results and the pretraining
& fine-tuning details for the ICLR submission entitled “Mugs: A Multi-Granular Self-supervised
Learning Framework”. It is structured as follows. Appendix A provides more extra experimental
results, including 1) the comparison among SoTAs without the multi-crop augmentation strategy in
Appendix A.2, 2) fine-tuning comparison on ViT-L/16 in Appendix A.3, 3) more T-SNE clustering
visualization results in Appendix A.4, 4) more attention visualization results in Appendix A.5, 5)
more visualization results on object detection and segmentation in Appendix A.6.

Appendix B provides more experimental details for Sec. 4 in manuscript. Specifically, Appendix B.1
gives more pretraining details, including implementations of weak and strong augmentations, loss
construction under multi-crop setting, hyper-parameter settings for pretraining and the pretraining
cost. Then Appendix B.2 introduces more details for fine-tuning and semi-supervised learning in
Sec. 4.1 in manuscript. Next, in Appendix B.3, we present more details for downsteam tasks, in-
cluding transfer learning, object detection & instance segmentation, and semantic segmentation.
Finally, Appendix B.4 tells us more implementation details of DINO and iBOT under weak and
strong agumentation settings to complement Sec. 4.3 in manuscript.

A MORE EXPERIMENTAL RESULTS

Due to space limitation, we defer more experimental results to this appendix. Here we first inves-
tigate the performance of Mugs without multi-crop augmentations which is widely used in several
representative works, and further compare it with other methods, include iBOT and DINO under the
same setting. Then we present more visualization results, including T-SNE clustering visualization,
attention visualization of multi-heads in ViT, and object detection and segmentation visualization.
We hope these visualization results can help readers intuitively understand the learnt features by
Mugs.

A.1 MORE PRETRAINING DETAILS

We pretrain Mugs on the training data of ImageNet-1K (Deng et al., 2009) without labels. Follow-
ing (Zhou et al., 2021a), we pretrain ViT-S/16 for 800 epochs, ViT-B/16 for 400 epochs, and ViT-L
for 250 epochs. Following DINO and iBOT, we use symmetric training loss, i.e. 1

2 (L(x1,x2) +
L(x2,x1)). We use AdamW optimizer (Loshchilov & Hutter, 2018) with a momentum of 0.9, a
weight decay of 0.1, and a cosine schedule (Loshchilov & Hutter, 2016). For data augmentation, we
adopt weak augmentation in DINO (Caron et al., 2021) to implement T t in teacher, and use strong
augmentation (mainly including AutoAugment (Cubuk et al., 2018)) in DeiT (Touvron et al., 2021)
as the augmentation T s in student. Following conventional multi-crop setting (Caron et al., 2020b;
2021; Zhou et al., 2021a), we crop each image into 2 large crops of size 224 and 10 extra small crops
of size 96. For both large crops, we feed each of them into teacher and use its output to supervise
the student’s output from the other 11 crops. For two-crop setting, Table 9 in Appendix A reports
the results and shows the superiority of Mugs over SoTAs.

For Mugs, we follow MoCo to set τin = τlg = 0.2 in the infoNCE loss, and follow DINO to set
τ ′g = 0.1 and linearly warm up τg from 0.04 to 0.07. We set the neighbor number k = 8, and set
ρ = 0.9 in group discrimination. Mugs has almost the same training cost with DINO, e.g. about 27
hours with 8 A100 GPUs for 100 pretraining epochs on ViT-S/16, as our projection/prediction heads
and transformers gtransformer are much smaller than the backbone.

Table 9: Linear probing accuracy (%) and k-NN accuracy (%) on ImageNet-1K without multi-
crop augmentation (left) and with multi-crop augmentation (right). “Epo” is the effective pretraining
epochs adjusted by number of views processed by the models following (Zhou et al., 2021a).

Method Para. Epo. Lin. k-NN
DINO 21 3200 73.7 70.0
iBOT 21 3200 76.2 72.4
Mugs 21 3200 76.9 73.1

Method Para. Epo. Lin. k-NN
DINO 21 3200 77.0 74.5
iBOT 21 3200 77.9 75.2
Mugs 21 3200 78.9 75.6

13



Table 10: Fine-tuning classification accuracy (%) on ImageNet-1K. All methods are pretrained on
ImageNet-1K. “Epo.” is the effective pretraining epochs adjusted by number of views processed by
the models following (Zhou et al., 2021a).

Method ViT-L/16
Epo. Acc. (%)

Supervised (Touvron et al., 2021) — 83.1
BEiT (Bao et al., 2021) 800 85.2

reconstruction MAE (He et al., 2021a) 1600 85.9
data2vec (Baevski et al., 2022) 1600 86.6
DINO (Caron et al., 2021) — —

contrastive or iBOT (Zhou et al., 2021a) 1000 84.8
clustering MoCo-v3 (Chen et al., 2021) 600 84.1

Mugs (ours) 1000 85.2

A.2 COMPARISON W/O AND W/ MULTI-CROP AUGMENTATION

Here we first investigate the performance of Mugs without the multi-crop augmentation which is
widely used in several representative works, and further compare it with other SoTA methods,
include iBOT and DINO under the same setting. Specifically, for Mugs without multi-crop aug-
mentation, it only uses two 224-sized crops for pretraining. The left table in Table 9 reports the
results of all compared methods without multi-crop augmentation, while the right one summarizes
the results under multi-crop augmentation setting. By comparison, one can observe that without
multi-crop augmentation, Mugs still consistently achieves the highest accuracy under both linear
probing setting and KNN setting. Specifically, Mugs improves the runner-up, namely iBOT, by re-
spectively 0.8% and 0.5% under linear probing and KNN evaluation settings. More importantly, we
can observe that Mugs without multi-crop augmentation even achieves very similar results as DINO
with multi-crop augmentation. All these results are consistent with those results in Table 2 in the
manuscript, and well demonstrate the superiority of Mugs over previous state-of-the-arts.

A.3 COMPARISON UNDER FINE-TUNING SETTING

In the manuscript, we already compare Mugs with state-of-the-art approaches on the ViT-S/16 and
ViT-B/16 under the fine-tuning setting. Due to limited space, we defer the comparison among Mugs
and others on ViT-L/16 into Table 10. This setting allows us to optimize the pretrained backbone
with a linear classifier. Following BEiT (Bao et al., 2021), DINO and iBOT, we use AdamW opti-
mizer with layer-wise learning rate decay to train ViT-L for 50 epochs on ImageNet-1K. On ViT-L,
Mugs achieves 85.2% top-1 accuracy, and surpasses all contrastive learning and clustering learning
methods. One can also observe that on ViT-L, most of the reconstruction methods achieves higher
accuracy than constrictive or clustering learning approaches, including iBOT and our Mugs. There
are two possible reasons. Firstly, the reconstruction methods use much more computations for pre-
training than constrictive or clustering learning approaches. Specifically, the reconstruction family
always use 224×224-sized images to pretrain the model, while constrictive or clustering learning
approaches uses multi-crop augmentations which contains two 224-sized images and ten 96-sized
images. Since “Epo.” in Table 10 is the effective pretraining epochs adjusted by number of views
processed by the models (Zhou et al., 2021a) which means each 96-sized image equals to one 224-
sized image in terms of the defined “epochs”, with the same pretraining epochs, the computation
cost of the reconstruction approaches is much more. Actually, from Table 10, the reconstruction
methods have much more effective pretraining epochs than constrictive or clustering learning ap-
proaches, e.g. 1600 epochs in data2vec v.s. 1000 epochs in iBOT & Mugs, which further increases
the training cost. Secondly, for large models, using small-sized images, e.g. ten 96-sized images
in multi-crop augmentations, may lead to overfitting issue in contrastive or clustering learning ap-
proaches. Specifically, from Table 2 in manuscript and Table 10 here, once can observe that on
relatively small models, such as ViT-S and ViT-B, SoTA contrastive learning or clustering methods,
such as Mugs and iBOT, outperform the reconstruction methods, even though the formers have much
less pretraining cost as mentioned above. But on large models, e.g. ViT-L, the superiority of SoTA
contrastive or clustering learning methods disappears. One possible reason for these inconsistent
observation is that large model needs more pretraining epochs for learning semantic features, and
could suffer from over-fitting problem when using 96-sized crops, since 1) large model is capable to
memory all images as demonstrated in many works; and 2) 96-sized crops may contain incomplete
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MoCo-v3 DINO iBOT Mugs

(a) T-SNE visualization of 19 classes of insects, e.g. beetle, butterfly, stick, and cricket.
MoCo-v3 DINO iBOT Mugs

(b) T-SNE visualization of 20 classes of various monkeys, e.g. gibbon, siamang, patas, and gorilla.
MoCo-v3 DINO iBOT Mugs

(c) T-SNE visualization of 17 classes of various birds, e.g. junco, robin, jay, cock, and ostrich.

Figure 5: More T-SNE visualization of the learned features by ViT-B/16 trained by our Mugs. Best
viewed in color pdf file.

semantics of the vanilla image and lead to over-fitting issue, especially under insufficient pretraining
epochs. Note, as explained at the end of Sec. 2 in manuscript, this fine-tuning setting needs much
higher extra training cost, and also destroys model compatibility for deployment. Therefore, in this
work, we do not further push Mugs’s limits on the large models which needs huge training cost as
the reconstruction methods.

A.4 MORE T-SNE VISUALIZATION RESULTS

Same with Fig. 4 in the manuscript, here we use T-SNE (Van der Maaten & Hinton, 2008) to reveal
the feature differences among MoCo-v3, DINO, iBOT, and Mugs in Fig. 5. By comparison, Mugs
often can scatter the samples from different classes more separately, while keeping the samples
in the same class close in the feature space. This could means that our Mugs can better distinguish
different classes than MoCo-v3, DINO and iBOT, and thus shows higher performance. The potential
reason behind this observation is explained in manuscript. That is, instead of regards the class as
a whole, Mugs utilizes its multi-granular supervisions to consider the multi-granular (hierarchical)
data semantic structures and divides the whole class into several clusters for easily discriminating in
the pretraining phase. Differently, MoCo-v3, DINO and iBOT ignore the multi-granular semantic
structures and only uses one granular supervision which often could not well handle the challenging
classes.

A.5 MORE ATTENTION VISUALIZATION RESULTS

Here same with Fig. 5 in the manuscript, we visualize more self-attention map of the 12 self-attention
heads in ViT-B/16 pretrained by Mugs in Fig. 6. The first column denotes the vanilla images, while
each column of the last 12 columns denote the self-attention score maps of each individual head. The
second column combines the 12 self-attention score maps from 12 heads into one, and also sets a
threshold to remove some noises via only keeping top attention score. From these visualizations, one
can observe that by using Mugs for pretraining, the overall self-attention of 12 heads can capture the
object shapes very well. For example, from the first bird image, it is even hard for human to get the
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Figure 6: Self-attention visualization of ViT-B/16 pretrained by our Mugs. The images from left to
right respectively denote the vanilla image, the overall self-attention score of all 12 heads in ViT-B,
and the individual self-attention score of 12 heads. Best viewed in color pdf file.

bird location at the first glance, due to the similar color of the bird and the flowers. But the ViT-B/16
pretrained by Mugs still can well locate the bird and also capture the bird shape. Moreover, one can
also compare the attention visualization of Mugs with state-of-the-arts, e.g. iBOT. In iBOT (Zhou
et al., 2021a), Fig. 18 in their appendix also visualizes the self-attention map. By comparison, the
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Figure 7: Object detection visualization of ViT-B/16 pretrained by Mugs. Best viewed in color pdf
file.

Figure 8: Semantic segmentation visualization of ViT-B/16 pretrained by Mugs. Best viewed in
color pdf file.

model pretrained by Mugs can better separate the object from background. These results testify that
ViT-B/16 pretrained by Mugs can capture semantics in data even without any manual labels.

A.6 MORE VISUALIZATION RESULTS ON OBJECT DETECTION AND SEMANTIC
SEGMENTATION

In the manuscript, we already provide some object detection and segmentation examples in Fig. 5.
Here we give more examples. Fig. 7 shows more object detection examples on the COCO datasets,
where we use the ViT-B/16 pretrained by our Mugs. From these results, one can observe that Mugs
not only accurately locate the objects in the images but also precisely recognizes these objects. For
semantic segmentation on ADE20K, Fig. 8 visualizes more examples. We also can find that Mugs
can capture the object shape accurately and thus well captures the semantics of an image.

B MORE EXPERIMENTAL DETAILS

Due to space limitation, we defer more experimental details to this section. Here we first provide
more details for pretraining. Then we present the experimental details for various kinds of down-
stream tasks. Finally, we also give the details for ablation study.

B.1 MORE DETAILS FOR PRETRAINING
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B.1.1 AUGMENTATION.

Here the weak augmentation in our teacher backbone refers to the augmentations used in many
SSL works, e.g. DINO (Caron et al., 2021), which includes random crop, color jitter, Gaussian
noise, horizontal flipping and gray scaling. The hyper-parameters in these augmentation operations
are the same with those in DINO (Caron et al., 2021). The strong augmentation in our student
backbone is the combination of AutoAugment (Cubuk et al., 2018) used in DeiT (Touvron et al.,
2021) and the above weak augmentation. Specifically, for each image, with probability 0.5, we use
AutoAugment (Cubuk et al., 2018) to augment it; otherwise, we use weak augmentation to crop
it. We use this sampling strategy to avoid training collapse while keeping sufficient data diversity.
Following DINO and iBOT, we always set the global crop scale as [0.25, 1] and local crop scale as
[0.05, 0.25].

B.1.2 LOSS FOR MULTI-CROP SETTING.

Following conventional multi-crop setting (Caron et al., 2020b; 2021; Zhou et al., 2021a), we crop
each image into 2 large crops of size 224 and 10 extra small crops of size 96. Then to construct the
overall pretraining loss 6 in manuscript, we regard one large crop as x1 and respectively take the
remaining 11 crops as x2. Then symmetrically, we view another large crop as x1 and respectively
take the remaining 11 crops as x2. Finally, we average these loss to obtain the overall training loss.

B.1.3 HYPER-PARAMETER SETTINGS FOR PRETRAINING.

For all experiments, we use AdamW optimizer (Loshchilov & Hutter, 2018) with a momentum of
0.9 and a cosine learning rate schedule (Loshchilov & Hutter, 2016). We also linearly warm up
the learning rate at the first 10 epochs from 10−6 to its base value, and then decay it with a cosine
schedule (Loshchilov & Hutter, 2016). For ViT-S and ViT-B, we use a minibatch size of 1024, a base
learning rate of 8 × 10−4, and a weight decay of 0.1. For ViT-L, due to our limited computational
resource, we use a minibatch size of 640, a base learning rate of 1.5 × 10−4, and a weight decay
of 0.08. For all experiments, the learning rate of the patch embedding layer is 5× smaller than the
base learning rate. This strategy is demontrated to be useful for stabling training in MoCo-v3 (Chen
et al., 2021). For drop path rate, we set it as 0.1/0.2/0.4 for ViT-S/B/L respectively. We set clip
gradient as 3.0 for ViT-S/B and 0.3 for ViT-L. For Mugs, we follow MoCo to set τin = τlg = 0.2 in
the infoNCE loss, and follow DINO to set τ ′g = 0.1 and linearly warm up τg from 0.04 to 0.07. We
set the neighbor number k = 8, and set ρ = 0.9 to estimate the center pema in group discrimination.
All these settings are almost the same as DINO for simplicity which reduces hyper-parameter tuning
and saves computational budget.

B.1.4 PRETRAINING COST.

Mugs takes about 27 hours with 8 A100 GPUs for 100 pretraining epochs on ViT-S/16. This means
that Mugs has almost the same training cost with DINO, since our projection/prediction heads and
transformers gtransformer are much smaller than the backbone. For ViT-B/16, Mugs needs about 24
hours on 16 A100 GPUs for 100 pretraining epochs. To training 100 epochs on ViT-L/16, Mugs
takes about 48 hours on 40 A100 GPUs. For ViT-B and ViT-L, it is hard for us to compare with
DINO, since it does not report the training time.

B.2 MORE TRAINING DETAILS FOR EVALUATION ON IMAGENET-1K

B.2.1 FINE-TUNING.

As mentioned in manuscript, we follow BEiT (Bao et al., 2021), DINO and iBOT, and use AdamW
optimizer with layer-wise learning rate decay to train ViT-S/ViT-B/ViT-L for 200/100/50 epochs
on ImageNet-1K. We set layer-wise learning rate decay as 0.55 and learning rate 1.2 × 10−3 for
both ViT-S and ViT-B. For ViT-L, we use layer-wise learning rate decay 0.75 and learning rate
8.0 × 10−4. For drop path rate, we set it as 0.1/0.2/0/3 for ViT-S/ ViT-B/ViT-L respectively. All
these hyper-parameters are around at the suggested ones in BEiT and iBOT.
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B.2.2 SEMI-SUPERVISED LEARNING.

Following DINO and iBOT, we consider two settings: 1) training a logistic regression classifier on
frozen features; and 2) fine-tuning the whole pretrained backbone. For logistic regression classifier,
we use AdamW optimizer with total minibatch size 1024 and weight decay 0.05, under both 1% and
10% training data settings. We sweep the learning rate {0.03, 0.06, 0.10, 0.2}. For fine-tuning 1000
epochs on ViT-S/16, we also use AdamW optimizer with total minibatch size 1024 and weight decay
0.05 under both 1% and 10% training data settings. We respectively set learning rate as 2 × 10−6

and 5× 10−6 for 1% and 10% training data.

B.3 MORE DETAILS FOR DOWNSTEAM TASKS

B.3.1 TRANSFER LEARNING.

We pretrain the model on ImageNet-1K, and then fine-tune the pretrained backbone on various kinds
of other datasets with same protocols and optimization settings in DINO and iBOT. Specifically,
following DINO and iBOT, for both ViT-S and ViT-B, we always use AdamW optimizer with a
minibatch size of 768. We fine-tune the pretrained model 360 epochs on INat18 and INat19, and
1000 epochs on Cif10, Cif100, Flwrs and Car. For all datasets, we sweep the learning rate {7.5 ×
10−6, 1.5 × 10−5, 3.0 × 10−5, 7.5 × 10−5, 1.5 × 10−4}. For we set weight decay as 2 × 10−2

for CIFAR10 and CIFAR100 on ViT-B, and use a weight decay of 5 × 10−2 for all remaining
experiments. For example, on the INat18 dataset, we use a learning rate of 3.0 × 10−5/1.5 × 10−5

for ViT-S/ViT-B; on the INat19 dataset, we set learning rate as 7.5×10−5/3.0×10−5 for ViT-S/ViT-
B. For more hyper-parameters, please refer to the hyper-parameter configure file in our released
code.

B.3.2 OBJECT DETECTION & INSTANCE SEGMENTATION.

For fairness, we follow DINO and iBOT, and fine-tune the pretrained backbone via a multi-scale
strategy, namely resizing image at different scales. Please refer to iBOT for more details. We use
AdamW optimizer with a learning rate of 2 × 10−4, a weight decay of 0.05 to fine-tune with 1×
schedule, i.e. 12 epochs with the learning rate decayed by 10× at epochs 9 and 11. We sweep a layer
decay rate of {0.65, 0.75, 0.8, 0.9} and finally choose 0.8 because of its good performance. For test,
we do not use multi-scale strategy.

B.3.3 SEMANTIC SEGMENTATION.

For semantic segmentation, we follow DINO and iBOT, and fine-tune the pretrained backbone, and
fine-tune the pretrained backbone by using 512× 512-sized images for 1.6× 104 iterations. We use
AdamW optimizer with a learning rate of 2×10−4, a weight decay of 0.05 and a layer decay rate of
0.9 to fine-tune. For this task, we do not use any multi-scale strategy for training and test. We sweep
the learning rate {2× 10−5, 3× 10−5, 4× 10−5, 5× 10−5} and finally choose 3× 10−5 because of
its good performance.

B.4 MORE DETAILS FOR ABLATION STUDY

Here we provide the implementation details for DINO and iBOT under different augmentations.
As mentioned in Sec. 4.3 in the manuscript, for the augmentation T s in student network of
Mugs/DINO/iBOT, we implement it by strong or weak augmentation as mentioned at the begin-
ning of Sec. 4; for augmentation T t in teacher, we always use weak augmentation.

We first consider weak augmentation setting. For DINO, there is no any change, since its vanilla
version uses the weak augmentation. For Mugs, we only replace the strong augmentation used in
the student network with the weak augmentation. For iBOT, it has two losses, the proposed masked
image modeling (MIM) loss and the clustering loss in DINO. To construct the MIM loss, iBOT
needs to randomly mask the patches of input in the student network. But to build the clustering
loss, it actually does not require random masks on input patches, but still uses the random masks
in practice which actually increases the data augmentations for clustering loss. In this case, for fair
comparison, we remove the random masks and only perform weak augmentation to construct the
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clustering loss in iBOT. Note, we still preserve the random masks for MIM loss to ensure MIM is
the vanilla one in iBOT.

We then consider strong augmentation setting. For DINO, we only replace the weak augmentation
used in the student network with our strong augmentation. For iBOT, same as the above for weak
augmentation, we does not change the augmentation in MIM loss. But for building the clustering
loss, we also remove the random masks and only perform strong augmentation.
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